Cantera  2.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Classes | Typedefs | Enumerations | Functions | Variables
Cantera Namespace Reference

Namespace for the Cantera kernel. More...

Classes

class  Application
 Class to hold global data. More...
 
class  Unit
 Unit conversion utility. More...
 
class  XML_Error
 Classs representing a generic XML error condition. More...
 
class  XML_TagMismatch
 Class representing a specific type of XML file formatting error. More...
 
class  XML_NoChild
 Class representing a specific type of XML file formatting error. More...
 
class  PropertyCalculator
 Classes used by ChemEquil. More...
 
class  CVodeErr
 Exception thrown when a CVODE error is encountered. More...
 
class  CVodeInt
 Wrapper class for 'CVODE' integrator from LLNL. More...
 
class  ResidData
 A simple class to hold an array of parameter values and a pointer to an instance of a subclass of ResidEval. More...
 
struct  awData
 
class  ElementsFrozen
 Exception class to indicate a fixed set of elements. More...
 
class  NasaThermo
 A species thermodynamic property manager for the NASA polynomial parameterization with two temperature ranges. More...
 
class  ShomateThermo
 A species thermodynamic property manager for the Shomate polynomial parameterization. More...
 
class  UnknownVPSSMgrModel
 Throw a named error for an unknown or missing vpss species thermo model. More...
 
class  VPSSMgrFactory
 Factory to build instances of classes that manage the standard-state thermodynamic properties of a set of species. More...
 
class  LTPError
 Exception thrown if an error is encountered while reading the transport database. More...
 
class  LTPmodelError
 Exception thrown if an error is encountered while reading the transport database. More...
 
class  MMCollisionInt
 Calculation of Collision integrals. More...
 
class  TransportDBError
 Exception thrown if an error is encountered while reading the transport database. More...
 
class  Array2D
 A class for 2D arrays stored in column-major (Fortran-compatible) form. More...
 
class  clockWC
 The class provides the wall clock timer in seconds. More...
 
class  CanteraError
 Base class for exceptions thrown by Cantera classes. More...
 
class  ArraySizeError
 Array size error. More...
 
class  IndexError
 An array index is out of range. More...
 
class  NotImplementedError
 An error indicating that an unimplemented function has been called. More...
 
class  FactoryBase
 Base class for factories. More...
 
class  Logger
 Base class for 'loggers' that write text messages to log files. More...
 
struct  timesConstant
 Unary operator to multiply the argument by a constant. More...
 
struct  CachedValue
 
class  ValueCache
 
class  XML_Reader
 Class XML_Reader reads an XML file into an XML_Node object. More...
 
class  XML_Node
 Class XML_Node is a tree-based representation of the contents of an XML file. More...
 
class  Edge
 Convenience class which inherits from both EdgePhase and EdgeKinetics. More...
 
class  EquilOpt
 Chemical equilibrium options. More...
 
class  ChemEquil
 Class ChemEquil implements a chemical equilibrium solver for single-phase solutions. More...
 
class  MultiPhase
 A class for multiphase mixtures. More...
 
class  MultiPhaseEquil
 
class  VCS_COUNTERS
 Class to keep track of time and iterations. More...
 
class  vcs_MultiPhaseEquil
 Cantera's Interface to the Multiphase chemical equilibrium solver. More...
 
class  VCS_PROB
 Interface class for the vcs thermo equilibrium solver package, which generally describes the problem to be solved. More...
 
class  VCS_SOLVE
 This is the main structure used to hold the internal data used in vcs_solve_TP(), and to solve TP systems. More...
 
class  VCS_SPECIES_THERMO
 
class  vcs_SpeciesProperties
 Properties of a single species. More...
 
class  vcs_VolPhase
 Phase information and Phase calculations for vcs. More...
 
class  IdealGasMix
 Convenience class which inherits from both IdealGasPhase and GasKinetics. More...
 
class  IncompressibleSolid
 Wrapper for ConstDensityThermo with constructor from file. More...
 
class  Interface
 An interface between multiple bulk phases. More...
 
class  AqueousKinetics
 Kinetics manager for elementary aqueous-phase chemistry. More...
 
class  BulkKinetics
 Partial specialization of Kinetics for chemistry in a single bulk phase. More...
 
class  EdgeKinetics
 Heterogeneous reactions at one-dimensional interfaces between multiple adjacent two-dimensional surfaces. More...
 
class  ElectrodeKinetics
 A kinetics manager for heterogeneous reaction mechanisms. More...
 
class  Enhanced3BConc
 Computes enhanced third-body concentrations. More...
 
class  ExtraGlobalRxn
 Class describing an extra global reaction, which is defined as a linear combination of actuals reactions, global or mass-action, creating a global stoichiometric result. More...
 
class  Falloff
 Base class for falloff function calculators. More...
 
class  Troe
 The 3- or 4-parameter Troe falloff parameterization. More...
 
class  SRI
 The SRI falloff function. More...
 
class  FalloffFactory
 Factory class to construct falloff function calculators. More...
 
class  FalloffMgr
 A falloff manager that implements any set of falloff functions. More...
 
class  GasKinetics
 Kinetics manager for elementary gas-phase chemistry. More...
 
class  Group
 Class Group is an internal class used by class ReactionPath. More...
 
class  ImplicitSurfChem
 Advances the surface coverages of the associated set of SurfacePhase objects in time. More...
 
struct  ReactionRules
 Rules for parsing and installing reactions. More...
 
class  RxnOrders
 forward orders More...
 
class  InterfaceKinetics
 A kinetics manager for heterogeneous reaction mechanisms. More...
 
class  Kinetics
 Public interface for kinetics managers. More...
 
class  KineticsFactory
 Factory for kinetics managers. More...
 
class  Rate1
 This rate coefficient manager supports one parameterization of the rate constant of any type. More...
 
class  Reaction
 Intermediate class which stores data about a reaction and its rate parameterization so that it can be added to a Kinetics object. More...
 
class  ElementaryReaction
 A reaction which follows mass-action kinetics with a modified Arrhenius reaction rate. More...
 
class  ThirdBody
 A class for managing third-body efficiencies, including default values. More...
 
class  ThreeBodyReaction
 A reaction with a non-reacting third body "M" that acts to add or remove energy from the reacting species. More...
 
class  FalloffReaction
 A reaction that is first-order in [M] at low pressure, like a third-body reaction, but zeroth-order in [M] as pressure increases. More...
 
class  ChemicallyActivatedReaction
 A reaction where the rate decreases as pressure increases due to collisional stabilization of a reaction intermediate. More...
 
class  PlogReaction
 A pressure-dependent reaction parameterized by logarithmically interpolating between Arrhenius rate expressions at various pressures. More...
 
class  ChebyshevReaction
 A pressure-dependent reaction parameterized by a bi-variate Chebyshev polynomial in temperature and pressure. More...
 
struct  CoverageDependency
 Modifications to an InterfaceReaction rate based on a surface species coverage. More...
 
class  InterfaceReaction
 A reaction occurring on an interface (i.e. a SurfPhase or an EdgePhase) More...
 
class  ElectrochemicalReaction
 An interface reaction which involves charged species. More...
 
class  ReactionData
 Intermediate class which stores data about a reaction and its rate parameterization before adding the reaction to a Kinetics object. More...
 
class  SpeciesNode
 Nodes in reaction path graphs. More...
 
class  ReactionPathDiagram
 Reaction path diagrams (graphs). More...
 
class  ReactionStoichMgr
 Reaction mechanism stoichiometry manager. More...
 
class  RxnMolChange
 Class that includes some bookeeping entries for a reaction or a global reaction defined on a surface. More...
 
class  Arrhenius
 Arrhenius reaction rate type depends only on temperature. More...
 
class  SurfaceArrhenius
 An Arrhenius rate with coverage-dependent terms. More...
 
class  ExchangeCurrent
 Arrhenius reaction rate type depends only on temperature. More...
 
class  Plog
 Pressure-dependent reaction rate expressed by logarithmically interpolating between Arrhenius rate expressions at various pressures. More...
 
class  ChebyshevRate
 Pressure-dependent rate expression where the rate coefficient is expressed as a bivariate Chebyshev polynomial in temperature and pressure. More...
 
class  solveSP
 Method to solve a pseudo steady state surface problem. More...
 
class  C1
 Handles one species in a reaction. More...
 
class  C2
 Handles two species in a single reaction. More...
 
class  C3
 Handles three species in a reaction. More...
 
class  C_AnyN
 Handles any number of species in a reaction, including fractional stoichiometric coefficients, and arbitrary reaction orders. More...
 
class  ThirdBodyCalc
 Calculate and apply third-body effects on reaction rates, including non- unity third-body efficiencies. More...
 
class  ThirdBodyMgr
 
class  Metal
 Wrapper for MetalPhase with constructor from file. More...
 
class  BandMatrix
 A class for banded matrices, involving matrix inversion processes. More...
 
class  BEulerErr
 Exception class thrown when a BEuler error is encountered. More...
 
class  BEulerInt
 
class  CVodesErr
 Exception thrown when a CVODES error is encountered. More...
 
class  CVodesIntegrator
 Wrapper class for 'cvodes' integrator from LLNL. More...
 
class  DAE_Solver
 Wrapper for DAE solvers. More...
 
class  CELapackError
 Exception thrown when an LAPACK error is encountered associated with inverting or solving a matrix. More...
 
class  DenseMatrix
 A class for full (non-sparse) matrices with Fortran-compatible data storage, which adds matrix operations to class Array2D. More...
 
class  Func1
 Base class for 'functor' classes that evaluate a function of one variable. More...
 
class  Sin1
 implements the sin() function More...
 
class  Cos1
 cos More...
 
class  Exp1
 exp More...
 
class  Pow1
 pow More...
 
class  Const1
 Constant. More...
 
class  Sum1
 Sum of two functions. More...
 
class  Diff1
 Difference of two functions. More...
 
class  Product1
 Product of two functions. More...
 
class  TimesConstant1
 Product of two functions. More...
 
class  PlusConstant1
 A function plus a constant. More...
 
class  Ratio1
 Ratio of two functions. More...
 
class  Composite1
 Composite function. More...
 
class  Gaussian
 A Gaussian. More...
 
class  Poly1
 Polynomial of degree n. More...
 
class  Fourier1
 Fourier cosine/sine series. More...
 
class  Arrhenius1
 Sum of Arrhenius terms. More...
 
class  Periodic1
 Periodic function. More...
 
class  FuncEval
 Virtual base class for ODE right-hand-side function evaluators. More...
 
class  GeneralMatrix
 Generic matrix. More...
 
class  IDA_Err
 Exception thrown when a IDA error is encountered. More...
 
class  Integrator
 Abstract base class for ODE system integrators. More...
 
class  NonlinearSolver
 Class that calculates the solution to a nonlinear system. More...
 
class  ResidEval
 Virtual base class for DAE residual function evaluators. More...
 
class  ResidJacEval
 Wrappers for the function evaluators for Nonlinear solvers and Time steppers. More...
 
class  RootFind
 Root finder for 1D problems. More...
 
class  solveProb
 Method to solve a pseudo steady state of a nonlinear problem. More...
 
class  SquareMatrix
 A class for full (non-sparse) matrices with Fortran-compatible data storage. More...
 
class  Domain1D
 Base class for one-dimensional domains. More...
 
class  Bdry1D
 The base class for boundaries between one-dimensional spatial domains. More...
 
class  Inlet1D
 An inlet. More...
 
class  Empty1D
 A terminator that does nothing. More...
 
class  Symm1D
 A symmetry plane. More...
 
class  Outlet1D
 An outlet. More...
 
class  OutletRes1D
 An outlet with specified composition. More...
 
class  Surf1D
 A non-reacting surface. More...
 
class  ReactingSurf1D
 A reacting surface. More...
 
class  MultiJac
 Class MultiJac evaluates the Jacobian of a system of equations defined by a residual function supplied by an instance of class OneDim. More...
 
class  MultiNewton
 Newton iterator for multi-domain, one-dimensional problems. More...
 
class  OneDim
 Container class for multiple-domain 1D problems. More...
 
class  Refiner
 Refine Domain1D grids so that profiles satisfy adaptation tolerances. More...
 
class  Sim1D
 One-dimensional simulations. More...
 
class  StFlow
 This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemically-reacting, axisymmetric, flows. More...
 
class  AxiStagnFlow
 A class for axisymmetric stagnation flows. More...
 
class  FreeFlame
 A class for freely-propagating premixed flames. More...
 
class  PureFluid
 Wrapper for PureFluidPhase with constructor from file. More...
 
class  Adsorbate
 An adsorbed surface species. More...
 
class  ConstCpPoly
 A constant-heat capacity species thermodynamic property manager class. More...
 
class  ConstDensityThermo
 Overloads the virtual methods of class ThermoPhase to implement the incompressible equation of state. More...
 
class  DebyeHuckel
 Class DebyeHuckel represents a dilute liquid electrolyte phase which obeys the Debye Huckel formulation for nonideality. More...
 
class  EdgePhase
 A thermodynamic phase representing a one dimensional edge between two surfaces. More...
 
class  Elements
 Object containing the elements that make up species in a phase. More...
 
class  FixedChemPotSSTP
 Class FixedChemPotSSTP represents a stoichiometric (fixed composition) incompressible substance. More...
 
class  GeneralSpeciesThermo
 A species thermodynamic property manager for a phase. More...
 
class  GibbsExcessVPSSTP
 
class  HMWSoln
 Class HMWSoln represents a dilute or concentrated liquid electrolyte phase which obeys the Pitzer formulation for nonideality. More...
 
class  IdealGasPhase
 Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state. More...
 
class  IdealMolalSoln
 This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one. More...
 
class  IdealSolidSolnPhase
 Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...
 
class  IdealSolnGasVPSS
 An ideal solution or an ideal gas approximation of a phase. More...
 
class  IonsFromNeutralVPSSTP
 
class  LatticePhase
 A simple thermodynamic model for a bulk phase, assuming a lattice of solid atoms. More...
 
class  LatticeSolidPhase
 A phase that is comprised of a fixed additive combination of other lattice phases. More...
 
class  MargulesVPSSTP
 MargulesVPSSTP is a derived class of GibbsExcessVPSSTP that employs the Margules approximation for the excess Gibbs free energy. More...
 
class  MaskellSolidSolnPhase
 Class MaskellSolidSolnPhase represents a condensed phase non-ideal solution with 2 species following the thermodynamic model described in Maskell, Shaw, and Tye, Manganese Dioxide Electrode – IX, Electrochimica Acta 28(2) pp 231-235, 1983. More...
 
class  MetalPhase
 Class MetalPhase represents electrons in a metal. More...
 
class  MetalSHEelectrons
 Class MetalSHEelectrons represents electrons within a metal, adjacent to an aqueous electrolyte, that are consistent with the SHE reference electrode. More...
 
class  MineralEQ3
 Class MineralEQ3 represents a stoichiometric (fixed composition) incompressible substance based on EQ3's parameterization. More...
 
class  MixedSolventElectrolyte
 MixedSolventElectrolyte is a derived class of GibbsExcessVPSSTP that employs the DH and local Marguless approximations for the excess Gibbs free energy. More...
 
class  MixtureFugacityTP
 This is a filter class for ThermoPhase that implements some preparatory steps for efficiently handling mixture of gases that whose standard states are defined as ideal gases, but which describe also non-ideal solutions. More...
 
class  MolalityVPSSTP
 
class  MolarityIonicVPSSTP
 
class  Mu0Poly
 The Mu0Poly class implements an interpolation of the Gibbs free energy based on a piecewise constant heat capacity approximation. More...
 
class  Nasa9Poly1
 The NASA 9 polynomial parameterization for one temperature range. More...
 
class  Nasa9PolyMultiTempRegion
 The NASA 9 polynomial parameterization for a single species encompassing multiple temperature regions. More...
 
class  NasaPoly1
 The NASA polynomial parameterization for one temperature range. More...
 
class  NasaPoly2
 The NASA polynomial parameterization for two temperature ranges. More...
 
class  PDSS
 Virtual base class for a species with a pressure dependent standard state. More...
 
class  PDSS_Molar
 Base class for PDSS classes which compute molar properties directly. More...
 
class  PDSS_Nondimensional
 Base class for PDSS classes which compute nondimensional properties directly. More...
 
class  PDSS_ConstVol
 Class for pressure dependent standard states that use a constant volume model. More...
 
class  PDSS_HKFT
 Class for pressure dependent standard states corresponding to ionic solutes in electrolyte water. More...
 
class  PDSS_IdealGas
 Derived class for pressure dependent standard states of an ideal gas species. More...
 
class  PDSS_IonsFromNeutral
 Derived class for pressure dependent standard states of an ideal gas species. More...
 
class  PDSS_SSVol
 Class for pressure dependent standard states that uses a standard state volume model of some sort. More...
 
class  PDSS_Water
 Class for the liquid water pressure dependent standard state. More...
 
class  Phase
 Class Phase is the base class for phases of matter, managing the species and elements in a phase, as well as the independent variables of temperature, mass density, species mass/mole fraction, and other generalized forces and intrinsic properties (such as electric potential) that define the thermodynamic state. More...
 
class  PhaseCombo_Interaction
 PhaseCombo_Interaction is a derived class of GibbsExcessVPSSTP that employs the Margules approximation for the excess Gibbs free energy while eliminating the entropy of mixing term. More...
 
class  PseudoBinaryVPSSTP
 
class  PureFluidPhase
 This phase object consists of a single component that can be a gas, a liquid, a mixed gas-liquid fluid, or a fluid beyond its critical point. More...
 
class  RedlichKisterVPSSTP
 RedlichKisterVPSSTP is a derived class of GibbsExcessVPSSTP that employs the Redlich-Kister approximation for the excess Gibbs free energy. More...
 
class  RedlichKwongMFTP
 This class can handle either an ideal solution or an ideal gas approximation of a phase. More...
 
class  SemiconductorPhase
 Class SemiconductorPhase represents electrons and holes in a semiconductor. More...
 
class  ShomatePoly
 The Shomate polynomial parameterization for one temperature range for one species. More...
 
class  ShomatePoly2
 The Shomate polynomial parameterization for two temperature ranges for one species. More...
 
class  SimpleThermo
 
class  SingleSpeciesTP
 The SingleSpeciesTP class is a filter class for ThermoPhase. More...
 
class  Species
 Contains data about a single chemical species. More...
 
class  SpeciesThermo
 Pure Virtual base class for the species thermo manager classes. More...
 
class  UnknownSpeciesThermoModel
 Throw a named error for an unknown or missing species thermo model. More...
 
class  SpeciesThermoFactory
 Factory to build instances of classes that manage the standard-state thermodynamic properties of a set of species. More...
 
class  SpeciesThermoInterpType
 Pure Virtual Base class for the thermodynamic manager for an individual species' reference state. More...
 
class  STITbyPDSS
 Class for the thermodynamic manager for an individual species' reference state which uses the PDSS base class to satisfy the requests. More...
 
class  UnknownSpeciesThermo
 Unknown species thermo manager string error. More...
 
class  SpeciesThermoDuo
 This species thermo manager requires that all species have one of two parameterizations. More...
 
class  StatMech
 Statistical mechanics. More...
 
class  StoichSubstance
 Class StoichSubstance represents a stoichiometric (fixed composition) incompressible substance. More...
 
class  StoichSubstanceSSTP
 Class StoichSubstanceSSTP represents a stoichiometric (fixed composition) incompressible substance. More...
 
class  electrodeElectron
 Class electrodeElectron represents an electron in a metal using the Standard hydrogen reference electrode. More...
 
class  SurfPhase
 A simple thermodynamic model for a surface phase, assuming an ideal solution model. More...
 
class  UnknownThermoPhaseModel
 Specific error to be thrown if the type of Thermo manager is unrecognized. More...
 
class  ThermoFactory
 Factory class for thermodynamic property managers. More...
 
class  ThermoPhase
 Base class for a phase with thermodynamic properties. More...
 
class  VPSSMgr
 Virtual base class for the classes that manage the calculation of standard state properties for all the species in a phase. More...
 
class  VPSSMgr_ConstVol
 Constant Molar Volume e VPSS species thermo manager class. More...
 
class  VPSSMgr_General
 Class that handles the calculation of standard state thermo properties for a set of species belonging to a single phase in a completely general but slow way. More...
 
class  VPSSMgr_IdealGas
 A VPSSMgr where all species in the phase obey an ideal gas equation of state. More...
 
class  VPSSMgr_Water_ConstVol
 Handles the calculation of standard state thermo properties for real water and a set of species which have a constant molar volume pressure dependence. More...
 
class  VPSSMgr_Water_HKFT
 Manages standard state thermo properties for real water and a set of species which have the HKFT equation of state. More...
 
class  VPStandardStateTP
 This is a filter class for ThermoPhase that implements some prepatory steps for efficiently handling a variable pressure standard state for species. More...
 
class  WaterProps
 The WaterProps class is used to house several approximation routines for properties of water. More...
 
class  WaterPropsIAPWS
 Class for calculating the equation of state of water. More...
 
class  WaterPropsIAPWSphi
 Low level class for the real description of water. More...
 
class  WaterSSTP
 Class for single-component water. More...
 
class  AqueousTransport
 Class AqueousTransport implements mixture-averaged transport properties for brine phases. More...
 
class  DustyGasTransport
 Class DustyGasTransport implements the Dusty Gas model for transport in porous media. More...
 
class  GasTransport
 Class GasTransport implements some functions and properties that are shared by the MixTransport and MultiTransport classes. More...
 
class  HighPressureGasTransport
 Class MultiTransport implements transport properties for high pressure gas mixtures. More...
 
class  LiquidTranInteraction
 Base class to handle transport property evaluation in a mixture. More...
 
class  LTI_MoleFracs
 Simple mole fraction weighting of transport properties. More...
 
class  LTI_MassFracs
 Simple mass fraction weighting of transport properties. More...
 
class  LTI_Log_MoleFracs
 Mixing rule using logarithms of the mole fractions. More...
 
class  LTI_Pairwise_Interaction
 Transport properties that act like pairwise interactions as in binary diffusion coefficients. More...
 
class  LTI_StefanMaxwell_PPN
 Stefan Maxwell Diffusion Coefficients can be solved for given ion conductivity, mobility ratios, and self diffusion coeffs. More...
 
class  LTI_MoleFracs_ExpT
 Simple mole fraction weighting of transport properties. More...
 
class  LiquidTransport
 Class LiquidTransport implements models for transport properties for liquid phases. More...
 
class  LiquidTransportData
 Class LiquidTransportData holds transport parameters for a specific liquid-phase species. More...
 
class  LiquidTransportParams
 Class LiquidTransportParams holds transport model parameters relevant to transport in mixtures. More...
 
class  LTPspecies
 Class LTPspecies holds transport parameterizations for a specific liquid-phase species. More...
 
class  LTPspecies_Const
 Class LTPspecies_Const holds transport parameters for a specific liquid-phase species (LTPspecies) when the transport property is just a constant value. More...
 
class  LTPspecies_Arrhenius
 Class LTPspecies_Arrhenius holds transport parameters for a specific liquid-phase species (LTPspecies) when the transport property is expressed in Arrhenius form. More...
 
class  LTPspecies_Poly
 Class LTPspecies_Poly holds transport parameters for a specific liquid-phase species (LTPspecies) when the transport property is expressed as a polynomial in temperature. More...
 
class  LTPspecies_ExpT
 Class LTPspecies_ExpT holds transport parameters for a specific liquid- phase species (LTPspecies) when the transport property is expressed as an exponential in temperature. More...
 
class  MixTransport
 Class MixTransport implements mixture-averaged transport properties for ideal gas mixtures. More...
 
class  MultiTransport
 Class MultiTransport implements multicomponent transport properties for ideal gas mixtures. More...
 
class  PecosTransport
 Class PecosTransport implements mixture-averaged transport properties for ideal gas mixtures. More...
 
class  SimpleTransport
 Class SimpleTransport implements mixture-averaged transport properties for liquid phases. More...
 
class  SolidTransport
 Class SolidTransport implements transport properties for solids. More...
 
class  SolidTransportData
 Class SolidTransportData holds transport parameters for a specific solid-phase species. More...
 
class  Tortuosity
 Specific Class to handle tortuosity corrections for diffusive transport in porous media using the Bruggeman exponent. More...
 
class  TortuosityPercolation
 This class implements transport coefficient corrections appropriate for porous media where percolation theory applies. More...
 
class  TortuosityMaxwell
 This class implements transport coefficient corrections appropriate for porous media with a dispersed phase. More...
 
class  Transport
 Base class for transport property managers. More...
 
class  TransportData
 Base class for transport data for a single species. More...
 
class  GasTransportData
 Transport data for a single gas-phase species which can be used in mixture-averaged or multicomponent transport models. More...
 
class  TransportFactory
 Factory class for creating new instances of classes derived from Transport. More...
 
class  TransportParams
 Base structure to hold transport model parameters. More...
 
class  GasTransportParams
 This structure holds transport model parameters relevant to transport in ideal gases with a kinetic theory of gases derived transport model. More...
 
class  WaterTransport
 Transport Parameters for pure water. More...
 
class  ConstPressureReactor
 Class ConstPressureReactor is a class for constant-pressure reactors. More...
 
class  MassFlowController
 A class for mass flow controllers. More...
 
class  PressureController
 A class for flow controllers where the flow rate is equal to the flow rate of a "master" mass flow controller plus a correction proportional to the pressure difference between the inlet and outlet. More...
 
class  Valve
 Supply a mass flow rate that is a function of the pressure drop across the valve. More...
 
class  FlowDevice
 Base class for 'flow devices' (valves, pressure regulators, etc.) connecting reactors. More...
 
class  FlowReactor
 Adiabatic flow in a constant-area duct. More...
 
class  IdealGasConstPressureReactor
 Class ConstPressureReactor is a class for constant-pressure reactors. More...
 
class  IdealGasReactor
 Class IdealGasReactor is a class for stirred reactors that is specifically optimized for ideal gases. More...
 
class  Reactor
 Class Reactor is a general-purpose class for stirred reactors. More...
 
class  ReactorBase
 Base class for stirred reactors. More...
 
class  ReactorNet
 A class representing a network of connected reactors. More...
 
class  Wall
 Represents a wall between between two ReactorBase objects. More...
 

Typedefs

typedef std::map< std::string,
doublereal > 
compositionMap
 Map connecting a string name with a double. More...
 
typedef std::map< std::string,
doublereal > 
Composition
 Map from string names to doubles. More...
 
typedef std::vector< double > vector_fp
 Turn on the use of stl vectors for the basic array type within cantera Vector of doubles. More...
 
typedef std::vector< int > vector_int
 Vector of ints. More...
 
typedef std::vector
< std::vector< size_t > > 
grouplist_t
 A grouplist is a vector of groups of species. More...
 
typedef boost::mutex mutex_t
 
typedef boost::mutex::scoped_lock ScopedLock
 
typedef CachedValue< double > & CachedScalar
 
typedef CachedValue< vector_fp > & CachedArray
 
typedef double(* VCS_FUNC_PTR )(double xval, double Vtarget, int varID, void *fptrPassthrough, int *err)
 Definition of the function pointer for the root finder. More...
 
typedef ThermoPhase thermo_t
 typedef for the ThermoPhase class More...
 
typedef int VelocityBasis
 The diffusion fluxes must be referenced to a particular reference fluid velocity. More...
 

Enumerations

enum  CT_RealNumber_Range_Behavior {
  DONOTHING_CTRB = -1, CHANGE_OVERFLOW_CTRB, THROWON_OVERFLOW_CTRB, FENV_CHECK_CTRB,
  THROWON_OVERFLOW_DEBUGMODEONLY_CTRB
}
 Enum containing Cantera's behavior for situations where overflow or underflow of real variables may occur. More...
 
enum  flow_t { NetFlow, OneWayFlow }
 
enum  BEulerMethodType { BEulerFixedStep, BEulerVarStep }
 
enum  MethodType { BDF_Method, Adams_Method }
 Specifies the method used to integrate the system of equations. More...
 
enum  IterType { Newton_Iter, Functional_Iter }
 Specifies the method used for iteration. More...
 
enum  ResidEval_Type_Enum {
  Base_ResidEval = 0, JacBase_ResidEval, JacDelta_ResidEval, Base_ShowSolution,
  Base_LaggedSolutionComponents
}
 Differentiates the type of residual evaluations according to functionality. More...
 
enum  IonSolnType_enumType { cIonSolnType_PASSTHROUGH = 2000, cIonSolnType_SINGLEANION, cIonSolnType_SINGLECATION, cIonSolnType_MULTICATIONANION }
 enums for molten salt ion solution types More...
 
enum  SSVolume_Model_enumType { cSSVOLUME_CONSTANT = 0, cSSVOLUME_TPOLY, cSSVOLUME_DENSITY_TPOLY }
 Types of general formulations for the specification of the standard state volume. More...
 
enum  PDSS_enumType {
  cPDSS_UNDEF = 100, cPDSS_IDEALGAS, cPDSS_CONSTVOL, cPDSS_SSVOL,
  cPDSS_MOLAL_CONSTVOL, cPDSS_WATER, cPDSS_MOLAL_HKFT, cPDSS_IONSFROMNEUTRAL
}
 Types of PDSS's. More...
 
enum  VPSSMgr_enumType {
  cVPSSMGR_UNDEF = 1000, cVPSSMGR_IDEALGAS, cVPSSMGR_CONSTVOL, cVPSSMGR_PUREFLUID,
  cVPSSMGR_WATER_CONSTVOL, cVPSSMGR_WATER_HKFT, cVPSSMGR_GENERAL
}
 enum for VPSSMgr types that are responsible for calculating the species standard state and reference-state thermodynamic properties. More...
 
enum  LiquidTranMixingModel {
  LTI_MODEL_NOTSET =-1, LTI_MODEL_SOLVENT, LTI_MODEL_MOLEFRACS, LTI_MODEL_MASSFRACS,
  LTI_MODEL_LOG_MOLEFRACS, LTI_MODEL_PAIRWISE_INTERACTION, LTI_MODEL_STEFANMAXWELL_PPN, LTI_MODEL_STOKES_EINSTEIN,
  LTI_MODEL_MOLEFRACS_EXPT, LTI_MODEL_NONE, LTI_MODEL_MULTIPLE
}
 Composition dependence type for liquid mixture transport properties. More...
 
enum  TransportPropertyType {
  TP_UNKNOWN = -1, TP_VISCOSITY = 0, TP_IONCONDUCTIVITY, TP_MOBILITYRATIO,
  TP_SELFDIFFUSION, TP_THERMALCOND, TP_DIFFUSIVITY, TP_HYDRORADIUS,
  TP_ELECTCOND, TP_DEFECTCONC, TP_DEFECTDIFF
}
 Enumeration of the types of transport properties that can be handled by the variables in the various Transport classes. More...
 
enum  LTPTemperatureDependenceType {
  LTP_TD_NOTSET =-1, LTP_TD_CONSTANT, LTP_TD_ARRHENIUS, LTP_TD_POLY,
  LTP_TD_EXPT
}
 Temperature dependence type for standard state species properties. More...
 

Functions

cthreadId_t getThisThreadId ()
 
static int get_modified_time (const std::string &path)
 
void checkFinite (const double tmp)
 Check to see that a number is finite (not NaN, +Inf or -Inf) More...
 
static string pypath ()
 return the full path to the Python interpreter. More...
 
void ct2ctml (const char *file, const int debug=0)
 Convert a cti file into a ctml file. More...
 
static std::string call_ctml_writer (const std::string &text, bool isfile)
 
std::string ct2ctml_string (const std::string &file)
 Get a string with the ctml representation of a cti file. More...
 
std::string ct_string2ctml_string (const std::string &cti)
 Get a string with the ctml representation of a cti input string. More...
 
void ck2cti (const std::string &in_file, const std::string &thermo_file="", const std::string &transport_file="", const std::string &id_tag="gas")
 Convert a Chemkin-format mechanism into a CTI file. More...
 
void get_CTML_Tree (XML_Node *node, const std::string &file, const int debug=0)
 Read an ctml file from a file and fill up an XML tree. More...
 
