Plug flow reactor governing equations#

This function defines the spatial derivatives for an ideal gas plug-flow reactor, where the cross-sectional area and pressure are allowed to vary axially.

The model is set up by the example file plug_flow_reactor.m, which points the integrator to this function. The integrator integrates the derivatives spatially, to solve the density, temperature, and species mass fraction profiles as a function of distance x.

function F = PFR_Solver(x, soln_vector, gas, mdot, A_in, dAdx, k)
    rho = soln_vector(1);
    T = soln_vector(2);
    Y = soln_vector(3:end);

    if k == 1
        A = A_in + k * dAdx * x;
    elseif k == -1
        A = A_in + k * dAdx * x;
        dAdx = -dAdx;
    else
        A = A_in + k * dAdx * x;
    end

    % the gas is set to the corresponding properties during each iteration of the ode loop
    gas.TDY = {T, rho, Y};

    MW_mix = gas.meanMolecularWeight;
    Ru = GasConstant;
    R = Ru / MW_mix;
    nsp = gas.nSpecies;
    vx = mdot / (rho * A);
    P = rho * R * T;

    gas.basis = 'mass';
    MW = gas.molecularWeights;
    h = gas.partialMolarEnthalpies;
    w = gas.netProdRates;
    Cp = gas.cp;
    %--------------------------------------------------------------------------
    %---F(1), F(2) and F(3:end) are the differential equations modelling the---
    %---density, temperature and mass fractions variations along a plug flow---
    %-------------------------reactor------------------------------------------
    %--------------------------------------------------------------------------
    F(1) = ((1 - R / Cp) * ((rho * vx)^2) * (1 / A) * (dAdx) ...
            + rho * R * sum(MW .* w .* (h - MW_mix * Cp * T ./ MW)) / (vx * Cp)) ...
            / (P * (1 + vx^2 / (Cp * T)) - rho * vx^2);

    F(2) = (vx * vx / (rho * Cp)) * F(1) + vx * vx * (1 / A) * (dAdx) / Cp ...
            - (1 / (vx * rho * Cp)) * sum(h .* w .* MW);

    F(3:nsp + 2) = w(1:nsp) .* MW(1:nsp) ./ (rho * vx);

    F = F';

end

Gallery generated by Sphinx-Gallery