XML_Node getCtmlTree (const std::string &file)
 Read an ctml file from a file and fill up an XML tree. More...
 
bool check_FENV_OverUnder_Flow ()
 Quick check on whether there has been an underflow or overflow condition in the floating point unit. More...
 
void clear_FENV ()
 Clear all the flags for floating-point exceptions. More...
 
void addInteger (XML_Node &node, const std::string &titleString, const int value, const std::string &unitsString="", const std::string &typeString="")
 This function adds a child node with the name, "integer", with a value consisting of a single integer. More...
 
void addFloat (XML_Node &node, const std::string &titleString, const doublereal value, const std::string &unitsString="", const std::string &typeString="", const doublereal minval=Undef, const doublereal maxval=Undef)
 This function adds a child node with the name, "float", with a value consisting of a single floating point number. More...
 
void addFloatArray (XML_Node &node, const std::string &titleString, const size_t n, const doublereal *const values, const std::string &unitsString="", const std::string &typeString="", const doublereal minval=Undef, const doublereal maxval=Undef)
 This function adds a child node with the name, "floatArray", with a value consisting of a comma separated list of floats. More...
 
void addNamedFloatArray (XML_Node &parentNode, const std::string &name, const size_t n, const doublereal *const vals, const std::string units="", const std::string type="", const doublereal minval=Undef, const doublereal maxval=Undef)
 This function adds a child node with the name given by the first parameter with a value consisting of a comma separated list of floats. More...
 
void addString (XML_Node &node, const std::string &titleString, const std::string &valueString, const std::string &typeString="")
 This function adds a child node with the name string with a string value to the current node. More...
 
XML_NodegetByTitle (const XML_Node &node, const std::string &title)
 Search the child nodes of the current node for an XML Node with a Title attribute of a given name. More...
 
std::string getChildValue (const XML_Node &parent, const std::string &nameString)
 This function reads a child node with the name, nameString, and returns its XML value as the return string. More...
 
void getString (const XML_Node &node, const std::string &titleString, std::string &valueString, std::string &typeString)
 This function reads a child node with the name string with a specific title attribute named titleString. More...
 
void getNamedStringValue (const XML_Node &node, const std::string &nameString, std::string &valueString, std::string &typeString)
 This function attempts to read a named child node and returns with the contents in the value string. More...
 
void getIntegers (const XML_Node &node, std::map< std::string, int > &v)
 Get a vector of integer values from a child element. More...
 
doublereal getFloat (const XML_Node &parent, const std::string &name, const std::string &type="")
 Get a floating-point value from a child element. More...
 
doublereal getFloatCurrent (const XML_Node &currXML, const std::string &type="")
 Get a floating-point value from the current XML element. More...
 
bool getOptionalFloat (const XML_Node &parent, const std::string &name, doublereal &fltRtn, const std::string &type="")
 Get an optional floating-point value from a child element. More...
 
doublereal getFloatDefaultUnits (const XML_Node &parent, const std::string &name, const std::string &defaultUnits, const std::string &type="toSI")
 Get a floating-point value from a child element with a defined units field. More...
 
bool getOptionalModel (const XML_Node &parent, const std::string &nodeName, std::string &modelName)
 Get an optional model name from a named child node. More...
 
int getInteger (const XML_Node &parent, const std::string &name)
 Get an integer value from a child element. More...
 
size_t getFloatArray (const XML_Node &node, std::vector< doublereal > &v, const bool convert=true, const std::string &unitsString="", const std::string &nodeName="floatArray")
 This function reads the current node or a child node of the current node with the default name, "floatArray", with a value field consisting of a comma separated list of floats. More...
 
void getMap (const XML_Node &node, std::map< std::string, std::string > &m)
 This routine is used to interpret the value portions of XML elements that contain colon separated pairs. More...
 
int getPairs (const XML_Node &node, std::vector< std::string > &key, std::vector< std::string > &val)
 This function interprets the value portion of an XML element as a series of "Pairs" separated by white space. More...
 
void getMatrixValues (const XML_Node &node, const std::vector< std::string > &keyStringRow, const std::vector< std::string > &keyStringCol, Array2D &returnValues, const bool convert=true, const bool matrixSymmetric=false)
 This function interprets the value portion of an XML element as a series of "Matrix ids and entries" separated by white space. More...
 
void getStringArray (const XML_Node &node, std::vector< std::string > &v)
 This function interprets the value portion of an XML element as a string. More...
 
static Applicationapp ()
 Return a pointer to the application object. More...
 
void setLogger (Logger *logwriter)
 Install a logger. More...
 
void writelog (const std::string &msg)
 Write a message to the screen. More...
 
void writelogf (const char *fmt,...)
 Write a formatted message to the screen. More...
 
void writelogendl ()
 Write an end of line character to the screen and flush output. More...
 
void writeline (char repeat, size_t count, bool endl_after, bool endl_before)
 
void error (const std::string &msg)
 Write an error message and quit. More...
 
void warn_deprecated (const std::string &method, const std::string &extra="")
 Print a warning indicating that method is deprecated. More...
 
void suppress_deprecation_warnings ()
 Globally disable printing of deprecation warnings. More...
 
void appdelete ()
 Delete and free all memory associated with the application. More...
 
void thread_complete ()
 Delete and free memory allocated per thread in multithreaded applications. More...
 
XML_Nodeget_XML_File (const std::string &file, int debug=0)
 Return a pointer to the XML tree for a Cantera input file. More...
 
XML_Nodeget_XML_from_string (const std::string &text)
 Read a CTI or CTML string and fill up an XML tree. More...
 
void close_XML_File (const std::string &file)
 Close an XML File. More...
 
int nErrors ()
 Return the number of errors that have been encountered so far. More...
 
void popError ()
 Discard the last error message. More...
 
string lastErrorMessage ()
 Retrieve the last error message in a string. More...
 
void showErrors (std::ostream &f)
 Prints all of the error messages to an ostream. More...
 
void showErrors ()
 Prints all of the error messages using writelog. More...
 
void setError (const std::string &r, const std::string &msg)
 Set an error condition in the application class without throwing an exception. More...
 
void addDirectory (const std::string &dir)
 Add a directory to the data file search path. More...
 
std::string findInputFile (const std::string &name)
 Find an input file. More...
 
doublereal toSI (const std::string &unit)
 Return the conversion factor to convert unit std::string 'unit' to SI units. More...
 
doublereal actEnergyToSI (const std::string &unit)
 Return the conversion factor to convert activation energy unit std::string 'unit' to Kelvin. More...
 
string canteraRoot ()
 Returns root directory where Cantera is installed. More...
 
static void split_at_pound (const std::string &src, std::string &file, std::string &id)
 split a string at a '#' sign. Used to separate a file name from an id string. More...
 
XML_Nodeget_XML_Node (const std::string &file_ID, XML_Node *root)
 This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string. More...
 
XML_Nodeget_XML_NameID (const std::string &nameTarget, const std::string &file_ID, XML_Node *root)
 This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string. More...
 
void writePlotFile (const std::string &fname, const std::string &fmt, const std::string &plotTitle, const std::vector< std::string > &names, const Array2D &data)
 Write a Plotting file. More...
 
void outputTEC (std::ostream &s, const std::string &title, const std::vector< std::string > &names, const Array2D &data)
 Write a Tecplot data file. More...
 
void outputExcel (std::ostream &s, const std::string &title, const std::vector< std::string > &names, const Array2D &data)
 Write an Excel spreadsheet in 'csv' form. More...
 
std::string fp2str (const double x, const std::string &fmt="%g")
 Convert a double into a c++ string. More...
 
std::string int2str (const int n, const std::string &fmt="%d")
 Convert an int to a string using a format converter. More...
 
std::string int2str (const size_t n)
 Convert an unsigned integer to a string. More...
 
std::string vec2str (const vector_fp &v, const std::string &fmt="%g", const std::string &sep=", ")
 Convert a vector to a string (separated by commas) More...
 
std::string lowercase (const std::string &s)
 Cast a copy of a string to lower case. More...
 
static int firstChar (const std::string &s)
 Return the position of the first printable character in the string. More...
 
static int lastChar (const std::string &s)
 Return the position of the last printable character in the string. More...
 
std::string stripws (const std::string &s)
 Strip the leading and trailing white space from a string. More...
 
std::string stripnonprint (const std::string &s)
 Strip non-printing characters wherever they are. More...
 
compositionMap parseCompString (const std::string &ss, const std::vector< std::string > &names=std::vector< std::string >())
 Parse a composition string into a map consisting of individual key:composition pairs. More...
 
void split (const std::string &ss, std::vector< std::string > &w)
 Parse a composition string into individual key:composition pairs. More...
 
int fillArrayFromString (const std::string &str, doublereal *const a, const char delim= ' ')
 Interpret a string as a list of floats, and convert it to a vector of floats. More...
 
std::string getBaseName (const std::string &fullPath)
 Get the file name without the path or extension. More...
 
int intValue (const std::string &val)
 Translate a string into one integer value. More...
 
doublereal fpValue (const std::string &val)
 Translate a string into one doublereal value. More...
 
doublereal fpValueCheck (const std::string &val)
 Translate a string into one doublereal value, with error checking. More...
 
std::string logfileName (const std::string &infile)
 Generate a logfile name based on an input file name. More...
 
std::string wrapString (const std::string &s, const int len=70)
 Line wrap a string via a copy operation. More...
 
std::string parseSpeciesName (const std::string &nameStr, std::string &phaseName)
 Parse a name string, separating out the phase name from the species name. More...
 
doublereal strSItoDbl (const std::string &strSI)
 Interpret one or two token string as a single double. More...
 
static std::string::size_type findFirstWS (const std::string &val)
 Find the first white space in a string. More...
 
static std::string::size_type findFirstNotOfWS (const std::string &val)
 Find the first non-white space in a string. More...
 
void tokenizeString (const std::string &oval, std::vector< std::string > &v)
 This function separates a string up into tokens according to the location of white space. More...
 
void copyString (const std::string &source, char *dest, size_t length)
 Copy the contents of a std::string into a char array of a given length. More...
 
static string::size_type findUnbackslashed (const std::string &s, const char q, std::string::size_type istart=0)
 Find the first position of a character, q, in string, s, which is not immediately preceded by the backslash character. More...
 
XML_NodefindXMLPhase (XML_Node *root, const std::string &phaseName)
 Search an XML_Node tree for a named phase XML_Node. More...
 
int _equilflag (const char *xy)
 map property strings to integers More...
 
doublereal equilibrate (MultiPhase &s, const char *XY, doublereal rtol=1.0e-9, int maxsteps=5000, int maxiter=100, int loglevel=-99)
 Equilibrate a MultiPhase object. More...
 
int equilibrate (thermo_t &s, const char *XY, int solver=-1, doublereal rtol=1.0e-9, int maxsteps=VCS_MAXSTEPS, int maxiter=100, int loglevel=-99)
 Equilibrate a ThermoPhase object. More...
 
int vcs_equilibrate (thermo_t &s, const char *XY, int estimateEquil=0, int printLvl=0, int solver=-1, doublereal rtol=1.0e-9, int maxsteps=VCS_MAXSTEPS, int maxiter=100, int loglevel=-99)
 Set a single-phase chemical solution to chemical equilibrium. More...
 
int vcs_equilibrate (MultiPhase &s, const char *XY, int estimateEquil=0, int printLvl=0, int solver=2, doublereal rtol=1.0e-9, int maxsteps=VCS_MAXSTEPS, int maxiter=100, int loglevel=-99)
 Set a multi-phase chemical solution to chemical equilibrium. More...
 
int vcs_equilibrate_1 (MultiPhase &s, int ixy, int estimateEquil=0, int printLvl=0, int solver=2, doublereal rtol=1.0e-9, int maxsteps=VCS_MAXSTEPS, int maxiter=100, int loglevel=-99)
 Set a multi-phase chemical solution to chemical equilibrium. More...
 
int vcs_determine_PhaseStability (MultiPhase &s, int iphase, double &funcStab, int printLvl, int loglevel)
 Determine the phase stability of a single phase given the current conditions in a MultiPhase object. More...
 
int vcs_Cantera_to_vprob (MultiPhase *mphase, VCS_PROB *vprob)
 Translate a MultiPhase object into a VCS_PROB problem definition object. More...
 
int vcs_Cantera_update_vprob (MultiPhase *mphase, VCS_PROB *vprob)
 Translate a MultiPhase information into a VCS_PROB problem definition object. More...
 
static int basisOptMax1 (const double *const molNum, const int n)
 
static void print_funcEval (FILE *fp, double xval, double fval, int its)
 
int vcsUtil_root1d (double xmin, double xmax, size_t itmax, VCS_FUNC_PTR func, void *fptrPassthrough, double FuncTargVal, int varID, double *xbest, int printLvl=0)
 One dimensional root finder. More...
 
static void printProgress (const vector< string > &spName, const vector< double > &soln, const vector< double > &ff)
 
double vcs_l2norm (const std::vector< double > vec)
 determine the l2 norm of a vector of doubles More...
 
size_t vcs_optMax (const double *x, const double *xSize, size_t j, size_t n)
 Finds the location of the maximum component in a double vector. More...
 
int vcs_max_int (const int *vector, int length)
 Returns the maximum integer in a list. More...
 
double vcsUtil_gasConstant (int mu_units)
 Returns the value of the gas constant in the units specified by parameter. More...
 
const char * vcs_speciesType_string (int speciesStatus, int length=100)
 Returns a const char string representing the type of the species given by the first argument. More...
 
void vcs_print_stringTrunc (const char *str, size_t space, int alignment)
 Print a string within a given space limit. More...
 
bool vcs_doubleEqual (double d1, double d2)
 Simple routine to check whether two doubles are equal up to roundoff error. More...
 
std::string string16_EOSType (int EOSType)
 Return a string representing the equation of state. More...
 
static bool hasChargedSpecies (const ThermoPhase *const tPhase)
 This function decides whether a phase has charged species or not. More...
 
static bool chargeNeutralityElement (const ThermoPhase *const tPhase)
 
static void erase_vd (std::vector< doublereal > &m_vec, int index)
 
static void erase_vi (std::vector< int > &m_vec, int index)
 
static void addV (int kkinspec, double ps, std::vector< int > &m_Products, std::vector< doublereal > &m_ProductStoich)
 add the species into the list of products or reactants More...
 
shared_ptr< FalloffnewFalloff (int type, const vector_fp &c)
 Return a pointer to a new falloff function calculator. More...
 
std::ostream & operator<< (std::ostream &s, const Cantera::Group &g)
 
void checkRxnElementBalance (Kinetics &kin, const ReactionData &rdata, doublereal errorTolerance=1.0e-3)
 This function will check a specific reaction to see if the elements balance. More...
 
bool getReagents (const XML_Node &rxn, Kinetics &kin, int rp, std::string default_phase, std::vector< size_t > &spnum, vector_fp &stoich, vector_fp &order, const ReactionRules &rules)
 Get the reactants or products of a reaction. More...
 
static void getArrhenius (const XML_Node &node, int &labeled, doublereal &A, doublereal &b, doublereal &E)
 getArrhenius() parses the XML element called Arrhenius. More...
 
static void getStick (const XML_Node &node, Kinetics &kin, ReactionData &r, doublereal &A, doublereal &b, doublereal &E)
 getStick() processes the XML element called Stick that specifies the sticking coefficient reaction. More...
 
static void getCoverageDependence (const XML_Node &node, thermo_t &surfphase, ReactionData &rdata)
 Read the XML data concerning the coverage dependence of an interfacial reaction. More...
 
static void getFalloff (const XML_Node &f, ReactionData &rdata)
 Get falloff parameters for a reaction. More...
 
static void getEfficiencies (const XML_Node &eff, Kinetics &kin, ReactionData &rdata, const ReactionRules &rules)
 Get the enhanced collision efficiencies. More...
 
void getRateCoefficient (const XML_Node &kf, Kinetics &kin, ReactionData &rdata, const ReactionRules &rules)
 Read the rate coefficient data from the XML file. More...
 
doublereal isDuplicateReaction (std::map< int, doublereal > &r1, std::map< int, doublereal > &r2)
 This function returns a ratio if two reactions are duplicates of one another, and 0.0 otherwise. More...
 
bool installReactionArrays (const XML_Node &p, Kinetics &kin, std::string default_phase, bool check_for_duplicates=false)
 Install information about reactions into the kinetics object, kin. More...
 
bool importKinetics (const XML_Node &phase, std::vector< ThermoPhase * > th, Kinetics *kin)
 Import a reaction mechanism for a phase or an interface. More...
 
bool buildSolutionFromXML (XML_Node &root, const std::string &id, const std::string &nm, ThermoPhase *th, Kinetics *kin)
 Build a single-phase ThermoPhase object with associated kinetics mechanism. More...
 
Arrhenius readArrhenius (const XML_Node &arrhenius_node)
 
void readFalloff (FalloffReaction &R, const XML_Node &rc_node)
 Parse falloff parameters, given a rateCoeff node. More...
 
void readEfficiencies (ThirdBody &tbody, const XML_Node &rc_node)
 
void setupReaction (Reaction &R, const XML_Node &rxn_node)
 
void setupElementaryReaction (ElementaryReaction &R, const XML_Node &rxn_node)
 
void setupThreeBodyReaction (ThreeBodyReaction &R, const XML_Node &rxn_node)
 
void setupFalloffReaction (FalloffReaction &R, const XML_Node &rxn_node)
 
void setupChemicallyActivatedReaction (ChemicallyActivatedReaction &R, const XML_Node &rxn_node)
 
void setupPlogReaction (PlogReaction &R, const XML_Node &rxn_node)
 
void setupChebyshevReaction (ChebyshevReaction &R, const XML_Node &rxn_node)
 
void setupInterfaceReaction (InterfaceReaction &R, const XML_Node &rxn_node)
 
void setupElectrochemicalReaction (ElectrochemicalReaction &R, const XML_Node &rxn_node)
 
shared_ptr< ReactionnewReaction (const XML_Node &rxn_node)
 Create a new Reaction object for the reaction defined in rxn_node More...
 
std::vector< shared_ptr
< Reaction > > 
getReactions (const XML_Node &node)
 Create Reaction objects for all <reaction> nodes in an XML document. More...
 
string reactionLabel (size_t i, size_t kr, size_t nr, const std::vector< size_t > &slist, const Kinetics &s)
 
static doublereal calc_damping (doublereal *x, doublereal *dx, size_t dim, int *)
 
static doublereal calcWeightedNorm (const doublereal[], const doublereal dx[], size_t)
 
static doublereal calc_damping (doublereal x[], doublereal dxneg[], size_t dim, int *label)
 
ostream & operator<< (std::ostream &s, const BandMatrix &m)
 Utility routine to print out the matrix. More...
 
static void print_time_step1 (int order, int n_time_step, double time, double delta_t_n, double delta_t_nm1, bool step_failed, int num_failures)
 
static void print_time_step2 (int time_step_num, int order, double time, double time_error_factor, double delta_t_n, double delta_t_np1)
 
static void print_time_fail (bool convFailure, int time_step_num, double time, double delta_t_n, double delta_t_np1, double time_error_factor)
 
static void print_final (double time, int step_failed, int time_step_num, int num_newt_its, int total_linear_solves, int numConvFails, int numTruncFails, int nfe, int nJacEval)
 
static void print_lvl1_Header (int nTimes)
 
static void print_lvl1_summary (int time_step_num, double time, const char *rslt, double delta_t_n, int newt_its, int aztec_its, int bktr_stps, double time_error_factor, const char *comment)
 
double subtractRD (doublereal a, doublereal b)
 This routine subtracts two numbers for one another. More...
 
static int cvodes_rhs (realtype t, N_Vector y, N_Vector ydot, void *f_data)
 Function called by cvodes to evaluate ydot given y. More...
 
static void cvodes_err (int error_code, const char *module, const char *function, char *msg, void *eh_data)
 Function called by CVodes when an error is encountered instead of writing to stdout. More...
 
DAE_SolvernewDAE_Solver (const std::string &itype, ResidJacEval &f)
 Factor method for choosing a DAE solver. More...
 
int solve (DenseMatrix &A, double *b, size_t nrhs=1, size_t ldb=0)
 Solve Ax = b. Array b is overwritten on exit with x. More...
 
int solve (DenseMatrix &A, DenseMatrix &b)
 Solve Ax = b for multiple right-hand-side vectors. More...
 
void multiply (const DenseMatrix &A, const double *const b, double *const prod)
 Multiply A*b and return the result in prod. Uses BLAS routine DGEMV. More...
 
void increment (const DenseMatrix &A, const double *const b, double *const prod)
 Multiply A*b and add it to the result in prod. Uses BLAS routine DGEMV. More...
 
int invert (DenseMatrix &A, size_t nn=npos)
 invert A. A is overwritten with A^-1. More...
 
static bool isConstant (Func1 &f)
 
static bool isZero (Func1 &f)
 
static bool isOne (Func1 &f)
 
static bool isTimesConst (Func1 &f)
 
static bool isExp (Func1 &f)
 
static bool isPow (Func1 &f)
 
Func1newSumFunction (Func1 &f1, Func1 &f2)
 
Func1newDiffFunction (Func1 &f1, Func1 &f2)
 
Func1newProdFunction (Func1 &f1, Func1 &f2)
 
Func1newRatioFunction (Func1 &f1, Func1 &f2)
 
Func1newCompositeFunction (Func1 &f1, Func1 &f2)
 
Func1newTimesConstFunction (Func1 &f, doublereal c)
 
Func1newPlusConstFunction (Func1 &f, doublereal c)
 
doublereal linearInterp (doublereal x, const vector_fp &xpts, const vector_fp &fpts)
 Linearly interpolate a function defined on a discrete grid. More...
 
doublereal polyfit (int n, doublereal *x, doublereal *y, doublereal *w, int maxdeg, int &ndeg, doublereal eps, doublereal *r)
 Fits a polynomial function to a set of data points. More...
 
IntegratornewIntegrator (const std::string &itype)
 
static void print_funcEval (FILE *fp, doublereal xval, doublereal fval, int its)
 Print out a form for the current function evaluation. More...
 
static doublereal calcWeightedNorm (const doublereal[], const doublereal dx[], size_t)
 
static int interp_est (const std::string &estString)
 Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field. More...
 
doublereal LookupWtElements (const std::string &ename)
 Function to look up an atomic weight This function looks up the argument string in the database above and returns the associated molecular weight. More...
 
static double factorOverlap (const std::vector< std::string > &elnamesVN, const std::vector< double > &elemVectorN, const size_t nElementsN, const std::vector< std::string > &elnamesVI, const std::vector< double > &elemVectorI, const size_t nElementsI)
 Return the factor overlap. More...
 
doublereal xlogx (doublereal x)
 
Mu0PolynewMu0ThermoFromXML (const XML_Node &Mu0Node)
 Install a Mu0 polynomial thermodynamic reference state. More...
 
static doublereal JoyceDixon (doublereal r)
 
shared_ptr< SpeciesnewSpecies (const XML_Node &species_node)
 Create a new Species object from a 'species' XML_Node. More...
 
std::vector< shared_ptr
< Species > > 
getSpecies (const XML_Node &node)
 Generate Species objects for all <species> nodes in an XML document. More...
 
static void getSpeciesThermoTypes (std::vector< XML_Node * > &spDataNodeList, int &has_nasa, int &has_shomate, int &has_simple, int &has_other)
 Examine the types of species thermo parameterizations, and return a flag indicating the type of reference state thermo manager that will be needed in order to evaluate them all. More...
 
SpeciesThermoInterpTypenewSpeciesThermoInterpType (int type, double tlow, double thigh, double pref, const double *coeffs)
 Create a new SpeciesThermoInterpType object given a corresponding constant. More...
 
SpeciesThermoInterpTypenewSpeciesThermoInterpType (const std::string &type, double tlow, double thigh, double pref, const double *coeffs)
 Create a new SpeciesThermoInterpType object given a string. More...
 
static SpeciesThermoInterpTypenewNasaThermoFromXML (vector< XML_Node * > nodes)
 Create a NASA polynomial thermodynamic property parameterization for a species from a set ! of XML nodes. More...
 
SpeciesThermoInterpTypenewShomateForMineralEQ3 (const XML_Node &MinEQ3node)
 Create a Shomate polynomial from an XML node giving the 'EQ3' coefficients. More...
 
static SpeciesThermoInterpTypenewShomateThermoFromXML (vector< XML_Node * > &nodes)
 Create a Shomate polynomial thermodynamic property parameterization for a species. More...
 
static SpeciesThermoInterpTypenewConstCpThermoFromXML (XML_Node &f)
 Create a "simple" constant heat capacity thermodynamic property parameterization for a ! species. More...
 
static SpeciesThermoInterpTypenewNasa9ThermoFromXML (const std::vector< XML_Node * > &tp)
 Create a NASA9 polynomial thermodynamic property parameterization for a species. More...
 
static StatMechnewStatMechThermoFromXML (XML_Node &f)
 Create a stat mech based property solver for a species. More...
 
static SpeciesThermoInterpTypenewAdsorbateThermoFromXML (const XML_Node &f)
 Create an Adsorbate polynomial thermodynamic property parameterization for a species. More...
 
SpeciesThermoInterpTypenewSpeciesThermoInterpType (const XML_Node &thermoNode)
 Create a new SpeciesThermoInterpType object from XML_Node. More...
 
SpeciesThermonewSpeciesThermoMgr (int type, SpeciesThermoFactory *f=0)
 Create a new species thermo manager instance, by specifying the type and (optionally) a pointer to the factory to use to create it. More...
 
SpeciesThermonewSpeciesThermoMgr (const std::string &stype, SpeciesThermoFactory *f=0)
 Create a new species thermo manager instance, by specifying the type and (optionally) a pointer to the factory to use to create it. More...
 
SpeciesThermonewSpeciesThermoMgr (std::vector< XML_Node * > spDataNodeList, SpeciesThermoFactory *f=0)
 Function to return SpeciesThermo manager. More...
 
std::string eosTypeString (int ieos, int length=100)
 Translate the eosType id into a string. More...
 
ThermoPhasenewPhase (XML_Node &phase)
 Create a new ThermoPhase object and initializes it according to the XML tree. More...
 
ThermoPhasenewPhase (const std::string &infile, std::string id="")
 Create and Initialize a ThermoPhase object from an XML input file. More...
 
static void formSpeciesXMLNodeList (std::vector< XML_Node * > &spDataNodeList, std::vector< std::string > &spNamesList, std::vector< int > &spRuleList, const std::vector< XML_Node * > spArray_names, const std::vector< XML_Node * > spArray_dbases, const vector_int sprule)
 Gather a vector of pointers to XML_Nodes for a phase. More...
 
bool importPhase (XML_Node &phase, ThermoPhase *th, SpeciesThermoFactory *spfactory=0)
 Import a phase information into an empty ThermoPhase object. More...
 
void installElements (Phase &th, const XML_Node &phaseNode)
 Add the elements given in an XML_Node tree to the specified phase. More...
 
bool installSpecies (size_t k, const XML_Node &s, thermo_t &p, SpeciesThermo *spthermo_ptr, int rule, XML_Node *phaseNode_ptr=0, VPSSMgr *vpss_ptr=0, SpeciesThermoFactory *factory=0)
 Install a species into a ThermoPhase object, which defines the phase thermodynamics and speciation. More...
 
const XML_NodespeciesXML_Node (const std::string &kname, const XML_Node *phaseSpeciesData)
 Search an XML tree for species data. More...
 
static void getVPSSMgrTypes (std::vector< XML_Node * > &spDataNodeList, int &has_nasa_idealGas, int &has_nasa_constVol, int &has_shomate_idealGas, int &has_shomate_constVol, int &has_simple_idealGas, int &has_simple_constVol, int &has_water, int &has_tpx, int &has_hptx, int &has_other)
 Examine the types of species thermo parameterizations, and return a flag indicating the type of parameterization needed by the species. More...
 
VPSSMgrnewVPSSMgr (VPSSMgr_enumType type, VPStandardStateTP *vp_ptr, VPSSMgrFactory *f=0)
 Create a new species thermo manager instance, by specifying the type and (optionally) a pointer to the factory to use to create it. More...
 
VPSSMgrnewVPSSMgr (VPStandardStateTP *vp_ptr, XML_Node *phaseNode_ptr, std::vector< XML_Node * > &spDataNodeList, VPSSMgrFactory *f=0)
 Function to return VPSSMgr manager. More...
 
static void getArrhenius (const XML_Node &node, doublereal &A, doublereal &b, doublereal &E)
 Parses the XML element called Arrhenius. More...
 
doublereal quadInterp (doublereal x0, doublereal *x, doublereal *y)
 
doublereal Frot (doublereal tr, doublereal sqtr)
 The Parker temperature correction to the rotational collision number. More...
 
void setupGasTransportData (GasTransportData &tr, const XML_Node &tr_node)
 
shared_ptr< TransportDatanewTransportData (const XML_Node &transport_node)
 Create a new TransportData object from a 'transport' XML_Node. More...
 
TransportnewTransportMgr (const std::string &transportModel="", thermo_t *thermo=0, int loglevel=0, TransportFactory *f=0, int ndim=1)
 Create a new transport manager instance. More...
 
TransportnewDefaultTransportMgr (thermo_t *thermo, int loglevel=0, TransportFactory *f=0)
 Create a new transport manager instance. More...
 
std::ostream & operator<< (std::ostream &s, const Array2D &m)
 Output the current contents of the Array2D object. More...
 
void operator*= (Array2D &m, doublereal a)
 Overload the times equals operator for multiplication of a matrix and a scalar. More...
 
void operator+= (Array2D &x, const Array2D &y)
 Overload the plus equals operator for addition of one matrix with another. More...
 
void writelog (const std::string &msg, int loglevel)
 Write a message to the log only if loglevel > 0. More...
 
template<class T >
clip (const T &value, const T &lower, const T &upper)
 Clip value such that lower <= value <= upper. More...
 
template<typename T >
int sign (T x)
 Sign of a number. Returns -1 if x < 0, 1 if x > 0 and 0 if x == 0. More...
 
template<class V >
doublereal dot4 (const V &x, const V &y)
 Templated Inner product of two vectors of length 4. More...
 
template<class V >
doublereal dot5 (const V &x, const V &y)
 Templated Inner product of two vectors of length 5. More...
 
template<class V >
doublereal dot6 (const V &x, const V &y)
 Templated Inner product of two vectors of length 6. More...
 
template<class InputIter , class InputIter2 >
doublereal dot (InputIter x_begin, InputIter x_end, InputIter2 y_begin)
 Function that calculates a templated inner product. More...
 
template<class InputIter , class OutputIter , class S >
void scale (InputIter begin, InputIter end, OutputIter out, S scale_factor)
 Multiply elements of an array by a scale factor. More...
 
template<class InputIter , class OutputIter , class S >
void increment_scale (InputIter begin, InputIter end, OutputIter out, S scale_factor)
 
template<class InputIter , class OutputIter >
void multiply_each (OutputIter x_begin, OutputIter x_end, InputIter y_begin)
 Multiply each entry in x by the corresponding entry in y. More...
 
template<class InputIter >
void resize_each (int m, InputIter begin, InputIter end)
 Invoke method 'resize' with argument m for a sequence of objects (templated version) More...
 
template<class InputIter >
doublereal absmax (InputIter begin, InputIter end)
 The maximum absolute value (templated version) More...
 
template<class InputIter , class OutputIter >
void normalize (InputIter begin, InputIter end, OutputIter out)
 Normalize the values in a sequence, such that they sum to 1.0 (templated version) More...
 
template<class InputIter , class OutputIter >
void divide_each (OutputIter x_begin, OutputIter x_end, InputIter y_begin)
 Templated divide of each element of x by the corresponding element of y. More...
 
template<class InputIter , class OutputIter >
void sum_each (OutputIter x_begin, OutputIter x_end, InputIter y_begin)
 Increment each entry in x by the corresponding entry in y. More...
 
template<class InputIter , class OutputIter , class IndexIter >
void scatter_copy (InputIter begin, InputIter end, OutputIter result, IndexIter index)
 Copies a contiguous range in a sequence to indexed positions in another sequence. More...
 
template<class InputIter , class RandAccessIter , class IndexIter >
void scatter_mult (InputIter mult_begin, InputIter mult_end, RandAccessIter data, IndexIter index)
 Multiply selected elements in an array by a contiguous sequence of multipliers. More...
 
template<class InputIter , class OutputIter , class IndexIter >
void scatter_divide (InputIter begin, InputIter end, OutputIter result, IndexIter index)
 Divide selected elements in an array by a contiguous sequence of divisors. More...
 
template<class InputIter >
doublereal sum_xlogx (InputIter begin, InputIter end)
 Compute

\[ \sum_k x_k \log x_k. \]

. More...

 
template<class InputIter1 , class InputIter2 >
doublereal sum_xlogQ (InputIter1 begin, InputIter1 end, InputIter2 Q_begin)
 Compute

\[ \sum_k x_k \log Q_k. \]

. More...

 
template<class OutputIter >
void scale (int N, double alpha, OutputIter x)
 Scale a templated vector by a constant factor. More...
 
template<class D , class R >
poly6 (D x, R *c)
 Templated evaluation of a polynomial of order 6. More...
 
template<class D , class R >
poly8 (D x, R *c)
 Templated evaluation of a polynomial of order 8. More...
 
template<class D , class R >
poly10 (D x, R *c)
 Templated evaluation of a polynomial of order 10. More...
 
template<class D , class R >
poly5 (D x, R *c)
 Templated evaluation of a polynomial of order 5. More...
 
template<class D , class R >
poly4 (D x, R *c)
 Evaluates a polynomial of order 4. More...
 
template<class D , class R >
poly3 (D x, R *c)
 Templated evaluation of a polynomial of order 3. More...
 
template<class D >
void deepStdVectorPointerCopy (const std::vector< D * > &fromVec, std::vector< D * > &toVec)
 Templated deep copy of a std vector of pointers. More...
 
template<class T , class U >
const U & getValue (const std::map< T, U > &m, const T &key)
 Const accessor for a value in a std::map. More...
 
template<class T , class U >
const U & getValue (const std::map< T, U > &m, const T &key, const U &default_val)
 Const accessor for a value in a std::map. More...
 
template<class T >
void copyn (size_t n, const T &x, T &y)
 Templated function that copies the first n entries from x to y. More...
 
template<class T >
void divide_each (T &x, const T &y)
 Divide each element of x by the corresponding element of y. More...
 
template<class T >
void multiply_each (T &x, const T &y)
 Multiply each element of x by the corresponding element of y. More...
 
template<class T , class S >
void scale (T &x, S scale_factor)
 Multiply each element of x by scale_factor. More...
 
template<class T >
doublereal dot_product (const T &x, const T &y)
 Return the templated dot product of two objects. More...
 
template<class T >
doublereal dot_ratio (const T &x, const T &y)
 Returns the templated dot ratio of two objects. More...
 
template<class T >
void add_each (T &x, const T &y)
 Returns a templated addition operation of two objects. More...
 
template<class InputIter , class S >
doublereal _dot_ratio (InputIter x_begin, InputIter x_end, InputIter y_begin, S start_value)
 Templated dot ratio class. More...
 
template<class T >
absmax (const std::vector< T > &v)
 Finds the entry in a vector with maximum absolute value, and return this value. More...
 
template<class T >
std::ostream & operator<< (std::ostream &os, const std::vector< T > &v)
 Write a vector to a stream. More...
 
std::ostream & operator<< (std::ostream &s, Cantera::MultiPhase &x)
 Function to output a MultiPhase description to a stream. More...
 
size_t BasisOptimize (int *usedZeroedSpecies, bool doFormRxn, MultiPhase *mphase, std::vector< size_t > &orderVectorSpecies, std::vector< size_t > &orderVectorElements, vector_fp &formRxnMatrix)
 Choose the optimum basis of species for the equilibrium calculations. More...
 
size_t ElemRearrange (size_t nComponents, const vector_fp &elementAbundances, MultiPhase *mphase, std::vector< size_t > &orderVectorSpecies, std::vector< size_t > &orderVectorElements)
 Handles the potential rearrangement of the constraint equations represented by the Formula Matrix. More...
 
InterfaceimportInterface (const std::string &infile, const std::string &id, std::vector< Cantera::ThermoPhase * > phases)
 Import an instance of class Interface from a specification in an input file. More...
 
KineticsnewKineticsMgr (XML_Node &phase, std::vector< ThermoPhase * > th, KineticsFactory *f=0)
 Create a new kinetics manager. More...
 
KineticsnewKineticsMgr (const std::string &model, KineticsFactory *f=0)
 Create a new kinetics manager. More...
 
static doublereal ppow (doublereal x, doublereal order)
 
static std::string fmt (const std::string &r, size_t n)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _multiply (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _incrementSpecies (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _decrementSpecies (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _incrementReactions (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _decrementReactions (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter >
static void _writeIncrementSpecies (InputIter begin, InputIter end, const std::string &r, std::map< size_t, std::string > &out)
 
template<class InputIter >
static void _writeDecrementSpecies (InputIter begin, InputIter end, const std::string &r, std::map< size_t, std::string > &out)
 
template<class InputIter >
static void _writeIncrementReaction (InputIter begin, InputIter end, const std::string &r, std::map< size_t, std::string > &out)
 
template<class InputIter >
static void _writeDecrementReaction (InputIter begin, InputIter end, const std::string &r, std::map< size_t, std::string > &out)
 
template<class InputIter >
static void _writeMultiply (InputIter begin, InputIter end, const std::string &r, std::map< size_t, std::string > &out)
 
void ct_dgemv (ctlapack::storage_t storage, ctlapack::transpose_t trans, int m, int n, doublereal alpha, const doublereal *a, int lda, const doublereal *x, int incX, doublereal beta, doublereal *y, int incY)
 
void ct_dgbsv (int n, int kl, int ku, int nrhs, doublereal *a, int lda, integer *ipiv, doublereal *b, int ldb, int &info)
 
void ct_dgelss (size_t m, size_t n, size_t nrhs, doublereal *a, size_t lda, doublereal *b, size_t ldb, doublereal *s, doublereal rcond, size_t &rank, doublereal *work, int &lwork, int &info)
 
void ct_dgbtrf (size_t m, size_t n, size_t kl, size_t ku, doublereal *a, size_t lda, integer *ipiv, int &info)
 
void ct_dgbtrs (ctlapack::transpose_t trans, size_t n, size_t kl, size_t ku, size_t nrhs, doublereal *a, size_t lda, integer *ipiv, doublereal *b, size_t ldb, int &info)
 
void ct_dgetrf (size_t m, size_t n, doublereal *a, size_t lda, integer *ipiv, int &info)
 
void ct_dgetrs (ctlapack::transpose_t trans, size_t n, size_t nrhs, doublereal *a, size_t lda, integer *ipiv, doublereal *b, size_t ldb, int &info)
 
void ct_dgetri (int n, doublereal *a, int lda, integer *ipiv, doublereal *work, int lwork, int &info)
 
void ct_dscal (int n, doublereal da, doublereal *dx, int incx)
 
void ct_dgeqrf (size_t m, size_t n, doublereal *a, size_t lda, doublereal *tau, doublereal *work, size_t lwork, int &info)
 
void ct_dormqr (ctlapack::side_t rlside, ctlapack::transpose_t trans, size_t m, size_t n, size_t k, doublereal *a, size_t lda, doublereal *tau, doublereal *c, size_t ldc, doublereal *work, size_t lwork, int &info)
 
void ct_dtrtrs (ctlapack::upperlower_t uplot, ctlapack::transpose_t trans, const char *diag, size_t n, size_t nrhs, doublereal *a, size_t lda, doublereal *b, size_t ldb, int &info)
 
doublereal ct_dtrcon (const char *norm, ctlapack::upperlower_t uplot, const char *diag, size_t n, doublereal *a, size_t lda, doublereal *work, int *iwork, int &info)
 
void ct_dpotrf (ctlapack::upperlower_t uplot, size_t n, doublereal *a, size_t lda, int &info)
 
void ct_dpotrs (ctlapack::upperlower_t uplot, size_t n, size_t nrhs, doublereal *a, size_t lda, doublereal *b, size_t ldb, int &info)
 
doublereal ct_dgecon (const char norm, size_t n, doublereal *a, size_t lda, doublereal anorm, doublereal *work, int *iwork, int &info)
 
doublereal ct_dgbcon (const char norm, size_t n, size_t kl, size_t ku, doublereal *a, size_t ldab, int *ipiv, doublereal anorm, doublereal *work, int *iwork, int &info)
 
doublereal ct_dlange (const char norm, size_t m, size_t n, doublereal *a, size_t lda, doublereal *work)
 
ThermoPhasenewThermoPhase (const std::string &model, ThermoFactory *f=0)
 Create a new thermo manager instance. More...
 
ReactorBasenewReactor (const std::string &model, ReactorFactory *f=0)
 

Variables

static mutex_t dir_mutex
 Mutex for input directory access. More...
 
static mutex_t app_mutex
 Mutex for creating singletons within the application object. More...
 
static mutex_t xml_mutex
 Mutex for controlling access to XML file storage. More...
 
static mutex_t msg_mutex
 Mutex for access to string messages. More...
 
static const char * stars = "***********************************************************************\n"
 
std::string FP_Format = "%23.15E"
 
int BasisOptimize_print_lvl = 0
 External int that is used to turn on debug printing for the BasisOptimze program. More...
 
static char pprefix [20] = " --- vcs_inest: "
 
int vcs_timing_print_lvl = 1
 Global hook for turning on and off time printing. More...
 
const double DampFactor = 4
 Dampfactor is the factor by which the damping factor is reduced by when a reduction in step length is warranted. More...
 
const int NDAMP = 10
 Number of damping steps that are carried out before the solution is deemed a failure. More...
 
static struct awData aWTable []
 aWTable is a vector containing the atomic weights database. More...
 
static int ntypes = 27
 Define the number of ThermoPhase types for use in this factory routine. More...
 
static string _types []
 Define the string name of the ThermoPhase types that are handled by this factory routine. More...
 
static int _itypes []
 Define the integer id of the ThermoPhase types that are handled by this factory routine. More...
 
static const doublereal H [4] = {1., 0.978197, 0.579829, -0.202354}
 
static const doublereal Hij [6][7]
 
static const doublereal rhoStar = 317.763
 
static const doublereal presStar = 22.115E6
 
const doublereal T_c = 647.096
 Critical Temperature value (kelvin) More...
 
static const doublereal P_c = 22.064E6
 Critical Pressure (Pascals) More...
 
const doublereal Rho_c = 322.
 Value of the Density at the critical point (kg m-3) More...
 
static const doublereal M_water = 18.015268
 Molecular Weight of water that is consistent with the paper (kg kmol-1) More...
 
static const doublereal Rgas = 8.314371E3
 Gas constant that is quoted in the paper. More...
 
const int DeltaDegree = 6
 
static const doublereal Min_C_Internal = 0.001
 Constant to compare dimensionless heat capacities against zero. More...
 
static int ntypes = 6
 
static string _types []
 
static int _itypes []
 
const doublereal Pi = 3.14159265358979323846
 Pi. More...
 
const doublereal SmallNumber = 1.e-300
 smallest number to compare to zero. More...
 
const doublereal BigNumber = 1.e300
 largest number to compare to inf. More...
 
const doublereal MaxExp = 690.775527898
 largest x such that exp(x) is valid More...
 
const doublereal Undef = -999.1234
 Fairly random number to be used to initialize variables against to see if they are subsequently defined. More...
 
const doublereal Tiny = 1.e-20
 Small number to compare differences of mole fractions against. More...
 
const size_t npos = static_cast<size_t>(-1)
 index returned by functions to indicate "no position" More...
 
const std::string CTML_Version = "1.4.1"
 const Specifying the CTML version number More...
 
int ChemEquil_print_lvl = 0
 
const int NONE = 0
 
const int cDirect = 0
 
const int cKrylov = 1
 
const int FourierFuncType = 1
 
const int PolyFuncType = 2
 
const int ArrheniusFuncType = 3
 
const int GaussianFuncType = 4
 
const int SumFuncType = 20
 
const int DiffFuncType = 25
 
const int ProdFuncType = 30
 
const int RatioFuncType = 40
 
const int PeriodicFuncType = 50
 
const int CompositeFuncType = 60
 
const int TimesConstantFuncType = 70
 
const int PlusConstantFuncType = 80
 
const int SinFuncType = 100
 
const int CosFuncType = 102
 
const int ExpFuncType = 104
 
const int PowFuncType = 106
 
const int ConstFuncType = 110
 
const int DIAG = 1
 
const int DENSE = 2
 
const int NOJAC = 4
 
const int JAC = 8
 
const int GMRES =16
 
const int BAND =32
 
const int c_NONE = 0
 
const int c_GE_ZERO = 1
 
const int c_GT_ZERO = 2
 
const int c_LE_ZERO = -1
 
const int c_LT_ZERO = -2
 
const int cFlowType = 50
 
const int cConnectorType = 100
 
const int cSurfType = 102
 
const int cInletType = 104
 
const int cSymmType = 105
 
const int cOutletType = 106
 
const int cEmptyType = 107
 
const int cOutletResType = 108
 
const int cPorousType = 109
 
const int LeftInlet = 1
 
const int RightInlet = -1
 
const size_t c_offset_U = 0
 
const size_t c_offset_V = 1
 
const size_t c_offset_T = 2
 
const size_t c_offset_L = 3
 
const size_t c_offset_Y = 4
 
const int c_Mixav_Transport = 0
 
const int c_Multi_Transport = 1
 
const int c_Soret = 2
 
const int cEST_solvent = 0
 Electrolyte species type. More...
 
const int cEST_chargedSpecies = 1
 
const int cEST_weakAcidAssociated = 2
 
const int cEST_strongAcidAssociated = 3
 
const int cEST_polarNeutral = 4
 
const int cEST_nonpolarNeutral = 5
 
const int cHMWSoln0 = 45010
 eosTypes returned for this ThermoPhase Object More...
 
const int cHMWSoln1 = 45011
 
const int cHMWSoln2 = 45012
 
const int cDebyeHuckel0 = 46010
 eosTypes returned for this ThermoPhase Object More...
 
const int cDebyeHuckel1 = 46011
 
const int cDebyeHuckel2 = 46012
 
const int cNone = 0
 This generic id is used as the default in virtual base classes that employ id's. More...
 
const int cNASA = 1
 
const int cShomate = 2
 
const int cNASA96 = 3
 
const int cHarmonicOsc = 4
 
const int cIdealGas = 1
 Equation of state types: More...
 
const int cIncompressible = 2
 
const int cSurf = 3
 A surface phase. Used by class SurfPhase. More...
 
const int cMetal = 4
 A metal phase. More...
 
const int cStoichSubstance = 5
 
const int cSemiconductor = 7
 
const int cMineralEQ3 = 8
 
const int cMetalSHEelectrons = 9
 
const int cLatticeSolid = 20
 
const int cLattice = 21
 
const int cPureFluid = 10
 
const int cEdge = 6
 An edge between two 2D surfaces. More...
 
const int cFixedChemPot = 70
 Stoichiometric compound with a constant chemical potential. More...
 
const int cIdealSolidSolnPhase = 5009
 Constant partial molar volume solution IdealSolidSolnPhase.h. More...
 
const int cMaskellSolidSolnPhase = 5010
 
const int cHMW = 40
 HMW - Strong electrolyte using the Pitzer formulation. More...
 
const int cDebyeHuckel = 50
 DebyeHuckel - Weak electrolyte using various Debye-Huckel formulations. More...
 
const int cIdealMolalSoln = 60
 IdealMolalSoln - molality based solution with molality-based act coeffs of 1. More...
 
const int cIdealSolnGasVPSS = 500
 
const int cIdealSolnGasVPSS_iscv = 501
 
const int cMixtureFugacityTP = 700
 Fugacity Models. More...
 
const int cRedlichKwongMFTP = 701
 
const int cMargulesVPSSTP = 301
 
const int cRedlichKisterVPSSTP = 303
 
const int cMolarityIonicVPSSTP = 401
 
const int cMixedSolventElectrolyte = 402
 
const int cPhaseCombo_Interaction = 305
 
const int cIonsFromNeutral = 2000
 
const int cVPSS_IdealGas = 1001
 Variable Pressure Standard State ThermoPhase objects. More...
 
const int cVPSS_ConstVol = 1002
 
const int cVPSS_PureFluid = 1010
 
const int cVPSS_HMW = 1040
 
const int cVPSS_DebyeHuckel = 1050
 
const int cVPSS_MolalSoln = 1060
 
const int cGasKinetics = 2
 
const int cInterfaceKinetics = 4
 
const int cLineKinetics = 5
 
const int cEdgeKinetics = 6
 
const int cSolidKinetics = 7
 
const int cAqueousKinetics = 8
 
const int PHSCALE_PITZER = 0
 Scale to be used for the output of single-ion activity coefficients is that used by Pitzer. More...
 
const int PHSCALE_NBS = 1
 Scale to be used for evaluation of single-ion activity coefficients is that used by the NBS standard for evaluation of the pH variable. More...
 
const int cElectron = 0
 
const int cHole = 1
 
const VelocityBasis VB_MASSAVG = -1
 Diffusion velocities are based on the mass averaged velocity. More...
 
const VelocityBasis VB_MOLEAVG = -2
 Diffusion velocities are based on the mole averaged velocities. More...
 
const VelocityBasis VB_SPECIES_0 = 0
 Diffusion velocities are based on the relative motion wrt species 0. More...
 
const VelocityBasis VB_SPECIES_1 = 1
 Diffusion velocities are based on the relative motion wrt species 1. More...
 
const VelocityBasis VB_SPECIES_2 = 2
 Diffusion velocities are based on the relative motion wrt species 2. More...
 
const VelocityBasis VB_SPECIES_3 = 3
 Diffusion velocities are based on the relative motion wrt species 3. More...
 
const int MFC_Type = 1
 
const int PressureController_Type = 2
 
const int Valve_Type = 3
 
const int ReservoirType = 1
 
const int ReactorType = 2
 
const int FlowReactorType = 3
 
const int ConstPressureReactorType = 4
 
const int IdealGasReactorType = 5
 
const int IdealGasConstPressureReactorType = 6
 
Variations of the Gas Constant

Cantera uses the MKS system of units. The unit for moles is defined to be the kmol.

const doublereal Avogadro = 6.02214129e26
 Avogadro's Number [number/kmol]. More...
 
const doublereal GasConstant = 8314.4621
 Universal Gas Constant. [J/kmol/K]. More...
 
const doublereal logGasConstant = std::log(GasConstant)
 
const doublereal OneAtm = 1.01325e5
 One atmosphere [Pa]. More...
 
const doublereal OneBar = 1.0E5
 
const doublereal GasConst_cal_mol_K = GasConstant / 4184.0
 Universal gas constant in cal/mol/K. More...
 
const doublereal Boltzmann = GasConstant / Avogadro
 Boltzmann's constant [J/K]. More...
 
const doublereal Planck = 6.62607009e-34
 Planck's constant. [J-s]. More...
 
const doublereal Planck_bar = Planck / (2 * Pi)
 
const doublereal logBoltz_Planck = std::log(Boltzmann / Planck)
 log(k/h) More...
 
const doublereal StefanBoltz = 5.670373e-8
 Stefan-Boltzmann constant. More...
 
Electron Properties
const doublereal ElectronCharge = 1.602176565e-19
 
const doublereal ElectronMass = 9.10938291e-31
 
const doublereal Faraday = ElectronCharge * Avogadro
 
Electromagnetism

Cantera uses the MKS unit system.

const doublereal lightSpeed = 299792458.0
 Speed of Light (m/s). More...
 
const doublereal permeability_0 = 4.0e-7*Pi
 Permeability of free space \( \mu_0 \) in N/A^2. More...
 
const doublereal epsilon_0 = 1.0 / (lightSpeed*lightSpeed*permeability_0)
 Permittivity of free space \( \epsilon_0 \) in F/m. More...
 
Thermodynamic Equilibrium Constraints

Integer numbers representing pairs of thermodynamic variables which are held constant during equilibration.

const int TV = 100
 
const int HP = 101
 
const int SP = 102
 
const int PV = 103
 
const int TP = 104
 
const int UV = 105
 
const int ST = 106
 
const int SV = 107
 
const int UP = 108
 
const int VH = 109
 
const int TH = 110
 
const int SH = 111
 
const int PX = 112
 
const int TX = 113
 
const int VT = -100
 
const int PH = -101
 
const int PS = -102
 
const int VP = -103
 
const int PT = -104
 
const int VU = -105
 
const int TS = -106
 
const int VS = -107
 
const int PU = -108
 
const int HV = -109
 
const int HT = -110
 
const int HS = -111
 
const int XP = -112
 
const int XT = -113
 
Reaction Types
const int ELEMENTARY_RXN = 1
 A reaction with a rate coefficient that depends only on temperature and voltage that also obeys mass-action kinetics. More...
 
const int THREE_BODY_RXN = 2
 A gas-phase reaction that requires a third-body collision partner. More...
 
const int FALLOFF_RXN = 4
 The general form for a gas-phase association or dissociation reaction, with a pressure-dependent rate. More...
 
const int PLOG_RXN = 5
 A pressure-dependent rate expression consisting of several Arrhenius rate expressions evaluated at different pressures. More...
 
const int CHEBYSHEV_RXN = 6
 A general gas-phase pressure-dependent reaction where k(T,P) is defined in terms of a bivariate Chebyshev polynomial. More...
 
const int CHEMACT_RXN = 8
 A chemical activation reaction. More...
 
const int SURFACE_RXN = 20
 A reaction occurring on a surface. More...
 
const int INTERFACE_RXN = 20
 A reaction occurring on an interface, e.g a surface or edge. More...
 
const int BUTLERVOLMER_NOACTIVITYCOEFFS_RXN = 25
 This is a surface reaction that is formulated using the Butler-Volmer formulation and using concentrations instead of activity concentrations for its exchange current density formula. More...
 
const int BUTLERVOLMER_RXN = 26
 This is a surface reaction that is formulated using the Butler-Volmer formulation. More...
 
const int SURFACEAFFINITY_RXN = 27
 This is a surface reaction that is formulated using the affinity representation, common in the geochemistry community. More...
 
const int EDGE_RXN = 22
 A reaction occurring at a one-dimensional interface between two surface phases. More...
 
const int GLOBAL_RXN = 30
 A global reaction. More...
 
Rate Coefficient Types

These types define the supported rate coefficient types for elementary reactions.

Any of these may also be used as the high and low-pressure limits of falloff and chemical activation reactions.

Note that not all of these are currently implemented!

Todo:
Finish implementing reaction rate types.
const int ARRHENIUS_REACTION_RATECOEFF_TYPE = 1
 
const int LANDAUTELLER_REACTION_RATECOEFF_TYPE = 2
 
const int TSTRATE_REACTION_RATECOEFF_TYPE = 3
 
const int SURF_ARRHENIUS_REACTION_RATECOEFF_TYPE = 4
 
const int ARRHENIUS_SUM_REACTION_RATECOEFF_TYPE = 5
 
const int EXCHANGE_CURRENT_REACTION_RATECOEFF_TYPE = 6
 
const int PLOG_REACTION_RATECOEFF_TYPE = 7
 
const int CHEBYSHEV_REACTION_RATECOEFF_TYPE = 8
 
Falloff Function Types
const int SIMPLE_FALLOFF = 100
 
const int TROE_FALLOFF = 110
 
const int SRI_FALLOFF = 112
 
CONSTANTS - Models for the Standard State of IdealSolidSolnPhase's
const int cIdealSolidSolnPhase0 = 5010
 
const int cIdealSolidSolnPhase1 = 5011
 
const int cIdealSolidSolnPhase2 = 5012
 
CONSTANTS

Models for the Standard State of an IdealSolnPhase

const int cIdealSolnGasPhaseG = 6009
 
const int cIdealSolnGasPhase0 = 6010
 
const int cIdealSolnGasPhase1 = 6011
 
const int cIdealSolnGasPhase2 = 6012
 
CONSTANTS - Specification of the Molality convention
const int cAC_CONVENTION_MOLAR = 0
 Standard state uses the molar convention. More...
 
const int cAC_CONVENTION_MOLALITY = 1
 Standard state uses the molality convention. More...
 
CONSTANTS - Specification of the SS convention
const int cSS_CONVENTION_TEMPERATURE = 0
 Standard state uses the molar convention. More...
 
const int cSS_CONVENTION_VPSS = 1
 Standard state uses the molality convention. More...
 
const int cSS_CONVENTION_SLAVE = 2
 Standard state thermodynamics is obtained from slave ThermoPhase objects. More...
 
const int LVISC_CONSTANT = 0
 
const int LVISC_WILKES = 1
 
const int LVISC_MIXTUREAVG = 2
 
const int LDIFF_MIXDIFF_UNCORRECTED = 0
 
const int LDIFF_MIXDIFF_FLUXCORRECTED = 1
 
const int LDIFF_MULTICOMP_STEFANMAXWELL = 2
 

Detailed Description

Namespace for the Cantera kernel.

Namespace for classes implementing zero-dimensional reactor networks.

Typedef Documentation

typedef std::map<std::string, doublereal> compositionMap

Map connecting a string name with a double.

This is used mostly to assign concentrations and mole fractions to species.

Definition at line 149 of file ct_defs.h.

typedef std::map<std::string, doublereal> Composition

Map from string names to doubles.

Used for defining species mole/mass fractions, elemental compositions, and reaction stoichiometries.

Definition at line 153 of file ct_defs.h.

typedef std::vector<double> vector_fp

Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.

Definition at line 157 of file ct_defs.h.

typedef std::vector<int> vector_int

Vector of ints.

Definition at line 159 of file ct_defs.h.

typedef std::vector<std::vector<size_t> > grouplist_t

A grouplist is a vector of groups of species.

Definition at line 162 of file ct_defs.h.

typedef double(* VCS_FUNC_PTR)(double xval, double Vtarget, int varID, void *fptrPassthrough, int *err)

Definition of the function pointer for the root finder.

see vcsUtil_root1d for a definition of how to use this.

Definition at line 107 of file vcs_internal.h.

typedef for the ThermoPhase class

Definition at line 1660 of file ThermoPhase.h.

Enumeration Type Documentation

Enum containing Cantera's behavior for situations where overflow or underflow of real variables may occur.

Note this frequently occurs when taking exponentials of delta Gibbs energies of reactions or when taking the exponentials of logs of activity coefficients.

Enumerator
DONOTHING_CTRB 

For this specification of range behavior, nothing is done.

This is the fastest behavior when all calculations are believed to be ranged well. For situations where there are range errors, NaN's or INF's will be introduced.

CHANGE_OVERFLOW_CTRB 

For this specification of range behavior, the overflow or underflow calculation is changed.

Cantera will proceed by bounding the real number to maintain its viability, silently changing the actual answer.

THROWON_OVERFLOW_CTRB 

When an overflow or underflow occurs, Cantera will throw an error.

FENV_CHECK_CTRB 

Cantera will use the fenv check capability introduced in C99 to check for overflow and underflow conditions at crucial points.

It will throw an error if these conditions occur.

THROWON_OVERFLOW_DEBUGMODEONLY_CTRB 

Cantera will throw an error in debug mode but will not in production mode.

(default)

Definition at line 64 of file ctexceptions.h.

enum MethodType

Specifies the method used to integrate the system of equations.

Not all methods are supported by all integrators.

Enumerator
BDF_Method 

Backward Differentiation.

Adams_Method 

Adams.

Definition at line 31 of file Integrator.h.

enum IterType

Specifies the method used for iteration.

Not all methods are supported by all integrators.

Enumerator
Newton_Iter 

Newton Iteration.

Functional_Iter 

Functional Iteration.

Definition at line 40 of file Integrator.h.

Differentiates the type of residual evaluations according to functionality.

Enumerator
Base_ResidEval 

Base residual calculation for the time-stepping function.

JacBase_ResidEval 

Base residual calculation for the Jacobian calculation.

JacDelta_ResidEval 

Delta residual calculation for the Jacbobian calculation.

Base_ShowSolution 

Base residual calculation for the showSolution routine.

We calculate this when we want to display a solution

Base_LaggedSolutionComponents 

Base residual calculation containing any lagged components.

We use this to calculate residuals when doing line searches along directions determined by Jacobians that are missing contributions from lagged entries.

Definition at line 24 of file ResidJacEval.h.

enums for molten salt ion solution types

Types identify how complicated the solution is. If there is just mixing on one of the sublattices but not the other, then the math is considerably simpler.

Definition at line 33 of file IonsFromNeutralVPSSTP.h.

Types of general formulations for the specification of the standard state volume.

Enumerator
cSSVOLUME_CONSTANT 

This approximation is for a constant volume.

cSSVOLUME_TPOLY 

This approximation is for a species with a quadratic polynomial in temperature.

V^ss_i = ai + bi T + ci T2

cSSVOLUME_DENSITY_TPOLY 

This approximation is for a species where the density is expressed as a quadratic polynomial in temperature.

V^ss_i = M_i / (ai + bi T + ci T2)

Definition at line 104 of file mix_defs.h.

Types of PDSS's.

Definition at line 121 of file mix_defs.h.

enum for VPSSMgr types that are responsible for calculating the species standard state and reference-state thermodynamic properties.

Enumerator
cVPSSMGR_IDEALGAS 

Variable pressures SS calculator for ideal gas phases.

cVPSSMGR_CONSTVOL 

Variable pressure SS calculate for phases consisting all species having a constant molar volume property.

This fits most solids.

cVPSSMGR_WATER_CONSTVOL 

Variable pressure SS calculate for phases consisting of real water as the first species and species having a constant molar volume property.

cVPSSMGR_WATER_HKFT 

Variable pressure SS calculate for phases consisting of real water as the first species and species obeying the HKFT standard state.

cVPSSMGR_GENERAL 

Variable pressure SS calculate for phases consisting of completing general representations.

Definition at line 135 of file mix_defs.h.

Composition dependence type for liquid mixture transport properties.

Types of temperature dependencies:

  • 0 - Mixture calculations with this property are not allowed
  • 1 - Use solvent (species 0) properties
  • 2 - Properties weighted linearly by mole fractions
  • 3 - Properties weighted linearly by mass fractions
  • 4 - Properties weighted logarithmically by mole fractions (interaction energy weighting)
  • 5 - Interactions given pairwise between each possible species (i.e. D_ij)
*    <transport model="Liquid">
*       <viscosity>
*          <compositionDependence model="logMoleFractions">
*             <interaction>
*                <speciesA> LiCl(L) </speciesA>
*                <speciesB> KCl(L)  </speciesB>
*                <Eij units="J/kmol"> -1.0 </Eij>
*                <Sij units="J/kmol/K"> 1.0E-1 </Sij>
*     -or-       <Sij>
*                  <floatArray units="J/kmol/K"> 1.0E-1, 0.001 0.01 </floatArray>
*                </Sij>
*     -same form for Hij,Aij,Bij-
*             </interaction>
*          </compositionDependence>
*       </viscosity>
*       <speciesDiffusivity>
*          <compositionDependence model="pairwiseInteraction">
*             <interaction>
*                <speciesA> Li+ </speciesA>
*                <speciesB> K+  </speciesB>
*                <Dij units="m2/s"> 1.5 </Dij>
*             </interaction>
*             <interaction>
*                <speciesA> K+  </speciesA>
*                <speciesB> Cl- </speciesB>
*                <Dij units="m2/s"> 1.0 </Dij>
*             </interaction>
*             <interaction>
*                <speciesA> Li+  </speciesA>
*                <speciesB> Cl-  </speciesB>
*                <Dij units="m2/s"> 1.2 </Dij>
*             </interaction>
*          </compositionDependence>
*       </speciesDiffusivity>
*       <thermalConductivity>
*          <compositionDependence model="massFractions"/>
*       </thermalConductivity>
*       <hydrodynamicRadius>
*          <compositionDependence model="none"/>
*       </hydrodynamicRadius>
*    </transport>
*   

Definition at line 70 of file LiquidTranInteraction.h.

Enumeration of the types of transport properties that can be handled by the variables in the various Transport classes.

Not all of these are handled by each class and each class should handle exceptions where the transport property is not handled.

Transport properties currently on the list

0 - viscosity 1 - Ionic conductivity 2 - Mobility Ratio 3 - Self Diffusion coefficient 4 - Thermal conductivity 5 - species diffusivity 6 - hydrodynamic radius 7 - electrical conductivity

Definition at line 31 of file LTPspecies.h.

Temperature dependence type for standard state species properties.

Types of temperature dependencies: 0 - Independent of temperature 1 - extended arrhenius form 2 - polynomial in temperature form 3 - exponential temperature polynomial

Definition at line 53 of file LTPspecies.h.

Function Documentation

void checkFinite ( const double  tmp)
static string Cantera::pypath ( )
static

return the full path to the Python interpreter.

Use the environment variable PYTHON_CMD if it is set. If not, return the string 'python'.

Note, there are hidden problems here that really direct us to use a full pathname for the location of python. Basically the system call will use the shell /bin/sh, in order to launch python. This default shell may not be the shell that the user is employing. Therefore, the default path to python may be different during a system call than during the default user shell environment. This is quite a headache. The answer is to always set the PYTHON_CMD environmental variable in the user environment to an absolute path to locate the python executable. Then this issue goes away.

Definition at line 41 of file ct2ctml.cpp.

References stripws().

Referenced by ck2cti().

void ck2cti ( const std::string &  in_file,
const std::string &  thermo_file = "",
const std::string &  transport_file = "",
const std::string &  id_tag = "gas" 
)

Convert a Chemkin-format mechanism into a CTI file.

Parameters
in_fileinput file containing species and reactions
thermo_fileoptional input file containing thermo data
transport_fileoptional input file containing transport parameters
id_tagid of the phase

Definition at line 188 of file ct2ctml.cpp.

References pypath(), stripws(), and writelog().

void get_CTML_Tree ( XML_Node *  node,
const std::string &  file,
const int  debug = 0 
)

Read an ctml file from a file and fill up an XML tree.

This is the main routine that reads a ctml file and puts it into an XML_Node tree

Parameters
nodeRoot of the tree
fileName of the file
debugTurn on debugging printing
Deprecated:
To be removed after Cantera 2.2. Use get_XML_File() instead.

Definition at line 277 of file ct2ctml.cpp.

References XML_Node::copy(), get_XML_File(), and warn_deprecated().

XML_Node getCtmlTree ( const std::string &  file)

Read an ctml file from a file and fill up an XML tree.

Parameters
fileName of the file
Returns
Root of the tree
Deprecated:
To be removed after Cantera 2.2. Use get_XML_File() instead.

Definition at line 285 of file ct2ctml.cpp.

References XML_Node::copy(), get_XML_File(), and warn_deprecated().

bool check_FENV_OverUnder_Flow ( )

Quick check on whether there has been an underflow or overflow condition in the floating point unit.

Returns
Returns true if there has been such a condition and it has not been cleared. returns false if there hasn't been an overflow, underflow or invalid condition.

Definition at line 82 of file ctexceptions.cpp.

Referenced by GibbsExcessVPSSTP::getActivityCoefficients().

void clear_FENV ( )

Clear all the flags for floating-point exceptions.

Definition at line 93 of file ctexceptions.cpp.

void addInteger ( XML_Node &  node,
const std::string &  titleString,
const int  value,
const std::string &  unitsString = "",
const std::string &  typeString = "" 
)

This function adds a child node with the name, "integer", with a value consisting of a single integer.

This function will add a child node to the current XML node, with the name "integer". It will have a title attribute, and the body of the XML node will be filled out with a single integer

Example:

Code snippet:

const XML_Node &node;
std::string titleString = "maxIterations";
int value = 1000;
std::string typeString = "optional";
std::string units = "";
addInteger(node, titleString, value, typeString, units);

Creates the following the snippet in the XML file:

<parentNode>
  <integer title="maxIterations" type="optional">
     100
  <\integer>
<\parentNode>
Parameters
nodereference to the XML_Node object of the parent XML element
titleStringString name of the title attribute
valueValue - single integer
unitsStringString name of the Units attribute. The default is to have an empty string.
typeStringString type. This is an optional parameter. The default is to have an empty string.
Todo:
I don't think this is used. Figure out what is used for writing integers, and codify that. unitsString shouldn't be here, since it's an int. typeString should be codified as to its usage.

Definition at line 17 of file ctml.cpp.

References XML_Node::addAttribute().

void addFloat ( XML_Node &  node,
const std::string &  titleString,
const doublereal  value,
const std::string &  unitsString = "",
const std::string &  typeString = "",
const doublereal  minval = Undef,
const doublereal  maxval = Undef 
)

This function adds a child node with the name, "float", with a value consisting of a single floating point number.

This function will add a child node to the current XML node, with the name "float". It will have a title attribute, and the body of the XML node will be filled out with a single float

Example:

Code snippet:

const XML_Node &node;
std::string titleString = "activationEnergy";
doublereal value = 50.3;
doublereal maxval = 1.0E3;
doublereal minval = 0.0;
std::string typeString = "optional";
std::string unitsString = "kcal/gmol";
addFloat(node, titleString, value, unitsString, typeString, minval, maxval);

Creates the following the snippet in the XML file:

<parentNode>
  <float title="activationEnergy" type="optional" units="kcal/gmol" min="0.0" max="1.0E3">
     50.3
  <\float>
<\parentNode>
Parameters
nodereference to the XML_Node object of the parent XML element
titleStringString name of the title attribute
valueValue - single integer
unitsStringString name of the Units attribute. The default is to have an empty string.
typeStringString type. This is an optional parameter. The default is to have an empty string.
minvalMinimum allowed value of the float. The default is the special double, Undef, which means to ignore the entry.
maxvalMaximum allowed value of the float. The default is the special double, Undef, which means to ignore the entry.

Definition at line 30 of file ctml.cpp.

References XML_Node::addAttribute(), and Undef.

Referenced by StFlow::save(), Inlet1D::save(), OutletRes1D::save(), Surf1D::save(), ReactingSurf1D::save(), and FreeFlame::save().

void addFloatArray ( XML_Node &  node,
const std::string &  titleString,
const size_t  n,
const doublereal *const  values,
const std::string &  unitsString = "",
const std::string &  typeString = "",
const doublereal  minval = Undef,
const doublereal  maxval = Undef 
)

This function adds a child node with the name, "floatArray", with a value consisting of a comma separated list of floats.

This function will add a child node to the current XML node, with the name "floatArray". It will have a title attribute, and the body of the XML node will be filled out with a comma separated list of doublereals.

Example:

Code snippet:

const XML_Node &node;
std::string titleString = "additionalTemperatures";
int n = 3;
int Tcases[3] = [273.15, 298.15, 373.15];
std::string typeString = "optional";
std::string units = "Kelvin";
addFloatArray(node, titleString, n, &cases[0], typeString, units);

Creates the following the snippet in the XML file:

<parentNode>
  <floatArray title="additionalTemperatures" type="optional" units="Kelvin">
     273.15, 298.15, 373.15
  <\floatArray>
<\parentNode>
Parameters
nodereference to the XML_Node object of the parent XML element
titleStringString name of the title attribute
nLength of the doubles vector.
valuesPointer to a vector of doubles
unitsStringString name of the Units attribute. This is an optional parameter. The default is to have an empty string.
typeStringString type. This is an optional parameter. The default is to have an empty string.
minvalMinimum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.
maxvalMaximum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.

Definition at line 51 of file ctml.cpp.

References XML_Node::addAttribute(), fp2str(), and Undef.

Referenced by StFlow::save(), and Domain1D::save().

void addNamedFloatArray ( XML_Node &  parentNode,
const std::string &  name,
const size_t  n,
const doublereal *const  vals,
const std::string  units = "",
const std::string  type = "",
const doublereal  minval = Undef,
const doublereal  maxval = Undef 
)

This function adds a child node with the name given by the first parameter with a value consisting of a comma separated list of floats.

This function will add a child node to the current XML node, with the name given in the list. It will have a title attribute, and the body of the XML node will be filled out with a comma separated list of integers

Example:

Code snipet:

const XML_Node &node;
std::string titleString = "additionalTemperatures";
int n = 3;
int Tcases[3] = [273.15, 298.15, 373.15];
std::string typeString = "optional";
std::string units = "Kelvin";
addNamedFloatArray(node, titleString, n, &cases[0], typeString, units);

Creates the following the snippet in the XML file:

<parentNode>
  <additionalTemperatures type="optional" vtype="floatArray" size = "3" units="Kelvin">
     273.15, 298.15, 373.15
  <\additionalTemperatures>
<\parentNode>
Parameters
parentNodereference to the XML_Node object of the parent XML element
nameName of the XML node
nLength of the doubles vector.
valsPointer to a vector of doubles
unitsString name of the Units attribute. This is an optional parameter. The default is to have an empty string.
typeString type. This is an optional parameter. The default is to have an empty string.
minvalMinimum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.
maxvalMaximum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.

Definition at line 84 of file ctml.cpp.

References XML_Node::addAttribute(), fp2str(), and Undef.

Referenced by StFlow::save().

void addString ( XML_Node &  node,
const std::string &  titleString,
const std::string &  valueString,
const std::string &  typeString = "" 
)

This function adds a child node with the name string with a string value to the current node.

This function will add a child node to the current XML node, with the name "string". It will have a title attribute, and the body of the XML node will be filled out with the valueString argument verbatim.

Example:

Code snippet:

const XML_Node &node;
addString(node, "titleString", "valueString", "typeString");

Creates the following the snippet in the XML file:

<string title="titleString" type="typeString">
  valueString
<\string>
Parameters
nodereference to the XML_Node object of the parent XML element
valueStringValue string to be used in the new XML node.
titleStringString name of the title attribute
typeStringString type. This is an optional parameter.

Definition at line 122 of file ctml.cpp.

References XML_Node::addAttribute().

Referenced by StFlow::save().

XML_Node * getByTitle ( const XML_Node &  node,
const std::string &  title 
)

Search the child nodes of the current node for an XML Node with a Title attribute of a given name.

Parameters
nodeCurrent node from which to conduct the search
titleName of the title attribute
Returns
Returns a pointer to the matched child node. Returns 0 if no node is found.

Definition at line 133 of file ctml.cpp.

References XML_Node::findByAttr(), and XML_Node::parent().

Referenced by getNamedStringValue(), getString(), and newMu0ThermoFromXML().

std::string getChildValue ( const XML_Node &  parent,
const std::string &  nameString 
)

This function reads a child node with the name, nameString, and returns its XML value as the return string.

If the child XML_node named "name" doesn't exist, the empty string is returned.

Code snippet:

const XML_Node &parent;
string nameString = "vacancy_species";
string valueString = getChildValue(parent, nameString
std::string typeString);

returns valueString = "O(V)" from the following the snippet in the XML file:

<vacancySpecies>
  O(V)
<\vacancySpecies>
Parameters
parentparent reference to the XML_Node object of the parent XML element
nameStringName of the child XML_Node to read the value from.
Returns
String value of the child XML_Node

Definition at line 142 of file ctml.cpp.

References XML_Node::hasChild().

Referenced by DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), LatticePhase::setParametersFromXML(), SurfPhase::setStateFromXML(), MixtureFugacityTP::setStateFromXML(), MolalityVPSSTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void getString ( const XML_Node &  node,
const std::string &  titleString,
std::string &  valueString,
std::string &  typeString 
)

This function reads a child node with the name string with a specific title attribute named titleString.

This function will read a child node to the current XML node with the name "string". It must have a title attribute, named titleString, and the body of the XML node will be read into the valueString output argument.

If the child node is not found then the empty string is returned.

Example:

Code snipet:

const XML_Node &node;
getString(XML_Node& node, std::string titleString, std::string valueString,
std::string typeString);

Reads the following the snippet in the XML file:

<string title="titleString" type="typeString">
  valueString
<\string>
Parameters
nodeReference to the XML_Node object of the parent XML element
titleStringString name of the title attribute of the child node
valueStringValue string that is found in the child node. output variable
typeStringString type. This is an optional output variable. It is filled with the attribute "type" of the XML entry.

Definition at line 150 of file ctml.cpp.

References XML_Node::attrib(), getByTitle(), XML_Node::name(), and XML_Node::value().

void getNamedStringValue ( const XML_Node &  node,
const std::string &  nameString,
std::string &  valueString,
std::string &  typeString 
)

This function attempts to read a named child node and returns with the contents in the value string.

title attribute named "titleString"

This function will read a child node to the current XML node, with the name "string". It must have a title attribute, named titleString, and the body of the XML node will be read into the valueString output argument.

If the child node is not found then the empty string is returned.

Example:

Code snippet:

const XML_Node &node;
std::string valueString;
std::string typeString;
std::string nameString = "timeIncrement";
getString(XML_Node& node, nameString, valueString, valueString, typeString);

Reads the following the snippet in the XML file:

<nameString type="typeString">
  valueString
<\nameString>

or alternatively as a retrofit and special case, it also reads the following case:

<string title="nameString" type="typeString">
  valueString
<\string>
Parameters
nodeReference to the XML_Node object of the parent XML element
[in]nameStringName of the XML Node
[out]valueStringValue string that is found in the child node.
[out]typeStringString type. This is an optional output variable. It is filled with the attribute "type" of the XML entry.
Deprecated:
To be removed after Cantera 2.2.

Definition at line 163 of file ctml.cpp.

References XML_Node::attrib(), XML_Node::child(), getByTitle(), XML_Node::hasChild(), XML_Node::name(), XML_Node::value(), and warn_deprecated().

void getIntegers ( const XML_Node &  node,
std::map< std::string, int > &  v 
)

Get a vector of integer values from a child element.

Returns a std::map containing a keyed values for child XML_Nodes of the current node with the name, "integer". In the keyed mapping there will be a list of titles vs. values for all of the XML nodes. The integer XML_nodes are expected to be in a particular form created by the function addInteger(). One value per XML_node is expected.

Example:

const XML_Node &State_XMLNode;
std::map<std::string, integer> v;
getInteger(State_XMLNode, v);

reads the corresponding XML file:

<state>
  <integer title="i1">   1  <\integer>
  <integer title="i2">   2  <\integer>
  <integer title="i3">   3  <\integer>
<\state>

Will produce the mapping:

v["i1"] = 1
v["i2"] = 2
v["i3"] = 3
Parameters
nodeCurrent XML node to get the values from
vOutput map of the results.

Definition at line 182 of file ctml.cpp.

References XML_Node::getChildren().

doublereal getFloat ( const XML_Node &  parent,
const std::string &  name,
const std::string &  type = "" 
)

Get a floating-point value from a child element.

Returns a doublereal value for the child named 'name' of element 'parent'. If 'type' is supplied and matches a known unit type, unit conversion to SI will be done if the child element has an attribute 'units'.

Note, it's an error for the child element not to exist.

Example:

Code snippet:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
if (state_XMLNode.hasChild("pressure")) {
pres = getFloat(State_XMLNode, "pressure", "toSI");
}

reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.

Definition at line 194 of file ctml.cpp.

References XML_Node::child(), getFloatCurrent(), XML_Node::hasChild(), and XML_Node::name().

Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_HKFT::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), VPSSMgr_Water_ConstVol::createInstallPDSS(), VPSSMgr_ConstVol::createInstallPDSS(), getArrhenius(), getCoverageDependence(), getFloatDefaultUnits(), getOptionalFloat(), getRateCoefficient(), getStick(), LiquidTranInteraction::init(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_ConstVol::initThermoXML(), MineralEQ3::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), LTPspecies::LTPspecies(), newAdsorbateThermoFromXML(), newConstCpThermoFromXML(), newMu0ThermoFromXML(), newSpecies(), StFlow::restore(), Inlet1D::restore(), OutletRes1D::restore(), Surf1D::restore(), ReactingSurf1D::restore(), SemiconductorPhase::setParametersFromXML(), EdgePhase::setParametersFromXML(), MetalPhase::setParametersFromXML(), ConstDensityThermo::setParametersFromXML(), StoichSubstance::setParametersFromXML(), SurfPhase::setParametersFromXML(), StoichSubstanceSSTP::setParametersFromXML(), MetalSHEelectrons::setParametersFromXML(), LatticePhase::setParametersFromXML(), MixtureFugacityTP::setStateFromXML(), MolalityVPSSTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

doublereal getFloatCurrent ( const XML_Node &  currXML,
const std::string &  type = "" 
)

Get a floating-point value from the current XML element.

Returns a doublereal value from the current element. If 'type' is supplied and matches a known unit type, unit conversion to SI will be done if the child element has an attribute 'units'.

Note, it's an error for the child element not to exist.

Example:

Code snippet:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
if (state_XMLNode.hasChild("pressure")) {
XML_Node *pres_XMLNode = State_XMLNode.getChild("pressure");
pres = getFloatCurrent(pres_XMLNode, "toSI");
}

Reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
currXMLreference to the current XML_Node object
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.

Definition at line 206 of file ctml.cpp.

References actEnergyToSI(), XML_Node::fp_value(), fpValue(), XML_Node::name(), Tiny, toSI(), XML_Node::value(), and writelog().

Referenced by getFloat(), and LTPspecies_Const::LTPspecies_Const().

bool getOptionalFloat ( const XML_Node &  parent,
const std::string &  name,
doublereal &  fltRtn,
const std::string &  type = "" 
)

Get an optional floating-point value from a child element.

Returns a doublereal value for the child named 'name' of element 'parent'. If 'type' is supplied and matches a known unit type, unit conversion to SI will be done if the child element has an attribute 'units'.

Example:

Code snippet:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
bool exists = getOptionalFloat(State_XMLNode, "pressure", pres, "toSI");

reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element
fltRtnFloat Return. It will be overridden if the XML element exists.
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.
Returns
returns true if the child element named "name" exists

Definition at line 252 of file ctml.cpp.

References getFloat(), and XML_Node::hasChild().

Referenced by HMWSoln::initThermoXML(), HMWSoln::readXMLCroppingCoefficients(), FreeFlame::restore(), and SurfPhase::setStateFromXML().

doublereal getFloatDefaultUnits ( const XML_Node &  parent,
const std::string &  name,
const std::string &  defaultUnits,
const std::string &  type = "toSI" 
)

Get a floating-point value from a child element with a defined units field.

Returns a doublereal value for the child named 'name' of element 'parent'. 'type' must be supplied and match a known unit type. Note, it's an error for the child element not to exist.

Example:

Code snippet:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
if (state_XMLNode.hasChild("pressure")) {
pres = getFloatDefaultUnits(State_XMLNode, "pressure", "Pa", "toSI");
}

reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element
defaultUnitsDefault units string to be found in the units attribute. If the units string in the XML field is equal to defaultUnits, no units conversion will be carried out.
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.

Definition at line 264 of file ctml.cpp.

References actEnergyToSI(), getFloat(), and toSI().

Referenced by MineralEQ3::initThermoXML(), StoichSubstanceSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), FixedChemPotSSTP::initThermoXML(), newShomateForMineralEQ3(), and FixedChemPotSSTP::setParametersFromXML().

bool getOptionalModel ( const XML_Node &  parent,
const std::string &  nodeName,
std::string &  modelName 
)

Get an optional model name from a named child node.

Returns the model name attribute for the child named 'nodeName' of element 'parent'. Note, it's optional for the child node to exist

Example:

Code snippet:

std::string modelName = "";
bool exists = getOptionalModel(transportNode, "compositionDependence",
modelName);

reads the corresponding XML file:

<transport model="Simple">
  <compositionDependence model="Solvent_Only"/>
</transport>

On return modelName is set to "Solvent_Only".

Parameters
parentreference to the XML_Node object of the parent XML element
nodeNameName of the XML child element
modelNameOn return this contains the contents of the model attribute
Returns
True if the nodeName XML node exists. False otherwise.

Definition at line 291 of file ctml.cpp.

References XML_Node::child(), and XML_Node::hasChild().

int getInteger ( const XML_Node &  parent,
const std::string &  name 
)

Get an integer value from a child element.

Returns an integer value for the child named 'name' of element 'parent'. Note, it's an error for the child element not to exist.

Example:

Code snippet:

const XML_Node &State_XMLNode;
int number = 1;
if (state_XMLNode.hasChild("NumProcs")) {
number = getInteger(State_XMLNode, "numProcs");
}

reads the corresponding XML file:

<state>
  <numProcs> 10 <numProcs/>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element

Definition at line 301 of file ctml.cpp.

References XML_Node::child(), XML_Node::hasChild(), XML_Node::int_value(), intValue(), XML_Node::name(), XML_Node::value(), and writelog().

Referenced by newMu0ThermoFromXML().

size_t getFloatArray ( const XML_Node &  node,
std::vector< doublereal > &  v,
const bool  convert = true,
const std::string &  unitsString = "",
const std::string &  nodeName = "floatArray" 
)

This function reads the current node or a child node of the current node with the default name, "floatArray", with a value field consisting of a comma separated list of floats.

This function will read either the current XML node or a child node to the current XML node, with the name "floatArray". It will have a title attribute, and the body of the XML node will be filled out with a comma separated list of doublereals. Get an array of floats from the XML Node. The argument field is assumed to consist of an arbitrary number of comma separated floats, with an arbitrary amount of white space separating each field. If the node array has an units attribute field, then the units are used to convert the floats, iff convert is true.

Example:

Code snippet:

const XML_Node &State_XMLNode;
bool convert = true;
unitsString = "";
nodeName="floatArray";
getFloatArray(State_XMLNode, v, convert, unitsString, nodeName);

reads the corresponding XML file:

<state>
  <floatArray  units="m3">   32.4, 1, 100. <\floatArray>
<\state>

and will produce the vector:

v[0] = 32.4
v[1] = 1.0
v[2] = 100.
Parameters
nodeXML parent node of the floatArray
vOutput vector of floats containing the floatArray information.
convertConversion to SI is carried out if this boolean is True. The default is true.
unitsStringString name of the type attribute. This is an optional parameter. The default is to have an empty string. The only string that is recognized is actEnergy. Anything else has no effect. This affects what units converter is used.
nodeNameXML Name of the XML node to read. The default value for the node name is floatArray
Returns
Returns the number of floats read into v.

Definition at line 323 of file ctml.cpp.

References actEnergyToSI(), XML_Node::attrib(), fp2str(), fpValueCheck(), XML_Node::getChildren(), XML_Node::name(), npos, Tiny, toSI(), Undef, XML_Node::value(), and writelog().

Referenced by PDSS_SSVol::constructPDSSXML(), getRateCoefficient(), LiquidTranInteraction::init(), LTPspecies_ExpT::LTPspecies_ExpT(), LTPspecies_Poly::LTPspecies_Poly(), newAdsorbateThermoFromXML(), newMu0ThermoFromXML(), newNasa9ThermoFromXML(), newNasaThermoFromXML(), newShomateThermoFromXML(), HMWSoln::readXMLBinarySalt(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), HMWSoln::readXMLLambdaNeutral(), HMWSoln::readXMLMunnnNeutral(), HMWSoln::readXMLPsiCommonAnion(), HMWSoln::readXMLPsiCommonCation(), RedlichKwongMFTP::readXMLPureFluid(), HMWSoln::readXMLThetaAnion(), HMWSoln::readXMLThetaCation(), HMWSoln::readXMLZetaCation(), StFlow::restore(), and Domain1D::restore().

void getMap ( const XML_Node &  node,
std::map< std::string, std::string > &  m 
)

This routine is used to interpret the value portions of XML elements that contain colon separated pairs.

These are used, for example, in describing the element composition of species.

 <atomArray> H:4 C:1 <atomArray\>

The string is first separated into a string vector according to the location of white space. Then each string is again separated into two parts according to the location of a colon in the string. The first part of the string is used as the key, while the second part of the string is used as the value, in the return map. It is an error to not find a colon in each string pair.

Parameters
nodeCurrent node
mOutput Map containing the pairs of values found in the XML Node

Definition at line 403 of file ctml.cpp.

References getStringArray(), and npos.

Referenced by DebyeHuckel::initThermoXML(), and HMWSoln::initThermoXML().

int getPairs ( const XML_Node &  node,
std::vector< std::string > &  key,
std::vector< std::string > &  val 
)

This function interprets the value portion of an XML element as a series of "Pairs" separated by white space.

Each pair consists of non-whitespace characters. The first ":" found in the pair string is used to separate the string into two parts. The first part is called the "key" The second part is called the "val". String vectors of key[i] and val[i] are returned in the argument list. Warning: No spaces are allowed in each pair. Quotes get included as part of the string. Example:

<xmlNode>
   red:112    blue:34
   green:banana
</xmlNode>

Returns:

index key val
0 "red" "112"
1 "blue" "34"
2 "green" "banana"
Parameters
nodeXML Node
keyVector of keys for each entry
valVector of values for each entry
Returns
Returns the number of pairs found

Definition at line 417 of file ctml.cpp.

References getStringArray(), and npos.

Referenced by PDSS_IonsFromNeutral::constructPDSSXML(), getEfficiencies(), getReagents(), and LatticeSolidPhase::setParametersFromXML().

void getMatrixValues ( const XML_Node &  node,
const std::vector< std::string > &  keyStringRow,
const std::vector< std::string > &  keyStringCol,
Array2D &  returnValues,
const bool  convert = true,
const bool  matrixSymmetric = false 
)

This function interprets the value portion of an XML element as a series of "Matrix ids and entries" separated by white space.

Each pair consists of non-whitespace characters. The first two ":" found in the pair string is used to separate the string into three parts. The first part is called the first key. The second part is the second key. Both parts must match an entry in the keyString1 and keyString2, respectively, in order to provide a location to place the object in the matrix. The third part is called the value. It is expected to be a double. It is translated into a double and placed into the correct location in the matrix.

Warning: No spaces are allowed in each triplet. Quotes are part of the string.

Example: keyString = red, blue, black, green

<xmlNode>
    red:green:112
    blue:black:3.3E-23
</xmlNode>

Returns:

retnValues(0, 3) = 112
retnValues(1, 2) = 3.3E-23
Parameters
nodeXML Node containing the information for the matrix
keyStringRowKey string for the row
keyStringColKey string for the column entries
returnValuesReturn Matrix.
convertIf this is true, and if the node has a units attribute, then conversion to SI units is carried out. Default is true.
matrixSymmetricIf true entries are made so that the matrix is always symmetric. Default is false.

Definition at line 435 of file ctml.cpp.

References fpValueCheck(), getStringArray(), Array2D::nColumns(), npos, Array2D::nRows(), and toSI().

Referenced by DebyeHuckel::initThermoXML().

void getStringArray ( const XML_Node &  node,
std::vector< std::string > &  v 
)

This function interprets the value portion of an XML element as a string.

It then separates the string up into tokens according to the location of white space.

The separate tokens are returned in the string vector

Parameters
nodeNode to get the value from
vOutput vector containing the string tokens

Definition at line 503 of file ctml.cpp.

References tokenizeString(), and XML_Node::value().

Referenced by Elements::addElementsFromXML(), HMWSoln::constructPhaseXML(), formSpeciesXMLNodeList(), getFalloff(), getMap(), getMatrixValues(), getPairs(), importKinetics(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), installElements(), and readFalloff().

static Application* Cantera::app ( )
static
void setLogger ( Logger *  logwriter)

Install a logger.

Called by the language interfaces to install an appropriate logger. The logger is used for the writelog() function

Parameters
logwriterPointer to a logger object
See Also
Logger.

Definition at line 24 of file global.cpp.

References app(), Logger::error(), and Application::setLogger().

void writelog ( const std::string &  msg)

Write a message to the screen.

The string may be of any length, and may contain end-of-line characters. This method is used throughout Cantera to write log messages. It can also be called by user programs. The advantage of using writelog over writing directly to the standard output is that messages written with writelog will display correctly even when Cantera is used from MATLAB or other application that do not have a standard output stream.

Parameters
msgc++ string to be written to the screen

Definition at line 33 of file global.cpp.

References app(), and Application::writelog().

Referenced by Bdry1D::_getInitialSoln(), ReactorNet::addReactor(), InterfaceKinetics::applyVoltageKfwdCorrection(), BasisOptimize(), NasaThermo::checkContinuity(), ck2cti(), MultiNewton::dampStep(), ChemEquil::dampStep(), ElemRearrange(), ChemEquil::equilibrate(), MultiPhase::equilibrate(), ThermoPhase::equilibrate(), ChemEquil::equilResidual(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GasTransport::fitCollisionIntegrals(), GasTransport::fitProperties(), getFloatArray(), getFloatCurrent(), FlowReactor::getInitialConditions(), getInteger(), MMCollisionInt::init(), ChemEquil::initialize(), ReactorNet::initialize(), PDSS_HKFT::initThermo(), PureFluidPhase::initThermo(), NasaThermo::install(), SimpleThermo::install(), ShomateThermo::install(), RedlichKwongMFTP::NicholsSolve(), print_stringTrunc(), Sim1D::refine(), ReactorNet::reinitialize(), Sim1D::restore(), StFlow::restore(), Domain1D::restore(), ChemEquil::setInitialMoles(), GasTransport::setupMM(), Inlet1D::showSolution(), StFlow::showSolution(), Surf1D::showSolution(), ReactingSurf1D::showSolution(), Domain1D::showSolution(), MultiNewton::solve(), RootFind::solve(), OneDim::timeStep(), NasaPoly2::validate(), writelog(), writelogf(), and OneDim::writeStats().

void writelogendl ( )

Write an end of line character to the screen and flush output.

Definition at line 56 of file global.cpp.

References app(), and Application::writelogendl().

Referenced by RedlichKwongMFTP::NicholsSolve().

void error ( const std::string &  msg)

Write an error message and quit.

The default behavior is to write to the standard error stream, and then call exit(). Note that no end-of-line character is appended to the message, and so if one is desired it must be included in the string. Note that this default behavior will terminate the application Cantera is invoked from (MATLAB, Excel, etc.) If this is not desired, then derive a class and reimplement this method.

Parameters
msgError message to be written to cerr.
Deprecated:
To be removed after Cantera 2.2

Definition at line 72 of file global.cpp.

References app(), Application::logerror(), and warn_deprecated().

Referenced by Phase::addSpecies(), NonlinearSolver::calcSolnToResNormVector(), NonlinearSolver::print_solnDelta_norm_contrib(), NonlinearSolver::residErrorNorm(), BEulerInt::soln_error_norm(), NonlinearSolver::solnErrorNorm(), Phase::throwUndefinedElements(), and BEulerInt::time_error_norm().

void warn_deprecated ( const std::string &  method,
const std::string &  extra = "" 
)

Print a warning indicating that method is deprecated.

Additional information (removal version, alternatives) can be specified in extra. Deprecation warnings are printed once per method per invocation of the application.

Definition at line 78 of file global.cpp.

References app(), and Application::warn_deprecated().

Referenced by _dot_ratio(), vcs_VolPhase::_updateActCoeff(), vcs_VolPhase::_updateG0(), vcs_VolPhase::_updateGStar(), vcs_VolPhase::_updateMoleFractionDependencies(), vcs_VolPhase::_updateVolPM(), vcs_VolPhase::_updateVolStar(), absmax(), add_each(), Phase::addElement(), Phase::addElementsFromXML(), ReactorNet::addReactor(), Phase::addSpecies(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), BEulerInt::BEulerInt(), checkRxnElementBalance(), Array2D::copyData(), BandMatrix::copyData(), copyn(), IdealGasPhase::cv_rot(), IdealGasPhase::cv_tr(), IdealGasPhase::cv_trans(), IdealGasPhase::cv_vib(), divide_each(), StFlow::doSpecies(), dot6(), dot_product(), dot_ratio(), electrodeElectron::electrodeElectron(), ElectrodeKinetics::ElectrodeKinetics(), Elements::Elements(), Phase::elementsFrozen(), equilibrate(), MultiPhase::equilibrate(), error(), ExchangeCurrent::ExchangeCurrent(), ExtraGlobalRxn::ExtraGlobalRxn(), SpeciesThermoFactory::factory(), fillArrayFromString(), StFlow::fixSpecies(), Phase::freezeElements(), get_CTML_Tree(), getBaseName(), XML_Node::getChildren(), getCtmlTree(), Phase::getMoleFractionsByName(), getNamedStringValue(), getRateCoefficient(), getReagents(), StoichSubstance::getUnitsStandardConc(), IdealSolnGasVPSS::getUnitsStandardConc(), GibbsExcessVPSSTP::getUnitsStandardConc(), MineralEQ3::getUnitsStandardConc(), RedlichKwongMFTP::getUnitsStandardConc(), StoichSubstanceSSTP::getUnitsStandardConc(), FixedChemPotSSTP::getUnitsStandardConc(), MetalSHEelectrons::getUnitsStandardConc(), IdealMolalSoln::getUnitsStandardConc(), IdealSolidSolnPhase::getUnitsStandardConc(), MolalityVPSSTP::getUnitsStandardConc(), ThermoPhase::getUnitsStandardConc(), DebyeHuckel::getUnitsStandardConc(), HMWSoln::getUnitsStandardConc(), increment_scale(), TransportFactory::initTransport(), FalloffMgr::install(), GeneralSpeciesThermo::install(), installSpecies(), SpeciesThermoFactory::installVPThermoForSpecies(), isDuplicateReaction(), Application::Messages::logerror(), logfileName(), MargulesVPSSTP::MargulesVPSSTP(), Phase::mean_Y(), MixedSolventElectrolyte::MixedSolventElectrolyte(), multiply_each(), SpeciesThermoFactory::newSpeciesThermo(), SpeciesThermoFactory::newSpeciesThermoManager(), newSpeciesThermoMgr(), NonlinearSolver::NonlinearSolver(), XML_Node::operator()(), PhaseCombo_Interaction::PhaseCombo_Interaction(), poly10(), Kinetics::products(), PseudoBinaryVPSSTP::PseudoBinaryVPSSTP(), Kinetics::reactants(), InterfaceKinetics::reactionNumber(), ReactionStoichMgr::ReactionStoichMgr(), RedlichKisterVPSSTP::RedlichKisterVPSSTP(), RedlichKwongMFTP::RedlichKwongMFTP(), resize_each(), RxnMolChange::RxnMolChange(), scale(), scatter_divide(), vcs_VolPhase::setElectricPotential(), SolidTransport::setParameters(), DustyGasTransport::setParameters(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setSpeciesThermo(), vcs_VolPhase::setState_TP(), ShomateThermo::ShomateThermo(), SimpleThermo::SimpleThermo(), solveProb::solveProb(), StFlow::solveSpecies(), SpeciesThermoDuo< T1, T2 >::SpeciesThermoDuo(), SpeciesThermoInterpType::SpeciesThermoInterpType(), split(), StatMech::StatMech(), Phase::sum_xlogQ(), vcs_equilibrate(), vcs_equilibrate_1(), vcs_max_int(), VCS_SOLVE::vcs_rank(), vcsUtil_root1d(), and StFlow::Y_fixed().

void suppress_deprecation_warnings ( )

Globally disable printing of deprecation warnings.

Used primarily to prevent certain tests from failing.

Definition at line 83 of file global.cpp.

References app(), and Application::suppress_deprecation_warnings().

void appdelete ( )

Delete and free all memory associated with the application.

Delete all global data. It should be called at the end of the application if leak checking is to be done.

Definition at line 93 of file global.cpp.

void thread_complete ( )

Delete and free memory allocated per thread in multithreaded applications.

Delete the memory allocated per thread by Cantera. It should be called from within the thread just before the thread terminates. If your version of Cantera has not been specifically compiled for thread safety this function does nothing.

Definition at line 100 of file global.cpp.

References app(), and Application::thread_complete().

XML_Node * get_XML_File ( const std::string &  file,
int  debug = 0 
)

Return a pointer to the XML tree for a Cantera input file.

This routine will find the file and read the XML file into an XML tree structure. Then, a pointer will be returned. If the file has already been processed, then just the pointer will be returned.

Parameters
fileString containing the relative or absolute file name
debugDebug flag

Definition at line 105 of file global.cpp.

References app(), and Application::get_XML_File().

Referenced by Elements::addElementsFromXML(), electrodeElectron::electrodeElectron(), FixedChemPotSSTP::FixedChemPotSSTP(), get_CTML_Tree(), get_XML_NameID(), get_XML_Node(), getCtmlTree(), IdealSolnGasVPSS::IdealSolnGasVPSS(), ThermoPhase::initThermoFile(), installElements(), Interface::Interface(), MetalSHEelectrons::MetalSHEelectrons(), MineralEQ3::MineralEQ3(), newPhase(), RedlichKwongMFTP::RedlichKwongMFTP(), StoichSubstanceSSTP::StoichSubstanceSSTP(), and SurfPhase::SurfPhase().

XML_Node * get_XML_from_string ( const std::string &  text)

Read a CTI or CTML string and fill up an XML tree.

Return a pointer to the XML tree corresponding to the specified CTI or XML string. If the given string has been processed before, the cached XML tree will be returned. Otherwise, the XML tree will be generated and stored in the cache.

Parameters
textCTI or CTML string
Returns
Root of the corresponding XML tree

Definition at line 111 of file global.cpp.

References app(), and Application::get_XML_from_string().

void close_XML_File ( const std::string &  file)

Close an XML File.

Close a file that is opened by this application object

Parameters
fileString containing the relative or absolute file name

Definition at line 116 of file global.cpp.

References app(), and Application::close_XML_File().

void popError ( )

Discard the last error message.

Cantera saves a stack of exceptions that it has caught in the Application class. This routine eliminates the last exception to be added to that stack.

Definition at line 126 of file global.cpp.

References app(), and Application::popError().

Referenced by SpeciesThermoFactory::newSpeciesThermo(), and VPSSMgrFactory::newVPSSMgr().

std::string lastErrorMessage ( )

Retrieve the last error message in a string.

This routine will retrieve the last error message and return it in the return string.

Definition at line 131 of file global.cpp.

References app(), and Application::lastErrorMessage().

void showErrors ( std::ostream &  f)

Prints all of the error messages to an ostream.

Write out all of the saved error messages to the ostream f using the function Logger::writelog. Cantera saves a stack of exceptions that it has caught in the Application class. This routine writes out all of the error messages to the ostream and then clears them from internal storage.

Parameters
fostream which will receive the error messages

Definition at line 136 of file global.cpp.

References app(), and Application::getErrors().

Referenced by TransportFactory::getSolidTransportData().

void showErrors ( )

Prints all of the error messages using writelog.

Print all of the error messages using function writelog. Cantera saves a stack of exceptions that it has caught in the Application class. This routine writes out all of the error messages and then clears them from internal storage.

Definition at line 141 of file global.cpp.

References app(), and Application::logErrors().

void setError ( const std::string &  r,
const std::string &  msg 
)

Set an error condition in the application class without throwing an exception.

This routine adds an error message to the end of the stack of errors that Cantera accumulates in the Application class.

Parameters
rProcedure name which is generating the error condition
msgDescriptive message of the error condition.

Definition at line 146 of file global.cpp.

References Application::addError(), and app().

doublereal toSI ( const std::string &  unit)

Return the conversion factor to convert unit std::string 'unit' to SI units.

Parameters
unitString containing the units

Definition at line 161 of file global.cpp.

Referenced by getFloatArray(), getFloatCurrent(), getFloatDefaultUnits(), getMatrixValues(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), and strSItoDbl().

doublereal actEnergyToSI ( const std::string &  unit)

Return the conversion factor to convert activation energy unit std::string 'unit' to Kelvin.

Parameters
unitString containing the activation energy units

Definition at line 172 of file global.cpp.

Referenced by getFloatArray(), getFloatCurrent(), and getFloatDefaultUnits().

static void Cantera::split_at_pound ( const std::string &  src,
std::string &  file,
std::string &  id 
)
static

split a string at a '#' sign. Used to separate a file name from an id string.

Parameters
srcOriginal string to be split up. This is unchanged.
fileOutput string representing the first part of the string, which is the filename.
idOutput string representing the last part of the string, which is the id.

Definition at line 202 of file global.cpp.

References npos.

Referenced by get_XML_NameID(), and get_XML_Node().

XML_Node * get_XML_Node ( const std::string &  file_ID,
XML_Node *  root 
)

This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string.

Searches are based on the ID attribute of the XML element only.

Parameters
file_IDThis is a concatenation of two strings separated by the "#" character. The string before the pound character is the file name of an XML file to carry out the search. The string after the # character is the ID attribute of the XML element to search for. The string is interpreted as a file string if no # character is in the string.
rootIf the file string is empty, searches for the XML element with matching ID attribute are carried out from this XML node.
Returns
Returns the XML_Node, if found. Returns null if not found.

Definition at line 214 of file global.cpp.

References XML_Node::findID(), findInputFile(), get_XML_File(), and split_at_pound().

Referenced by IonsFromNeutralVPSSTP::constructPhaseXML(), importPhase(), IonsFromNeutralVPSSTP::initThermoXML(), installReactionArrays(), and Interface::Interface().

XML_Node * get_XML_NameID ( const std::string &  nameTarget,
const std::string &  file_ID,
XML_Node *  root 
)

This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string.

Searches are based on the XML element name and the ID attribute of the XML element. An exact match of both is usually required. However, the ID attribute may be set to "", in which case the first XML element with the correct element name will be returned.

Parameters
nameTargetThis is the XML element name to look for.
file_IDThis is a concatenation of two strings separated by the "#" character. The string before the pound character is the file name of an XML file to carry out the search. The string after the # character is the ID attribute of the XML element to search for. The string is interpreted as a file string if no # character is in the string.
rootIf the file string is empty, searches for the XML element with matching ID attribute are carried out from this XML node.
Returns
Returns the XML_Node, if found. Returns null if not found.

Definition at line 252 of file global.cpp.

References XML_Node::findNameID(), get_XML_File(), and split_at_pound().

Referenced by buildSolutionFromXML(), PDSS_ConstVol::constructPDSSFile(), PDSS_IonsFromNeutral::constructPDSSFile(), PDSS_HKFT::constructPDSSFile(), PDSS_SSVol::constructPDSSFile(), electrodeElectron::electrodeElectron(), FixedChemPotSSTP::FixedChemPotSSTP(), IdealSolnGasVPSS::IdealSolnGasVPSS(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), MetalSHEelectrons::MetalSHEelectrons(), MineralEQ3::MineralEQ3(), newPhase(), RedlichKwongMFTP::RedlichKwongMFTP(), StoichSubstanceSSTP::StoichSubstanceSSTP(), and SurfPhase::SurfPhase().

void writePlotFile ( const std::string &  fname,
const std::string &  fmt,
const std::string &  plotTitle,
const std::vector< std::string > &  names,
const Array2D &  data 
)

Write a Plotting file.

Parameters
fnameOutput file name
fmtEither TEC or XL or CSV
plotTitleTitle of the plot
namesvector of variable names
dataN x M data array. data(n,m) is the m^th value of the n^th variable.

Definition at line 13 of file plots.cpp.

References outputExcel(), and outputTEC().

void outputTEC ( std::ostream &  s,
const std::string &  title,
const std::vector< std::string > &  names,
const Array2D &  data 
)

Write a Tecplot data file.

Parameters
soutput stream
titleplot title
namesvector of variable names
dataN x M data array. data(n,m) is the m^th value of the n^th variable.

Definition at line 35 of file plots.cpp.

References Array2D::nColumns(), and Array2D::nRows().

Referenced by writePlotFile().

void outputExcel ( std::ostream &  s,
const std::string &  title,
const std::vector< std::string > &  names,
const Array2D &  data 
)

Write an Excel spreadsheet in 'csv' form.

Parameters
soutput stream
titleplot title
namesvector of variable names
dataN x M data array. data(n,m) is the m^th value of the n^th variable.

Definition at line 59 of file plots.cpp.

References Array2D::nColumns(), and Array2D::nRows().

Referenced by writePlotFile().

std::string fp2str ( const double  x,
const std::string &  fmt = "%g" 
)

Convert a double into a c++ string.

Parameters
xdouble to be converted
fmtFormat to be used (printf style)

Definition at line 28 of file stringUtils.cpp.

Referenced by XML_Node::addAttribute(), addFloatArray(), addNamedFloatArray(), XML_Node::addValue(), InterfaceKinetics::applyVoltageKfwdCorrection(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), NasaThermo::checkContinuity(), GibbsExcessVPSSTP::checkMFSum(), Kinetics::checkReactionBalance(), checkRxnElementBalance(), WaterProps::coeffThermalExp_IAPWS(), WaterPropsIAPWS::corr(), MixtureFugacityTP::corr0(), WaterPropsIAPWS::corr1(), PDSS_Water::dthermalExpansionCoeffdT(), WaterSSTP::dthermalExpansionCoeffdT(), ChemEquil::equilibrate(), FixedChemPotSSTP::FixedChemPotSSTP(), GibbsExcessVPSSTP::getActivityCoefficients(), getFloatArray(), SRI::init(), ChemEquil::initialize(), PDSS_HKFT::initThermo(), NasaThermo::install(), SimpleThermo::install(), ShomateThermo::install(), WaterProps::isothermalCompressibility_IAPWS(), oxygen::ldens(), nitrogen::ldens(), hydrogen::ldens(), methane::ldens(), Heptane::ldens(), CarbonDioxide::ldens(), RedlichKwongMFTP::NicholsSolve(), water::Psat(), oxygen::Psat(), nitrogen::Psat(), hydrogen::Psat(), methane::Psat(), HFC134a::Psat(), Heptane::Psat(), CarbonDioxide::Psat(), MargulesVPSSTP::readXMLBinarySpecies(), Sim1D::refine(), Substance::Set(), Substance::set_TPp(), Refiner::setCriteria(), vcs_VolPhase::setMoleFractionsState(), vcs_VolPhase::setMolesFromVCSCheck(), PDSS_Water::setPressure(), SurfPhase::setSiteDensity(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), vcs_VolPhase::setTotalMoles(), RootFind::solve(), ChemEquil::update(), Plog::update_C(), Substance::update_sat(), MixTransport::update_T(), PecosTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), Reactor::updateState(), GasTransportData::validate(), NasaPoly2::validate(), Plog::validate(), VCS_SOLVE::vcs_dfe(), VCS_SOLVE::vcs_nondim_TP(), VCS_SOLVE::vcs_popPhasePossible(), VCS_SOLVE::vcs_prob_specifyFully(), VCS_SOLVE::vcs_prob_update(), C_AnyN::writeDecrementReaction(), C_AnyN::writeDecrementSpecies(), C_AnyN::writeIncrementReaction(), C_AnyN::writeIncrementSpecies(), and C_AnyN::writeMultiply().

std::string int2str ( const int  n,
const std::string &  fmt = "%d" 
)

Convert an int to a string using a format converter.

Parameters
nint to be converted
fmtformat converter for an int int the printf command

Definition at line 39 of file stringUtils.cpp.

Referenced by XML_Node::addAttribute(), GasKinetics::addReaction(), AqueousKinetics::addReaction(), ReactorNet::addReactor(), Reactor::addSensitivityReaction(), InterfaceKinetics::applyVoltageKfwdCorrection(), NonlinearSolver::beuler_jac(), NonlinearSolver::boundStep(), Kinetics::checkDuplicates(), Domain1D::componentName(), MultiNewton::dampStep(), VCS_SOLVE::delta_species(), NonlinearSolver::deltaBoundStep(), WaterPropsIAPWS::density(), WaterPropsIAPWS::density_const(), NonlinearSolver::doAffineNewtonSolve(), Elements::elementName(), ChemEquil::equilibrate(), MultiPhase::equilibrate(), ThermoPhase::equilibrate(), vcs_MultiPhaseEquil::equilibrate_HP(), vcs_MultiPhaseEquil::equilibrate_TV(), IdealGasReactor::evalEqs(), Reactor::evalEqs(), SquareMatrix::factor(), SquareMatrix::factorQR(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), XML_Node::findNameIDIndex(), fmt(), GibbsExcessVPSSTP::getActivityCoefficients(), getEfficiencies(), getFalloff(), MultiTransport::getMassFluxes(), MultiTransport::getMultiDiffCoeffs(), HighPressureGasTransport::getMultiDiffCoeffs(), getRateCoefficient(), importPhase(), Falloff::init(), Troe::init(), SRI::init(), ReactorNet::initialize(), Rate1< Cantera::Plog >::install(), NasaThermo::install(), SimpleThermo::install(), ShomateThermo::install(), GeneralSpeciesThermo::install_STIT(), LatticeSolidPhase::installSlavePhases(), CVodeInt::integrate(), CVodesIntegrator::integrate(), invert(), GasKinetics::modifyReaction(), Kinetics::modifyReaction(), newSpeciesThermoInterpType(), Sim1D::newtonSolve(), VPSSMgrFactory::newVPSSMgr(), polyfit(), solveProb::print_header(), solveSP::print_header(), NonlinearSolver::print_solnDelta_norm_contrib(), HMWSoln::printCoeffs(), solveProb::printFinal(), solveSP::printIteration(), solveProb::printIteration(), WaterPropsIAPWS::psat(), SquareMatrix::rcond(), BandMatrix::rcond(), SquareMatrix::rcondQR(), readFalloff(), NonlinearSolver::residErrorNorm(), Sim1D::restore(), StFlow::restore(), Domain1D::restore(), MolalityVPSSTP::setpHScale(), Sim1D::setValue(), NonlinearSolver::solnErrorNorm(), SquareMatrix::solve(), MultiNewton::solve(), solve(), SquareMatrix::solveQR(), solveSP::solveSurfProb(), Kinetics::speciesPhaseIndex(), MultiNewton::step(), CVodeInt::step(), CVodesIntegrator::step(), InterfaceKinetics::updateKc(), DustyGasTransport::updateMultiDiffCoeffs(), IdealGasReactor::updateState(), Reactor::updateState(), Sim1D::value(), vcs_Cantera_to_vprob(), vcs_determine_PhaseStability(), VCS_SOLVE::vcs_dfe(), vcs_equilibrate_1(), VCS_SOLVE::vcs_evaluate_speciesType(), VCS_SOLVE::vcs_nondim_Farad(), VCS_SOLVE::vcs_nondimMult_TP(), VCS_SOLVE::vcs_popPhasePossible(), VCS_SOLVE::vcs_printSpeciesChemPot(), VCS_SOLVE::vcs_switch_elem_pos(), VCS_SOLVE::vcs_updateVP(), vcsUtil_gasConstant(), OneDim::writeStats(), and XML_Error::XML_Error().

std::string int2str ( const size_t  n)

Convert an unsigned integer to a string.

Parameters
nint to be converted

Definition at line 50 of file stringUtils.cpp.

std::string vec2str ( const vector_fp &  v,
const std::string &  fmt = "%g",
const std::string &  sep = ", " 
)

Convert a vector to a string (separated by commas)

Parameters
vvector to be converted
fmtFormat to be used (printf style) for each element
sepSeparator

Definition at line 57 of file stringUtils.cpp.

Referenced by GasTransport::fitProperties(), and MMCollisionInt::init().

std::string lowercase ( const std::string &  s)

Cast a copy of a string to lower case.

Parameters
sInput string
Returns
Returns a copy of the string, with all characters lowercase.

Definition at line 73 of file stringUtils.cpp.

Referenced by PDSS_IonsFromNeutral::constructPDSSXML(), PDSS_HKFT::constructPDSSXML(), IonsFromNeutralVPSSTP::constructPhaseXML(), HMWSoln::constructPhaseXML(), LiquidTranInteraction::init(), VPSSMgr_Water_HKFT::initThermoXML(), MaskellSolidSolnPhase::initThermoXML(), MolarityIonicVPSSTP::initThermoXML(), IdealSolnGasVPSS::initThermoXML(), RedlichKwongMFTP::initThermoXML(), RedlichKisterVPSSTP::initThermoXML(), MixedSolventElectrolyte::initThermoXML(), MargulesVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), PhaseCombo_Interaction::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), interp_est(), HMWSoln::interp_est(), KineticsFactory::newKinetics(), TransportFactory::newLTP(), newReaction(), newSpeciesThermoInterpType(), SpeciesThermoFactory::newSpeciesThermoManager(), readFalloff(), HMWSoln::readXMLBinarySalt(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), HMWSoln::readXMLLambdaNeutral(), HMWSoln::readXMLMunnnNeutral(), HMWSoln::readXMLPsiCommonAnion(), HMWSoln::readXMLPsiCommonCation(), RedlichKwongMFTP::readXMLPureFluid(), HMWSoln::readXMLThetaAnion(), HMWSoln::readXMLThetaCation(), HMWSoln::readXMLZetaCation(), and VPSSMgrFactory::VPSSMgr_StringConversion().

static int Cantera::firstChar ( const std::string &  s)
static

Return the position of the first printable character in the string.

Parameters
sinput string
Returns
Returns an int representing the first printable string. If none returns the size of the string.

Definition at line 88 of file stringUtils.cpp.

Referenced by stripws().

static int Cantera::lastChar ( const std::string &  s)
static

Return the position of the last printable character in the string.

Parameters
sinput string
Returns
Returns an int representing the first printable string. If none returns -1.

Definition at line 106 of file stringUtils.cpp.

Referenced by stripws().

std::string stripws ( const std::string &  s)

Strip the leading and trailing white space from a string.

The command isprint() is used to determine printable characters.

Parameters
sInput string
Returns
Returns a copy of the string, stripped of leading and trailing white space

Definition at line 117 of file stringUtils.cpp.

References firstChar(), and lastChar().

Referenced by Phase::addElement(), Elements::addUniqueElement(), XML_Node::addValue(), ck2cti(), fpValueCheck(), intValue(), parseCompString(), parseSpeciesName(), XML_Reader::parseTag(), pypath(), and XML_Reader::readValue().

std::string stripnonprint ( const std::string &  s)

Strip non-printing characters wherever they are.

Parameters
sInput string
Returns
Returns a copy of the string, stripped of all non- printing characters.

Definition at line 124 of file stringUtils.cpp.

Referenced by Application::addDataDirectory().

compositionMap parseCompString ( const std::string &  ss,
const std::vector< std::string > &  names = std::vector< std::string >() 
)

Parse a composition string into a map consisting of individual key:composition pairs.

Elements present in names but not in the composition string will have a value of 0. Elements present in the composition string but not in names will generate an exception. The composition is a double. Example:

Input is

"ice:1 snow:2" names = ["fire", "ice", "snow"]

Output is x["fire"] = 0 x["ice"] = 1 x["snow"] = 2

Parameters
ssoriginal string consisting of multiple key:composition pairs on multiple lines
names(optional) valid names for elements in the composition map. If empty or unspecified, all values are allowed.
Returns
map of names to values

Definition at line 135 of file stringUtils.cpp.

References fpValueCheck(), npos, and stripws().

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), newSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), and MultiPhase::setMolesByName().

void split ( const std::string &  ss,
std::vector< std::string > &  w 
)

Parse a composition string into individual key:composition pairs.

Parameters
ssoriginal string consisting of multiple key:composition pairs on multiple lines
wOutput vector consisting of single key:composition items in each index.
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 167 of file stringUtils.cpp.

References npos, and warn_deprecated().

int fillArrayFromString ( const std::string &  str,
doublereal *const  a,
const char  delim = ' ' 
)

Interpret a string as a list of floats, and convert it to a vector of floats.

Parameters
strString input vector
aOutput pointer to a vector of floats
delimcharacter delimiter. Defaults to a space
Returns
Returns the number of floats found and converted
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 189 of file stringUtils.cpp.

References fpValueCheck(), and warn_deprecated().

std::string getBaseName ( const std::string &  fullPath)

Get the file name without the path or extension.

Parameters
fullPathInput file name consisting of the full file name
Returns
Returns the basename
Deprecated:
Unused function to be removed after Cantera 2.2.

Definition at line 212 of file stringUtils.cpp.

References warn_deprecated().

Referenced by logfileName().

int intValue ( const std::string &  val)

Translate a string into one integer value.

No error checking is done on the conversion. The c stdlib function atoi() is used.

Parameters
valString value of the integer
Returns
Returns an integer

Definition at line 230 of file stringUtils.cpp.

References stripws().

Referenced by getInteger(), importPhase(), installElements(), and Sim1D::restore().

doublereal fpValue ( const std::string &  val)
doublereal fpValueCheck ( const std::string &  val)

Translate a string into one doublereal value, with error checking.

fpValueCheck is a wrapper around the C++ stringstream double parser. It does quite a bit more error checking than atof() or strtod(), and is quite a bit more restrictive.

First it interprets both E, e, d, and D as exponents. stringstreams only interpret e or E as an exponent character.

It only accepts a string as well formed if it consists as a single token. Multiple words will raise an exception. It will raise a CanteraError for NAN and inf entries as well, in contrast to atof() or strtod(). The user needs to know that a serious numerical issue has occurred.

It does not accept hexadecimal numbers.

It always use the C locale, regardless of any locale settings.

Parameters
valString representation of the number
Returns
Returns a doublereal value

Definition at line 244 of file stringUtils.cpp.

References fpValue(), and stripws().

Referenced by Phase::addElement(), Elements::addUniqueElement(), PDSS_IonsFromNeutral::constructPDSSXML(), PDSS_HKFT::constructPDSSXML(), HMWSoln::constructPhaseXML(), fillArrayFromString(), XML_Node::fp_value(), getFloatArray(), getMatrixValues(), HMWSoln::initThermoXML(), installElements(), parseCompString(), readFalloff(), HMWSoln::readXMLBinarySalt(), HMWSoln::readXMLPsiCommonAnion(), HMWSoln::readXMLPsiCommonCation(), LatticeSolidPhase::setParametersFromXML(), and strSItoDbl().

std::string logfileName ( const std::string &  infile)

Generate a logfile name based on an input file name.

It tries to find the basename. Then, it appends a .log to it.

Parameters
infileInput file name
Returns
Returns a logfile name
Deprecated:
Unused function to be removed after Cantera 2.2.

Definition at line 290 of file stringUtils.cpp.

References getBaseName(), and warn_deprecated().

std::string wrapString ( const std::string &  s,
const int  len = 70 
)

Line wrap a string via a copy operation.

Parameters
sInput string to be line wrapped
lenLength at which to wrap. The default is 70.

Definition at line 298 of file stringUtils.cpp.

Referenced by ReactionStoichMgr::writeCreationRates(), ReactionStoichMgr::writeDestructionRates(), and ReactionStoichMgr::writeNetProductionRates().

std::string parseSpeciesName ( const std::string &  nameStr,
std::string &  phaseName 
)

Parse a name string, separating out the phase name from the species name.

Name strings must not contain these internal characters "; \n \t ," Only one colon is allowed, the one separating the phase name from the species name. Therefore, names may not include a colon.

Parameters
[in]nameStrName string containing the phase name and the species name separated by a colon. The phase name is optional. example: "silane:SiH4"
[out]phaseNameName of the phase, if specified. If not specified, a blank string is returned.
Returns
Species name is returned. If nameStr is blank an empty string is returned.

Definition at line 317 of file stringUtils.cpp.

References npos, and stripws().

Referenced by Phase::speciesIndex().

doublereal strSItoDbl ( const std::string &  strSI)

Interpret one or two token string as a single double.

This is similar to atof(). However, the second token is interpreted as an MKS units string and a conversion factor to MKS is applied.

Example: "1.0 atm" results in the number 1.01325e5.

Parameters
strSIstring to be converted. One or two tokens
Returns
returns a converted double

Definition at line 343 of file stringUtils.cpp.

References fpValueCheck(), tokenizeString(), and toSI().

Referenced by PDSS_HKFT::constructPDSSXML(), and newShomateForMineralEQ3().

static std::string::size_type Cantera::findFirstWS ( const std::string &  val)
static

Find the first white space in a string.

Returns the location of the first white space character in a string

Parameters
valInput string to be parsed
Returns
In a size_type variable, return the location of the first white space character. Return npos if none is found

Definition at line 367 of file stringUtils.cpp.

References npos.

Referenced by tokenizeString().

static std::string::size_type Cantera::findFirstNotOfWS ( const std::string &  val)
static

Find the first non-white space in a string.

Returns the location of the first non-white space character in a string

Parameters
valInput string to be parsed
Returns
In a size_type variable, return the location of the first nonwhite space character. Return npos if none is found

Definition at line 392 of file stringUtils.cpp.

References npos.

Referenced by tokenizeString().

void tokenizeString ( const std::string &  oval,
std::vector< std::string > &  v 
)

This function separates a string up into tokens according to the location of white space.

White space includes the new line character. tokens are stripped of leading and trailing white space.

The separate tokens are returned in a string vector, v.

Parameters
ovalString to be broken up
vOutput vector of tokens.

Definition at line 409 of file stringUtils.cpp.

References findFirstNotOfWS(), findFirstWS(), and npos.

Referenced by getStringArray(), and strSItoDbl().

void copyString ( const std::string &  source,
char *  dest,
size_t  length 
)

Copy the contents of a std::string into a char array of a given length.

Definition at line 433 of file stringUtils.cpp.

static string::size_type Cantera::findUnbackslashed ( const std::string &  s,
const char  q,
std::string::size_type  istart = 0 
)
static

Find the first position of a character, q, in string, s, which is not immediately preceded by the backslash character.

Parameters
sInput string
qSearch for this character
istartDefaults to 0

Definition at line 141 of file xml.cpp.

References npos.

Referenced by XML_Reader::findQuotedString().

XML_Node * findXMLPhase ( XML_Node *  root,
const std::string &  phaseName 
)
int _equilflag ( const char *  xy)

map property strings to integers

Definition at line 24 of file ChemEquil.cpp.

Referenced by equilibrate(), ChemEquil::equilibrate(), MultiPhase::equilibrate(), and vcs_equilibrate().

int vcs_determine_PhaseStability ( MultiPhase &  s,
int  iphase,
double &  funcStab,
int  printLvl,
int  loglevel 
)

Determine the phase stability of a single phase given the current conditions in a MultiPhase object.

Parameters
sThe MultiPhase object to be set to an equilibrium state
iphasePhase index within the multiphase object to be tested for stability.
funcStabFunction value that tests equilibrium. > 0 indicates stable < 0 indicates unstable
printLvlDetermines the amount of printing that gets sent to stdout from the vcs package (Note, you may have to compile with debug flags to get some printing).
loglevelControls amount of diagnostic output. loglevel = 0 suppresses diagnostics, and increasingly-verbose messages are written as loglevel increases.

Definition at line 161 of file vcs_equilibrate.cpp.

References vcs_MultiPhaseEquil::determine_PhaseStability(), MultiPhase::init(), int2str(), and vcs_MultiPhaseEquil::reportCSV().

int vcs_Cantera_to_vprob ( MultiPhase *  mphase,
VCS_PROB *  vprob 
)

Translate a MultiPhase object into a VCS_PROB problem definition object.

Parameters
mphaseMultiPhase object that is the source for all of the information
vprobVCS_PROB problem definition that gets all of the information

Note, both objects share the underlying ThermoPhase objects. So, neither can be const objects.

Definition at line 753 of file vcs_MultiPhaseEquil.cpp.

References ThermoPhase::activityConvention(), VCS_PROB::addOnePhaseSpecies(), VCS_PROB::addPhaseElements(), cEdge, VCS_PROB::Charge, Phase::charge(), cIdealGas, cSurf, ThermoPhase::electricPotential(), ThermoPhase::eosType(), VCS_PROB::FormulaMatrix, vcs_SpeciesProperties::FormulaMatrixCol, vcs_VolPhase::G0_calc_one(), VCS_PROB::gai, ThermoPhase::getChemPotentials(), ThermoPhase::getParameters(), VCS_PROB::iest, VCS_SPECIES_THERMO::IndexPhase, VCS_SPECIES_THERMO::IndexSpeciesPhase, int2str(), vcs_VolPhase::m_eqnState, vcs_VolPhase::m_gasPhase, VCS_PROB::m_gibbsSpecies, VCS_PROB::m_printLvl, vcs_VolPhase::m_singleSpecies, VCS_PROB::m_VCS_UnitsFormat, VCS_PROB::mf, Phase::molecularWeight(), MultiPhase::moleFraction(), Phase::name(), VCS_PROB::ne, Phase::nElements(), VCS_PROB::NPhase, MultiPhase::nPhases(), VCS_PROB::nspecies, MultiPhase::nSpecies(), Phase::nSpecies(), vcs_VolPhase::nSpecies(), VCS_SPECIES_THERMO::OwningPhase, vcs_VolPhase::p_activityConvention, vcs_VolPhase::p_VCS_UnitsFormat, MultiPhase::phase(), VCS_PROB::PhaseID, vcs_VolPhase::PhaseName, plogf, VCS_PROB::PresPA, MultiPhase::pressure(), VCS_PROB::prob_type, SpeciesThermo::reportParams(), SpeciesThermo::reportType(), vcs_VolPhase::resize(), VCS_PROB::set_gai(), vcs_VolPhase::setElectricPotential(), vcs_VolPhase::setMolesFromVCS(), vcs_VolPhase::setPtrThermoPhase(), vcs_VolPhase::setState_TP(), vcs_VolPhase::setTotalMoles(), SIMPLE, MultiPhase::speciesMoles(), MultiPhase::speciesName(), vcs_VolPhase::speciesProperty(), VCS_PROB::SpeciesThermo, ThermoPhase::speciesThermo(), VCS_PROB::SpeciesUnknownType, vcs_VolPhase::speciesUnknownType(), vcs_VolPhase::spGlobalIndexVCS(), vcs_SpeciesProperties::SpName, VCS_PROB::SpName, VCS_SPECIES_THERMO::SS0_Cp0, VCS_SPECIES_THERMO::SS0_feSave, VCS_SPECIES_THERMO::SS0_H0, VCS_SPECIES_THERMO::SS0_Model, VCS_SPECIES_THERMO::SS0_S0, VCS_SPECIES_THERMO::SS0_T0, VCS_SPECIES_THERMO::SS0_TSave, VCS_SPECIES_THERMO::SSStar_Model, VCS_SPECIES_THERMO::SSStar_Vol0, VCS_SPECIES_THERMO::SSStar_Vol_Model, string16_EOSType(), VCS_PROB::T, MultiPhase::temperature(), vcs_VolPhase::totalMoles(), vcs_VolPhase::totalMolesInert(), vcs_VolPhase::transferElementsFM(), VCS_SPECIES_THERMO::UseCanteraCalls, vcs_VolPhase::usingCanteraCalls(), VCS_DATA_PTR, VCS_SPECIES_TYPE_INTERFACIALVOLTAGE, VCS_SPECIES_TYPE_MOLNUM, VCS_SSVOL_IDEALGAS, VCS_STATECALC_OLD, VCS_SUCCESS, vcsUtil_gasConstant(), VCS_PROB::Vol, MultiPhase::volume(), vcs_VolPhase::VP_ID_, VCS_PROB::VPhaseList, VCS_PROB::w, and VCS_PROB::WtSpecies.

int vcs_Cantera_update_vprob ( MultiPhase *  mphase,
VCS_PROB *  vprob 
)

Translate a MultiPhase information into a VCS_PROB problem definition object.

This version updates the problem statement information only. All species and phase definitions remain the same.

Parameters
mphaseMultiPhase object that is the source for all of the information
vprobVCS_PROB problem definition that gets all of the information

Definition at line 1142 of file vcs_MultiPhaseEquil.cpp.

References ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), VCS_PROB::iest, vcs_VolPhase::m_eqnState, vcs_VolPhase::m_gasPhase, VCS_PROB::m_gibbsSpecies, VCS_PROB::m_printLvl, vcs_VolPhase::m_singleSpecies, VCS_PROB::mf, MultiPhase::moleFraction(), VCS_PROB::NPhase, MultiPhase::nPhases(), npos, VCS_PROB::nspecies, Phase::nSpecies(), vcs_VolPhase::nSpecies(), MultiPhase::phase(), VCS_PROB::PhaseID, vcs_VolPhase::PhaseName, vcs_VolPhase::phiVarIndex(), plogf, VCS_PROB::PresPA, MultiPhase::pressure(), VCS_PROB::prob_type, VCS_PROB::set_gai(), vcs_VolPhase::setElectricPotential(), vcs_VolPhase::setExistence(), vcs_VolPhase::setMolesFromVCS(), vcs_VolPhase::setState_TP(), MultiPhase::speciesMoles(), VCS_PROB::SpeciesUnknownType, vcs_VolPhase::spGlobalIndexVCS(), VCS_PROB::SpName, string16_EOSType(), VCS_PROB::T, MultiPhase::temperature(), vcs_VolPhase::totalMoles(), vcs_VolPhase::totalMolesInert(), VCS_DATA_PTR, VCS_PHASE_EXIST_ALWAYS, VCS_PHASE_EXIST_NO, VCS_PHASE_EXIST_YES, VCS_SPECIES_TYPE_INTERFACIALVOLTAGE, VCS_STATECALC_OLD, VCS_SUCCESS, VCS_PROB::Vol, MultiPhase::volume(), vcs_VolPhase::VP_ID_, VCS_PROB::VPhaseList, and VCS_PROB::w.

int vcsUtil_root1d ( double  xmin,
double  xmax,
size_t  itmax,
VCS_FUNC_PTR  func,
void *  fptrPassthrough,
double  FuncTargVal,
int  varID,
double *  xbest,
int  printLvl = 0 
)

One dimensional root finder.

This root finder will find the root of a one dimensional equation

\[ f(x) = 0 \]

where x is a bounded quantity: \( x_{min} < x < x_max \)

The function to be minimized must have the following call structure:

typedef double (*VCS_FUNC_PTR)(double xval, double Vtarget,
int varID, void *fptrPassthrough,
int *err);

xval is the current value of the x variable. Vtarget is the requested value of f(x), usually 0. varID is an integer that is passed through. fptrPassthrough is a void pointer that is passed through. err is a return error indicator. err = 0 is the norm. anything else is considered a fatal error. The return value of the function is the current value of f(xval).

Parameters
xminMinimum permissible value of the x variable
xmaxMaximum permissible value of the x parameter
itmaxMaximum number of iterations
funcfunction pointer, pointing to the function to be minimized
fptrPassthroughPointer to void that gets passed through the rootfinder, unchanged, to the func.
FuncTargValTarget value of the function. This is usually set to zero.
varIDVariable ID. This is usually set to zero.
xbestPointer to the initial value of x on input. On output This contains the root value.
printLvlPrint level of the routine.

Following is a nontrial example for vcs_root1d() in which the position of a cylinder floating on the water is calculated.

#include <cmath>
#include <cstdlib>
const double g_cgs = 980.;
const double mass_cyl = 0.066;
const double diam_cyl = 0.048;
const double rad_cyl = diam_cyl / 2.0;
const double len_cyl = 5.46;
const double vol_cyl = Pi * diam_cyl * diam_cyl / 4 * len_cyl;
const double rho_cyl = mass_cyl / vol_cyl;
const double rho_gas = 0.0;
const double rho_liq = 1.0;
const double sigma = 72.88;
// Contact angle in radians
const double alpha1 = 40.0 / 180. * Pi;
double func_vert(double theta1, double h_2, double rho_c) {
double f_grav = - Pi * rad_cyl * rad_cyl * rho_c * g_cgs;
double tmp = rad_cyl * rad_cyl * g_cgs;
double tmp1 = theta1 + sin(theta1) * cos(theta1) - 2.0 * h_2 / rad_cyl * sin(theta1);
double f_buoy = tmp * (Pi * rho_gas + (rho_liq - rho_gas) * tmp1);
double f_sten = 2 * sigma * sin(theta1 + alpha1 - Pi);
return f_grav + f_buoy + f_sten;
}
double calc_h2_farfield(double theta1) {
double rhs = sigma * (1.0 + cos(alpha1 + theta1));
rhs *= 2.0;
rhs = rhs / (rho_liq - rho_gas) / g_cgs;
double sign = -1.0;
if (alpha1 + theta1 < Pi) sign = 1.0;
double res = sign * sqrt(rhs);
return res + rad_cyl * cos(theta1);
}
double funcZero(double xval, double Vtarget, int varID, void *fptrPassthrough, int *err) {
double theta = xval;
double h2 = calc_h2_farfield(theta);
return func_vert(theta, h2, rho_cyl);
}
int main () {
double thetamax = Pi;
double thetamin = 0.0;
int maxit = 1000;
int iconv;
double thetaR = Pi/2.0;
int printLvl = 4;
iconv = vcsUtil_root1d(thetamin, thetamax, maxit,
funcZero,
(void *) 0, 0.0, 0,
&thetaR, printLvl);
printf("theta = %g\n", thetaR);
double h2Final = calc_h2_farfield(thetaR);
printf("h2Final = %g\n", h2Final);
return 0;
}
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 34 of file vcs_root1d.cpp.

References plogf, sign(), VCS_SUCCESS, and warn_deprecated().

double vcs_l2norm ( const std::vector< double >  vec)

determine the l2 norm of a vector of doubles

Parameters
vecvector of doubles
Returns
Returns the l2 norm of the vector

Definition at line 23 of file vcs_util.cpp.

Referenced by VCS_SOLVE::vcs_phaseStabilityTest().

size_t vcs_optMax ( const double *  x,
const double *  xSize,
size_t  j,
size_t  n 
)

Finds the location of the maximum component in a double vector.

Parameters
xpointer to a vector of doubles
xSizepointer to a vector of doubles used as a multiplier to x[] before making the decision. Ignored if set to NULL.
jlowest index to search from
nhighest index to search from
Returns
Return index of the greatest value on X(i) searched j <= i < n

Definition at line 37 of file vcs_util.cpp.

Referenced by VCS_SOLVE::vcs_report().

int vcs_max_int ( const int *  vector,
int  length 
)

Returns the maximum integer in a list.

Parameters
vectorpointer to a vector of ints
lengthlength of the integer vector
Returns
returns the max integer value in the list
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 62 of file vcs_util.cpp.

References warn_deprecated().

double vcsUtil_gasConstant ( int  mu_units)

Returns the value of the gas constant in the units specified by parameter.

Parameters
mu_unitsSpecifies the units.
  • VCS_UNITS_KCALMOL: kcal gmol-1 K-1
  • VCS_UNITS_UNITLESS: 1.0 K-1
  • VCS_UNITS_KJMOL: kJ gmol-1 K-1
  • VCS_UNITS_KELVIN: 1.0 K-1
  • VCS_UNITS_MKS: joules kmol-1 K-1 = kg m2 s-2 kmol-1 K-1

Definition at line 76 of file vcs_util.cpp.

References GasConst_cal_mol_K, and int2str().

Referenced by vcs_VolPhase::_updateG0(), vcs_VolPhase::_updateGStar(), VCS_SPECIES_THERMO::G0_R_calc(), VCS_SPECIES_THERMO::GStar_R_calc(), and vcs_Cantera_to_vprob().

const char * vcs_speciesType_string ( int  speciesStatus,
int  length = 100 
)

Returns a const char string representing the type of the species given by the first argument.

Parameters
speciesStatusSpecies status integer representing the type of the species.
lengthMaximum length of the string to be returned. Shorter values will yield abbreviated strings. Defaults to a value of 100.

Definition at line 96 of file vcs_util.cpp.

References VCS_SPECIES_ACTIVEBUTZERO, VCS_SPECIES_COMPONENT, VCS_SPECIES_DELETED, VCS_SPECIES_INTERFACIALVOLTAGE, VCS_SPECIES_MAJOR, VCS_SPECIES_MINOR, VCS_SPECIES_STOICHZERO, VCS_SPECIES_ZEROEDMS, VCS_SPECIES_ZEROEDPHASE, and VCS_SPECIES_ZEROEDSS.

Referenced by VCS_SOLVE::vcs_evaluate_speciesType(), and VCS_SOLVE::vcs_RxnStepSizes().

void vcs_print_stringTrunc ( const char *  str,
size_t  space,
int  alignment 
)

Print a string within a given space limit.

This routine limits the amount of the string that will be printed to a maximum of "space" characters. Printing is done to to Cantera's writelog() function.

Parameters
strString, which must be null terminated.
spacespace limit for the printing.
alignmentAlignment of string within the space:
  • 0 centered
  • 1 right aligned
  • 2 left aligned

Definition at line 154 of file vcs_util.cpp.

References plogf.

Referenced by VCS_SOLVE::vcs_basopt().

bool vcs_doubleEqual ( double  d1,
double  d2 
)

Simple routine to check whether two doubles are equal up to roundoff error.

Currently it's set to check for 10 digits of relative accuracy.

Parameters
d1first double
d2second double
Returns
returns true if the doubles are "equal" and false otherwise

Definition at line 185 of file vcs_util.cpp.

Referenced by vcs_MultiPhaseEquil::reportCSV(), vcs_VolPhase::setMolesFromVCSCheck(), VCS_SOLVE::vcs_dfe(), VCS_SOLVE::vcs_prob_update(), and VCS_SOLVE::vcs_report().

std::string string16_EOSType ( int  EOSType)

Return a string representing the equation of state.

Parameters
EOSType: integer value of the equation of state
Returns
returns a string representing the EOS. The string is no more than 16 characters.

Definition at line 954 of file vcs_VolPhase.cpp.

Referenced by VCS_PROB::prob_report(), vcs_Cantera_to_vprob(), and vcs_Cantera_update_vprob().

static bool Cantera::hasChargedSpecies ( const ThermoPhase *const  tPhase)
static

This function decides whether a phase has charged species or not.

Definition at line 1122 of file vcs_VolPhase.cpp.

References Phase::charge(), and Phase::nSpecies().

Referenced by chargeNeutralityElement(), and vcs_VolPhase::transferElementsFM().

static bool Cantera::chargeNeutralityElement ( const ThermoPhase *const  tPhase)
static

This utility routine decides whether a Cantera ThermoPhase needs a constraint equation representing the charge neutrality of the phase. It does this by searching for charged species. If it finds one, and if the phase needs one, then it returns true.

Definition at line 1138 of file vcs_VolPhase.cpp.

References ThermoPhase::chargeNeutralityNecessary(), and hasChargedSpecies().

Referenced by vcs_VolPhase::transferElementsFM().

static void Cantera::addV ( int  kkinspec,
double  ps,
std::vector< int > &  m_Products,
std::vector< doublereal > &  m_ProductStoich 
)
static

add the species into the list of products or reactants

Note this function gets called for both the product and reactant sides. However, it's only called for one side or another.

Parameters
kkinspeckinetic species index of the product

Definition at line 72 of file ExtraGlobalRxn.cpp.

References addV().

Referenced by addV().

shared_ptr< Falloff > newFalloff ( int  type,
const vector_fp &  c 
)

Return a pointer to a new falloff function calculator.

Parameters
typeInteger flag specifying the type of falloff function. The standard types are defined in file reaction_defs.h. A factory class derived from FalloffFactory may define other types as well.
cinput vector of doubles which populates the falloff parameterization.
Returns
Returns a pointer to a new Falloff class.

Definition at line 35 of file FalloffFactory.cpp.

References FalloffFactory::factory().

Referenced by readFalloff().

bool Cantera::getReagents ( const XML_Node &  rxn,
Kinetics &  kin,
int  rp,
std::string  default_phase,
std::vector< size_t > &  spnum,
vector_fp &  stoich,
vector_fp &  order,
const ReactionRules &  rules 
)

Get the reactants or products of a reaction.

The information is returned in the spnum, stoich, and order vectors. The length of the vectors is the number of different types of reactants or products found for the reaction.

Parameters
[in]rxnXML node pointing to the reaction element in the XML tree.
[in]kinReference to the kinetics object to install the information into.
[in]rp1 -> Go get the reactants for a reaction; -1 -> Go get the products for a reaction
[in]default_phaseName for the default phase to loop up species in.
[out]spnumvector of species numbers found. Length is number of reactants or products.
[out]stoichstoichiometric coefficient of the reactant or product. Length is number of reactants or products.
[out]orderOrder of the reactant and product in the reaction rate expression.
[in]rulesIf rules.skipUndeclaredSpecies is set and we fail to find a species we simply return false, allowing the calling routine to skip this reaction and continue. Otherwise, we will throw an error.
Deprecated:
Now handled through newReaction() and its support functions. To be removed after Cantera 2.2.

Definition at line 94 of file importKinetics.cpp.

References XML_Node::child(), XML_Node::fp_value(), fpValue(), XML_Node::getChildren(), getPairs(), XML_Node::hasChild(), Kinetics::kineticsSpeciesIndex(), npos, and warn_deprecated().

static void Cantera::getArrhenius ( const XML_Node &  node,
int &  labeled,
doublereal &  A,
doublereal &  b,
doublereal &  E 
)
static

getArrhenius() parses the XML element called Arrhenius.

The Arrhenius expression is

\[ k = A T^(b) exp (-E_a / RT). \]

Deprecated:
to be removed after Cantera 2.2.

Definition at line 203 of file importKinetics.cpp.

References GasConstant, and getFloat().

Referenced by getRateCoefficient(), and LTPspecies_Arrhenius::LTPspecies_Arrhenius().

static void Cantera::getStick ( const XML_Node &  node,
Kinetics &  kin,
ReactionData &  r,
doublereal &  A,
doublereal &  b,
doublereal &  E 
)
static

getStick() processes the XML element called Stick that specifies the sticking coefficient reaction.

This routine will translate the sticking coefficient value into a "normal" rate constant for the surface reaction.

Output

Output is the normal Arrhenius expressions for a surface reaction rate constant.

A - units such that rate of rxn has kmol/m^2/s when A is multiplied by activity concentrations of reactants in the normal manner. n - unitless E - Units 1/Kelvin

Deprecated:
to be removed after Cantera 2.2.

Definition at line 240 of file importKinetics.cpp.

References cEdge, cSurf, ThermoPhase::eosType(), GasConstant, getFloat(), Kinetics::kineticsSpeciesIndex(), Kinetics::kineticsSpeciesName(), Phase::molecularWeights(), Pi, ReactionData::reactants, ReactionData::rorder, Phase::speciesIndex(), Kinetics::speciesPhase(), Kinetics::speciesPhaseIndex(), ThermoPhase::standardConcentration(), and Kinetics::thermo().

Referenced by getRateCoefficient().

static void Cantera::getCoverageDependence ( const XML_Node &  node,
thermo_t &  surfphase,
ReactionData &  rdata 
)
static

Read the XML data concerning the coverage dependence of an interfacial reaction.

Parameters
nodeXML node with name reaction containing the reaction information
surfphaseSurface phase
rdataReaction data for the reaction.

Example:

        <coverage species="CH3*">
           <a> 1.0E-5 </a>
           <m> 0.0 </m>
           <actEnergy> 0.0 </actEnergy>
        </coverage>
Deprecated:
to be removed after Cantera 2.2.

Definition at line 328 of file importKinetics.cpp.

References ReactionData::cov, GasConstant, XML_Node::getChildren(), getFloat(), and Phase::speciesIndex().

Referenced by getRateCoefficient().

static void Cantera::getFalloff ( const XML_Node &  f,
ReactionData &  rdata 
)
static

Get falloff parameters for a reaction.

This routine reads the falloff XML node and extracts parameters into a vector of doubles

<falloff type="Troe"> 0.5 73.2 5000. 9999. </falloff>
Deprecated:
to be removed after Cantera 2.2.

Definition at line 359 of file importKinetics.cpp.

References ReactionData::falloffParameters, ReactionData::falloffType, fpValue(), getStringArray(), and int2str().

Referenced by getRateCoefficient().

static void Cantera::getEfficiencies ( const XML_Node &  eff,
Kinetics &  kin,
ReactionData &  rdata,
const ReactionRules &  rules 
)
static

Get the enhanced collision efficiencies.

It is assumed that the reaction mechanism is homogeneous, so that all species belong to phase(0) of 'kin'.

Deprecated:
to be removed after Cantera 2.2.

Definition at line 393 of file importKinetics.cpp.

References ReactionData::default_3b_eff, fpValue(), getPairs(), Phase::id(), int2str(), Kinetics::kineticsSpeciesIndex(), npos, ReactionData::number, Kinetics::thermo(), and ReactionData::thirdBodyEfficiencies.

Referenced by getRateCoefficient().

void Cantera::readFalloff ( FalloffReaction &  R,
const XML_Node &  rc_node 
)

Parse falloff parameters, given a rateCoeff node.

<falloff type="Troe"> 0.5 73.2 5000. 9999. </falloff>

Definition at line 288 of file Reaction.cpp.

References XML_Node::child(), FalloffReaction::falloff, fpValueCheck(), getStringArray(), int2str(), lowercase(), and newFalloff().

shared_ptr< Reaction > newReaction ( const XML_Node &  rxn_node)

Create a new Reaction object for the reaction defined in rxn_node

Definition at line 607 of file Reaction.cpp.

References XML_Node::child(), XML_Node::hasChild(), and lowercase().

Referenced by getReactions(), and installReactionArrays().

std::vector< shared_ptr< Reaction > > getReactions ( const XML_Node &  node)

Create Reaction objects for all <reaction> nodes in an XML document.

The <reaction> nodes are assumed to be children of the <reactionData> node in an XML document with a <ctml> root node, as in the case of XML files produced by conversion from CTI files.

This function can be used in combination with get_XML_File() and get_XML_from_string() to get Reaction objects from either a file or a string, respectively, where the string or file is formatted as either CTI or XML.

If Reaction objects are being created from a CTI definition that does not contain corresponding phase definitions, then one of the following must be true, or the resulting rate constants will be incorrect:

  • The rate constants are expressed in (kmol, meter, second) units
  • A units directive is included and all reactions take place in bulk (e.g. gas) phases

Definition at line 668 of file Reaction.cpp.

References XML_Node::child(), XML_Node::getChildren(), and newReaction().

static doublereal Cantera::calc_damping ( doublereal  x[],
doublereal  dxneg[],
size_t  dim,
int *  label 
)
static

This function calculates a damping factor for the Newton iteration update vector, dxneg, to insure that all site and bulk fractions, x, remain bounded between zero and one.

 dxneg[] = negative of the update vector.

The constant "APPROACH" sets the fraction of the distance to the boundary that the step can take. If the full step would not force any fraction outside of 0-1, then Newton's method is allowed to operate normally.

Definition at line 617 of file solveSP.cpp.

std::ostream & operator<< ( std::ostream &  s,
const BandMatrix &  m 
)

Utility routine to print out the matrix.

Parameters
sostream to print the matrix out to
mMatrix to be printed
Returns
Returns a reference to the ostream

Definition at line 303 of file BandMatrix.cpp.

References BandMatrix::nColumns(), and BandMatrix::nRows().

static doublereal subtractRD ( doublereal  a,
doublereal  b 
)
inline

This routine subtracts two numbers for one another.

This routine subtracts 2 numbers. If the difference is less than 1.0E-14 times the magnitude of the smallest number, then diff returns an exact zero. It also returns an exact zero if the difference is less than 1.0E-300.

returns: a - b

This routine is used in numerical differencing schemes in order to avoid roundoff errors resulting in creating Jacobian terms. Note: This is a slow routine. However, Jacobian errors may cause loss of convergence. Therefore, in practice this routine has proved cost-effective.

Parameters
aValue of a
bvalue of b
Returns
returns the difference between a and b

Definition at line 468 of file BEulerInt.cpp.

Referenced by BEulerInt::beuler_jac(), and NonlinearSolver::beuler_jac().

static void Cantera::cvodes_err ( int  error_code,
const char *  module,
const char *  function,
char *  msg,
void *  eh_data 
)
static

Function called by CVodes when an error is encountered instead of writing to stdout.

Here, save the error message provided by CVodes so that it can be included in the subsequently raised CanteraError.

Definition at line 90 of file CVodesIntegrator.cpp.

References CVodesIntegrator::m_error_message.

Referenced by CVodesIntegrator::initialize().

DAE_Solver * newDAE_Solver ( const std::string &  itype,
ResidJacEval &  f 
)

Factor method for choosing a DAE solver.

Parameters
itypeString identifying the type (IDA is the only option)
fResidual function to be solved by the DAE algorithm
Returns
Returns a point to the instantiated DAE_Solver object

Definition at line 22 of file DAE_solvers.cpp.

int solve ( DenseMatrix &  A,
double *  b,
size_t  nrhs = 1,
size_t  ldb = 0 
)

Solve Ax = b. Array b is overwritten on exit with x.

The solve class uses the LAPACK routine dgetrf to invert the m xy n matrix.

The factorization has the form A = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

The system is then solved using the LAPACK routine dgetrs

Parameters
ADense matrix to be factored
bRHS(s) to be solved.
nrhsNumber of right hand sides to solve
ldbLeading dimension of b, if nrhs > 1

Definition at line 127 of file DenseMatrix.cpp.

References int2str(), DenseMatrix::ipiv(), DenseMatrix::m_printLevel, DenseMatrix::m_useReturnErrorCode, Array2D::nColumns(), Array2D::nRows(), Array2D::ptrColumn(), and writelogf().

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), solve(), AqueousTransport::stefan_maxwell_solve(), and LiquidTransport::stefan_maxwell_solve().

int solve ( DenseMatrix &  A,
DenseMatrix &  b 
)

Solve Ax = b for multiple right-hand-side vectors.

Parameters
ADense matrix to be factored
bDense matrix of RHS's. Each column is a RHS

Definition at line 176 of file DenseMatrix.cpp.

References Array2D::nColumns(), Array2D::nRows(), Array2D::ptrColumn(), and solve().

void multiply ( const DenseMatrix &  A,
const double *const  b,
double *const  prod 
)

Multiply A*b and return the result in prod. Uses BLAS routine DGEMV.

\[ prod_i = sum^N_{j = 1}{A_{ij} b_j} \]

Parameters
Ainput Dense Matrix A with M rows and N columns
binput vector b with length N
prodoutput output vector prod length = M

Definition at line 181 of file DenseMatrix.cpp.

References Array2D::nColumns(), Array2D::nRows(), and Array2D::ptrColumn().

Referenced by DustyGasTransport::getMolarFluxes(), MultiPhaseEquil::MultiPhaseEquil(), MultiPhaseEquil::stepComposition(), PecosTransport::thermalConductivity(), GasTransport::viscosity(), PecosTransport::viscosity(), and AqueousTransport::viscosity().

void increment ( const DenseMatrix &  A,
const double *const  b,
double *const  prod 
)

Multiply A*b and add it to the result in prod. Uses BLAS routine DGEMV.

\[ prod_i += sum^N_{j = 1}{A_{ij} b_j} \]

Parameters
Ainput Dense Matrix A with M rows and N columns
binput vector b with length N
prodoutput output vector prod length = M

Definition at line 188 of file DenseMatrix.cpp.

References Array2D::nRows(), and Array2D::ptrColumn().

Referenced by DustyGasTransport::getMolarFluxes().

int invert ( DenseMatrix &  A,
size_t  nn = npos 
)

invert A. A is overwritten with A^-1.

Parameters
AInvert the matrix A and store it back in place
nnSize of A. This defaults to -1, which means that the number of rows is used as the default size of n

Definition at line 195 of file DenseMatrix.cpp.

References int2str(), DenseMatrix::ipiv(), DenseMatrix::m_printLevel, DenseMatrix::m_useReturnErrorCode, npos, Array2D::nRows(), Array2D::ptrColumn(), and writelogf().

Referenced by MultiTransport::getMultiDiffCoeffs(), HighPressureGasTransport::getMultiDiffCoeffs(), and DustyGasTransport::updateMultiDiffCoeffs().

doublereal Cantera::linearInterp ( doublereal  x,
const vector_fp &  xpts,
const vector_fp &  fpts 
)

Linearly interpolate a function defined on a discrete grid.

Vector xpts contains a monotonic sequence of grid points, and vector fpts contains function values defined at these points. The value returned is the linear interpolate at point x. If x is outside the range of xpts, the value of fpts at the nearest end is returned.

Parameters
xvalue of the x coordinate
xptsvalue of the grid points
fptsvalue of the interpolant at the grid points
Returns
Returned value is the value of of the interpolated function at x.

Definition at line 35 of file funcs.cpp.

Referenced by StFlow::_finalize(), and Sim1D::setProfile().

doublereal polyfit ( int  n,
doublereal *  x,
doublereal *  y,
doublereal *  w,
int  maxdeg,
int &  ndeg,
doublereal  eps,
doublereal *  r 
)

Fits a polynomial function to a set of data points.

Given a collection of points X(I) and a set of values Y(I) which correspond to some function or measurement at each of the X(I), subroutine DPOLFT computes the weighted least-squares polynomial fits of all degrees up to some degree either specified by the user or determined by the routine. The fits thus obtained are in orthogonal polynomial form. Subroutine DP1VLU may then be called to evaluate the fitted polynomials and any of their derivatives at any point. The subroutine DPCOEF may be used to express the polynomial fits as powers of (X-C) for any specified point C.

Parameters
nThe number of data points.
xA set of grid points on which the data is specified. The array of values of the independent variable. These values may appear in any order and need not all be distinct. There are n of them.
yarray of corresponding function values. There are n of them
warray of positive values to be used as weights. If W[0] is negative, DPOLFT will set all the weights to 1.0, which means unweighted least squares error will be minimized. To minimize relative error, the user should set the weights to: W(I) = 1.0/Y(I)**2, I = 1,...,N .
maxdegmaximum degree to be allowed for polynomial fit. MAXDEG may be any non-negative integer less than N. Note – MAXDEG cannot be equal to N-1 when a statistical test is to be used for degree selection, i.e., when input value of EPS is negative.
ndegoutput degree of the fit computed.
epsSpecifies the criterion to be used in determining the degree of fit to be computed. (1) If EPS is input negative, DPOLFT chooses the degree based on a statistical F test of significance. One of three possible significance levels will be used: .01, .05 or .10. If EPS=-1.0 , the routine will automatically select one of these levels based on the number of data points and the maximum degree to be considered. If EPS is input as -.01, -.05, or -.10, a significance level of .01, .05, or .10, respectively, will be used. (2) If EPS is set to 0., DPOLFT computes the polynomials of degrees 0 through MAXDEG . (3) If EPS is input positive, EPS is the RMS error tolerance which must be satisfied by the fitted polynomial. DPOLFT will increase the degree of fit until this criterion is met or until the maximum degree is reached.
rOutput vector containing the first LL+1 Taylor coefficients where LL=ABS(ndeg). P(X) = r[0] + r[1]*(X-C) + ... + r[ndeg] * (X-C)**ndeg ( here C = 0.0)
Returns
returns the RMS error of the polynomial of degree ndeg .

Given a collection of points X(I) and a set of values Y(I) which correspond to some function or measurement at each of the X(I), subroutine DPOLFT computes the weighted least-squares polynomial fits of all degrees up to some degree either specified by the user or determined by the routine. The fits thus obtained are in orthogonal polynomial form. Subroutine DP1VLU may then be called to evaluate the fitted polynomials and any of their derivatives at any point. The subroutine DPCOEF may be used to express the polynomial fits as powers of (X-C) for any specified point C.

Parameters
nThe number of data points.
xA set of grid points on which the data is specified. The array of values of the independent variable. These values may appear in any order and need not all be distinct. There are n of them.
yarray of corresponding function values. There are n of them
warray of positive values to be used as weights. If W[0] is negative, DPOLFT will set all the weights to 1.0, which means unweighted least squares error will be minimized. To minimize relative error, the user should set the weights to: W(I) = 1.0/Y(I)**2, I = 1,...,N .
maxdegmaximum degree to be allowed for polynomial fit. MAXDEG may be any non-negative integer less than N. Note – MAXDEG cannot be equal to N-1 when a statistical test is to be used for degree selection, i.e., when input value of EPS is negative.
ndegoutput degree of the fit computed.
epsSpecifies the criterion to be used in determining the degree of fit to be computed. (1) If EPS is input negative, DPOLFT chooses the degree based on a statistical F test of significance. One of three possible significance levels will be used: .01, .05 or .10. If EPS=-1.0 , the routine will automatically select one of these levels based on the number of data points and the maximum degree to be considered. If EPS is input as -.01, -.05, or -.10, a significance level of .01, .05, or .10, respectively, will be used. (2) If EPS is set to 0., DPOLFT computes the polynomials of degrees 0 through MAXDEG . (3) If EPS is input positive, EPS is the RMS error tolerance which must be satisfied by the fitted polynomial. DPOLFT will increase the degree of fit until this criterion is met or until the maximum degree is reached.
rOutput vector containing the first ndeg+1 Taylor coefficients
              P(X) = r[0] + r[1]*(X-C) + ... + r[ndeg] * (X-C)**ndeg
             ( here C = 0.0)
Returns
Returned value is the value of the rms of the interpolated function at x.

Definition at line 117 of file funcs.cpp.

References int2str().

Referenced by GasTransport::fitProperties().

static void Cantera::print_funcEval ( FILE *  fp,
doublereal  xval,
doublereal  fval,
int  its 
)
static

Print out a form for the current function evaluation.

Parameters
fpPointer to the FILE object
xvalCurrent value of x
fvalCurrent value of f
itsCurrent iteration value

Definition at line 35 of file RootFind.cpp.

Referenced by RootFind::solve().

static int Cantera::interp_est ( const std::string &  estString)
static

Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field.

Parameters
estStringinput string that will be interpreted

Definition at line 556 of file DebyeHuckel.cpp.

References cEST_solvent, and lowercase().

Referenced by DebyeHuckel::initThermoXML(), and HMWSoln::initThermoXML().

double LookupWtElements ( const std::string &  ename)

Function to look up an atomic weight This function looks up the argument string in the database above and returns the associated molecular weight.

The data are from the periodic table.

Note: The idea behind this function is to provide a unified source for the element atomic weights. This helps to ensure that mass is conserved.

Parameters
enameString, Only the first 3 characters are significant
Returns
The atomic weight of the element
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 171 of file Elements.cpp.

References awData::atomicWeight, and aWTable.

Referenced by Phase::addElement().

static double Cantera::factorOverlap ( const std::vector< std::string > &  elnamesVN,
const std::vector< double > &  elemVectorN,
const size_t  nElementsN,
const std::vector< std::string > &  elnamesVI,
const std::vector< double > &  elemVectorI,
const size_t  nElementsI 
)
static

Return the factor overlap.

Parameters
elnamesVN
elemVectorN
nElementsN
elnamesVI
elemVectorI
nElementsI

Definition at line 819 of file IonsFromNeutralVPSSTP.cpp.

Referenced by IonsFromNeutralVPSSTP::initThermoXML().

shared_ptr< Species > newSpecies ( const XML_Node &  species_node)
std::vector< shared_ptr< Species > > getSpecies ( const XML_Node &  node)

Generate Species objects for all <species> nodes in an XML document.

The <species> nodes are assumed to be children of the <speciesData> node in an XML document with a <ctml> root node, as in the case of XML files produced by conversion from CTI files.

This function can be used in combination with get_XML_File and get_XML_from_string to get Species objects from either a file or a string, respectively, where the string or file is formatted as either CTI or XML.

Definition at line 83 of file Species.cpp.

References XML_Node::child(), XML_Node::getChildren(), and newSpecies().

static void Cantera::getSpeciesThermoTypes ( std::vector< XML_Node * > &  spDataNodeList,
int &  has_nasa,
int &  has_shomate,
int &  has_simple,
int &  has_other 
)
static

Examine the types of species thermo parameterizations, and return a flag indicating the type of reference state thermo manager that will be needed in order to evaluate them all.

Parameters
spDataNodeListThis vector contains a list of species XML nodes that will be in the phase
has_nasaReturn int that indicates whether the phase has a NASA polynomial form for one of its species
has_shomateReturn int that indicates whether the phase has a SHOMATE polynomial form for one of its species
has_simpleReturn int that indicates whether the phase has a SIMPLE polynomial form for one of its species
has_otherReturn int that indicates whether the phase has a form for one of its species that is not one of the ones listed above.
Todo:
Make sure that spDadta_node is species Data XML node by checking its name is speciesData
Deprecated:

Definition at line 52 of file SpeciesThermoFactory.cpp.

References XML_Node::attrib(), XML_Node::child(), and XML_Node::hasChild().

Referenced by SpeciesThermoFactory::newSpeciesThermo().

SpeciesThermoInterpType * newSpeciesThermoInterpType ( int  type,
double  tlow,
double  thigh,
double  pref,
const double *  coeffs 
)

Create a new SpeciesThermoInterpType object given a corresponding constant.

Parameters
typeA constant specifying the type to be created
tlowThe lowest temperature at which the parameterization is valid
thighThe highest temperature at which the parameterization is valid
prefThe reference pressure for the parameterization
coeffsThe array of coefficients for the parameterization
Returns
Returns the pointer to the newly allocated SpeciesThermoInterpType object

Definition at line 186 of file SpeciesThermoFactory.cpp.

References ADSORBATE, CONSTANT_CP, int2str(), MU0_INTERP, NASA1, NASA2, SHOMATE1, SHOMATE2, and SIMPLE.

Referenced by VPSSMgr_IdealGas::createInstallPDSS(), FixedChemPotSSTP::FixedChemPotSSTP(), GeneralSpeciesThermo::install(), VPSSMgr::installSTSpecies(), and newSpecies().

SpeciesThermoInterpType * newSpeciesThermoInterpType ( const std::string &  type,
double  tlow,
double  thigh,
double  pref,
const double *  coeffs 
)

Create a new SpeciesThermoInterpType object given a string.

Parameters
typeString name for the species thermo type
tlowThe lowest temperature at which the parameterization is valid
thighThe highest temperature at which the parameterization is valid
prefThe reference pressure for the parameterization
coeffsThe array of coefficients for the parameterization
Returns
Returns the pointer to the newly allocated SpeciesThermoInterpType object

Definition at line 211 of file SpeciesThermoFactory.cpp.

References ADSORBATE, CONSTANT_CP, lowercase(), MU0_INTERP, NASA1, NASA2, NASA9, NASA9MULTITEMP, newSpeciesThermoInterpType(), SHOMATE1, and SHOMATE2.

static SpeciesThermoInterpType* Cantera::newNasaThermoFromXML ( vector< XML_Node * >  nodes)
static

Create a NASA polynomial thermodynamic property parameterization for a species from a set ! of XML nodes.

This is called if a 'NASA' node is found in the XML input.

Parameters
nodesvector of 1 or 2 'NASA' XML_Nodes, each defining the coefficients for a temperature range

Definition at line 249 of file SpeciesThermoFactory.cpp.

References XML_Node::child(), fpValue(), getFloatArray(), XML_Node::hasAttrib(), NASA, newSpeciesThermoInterpType(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

SpeciesThermoInterpType* Cantera::newShomateForMineralEQ3 ( const XML_Node &  MinEQ3node)

Create a Shomate polynomial from an XML node giving the 'EQ3' coefficients.

This is called if a 'MinEQ3' node is found in the XML input.

Parameters
MinEQ3nodeThe XML_Node containing the MinEQ3 parameterization

Definition at line 312 of file SpeciesThermoFactory.cpp.

References getFloatDefaultUnits(), newSpeciesThermoInterpType(), SHOMATE1, and strSItoDbl().

Referenced by newSpeciesThermoInterpType().

static SpeciesThermoInterpType* Cantera::newShomateThermoFromXML ( vector< XML_Node * > &  nodes)
static

Create a Shomate polynomial thermodynamic property parameterization for a species.

This is called if a 'Shomate' node is found in the XML input.

Parameters
nodesvector of 1 or 2 'Shomate' XML_Nodes, each defining the coefficients for a temperature range

Definition at line 372 of file SpeciesThermoFactory.cpp.

References fpValue(), getFloatArray(), newSpeciesThermoInterpType(), OneAtm, and SHOMATE.

Referenced by newSpeciesThermoInterpType().

static SpeciesThermoInterpType* Cantera::newConstCpThermoFromXML ( XML_Node &  f)
static

Create a "simple" constant heat capacity thermodynamic property parameterization for a ! species.

This is called if a 'const_cp' XML node is found

Parameters
f'const_cp' XML node

Definition at line 445 of file SpeciesThermoFactory.cpp.

References CONSTANT_CP, fpValue(), getFloat(), newSpeciesThermoInterpType(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

static SpeciesThermoInterpType* Cantera::newNasa9ThermoFromXML ( const std::vector< XML_Node * > &  tp)
static

Create a NASA9 polynomial thermodynamic property parameterization for a species.

This is called if a 'NASA9' Node is found in the XML input.

Parameters
tpVector of XML Nodes that make up the parameterization

Definition at line 470 of file SpeciesThermoFactory.cpp.

References XML_Node::child(), fpValue(), getFloatArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), XML_Node::name(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

static StatMech* Cantera::newStatMechThermoFromXML ( XML_Node &  f)
static

Create a stat mech based property solver for a species.

Deprecated:

Definition at line 512 of file SpeciesThermoFactory.cpp.

References fpValue(), XML_Node::hasAttrib(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

static SpeciesThermoInterpType* Cantera::newAdsorbateThermoFromXML ( const XML_Node &  f)
static

Create an Adsorbate polynomial thermodynamic property parameterization for a species.

This is called if a 'Adsorbate' node is found in the XML input.

Parameters
fXML Node that contains the parameterization

Definition at line 538 of file SpeciesThermoFactory.cpp.

References XML_Node::child(), fpValue(), getFloat(), getFloatArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

SpeciesThermoInterpType * newSpeciesThermoInterpType ( const XML_Node &  thermoNode)

Create a new SpeciesThermoInterpType object from XML_Node.

Parameters
thermoNode'thermo' XML_Node (child of the 'species' node) with child nodes representing parameterizations for one or more temperature ranges
Returns
Returns the pointer to the newly allocated SpeciesThermoInterpType object

Definition at line 597 of file SpeciesThermoFactory.cpp.

References XML_Node::children(), lowercase(), newAdsorbateThermoFromXML(), newConstCpThermoFromXML(), newMu0ThermoFromXML(), newNasa9ThermoFromXML(), newNasaThermoFromXML(), newShomateForMineralEQ3(), newShomateThermoFromXML(), and newStatMechThermoFromXML().

Referenced by SpeciesThermoFactory::installThermoForSpecies(), newConstCpThermoFromXML(), newNasaThermoFromXML(), newShomateForMineralEQ3(), newShomateThermoFromXML(), and newSpeciesThermoInterpType().

SpeciesThermo * newSpeciesThermoMgr ( int  type,
SpeciesThermoFactory *  f = 0 
)

Create a new species thermo manager instance, by specifying the type and (optionally) a pointer to the factory to use to create it.

This utility program will look through species nodes. It will discover what each species needs for its species property managers. Then, it will malloc and return the proper species property manager to use.

These functions allow using a different factory class that derives from SpeciesThermoFactory.

Parameters
typeSpecies thermo type.
fPointer to a SpeciesThermoFactory. optional parameter. Defaults to NULL.
Deprecated:
To be removed after Cantera 2.2. Use GeneralSpeciesThermo directly.

Definition at line 658 of file SpeciesThermoFactory.cpp.

References SpeciesThermoFactory::newSpeciesThermo(), and warn_deprecated().

SpeciesThermo * newSpeciesThermoMgr ( const std::string &  stype,
SpeciesThermoFactory *  f = 0 
)

Create a new species thermo manager instance, by specifying the type and (optionally) a pointer to the factory to use to create it.

This utility program is a basic factory operation for spawning a new species reference-state thermo manager

These functions allows for using a different factory class that derives from SpeciesThermoFactory. However, no applications of this have been done yet.

Parameters
stypeString specifying the species thermo type
fPointer to a SpeciesThermoFactory. optional parameter. Defaults to NULL.
Deprecated:
To be removed after Cantera 2.2. Use GeneralSpeciesThermo directly.

Definition at line 668 of file SpeciesThermoFactory.cpp.

References SpeciesThermoFactory::newSpeciesThermoManager(), and warn_deprecated().

SpeciesThermo * newSpeciesThermoMgr ( std::vector< XML_Node * >  spDataNodeList,
SpeciesThermoFactory *  f = 0 
)

Function to return SpeciesThermo manager.

This utility program will look through species nodes. It will discover what each species needs for its species property managers. Then, it will malloc and return the proper species reference state manager to use.

These functions allow using a different factory class that derives from SpeciesThermoFactory.

Parameters
spDataNodeListThis vector contains a list of species XML nodes that will be in the phase
fPointer to a SpeciesThermoFactory. optional parameter. Defaults to NULL.
Deprecated:
To be removed after Cantera 2.2.

Definition at line 679 of file SpeciesThermoFactory.cpp.

References SpeciesThermoFactory::newSpeciesThermo(), and warn_deprecated().

static void Cantera::formSpeciesXMLNodeList ( std::vector< XML_Node * > &  spDataNodeList,
std::vector< std::string > &  spNamesList,
std::vector< int > &  spRuleList,
const std::vector< XML_Node * >  spArray_names,
const std::vector< XML_Node * >  spArray_dbases,
const vector_int  sprule 
)
static

Gather a vector of pointers to XML_Nodes for a phase.

Parameters
spDataNodeListOutput vector of pointer to XML_Nodes which contain the species XML_Nodes for the species in the current phase.
spNamesListOutput Vector of strings, which contain the names of the species in the phase
spRuleListOutput Vector of ints, which contain the value of sprule for each species in the phase
spArray_namesVector of pointers to the XML_Nodes which contains the names of the species in the phase
spArray_dbasesInput vector of pointers to species data bases. We search each data base for the required species names
spruleInput vector of sprule values

Definition at line 219 of file ThermoFactory.cpp.

References XML_Node::child(), XML_Node::getChildren(), getStringArray(), and XML_Node::nChildren().

Referenced by importPhase().

static void Cantera::getVPSSMgrTypes ( std::vector< XML_Node * > &  spDataNodeList,
int &  has_nasa_idealGas,
int &  has_nasa_constVol,
int &  has_shomate_idealGas,
int &  has_shomate_constVol,
int &  has_simple_idealGas,
int &  has_simple_constVol,
int &  has_water,
int &  has_tpx,
int &  has_hptx,
int &  has_other 
)
static

Examine the types of species thermo parameterizations, and return a flag indicating the type of parameterization needed by the species.

Parameters
spDataNodeListSpecies Data XML node. This node contains a list of species XML nodes underneath it.
has_nasa_idealGasBoolean indicating that one species has a NASA ideal gas standard state
has_nasa_constVolBoolean indicating that one species has a NASA ideal solution standard state
has_shomate_idealGasBoolean indicating that one species has a Shomate ideal gas standard state
has_shomate_constVolBoolean indicating that one species has a Shomate ideal solution standard state
has_simple_idealGasBoolean indicating that one species has a simple ideal gas standard state
has_simple_constVolBoolean indicating that one species has a simple ideal solution standard state
has_waterBoolean indicating that one species has a water standard state
has_tpxBoolean indicating that one species has a tpx standard state
has_hptxBoolean indicating that one species has a htpx standard state
has_otherBoolean indicating that one species has different standard state than the ones listed above
Todo:
Make sure that spDadta_node is species Data XML node by checking its name is speciesData

Definition at line 56 of file VPSSMgrFactory.cpp.

References XML_Node::attrib(), XML_Node::child(), and XML_Node::hasChild().

Referenced by VPSSMgrFactory::newVPSSMgr().

VPSSMgr * newVPSSMgr ( VPSSMgr_enumType  type,
VPStandardStateTP *  vp_ptr,
VPSSMgrFactory *  f = 0 
)

Create a new species thermo manager instance, by specifying the type and (optionally) a pointer to the factory to use to create it.

This utility program will look through species nodes. It will discover what each species needs for its species property managers. Then, it will malloc and return the proper species property manager to use.

These functions allow using a different factory class that derives from SpeciesThermoFactory.

Parameters
typeSpecies thermo type.
vp_ptrVariable pressure standard state ThermoPhase object that will be the owner.
fPointer to a SpeciesThermoFactory. optional parameter. Defaults to NULL.

Definition at line 314 of file VPSSMgrFactory.cpp.

References VPSSMgrFactory::newVPSSMgr().

Referenced by importPhase().

VPSSMgr * newVPSSMgr ( VPStandardStateTP *  vp_ptr,
XML_Node *  phaseNode_ptr,
std::vector< XML_Node * > &  spDataNodeList,
VPSSMgrFactory *  f = 0 
)

Function to return VPSSMgr manager.

This utility program will look through species nodes. It will discover what each species needs for its species property managers. Then, it will alloc and return the proper species property manager to use.

These functions allow using a different factory class that derives from SpeciesThermoFactory.

Parameters
vp_ptrVariable pressure standard state ThermoPhase object that will be the owner.
phaseNode_ptrPointer to the ThermoPhase phase XML Node
spDataNodeListThis vector contains a list of species XML nodes that will be in the phase
fPointer to a SpeciesThermoFactory. optional parameter. Defaults to NULL.

Definition at line 324 of file VPSSMgrFactory.cpp.

References VPSSMgrFactory::newVPSSMgr().

Referenced by VPSSMgrFactory::newVPSSMgr().

static void Cantera::getArrhenius ( const XML_Node &  node,
doublereal &  A,
doublereal &  b,
doublereal &  E 
)
static

Parses the XML element called Arrhenius.

The Arrhenius expression is

\[ k = A T^(b) exp (-E_a / RT) \]

Parameters
nodeXML_Node to be read
AOutput pre-exponential factor. The units are variable.
boutput temperature power
EOutput activation energy in units of Kelvin

Definition at line 41 of file LTPspecies.cpp.

References getFloat().

doublereal Cantera::Frot ( doublereal  tr,
doublereal  sqtr 
)
inline

The Parker temperature correction to the rotational collision number.

Parameters
trReduced temperature \( \epsilon/kT \)
sqtrsquare root of tr.

Definition at line 27 of file MultiTransport.cpp.

References Pi.

Referenced by MultiTransport::init(), and MultiTransport::updateThermal_T().

shared_ptr< TransportData > newTransportData ( const XML_Node &  transport_node)

Create a new TransportData object from a 'transport' XML_Node.

Definition at line 132 of file TransportData.cpp.

Referenced by newSpecies().

std::ostream& Cantera::operator<< ( std::ostream &  s,
const Array2D &  m 
)
inline

Output the current contents of the Array2D object.

Example of usage: s << m << endl;

Parameters
sReference to the ostream to write to
mObject of type Array2D that you are querying
Returns
Returns a reference to the ostream.

Definition at line 394 of file Array.h.

References Array2D::nColumns(), and Array2D::nRows().

void Cantera::operator*= ( Array2D &  m,
doublereal  a 
)
inline

Overload the times equals operator for multiplication of a matrix and a scalar.

Scaled every element of the matrix by the scalar input

Parameters
mMatrix
ascalar

Definition at line 416 of file Array.h.

References Array2D::begin(), Array2D::end(), and scale().

void Cantera::operator+= ( Array2D &  x,
const Array2D &  y 
)
inline

Overload the plus equals operator for addition of one matrix with another.

Adds each element of the second matrix into the first matrix

Parameters
xFirst matrix
ySecond matrix, which is a const

Definition at line 430 of file Array.h.

References Array2D::begin(), Array2D::end(), and sum_each().

void Cantera::writelog ( const std::string &  msg,
int  loglevel 
)
inline

Write a message to the log only if loglevel > 0.

Definition at line 149 of file global.h.

References writelog().

T Cantera::clip ( const T &  value,
const T &  lower,
const T &  upper 
)
inline
int Cantera::sign ( x)

Sign of a number. Returns -1 if x < 0, 1 if x > 0 and 0 if x == 0.

Definition at line 276 of file global.h.

Referenced by RootFind::solve(), and vcsUtil_root1d().

doublereal Cantera::dot4 ( const V &  x,
const V &  y 
)
inline

Templated Inner product of two vectors of length 4.

If either x or y has length greater than 4, only the first 4 elements will be used.

Parameters
xfirst reference to the templated class V
ysecond reference to the templated class V
Returns
This class returns a hard-coded type, doublereal.

Definition at line 69 of file utilities.h.

Referenced by MixTransport::updateCond_T(), AqueousTransport::updateCond_T(), GasTransport::updateDiff_T(), PecosTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), GasTransport::updateSpeciesViscosities(), and AqueousTransport::updateSpeciesViscosities().

doublereal Cantera::dot5 ( const V &  x,
const V &  y 
)
inline

Templated Inner product of two vectors of length 5.

If either x or y has length greater than 4, only the first 4 elements will be used.

Parameters
xfirst reference to the templated class V
ysecond reference to the templated class V
Returns
This class returns a hard-coded type, doublereal.

Definition at line 87 of file utilities.h.

Referenced by MixTransport::updateCond_T(), AqueousTransport::updateCond_T(), GasTransport::updateDiff_T(), PecosTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), GasTransport::updateSpeciesViscosities(), and AqueousTransport::updateSpeciesViscosities().

doublereal Cantera::dot6 ( const V &  x,
const V &  y 
)
inline

Templated Inner product of two vectors of length 6.

If either x or y has length greater than 4, only the first 4 elements will be used.

Parameters
xfirst reference to the templated class V
ysecond reference to the templated class V
Returns
This class returns a hard-coded type, doublereal.
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 106 of file utilities.h.

References warn_deprecated().

doublereal Cantera::dot ( InputIter  x_begin,
InputIter  x_end,
InputIter2  y_begin 
)
inline

Function that calculates a templated inner product.

This inner product is templated twice. The output variable is hard coded to return a doublereal.

template<class InputIter, class InputIter2>

double x[8], y[8];
doublereal dsum = dot<double *,double *>(x, &x+7, y);
Parameters
x_beginIterator pointing to the beginning, belonging to the iterator class InputIter.
x_endIterator pointing to the end, belonging to the iterator class InputIter.
y_beginIterator pointing to the beginning of y, belonging to the iterator class InputIter2.
Returns
The return is hard-coded to return a double.

Definition at line 135 of file utilities.h.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), ChemEquil::equilibrate(), Phase::mean_Y(), and Phase::setMoleFractions_NoNorm().

void Cantera::scale ( InputIter  begin,
InputIter  end,
OutputIter  out,
scale_factor 
)
inline

Multiply elements of an array by a scale factor.

vector_fp in(8, 1.0), out(8);
scale(in.begin(), in.end(), out.begin(), factor);
Parameters
beginIterator pointing to the beginning, belonging to the iterator class InputIter.
endIterator pointing to the end, belonging to the iterator class InputIter.
outIterator pointing to the beginning of out, belonging to the iterator class OutputIter. This is the output variable for this routine.
scale_factorinput scale factor belonging to the class S.

Definition at line 158 of file utilities.h.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), Phase::getConcentrations(), SurfPhase::getCp_R(), ThermoPhase::getElementPotentials(), SurfPhase::getEnthalpy_RT(), SurfPhase::getEntropy_R(), VPSSMgr_General::getGibbs_ref(), VPSSMgr::getGibbs_ref(), MixtureFugacityTP::getGibbs_ref(), IdealGasPhase::getGibbs_ref(), SurfPhase::getGibbs_RT(), DustyGasTransport::getMolarFluxes(), Phase::getMoleFractions(), IdealSolnGasVPSS::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), IdealGasPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), ConstDensityThermo::getPureGibbs(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), VPSSMgr::getStandardChemPotentials(), LatticePhase::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), operator*=(), scale(), ThermoPhase::setElementPotentials(), Phase::setMassFractions(), and VCS_SOLVE::vcs_elabcheck().

void Cantera::increment_scale ( InputIter  begin,
InputIter  end,
OutputIter  out,
scale_factor 
)
inline

Multiply elements of an array, y, by a scale factor, f and add the result to an existing array, x. This is essentially a templated daxpy_ operation.

The template arguments are: template<class InputIter, class OutputIter, class S>

Simple Code Example of the functionality;

double x[10], y[10], f;
for (i = 0; i < n; i++) {
y[i] += f * x[i]
}

Example of the function call to implement the simple code example

double x[10], y[10], f;
increment_scale(x, x+10, y, f);

It is templated with three parameters. The first template is the iterator, InputIter, which controls access to y[]. The second template is the iterator OutputIter, which controls access to y[]. The third iterator is S, which is f.

Parameters
beginInputIter Iterator for beginning of y[]
endinputIter Iterator for end of y[]
outOutputIter Iterator for beginning of x[]
scale_factorScale Factor to multiply y[i] by
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 197 of file utilities.h.

References warn_deprecated().

void Cantera::multiply_each ( OutputIter  x_begin,
OutputIter  x_end,
InputIter  y_begin 
)
inline

Multiply each entry in x by the corresponding entry in y.

The template arguments are: template<class InputIter, class OutputIter>

Simple code Equivalent:

double x[10], y[10]
for (n = 0; n < 10; n++) {
x[n] *= y[n];
}

Example of function call usage to implement the simple code example:

double x[10], y[10]
multiply_each(x, x+10, y);
Parameters
x_beginIterator pointing to the beginning of the vector x, belonging to the iterator class InputIter.
x_endIterator pointing to the end of the vector x, belonging to the iterator class InputIter. The difference between end and begin determines the loop length
y_beginIterator pointing to the beginning of the vector y, belonging to the iterator class outputIter.

Definition at line 234 of file utilities.h.

Referenced by AqueousKinetics::getFwdRateConstants(), GasKinetics::getFwdRateConstants(), InterfaceKinetics::getFwdRateConstants(), InterfaceKinetics::getRevRateConstants(), ElectrodeKinetics::updateROP(), and InterfaceKinetics::updateROP().

void Cantera::resize_each ( int  m,
InputIter  begin,
InputIter  end 
)
inline

Invoke method 'resize' with argument m for a sequence of objects (templated version)

The template arguments are: template<class InputIter>

Simple code Equivalent:

vector<vector<double> *> VV;
for (n = 0; n < 20; n++) {
vector<double> *vp = VV[n];
vp->resize(m);
}

Example of function call usage to implement the simple code example:

vector<vector<double> *> VV;
resize_each(m, &VV[0], &VV[20]);
Parameters
mInteger specifying the size that each object should be resized to.
beginIterator pointing to the beginning of the sequence of object, belonging to the iterator class InputIter.
endIterator pointing to the end of the sequence of objects, belonging to the iterator class InputIter. The difference between end and begin determines the loop length
Note
This is currently unused.
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 271 of file utilities.h.

References warn_deprecated().

doublereal Cantera::absmax ( InputIter  begin,
InputIter  end 
)
inline

The maximum absolute value (templated version)

The template arguments are: template<class InputIter>

Simple code Equivalent:

double x[10] amax = 0.0;
for (int n = 0; n < 10; n++) {
if (fabs(x[n]) > amax) amax = fabs(x[10]);
}
return amax;

Example of function call usage to implement the simple code example:

double x[10]
double amax = absmax(x, x+10);
Parameters
beginIterator pointing to the beginning of the x vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the x vector, belonging to the iterator class InputIter. The difference between end and begin determines the loop length

Definition at line 305 of file utilities.h.

void Cantera::normalize ( InputIter  begin,
InputIter  end,
OutputIter  out 
)
inline

Normalize the values in a sequence, such that they sum to 1.0 (templated version)

The template arguments are: template<class InputIter, class OutputIter>

Simple Equivalent:

double x[10], y[10], sum = 0.0;
for (int n = 0; n < 10; n++) {
sum += x[10];
}
for (int n = 0; n < 10; n++) {
y[n] = x[n]/sum;
}

Example of function call usage:

double x[10], y[10];
normalize(x, x+10, y);
Parameters
beginIterator pointing to the beginning of the x vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the x vector, belonging to the iterator class InputIter. The difference between end and begin determines the loop length
outIterator pointing to the beginning of the output vector, belonging to the iterator class OutputIter.

Definition at line 343 of file utilities.h.

void Cantera::divide_each ( OutputIter  x_begin,
OutputIter  x_end,
InputIter  y_begin 
)
inline

Templated divide of each element of x by the corresponding element of y.

The template arguments are: template<class InputIter, class OutputIter>

Simple Equivalent:

double x[10], y[10];
for (n = 0; n < 10; n++) {
x[n] /= y[n];
}

Example of code usage:

double x[10], y[10];
divide_each(x, x+10, y);
Parameters
x_beginIterator pointing to the beginning of the x vector, belonging to the iterator class OutputIter.
x_endIterator pointing to the end of the x vector, belonging to the iterator class OutputIter. The difference between end and begin determines the number of inner iterations.
y_beginIterator pointing to the beginning of the yvector, belonging to the iterator class InputIter.

Definition at line 378 of file utilities.h.

Referenced by DustyGasTransport::getMolarFluxes().

void Cantera::sum_each ( OutputIter  x_begin,
OutputIter  x_end,
InputIter  y_begin 
)
inline

Increment each entry in x by the corresponding entry in y.

The template arguments are: template<class InputIter, class OutputIter>

Parameters
x_beginIterator pointing to the beginning of the x vector, belonging to the iterator class OutputIter.
x_endIterator pointing to the end of the x vector, belonging to the iterator class OutputIter. The difference between end and begin determines the number of inner iterations.
y_beginIterator pointing to the beginning of the yvector, belonging to the iterator class InputIter.

Definition at line 399 of file utilities.h.

Referenced by operator+=().

void Cantera::scatter_copy ( InputIter  begin,
InputIter  end,
OutputIter  result,
IndexIter  index 
)
inline

Copies a contiguous range in a sequence to indexed positions in another sequence.

The template arguments are: template<class InputIter, class OutputIter, class IndexIter>

Example:

vector<double> x(3), y(20), ;
vector<int> index(3);
index[0] = 9;
index[1] = 2;
index[3] = 16;
scatter_copy(x.begin(), x.end(), y.begin(), index.begin());

This routine is templated 3 times. InputIter is an iterator for the source vector OutputIter is an iterator for the destination vector IndexIter is an iterator for the index into the destination vector.

Parameters
beginIterator pointing to the beginning of the source vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the source vector, belonging to the iterator class InputIter. The difference between end and begin determines the number of inner iterations.
resultIterator pointing to the beginning of the output vector, belonging to the iterator class outputIter.
indexIterator pointing to the beginning of the index vector, belonging to the iterator class IndexIter.

Definition at line 439 of file utilities.h.

void Cantera::scatter_mult ( InputIter  mult_begin,
InputIter  mult_end,
RandAccessIter  data,
IndexIter  index 
)
inline

Multiply selected elements in an array by a contiguous sequence of multipliers.

The template arguments are: template<class InputIter, class RandAccessIter, class IndexIter>

Example:

double multipliers[] = {8.9, -2.0, 5.6};
int index[] = {7, 4, 13};
vector_fp data(20);
...
// Multiply elements 7, 4, and 13 in data by multipliers[0], multipliers[1],and multipliers[2],
// respectively
scatter_mult(multipliers, multipliers + 3, data.begin(), index);
Parameters
mult_beginIterator pointing to the beginning of the multiplier vector, belonging to the iterator class InputIter.
mult_endIterator pointing to the end of the multiplier vector, belonging to the iterator class InputIter. The difference between end and begin determines the number of inner iterations.
dataIterator pointing to the beginning of the output vector, belonging to the iterator class RandAccessIter, that will be selectively multiplied.
indexIterator pointing to the beginning of the index vector, belonging to the iterator class IndexIter.

Definition at line 475 of file utilities.h.

void Cantera::scatter_divide ( InputIter  begin,
InputIter  end,
OutputIter  result,
IndexIter  index 
)
inline

Divide selected elements in an array by a contiguous sequence of divisors.

The template arguments are: template<class InputIter, class OutputIter, class IndexIter>

Example:

double divisors[] = {8.9, -2.0, 5.6};
int index[] = {7, 4, 13};
vector_fp data(20);
...
// divide elements 7, 4, and 13 in data by divisors[7] divisors[4], and divisors[13]
// respectively
scatter_divide(divisors, divisors + 3, data.begin(), index);
Parameters
beginIterator pointing to the beginning of the source vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the source vector, belonging to the iterator class InputIter. The difference between end and begin determines the number of inner iterations.
resultIterator pointing to the beginning of the output vector, belonging to the iterator class outputIter.
indexIterator pointing to the beginning of the index vector, belonging to the iterator class IndexIter.
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 511 of file utilities.h.

References warn_deprecated().

doublereal Cantera::sum_xlogx ( InputIter  begin,
InputIter  end 
)
inline

Compute

\[ \sum_k x_k \log x_k. \]

.

The template arguments are: template<class InputIter>

A small number (1.0E-20) is added before taking the log. This templated class does the indicated sun. The template must be an iterator.

Parameters
beginIterator pointing to the beginning, belonging to the iterator class InputIter.
endIterator pointing to the end, belonging to the iterator class InputIter.
Returns
The return from this class is a double.

Definition at line 536 of file utilities.h.

References Tiny.

Referenced by Phase::sum_xlogx().

doublereal Cantera::sum_xlogQ ( InputIter1  begin,
InputIter1  end,
InputIter2  Q_begin 
)
inline

Compute

\[ \sum_k x_k \log Q_k. \]

.

The template arguments are: template<class InputIter1, class InputIter2>

This class is templated twice. The first template, InputIter1 is the iterator that points to $x_k$. The second iterator InputIter2, point to $Q_k$. A small number (1.0E-20) is added before taking the log.

Parameters
beginIterator pointing to the beginning, belonging to the iterator class InputIter1.
endIterator pointing to the end, belonging to the iterator class InputIter1.
Q_beginIterator pointing to the beginning of Q_k, belonging to the iterator class InputIter2.
Returns
The return from this class is hard coded to a doublereal.

Definition at line 564 of file utilities.h.

References Tiny.

Referenced by Phase::sum_xlogQ().

void Cantera::scale ( int  N,
double  alpha,
OutputIter  x 
)
inline

Scale a templated vector by a constant factor.

The template arguments are: template<class OutputIter>

This function is essentially a wrapper around the stl function scale(). The function is has one template parameter, OutputIter. OutputIter is a templated iterator that points to the vector to be scaled.

Parameters
NLength of the vector
alphascale factor - double
xTemplated Iterator to the start of the vector to be scaled.
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 590 of file utilities.h.

References scale(), and warn_deprecated().

R Cantera::poly6 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 6.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 604 of file utilities.h.

Referenced by MultiTransport::updateThermal_T().

R Cantera::poly8 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 8.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 616 of file utilities.h.

Referenced by MultiTransport::updateThermal_T().

R Cantera::poly10 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 10.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 629 of file utilities.h.

References warn_deprecated().

R Cantera::poly5 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 5.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 644 of file utilities.h.

R Cantera::poly4 ( x,
R *  c 
)

Evaluates a polynomial of order 4.

Parameters
xValue of the independent variable.
cPointer to the polynomial coefficient array.

Definition at line 656 of file utilities.h.

Referenced by NasaThermo::cp_R(), and GasTransport::fitProperties().

R Cantera::poly3 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 3.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 668 of file utilities.h.

Referenced by GasTransport::fitProperties().

void Cantera::deepStdVectorPointerCopy ( const std::vector< D * > &  fromVec,
std::vector< D * > &  toVec 
)

Templated deep copy of a std vector of pointers.

Performs a deep copy of a std vectors of pointers to an object. This template assumes that that the templated object has a functioning copy constructor. It also assumes that pointers are zero when they are not malloced.

Parameters
fromVecVector of pointers to a templated class. This will be deep-copied to the other vector
toVecVector of pointers to a templated class. This will be overwritten and on return will be a copy of the fromVec

Definition at line 685 of file utilities.h.

const U& Cantera::getValue ( const std::map< T, U > &  m,
const T &  key 
)
const U& Cantera::getValue ( const std::map< T, U > &  m,
const T &  key,
const U &  default_val 
)

Const accessor for a value in a std::map.

Definition at line 729 of file utilities.h.

void Cantera::copyn ( size_t  n,
const T &  x,
T &  y 
)
inline

Templated function that copies the first n entries from x to y.

The templated type is the type of x and y

Parameters
nNumber of elements to copy from x to y
xThe object x, of templated type const T&
yThe object y, of templated type T&
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 32 of file vec_functions.h.

References warn_deprecated().

void Cantera::divide_each ( T &  x,
const T &  y 
)
inline

Divide each element of x by the corresponding element of y.

This function replaces x[n] by x[n]/y[n], for 0 <= n < x.size()

Parameters
xNumerator object of the division operation with template type T At the end of the calculation, it contains the result.
yDenominator object of the division template type T
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 48 of file vec_functions.h.

References warn_deprecated().

void Cantera::multiply_each ( T &  x,
const T &  y 
)
inline

Multiply each element of x by the corresponding element of y.

This function replaces x[n] by x[n]*y[n], for 0 <= n < x.size() This is a templated function with just one template type.

Parameters
xFirst object of the multiplication with template type T At the end of the calculation, it contains the result.
ySecond object of the multiplication with template type T
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 66 of file vec_functions.h.

References warn_deprecated().

void Cantera::scale ( T &  x,
scale_factor 
)
inline

Multiply each element of x by scale_factor.

This function replaces x[n] by x[n]*scale_factor, for 0 <= n < x.size()

Parameters
xFirst object of the multiplication with template type T At the end of the calculation, it contains the result.
scale_factorscale factor with template type S
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 83 of file vec_functions.h.

References scale(), and warn_deprecated().

doublereal Cantera::dot_product ( const T &  x,
const T &  y 
)
inline

Return the templated dot product of two objects.

Returns the sum of x[n]*y[n], for 0 <= n < x.size().

Parameters
xFirst object of the dot product with template type T At the end of the calculation, it contains the result.
ySecond object of the dot product with template type T
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 99 of file vec_functions.h.

References warn_deprecated().

doublereal Cantera::dot_ratio ( const T &  x,
const T &  y 
)
inline

Returns the templated dot ratio of two objects.

Returns the sum of x[n]/y[n], for 0 <= n < x.size().

Parameters
xFirst object of the dot product with template type T At the end of the calculation, it contains the result.
ySecond object of the dot product with template type T
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 115 of file vec_functions.h.

References _dot_ratio(), and warn_deprecated().

void Cantera::add_each ( T &  x,
const T &  y 
)
inline

Returns a templated addition operation of two objects.

Replaces x[n] by x[n] + y[n] for 0 <= n < x.size()

Parameters
xFirst object of the addition with template type T At the end of the calculation, it contains the result.
ySecond object of the addition with template type T
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 131 of file vec_functions.h.

References warn_deprecated().

doublereal Cantera::_dot_ratio ( InputIter  x_begin,
InputIter  x_end,
InputIter  y_begin,
start_value 
)
inline

Templated dot ratio class.

Calculates the quantity:

S += x[n]/y[n]

The first templated type is the iterator type for x[] and y[]. The second templated type is the type of S.

Parameters
x_beginInputIter type, indicating the address of the first element of x
x_endInputIter type, indicating the address of the last element of x
y_beginInputIter type, indicating the address of the first element of y
start_valueS type, indicating the type of the accumulation result.
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 158 of file vec_functions.h.

References warn_deprecated().

Referenced by dot_ratio().

T Cantera::absmax ( const std::vector< T > &  v)
inline

Finds the entry in a vector with maximum absolute value, and return this value.

Parameters
vVector to be queried for maximum value, with template type T
Returns
Returns an object of type T that is the maximum value,
Deprecated:
Unused. To be removed after Cantera 2.2.

Definition at line 177 of file vec_functions.h.

References warn_deprecated().

std::ostream& Cantera::operator<< ( std::ostream &  os,
const std::vector< T > &  v 
)
inline

Write a vector to a stream.

Definition at line 190 of file vec_functions.h.

std::ostream& Cantera::operator<< ( std::ostream &  s,
Cantera::MultiPhase x 
)
inline

Function to output a MultiPhase description to a stream.

Writes out a description of the contents of each phase of the MultiPhase using the report function.

Parameters
sostream
xReference to a MultiPhase
Returns
returns a reference to the ostream

Definition at line 712 of file MultiPhase.h.

References Phase::name(), MultiPhase::nPhases(), MultiPhase::phase(), MultiPhase::phaseMoles(), and ThermoPhase::report().

Interface* Cantera::importInterface ( const std::string &  infile,
const std::string &  id,
std::vector< Cantera::ThermoPhase * >  phases 
)
inline

Import an instance of class Interface from a specification in an input file.

This is the preferred method to create an Interface instance.

Definition at line 108 of file Interface.h.

Kinetics* Cantera::newKineticsMgr ( XML_Node &  phase,
std::vector< ThermoPhase * >  th,
KineticsFactory *  f = 0 
)
inline

Create a new kinetics manager.

Definition at line 82 of file KineticsFactory.h.

Kinetics* Cantera::newKineticsMgr ( const std::string &  model,
KineticsFactory *  f = 0 
)
inline

Create a new kinetics manager.

Definition at line 94 of file KineticsFactory.h.

static std::string Cantera::fmt ( const std::string &  r,
size_t  n 
)
inlinestatic
static void Cantera::_writeIncrementSpecies ( InputIter  begin,
InputIter  end,
const std::string &  r,
std::map< size_t, std::string > &  out 
)
inlinestatic
Deprecated:
To be removed after Cantera 2.2

Definition at line 621 of file StoichManager.h.

static void Cantera::_writeDecrementSpecies ( InputIter  begin,
InputIter  end,
const std::string &  r,
std::map< size_t, std::string > &  out 
)
inlinestatic
Deprecated:
To be removed after Cantera 2.2

Definition at line 631 of file StoichManager.h.

static void Cantera::_writeIncrementReaction ( InputIter  begin,
InputIter  end,
const std::string &  r,
std::map< size_t, std::string > &  out 
)
inlinestatic
Deprecated:
To be removed after Cantera 2.2

Definition at line 641 of file StoichManager.h.

static void Cantera::_writeDecrementReaction ( InputIter  begin,
InputIter  end,
const std::string &  r,
std::map< size_t, std::string > &  out 
)
inlinestatic
Deprecated:
To be removed after Cantera 2.2

Definition at line 651 of file StoichManager.h.

static void Cantera::_writeMultiply ( InputIter  begin,
InputIter  end,
const std::string &  r,
std::map< size_t, std::string > &  out 
)
inlinestatic
Deprecated:
To be removed after Cantera 2.2

Definition at line 661 of file StoichManager.h.

doublereal Cantera::ct_dtrcon ( const char *  norm,
ctlapack::upperlower_t  uplot,
const char *  diag,
size_t  n,
doublereal *  a,
size_t  lda,
doublereal *  work,
int *  iwork,
int &  info 
)
inline
Parameters
workMust be dimensioned equal to greater than 3N
iworkMust be dimensioned equal to or greater than N

Definition at line 441 of file ctlapack.h.

Referenced by SquareMatrix::rcondQR().

Variable Documentation

mutex_t dir_mutex
static

Mutex for input directory access.

Definition at line 43 of file application.cpp.

Referenced by Application::addDataDirectory(), and Application::findInputFile().

mutex_t app_mutex
static

Mutex for creating singletons within the application object.

Definition at line 46 of file application.cpp.

Referenced by Application::ApplicationDestroy(), and Application::Instance().

mutex_t xml_mutex
static

Mutex for controlling access to XML file storage.

Definition at line 49 of file application.cpp.

Referenced by Application::close_XML_File(), Application::get_XML_File(), and Application::get_XML_from_string().

mutex_t msg_mutex
static

Mutex for access to string messages.

Definition at line 145 of file application.cpp.

Referenced by Application::ThreadMessages::operator->(), and Application::ThreadMessages::removeThreadMessages().

int BasisOptimize_print_lvl = 0

External int that is used to turn on debug printing for the BasisOptimze program.

Set this to 1 if you want debug printing from BasisOptimize.

Definition at line 13 of file BasisOptimize.cpp.

Referenced by BasisOptimize(), and ElemRearrange().

int vcs_timing_print_lvl = 1

Global hook for turning on and off time printing.

Default is to allow printing. But, you can assign this to zero globally to turn off all time printing. This is helpful for test suite purposes where you are interested in differences in text files.

Definition at line 26 of file vcs_solve.cpp.

Referenced by VCS_SOLVE::vcs_initSizes().

const doublereal DampFactor = 4

Dampfactor is the factor by which the damping factor is reduced by when a reduction in step length is warranted.

Definition at line 1288 of file BEulerInt.cpp.

Referenced by MultiNewton::dampStep(), BEulerInt::dampStep(), and NonlinearSolver::dampStep().

const size_t NDAMP = 10

Number of damping steps that are carried out before the solution is deemed a failure.

Definition at line 1289 of file BEulerInt.cpp.

Referenced by NonlinearSolver::dampDogLeg(), MultiNewton::dampStep(), BEulerInt::dampStep(), and NonlinearSolver::dampStep().

static struct awData aWTable[]
static

aWTable is a vector containing the atomic weights database.

The size of the table is given by the initial instantiation.

Definition at line 38 of file Elements.cpp.

Referenced by Elements::LookupWtElements(), and LookupWtElements().

int ntypes = 27
static

Define the number of ThermoPhase types for use in this factory routine.

Definition at line 67 of file ThermoFactory.cpp.

Referenced by eosTypeString(), and ThermoFactory::newThermoPhase().

string _types[]
static
Initial value:
= {"IdealGas", "Incompressible",
"Surface", "Edge", "Metal", "StoichSubstance",
"PureFluid", "LatticeSolid", "Lattice",
"HMW", "IdealSolidSolution", "DebyeHuckel",
"IdealMolalSolution", "IdealGasVPSS", "IdealSolnVPSS",
"MineralEQ3", "MetalSHEelectrons", "Margules", "PhaseCombo_Interaction",
"IonsFromNeutralMolecule", "FixedChemPot", "MolarityIonicVPSSTP",
"MixedSolventElectrolyte", "Redlich-Kister", "RedlichKwong",
"RedlichKwongMFTP", "MaskellSolidSolnPhase"
}

Define the string name of the ThermoPhase types that are handled by this factory routine.

Definition at line 70 of file ThermoFactory.cpp.

Referenced by eosTypeString(), and ThermoFactory::newThermoPhase().

int _itypes[]
static
Initial value:
= {cIdealGas, cIncompressible,
cSurf, cEdge, cMetal, cStoichSubstance,
cPureFluid, cLatticeSolid, cLattice,
cIdealMolalSoln, cVPSS_IdealGas, cIdealSolnGasVPSS_iscv,
cMineralEQ3, cMetalSHEelectrons,
cMargulesVPSSTP, cPhaseCombo_Interaction, cIonsFromNeutral, cFixedChemPot,
cMolarityIonicVPSSTP, cMixedSolventElectrolyte, cRedlichKisterVPSSTP,
cRedlichKwongMFTP, cRedlichKwongMFTP, cMaskellSolidSolnPhase
}
const int cSurf
A surface phase. Used by class SurfPhase.
Definition: mix_defs.h:40
const int cFixedChemPot
Stoichiometric compound with a constant chemical potential.
Definition: mix_defs.h:61
const int cMetal
A metal phase.
Definition: mix_defs.h:43
const int cVPSS_IdealGas
Variable Pressure Standard State ThermoPhase objects.
Definition: mix_defs.h:96
const int cEdge
An edge between two 2D surfaces.
Definition: mix_defs.h:58
const int cIdealMolalSoln
IdealMolalSoln - molality based solution with molality-based act coeffs of 1.
Definition: mix_defs.h:75
const int cHMW
HMW - Strong electrolyte using the Pitzer formulation.
Definition: mix_defs.h:69
const int cDebyeHuckel
DebyeHuckel - Weak electrolyte using various Debye-Huckel formulations.
Definition: mix_defs.h:72
const int cIdealGas
Equation of state types:
Definition: mix_defs.h:37
const int cIdealSolidSolnPhase
Constant partial molar volume solution IdealSolidSolnPhase.h.
Definition: mix_defs.h:64

Define the integer id of the ThermoPhase types that are handled by this factory routine.

Definition at line 82 of file ThermoFactory.cpp.

Referenced by eosTypeString(), and ThermoFactory::newThermoPhase().

const doublereal Hij[6][7]
static
Initial value:
= {
{ 0.5132047, 0.2151778, -0.2818107, 0.1778064, -0.04176610, 0., 0.},
{ 0.3205656, 0.7317883, -1.070786 , 0.4605040, 0., -0.01578386, 0.},
{ 0., 1.241044 , -1.263184 , 0.2340379, 0., 0., 0.},
{ 0., 1.476783 , 0., -0.4924179, 0.1600435, 0., -0.003629481},
{-0.7782567, 0.0 , 0., 0. , 0., 0., 0.},
{ 0.1885447, 0.0 , 0., 0. , 0., 0., 0.},
}

Definition at line 329 of file WaterProps.cpp.

const doublereal T_c = 647.096
const doublereal P_c = 22.064E6
static

Critical Pressure (Pascals)

Definition at line 24 of file WaterPropsIAPWS.cpp.

Referenced by WaterPropsIAPWS::psat().

const doublereal Rho_c = 322.
const doublereal M_water = 18.015268
static
const doublereal Rgas = 8.314371E3
static
const doublereal Min_C_Internal = 0.001
static

Constant to compare dimensionless heat capacities against zero.

Definition at line 537 of file MultiTransport.cpp.

string _types[]
static
Initial value:
= {"Reservoir", "Reactor", "ConstPressureReactor",
"FlowReactor", "IdealGasReactor",
"IdealGasConstPressureReactor"
}

Definition at line 23 of file ReactorFactory.cpp.

int _itypes[]
static
Initial value:
= {ReservoirType, ReactorType, ConstPressureReactorType,
FlowReactorType, IdealGasReactorType,
IdealGasConstPressureReactorType
}

Definition at line 29 of file ReactorFactory.cpp.

const doublereal SmallNumber = 1.e-300

smallest number to compare to zero.

Definition at line 126 of file ct_defs.h.

Referenced by MultiNewton::dampStep(), SurfPhase::entropy_mole(), Troe::F(), SRI::F(), ConstDensityThermo::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), IdealMolalSoln::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), LatticePhase::getChemPotentials(), IdealGasPhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), PhaseCombo_Interaction::getdlnActCoeffds(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), MolalityVPSSTP::report(), ThermoPhase::report(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_lnActCoeff(), and Troe::updateTemp().

const doublereal BigNumber = 1.e300

largest number to compare to inf.

Definition at line 128 of file ct_defs.h.

Referenced by HighPressureGasTransport::thermalConductivity(), and GasKinetics::updateKc().

const doublereal MaxExp = 690.775527898

largest x such that exp(x) is valid

Definition at line 130 of file ct_defs.h.

const doublereal Undef = -999.1234

Fairly random number to be used to initialize variables against to see if they are subsequently defined.

Definition at line 134 of file ct_defs.h.

Referenced by FreeFlame::_finalize(), addFloat(), addFloatArray(), addNamedFloatArray(), vcs_MultiPhaseEquil::equilibrate_HP(), MultiPhase::equilibrate_MultiPhaseEquil(), vcs_MultiPhaseEquil::equilibrate_SP(), getFloatArray(), and FreeFlame::save().

const doublereal Tiny = 1.e-20

Small number to compare differences of mole fractions against.

This number is used for the interconversion of mole fraction and mass fraction quantities when the molecular weight of a species is zero. It's also used for the matrix inversion of transport properties when mole fractions must be positive.

Definition at line 142 of file ct_defs.h.

Referenced by Phase::addSpecies(), MultiPhaseEquil::computeReactionSteps(), HighPressureGasTransport::getBinaryDiffCoeffs(), MultiPhaseEquil::getComponents(), getFloatArray(), getFloatCurrent(), HighPressureGasTransport::getMultiDiffCoeffs(), OneDim::initTimeInteg(), MultiPhaseEquil::stepComposition(), sum_xlogQ(), sum_xlogx(), HighPressureGasTransport::thermalConductivity(), MultiTransport::update_C(), MixTransport::update_C(), PecosTransport::update_C(), AqueousTransport::update_C(), LiquidTransport::update_C(), and DustyGasTransport::updateTransport_C().

const size_t npos = static_cast<size_t>(-1)

index returned by functions to indicate "no position"

Definition at line 165 of file ct_defs.h.

Referenced by VCS_PROB::addOnePhaseSpecies(), VCS_PROB::addPhaseElements(), Kinetics::addReaction(), Phase::addSpecies(), BasisOptimize(), NonlinearSolver::boundStep(), InterfaceKinetics::buildSurfaceArrhenius(), solveProb::calc_damping(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), SquareMatrix::checkColumns(), BandMatrix::checkColumns(), Kinetics::checkDuplicates(), SquareMatrix::checkRows(), BandMatrix::checkRows(), XML_Node::child(), vcs_MultiPhaseEquil::component(), IdealGasReactor::componentIndex(), ConstPressureReactor::componentIndex(), IdealGasConstPressureReactor::componentIndex(), FlowReactor::componentIndex(), Reactor::componentIndex(), ct2ctml(), MultiPhase::elementIndex(), Phase::elementIndex(), ElemRearrange(), ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiJac::eval(), Inlet1D::eval(), Empty1D::eval(), Symm1D::eval(), Outlet1D::eval(), OutletRes1D::eval(), Surf1D::eval(), StFlow::eval(), Domain1D::eval(), ReactingSurf1D::eval(), Domain1D::evalss(), ReactionPathDiagram::exportToDot(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), MolalityVPSSTP::findCLMIndex(), findFirstNotOfWS(), findFirstWS(), Application::findInputFile(), XML_Reader::findQuotedString(), findUnbackslashed(), StFlow::fixSpecies(), Application::get_XML_File(), MultiPhaseEquil::getComponents(), getEfficiencies(), getFloatArray(), getMap(), getMatrixValues(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), getPairs(), getReagents(), ElectrodeKinetics::identifyMetalPhase(), ImplicitSurfChem::ImplicitSurfChem(), importKinetics(), LiquidTranInteraction::init(), MultiPhase::init(), ChemEquil::initialize(), WaterSSTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), installReactionArrays(), invert(), Kinetics::kineticsSpeciesIndex(), Kinetics::kineticsSpeciesName(), PDSS_HKFT::LookupGe(), MargulesVPSSTP::MargulesVPSSTP(), Phase::massFraction(), GeneralSpeciesThermo::maxTemp(), NasaThermo::maxTemp(), LatticeSolidPhase::maxTemp(), SimpleThermo::maxTemp(), ShomateThermo::maxTemp(), VPSSMgr::maxTemp(), NasaThermo::minTemp(), GeneralSpeciesThermo::minTemp(), LatticeSolidPhase::minTemp(), SimpleThermo::minTemp(), ShomateThermo::minTemp(), VPSSMgr::minTemp(), MixedSolventElectrolyte::MixedSolventElectrolyte(), InterfaceKinetics::modifyReaction(), Phase::moleFraction(), Reactor::nSensParams(), FlowDevice::outletSpeciesMassFlowRate(), parseCompString(), parseSpeciesName(), XML_Reader::parseTag(), PhaseCombo_Interaction::PhaseCombo_Interaction(), Kinetics::phaseIndex(), NonlinearSolver::print_solnDelta_norm_contrib(), solveProb::printFinal(), solveProb::printIteration(), Mu0Poly::processCoeffs(), HMWSoln::readXMLBinarySalt(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), HMWSoln::readXMLLambdaNeutral(), HMWSoln::readXMLMunnnNeutral(), HMWSoln::readXMLPsiCommonAnion(), HMWSoln::readXMLPsiCommonCation(), RedlichKwongMFTP::readXMLPureFluid(), HMWSoln::readXMLThetaAnion(), HMWSoln::readXMLThetaCation(), HMWSoln::readXMLZetaCation(), RedlichKisterVPSSTP::RedlichKisterVPSSTP(), GeneralSpeciesThermo::refPressure(), VPSSMgr::refPressure(), HMWSoln::relative_molal_enthalpy(), MolalityVPSSTP::report(), NonlinearSolver::residErrorNorm(), vcs_VolPhase::resize(), OneDim::resize(), RedlichKisterVPSSTP::resizeNumInteractions(), MixedSolventElectrolyte::resizeNumInteractions(), MargulesVPSSTP::resizeNumInteractions(), PhaseCombo_Interaction::resizeNumInteractions(), StFlow::restore(), Inlet1D::restore(), OutletRes1D::restore(), ReactingSurf1D::restore(), Application::setDefaultDirectories(), Wall::setKinetics(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::setMolesFromVCS(), Domain1D::setSteadyTolerances(), Domain1D::setTransientTolerances(), NonlinearSolver::solnErrorNorm(), OneDim::solve(), MultiNewton::solve(), solveProb::solve(), solveSP::solveSP(), StFlow::solveSpecies(), Reactor::speciesIndex(), MultiPhase::speciesIndex(), Phase::speciesIndex(), Kinetics::speciesPhase(), Kinetics::speciesPhaseIndex(), split(), split_at_pound(), OneDim::ssnorm(), MultiNewton::step(), StFlow::StFlow(), STITbyPDSS::STITbyPDSS(), tokenizeString(), Unit::toSI(), vcs_VolPhase::transferElementsFM(), InterfaceKinetics::updateKc(), STITbyPDSS::updatePropertiesTemp(), ElectrodeKinetics::updateROP(), VCS_SOLVE::vcs_basopt(), vcs_Cantera_update_vprob(), VCS_SOLVE::vcs_elcorr(), VCS_SOLVE::vcs_elem_rearrange(), VCS_SOLVE::vcs_phaseStabilityTest(), VCS_SOLVE::vcs_popPhaseID(), VCS_PROB::VCS_PROB(), VCS_SOLVE::vcs_RxnStepSizes(), and XML_Node::write_int().

const std::string CTML_Version = "1.4.1"

const Specifying the CTML version number

Todo:
Codify what the CTML_Version number means.

Definition at line 23 of file ctml.h.

const int ELEMENTARY_RXN = 1

A reaction with a rate coefficient that depends only on temperature and voltage that also obeys mass-action kinetics.

Here mass-action kinetics is defined as the reaction orders being equal to the reaction's stoichiometry.

temperature. Example: O + OH <-> O2 + H

Definition at line 30 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), AqueousKinetics::addReaction(), getRateCoefficient(), and GasKinetics::modifyReaction().

const int THREE_BODY_RXN = 2

A gas-phase reaction that requires a third-body collision partner.

Example: O2 + M <-> O + O + M

Definition at line 36 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), Kinetics::checkDuplicates(), getRateCoefficient(), and GasKinetics::modifyReaction().

const int FALLOFF_RXN = 4

The general form for a gas-phase association or dissociation reaction, with a pressure-dependent rate.

Example: CH3 + H (+M) <-> CH4 (+M)

Definition at line 42 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), Kinetics::checkDuplicates(), getRateCoefficient(), GasKinetics::modifyReaction(), and FalloffMgr::pr_to_falloff().

const int PLOG_RXN = 5

A pressure-dependent rate expression consisting of several Arrhenius rate expressions evaluated at different pressures.

The final rate is calculated by logarithmically interpolating between the two rates that bracket the current pressure.

Definition at line 50 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), getRateCoefficient(), and GasKinetics::modifyReaction().

const int CHEBYSHEV_RXN = 6

A general gas-phase pressure-dependent reaction where k(T,P) is defined in terms of a bivariate Chebyshev polynomial.

Definition at line 56 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), getRateCoefficient(), and GasKinetics::modifyReaction().

const int CHEMACT_RXN = 8

A chemical activation reaction.

For these reactions, the rate falls off as the pressure increases, due to collisional stabilization of a reaction intermediate. Example: Si + SiH4 (+M) <-> Si2H2 + H2 (+M), which competes with Si + SiH4 (+M) <-> Si2H4 (+M).

Definition at line 64 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), Kinetics::checkDuplicates(), getRateCoefficient(), and GasKinetics::modifyReaction().

const int SURFACE_RXN = 20

A reaction occurring on a surface.

NOTE: This is a bit ambiguous, and will be taken out in the future The dimensionality of the interface is a separate concept from the type of the reaction.

Definition at line 72 of file reaction_defs.h.

Referenced by getRateCoefficient().

const int INTERFACE_RXN = 20

A reaction occurring on an interface, e.g a surface or edge.

Definition at line 75 of file reaction_defs.h.

const int BUTLERVOLMER_NOACTIVITYCOEFFS_RXN = 25

This is a surface reaction that is formulated using the Butler-Volmer formulation and using concentrations instead of activity concentrations for its exchange current density formula.

Definition at line 80 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction(), and ElectrodeKinetics::updateROP().

const int BUTLERVOLMER_RXN = 26

This is a surface reaction that is formulated using the Butler-Volmer formulation.

Note the B-V equations can be derived from the forward and reverse rate constants for a single step reaction. However, there are some advantages to using the formulation directly.

Definition at line 86 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction(), ElectrodeKinetics::updateROP(), and InterfaceKinetics::updateROP().

const int SURFACEAFFINITY_RXN = 27

This is a surface reaction that is formulated using the affinity representation, common in the geochemistry community.

This is generally a global non-mass action reaction with an additional functional form dependence on delta G of reaction.

Definition at line 92 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction().

const int EDGE_RXN = 22

A reaction occurring at a one-dimensional interface between two surface phases.

NOTE: This is a bit ambiguous, and will be taken out in the future The dimensionality of the interface is a separate concept from the type of the reaction.

Definition at line 103 of file reaction_defs.h.

Referenced by getRateCoefficient().

const int GLOBAL_RXN = 30

A global reaction.

These may have non-mass action reaction orders, and are not allowed to be reversible.

Definition at line 109 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction().

const int cEST_solvent = 0

Electrolyte species type.

Definition at line 19 of file electrolytes.h.

Referenced by DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), interp_est(), and HMWSoln::interp_est().

const int cHMWSoln0 = 45010

eosTypes returned for this ThermoPhase Object

Definition at line 41 of file electrolytes.h.

Referenced by HMWSoln::eosType().

const int cDebyeHuckel0 = 46010

eosTypes returned for this ThermoPhase Object

Definition at line 48 of file electrolytes.h.

Referenced by DebyeHuckel::eosType().

const int cNone = 0

This generic id is used as the default in virtual base classes that employ id's.

It is used to indicate the lack of an inherited class that would define the id.

Definition at line 13 of file mix_defs.h.

const int cIdealGas = 1

Equation of state types:

These types are used in the member function eosType() of the virtual base class ThermoPhase. They are used to distinguish different types of equation of states. Also, they may be used for upcasting from the ThermoPhase class. Their id's should be distinct.

Users who wish to define their own equation of states which derive from ThermoPhase should define a unique id which doesn't conflict with those listed below. The Cantera Kernel however, will not be know about the class and will therefore not be able to initialize the class within its "factory" routines.

Definition at line 37 of file mix_defs.h.

Referenced by IdealGasPhase::eosType(), ThermoFactory::newThermoPhase(), vcs_VolPhase::setPtrThermoPhase(), IdealGasReactor::setThermoMgr(), IdealGasConstPressureReactor::setThermoMgr(), and vcs_Cantera_to_vprob().

const int cSurf = 3
const int cMetal = 4

A metal phase.

Definition at line 43 of file mix_defs.h.

Referenced by MetalPhase::eosType(), ThermoFactory::newThermoPhase(), and vcs_VolPhase::setPtrThermoPhase().

const int cEdge = 6
const int cFixedChemPot = 70

Stoichiometric compound with a constant chemical potential.

Definition at line 61 of file mix_defs.h.

Referenced by FixedChemPotSSTP::eosType(), and ThermoFactory::newThermoPhase().

const int cIdealSolidSolnPhase = 5009

Constant partial molar volume solution IdealSolidSolnPhase.h.

Definition at line 64 of file mix_defs.h.

Referenced by ThermoFactory::newThermoPhase(), and vcs_VolPhase::setPtrThermoPhase().

const int cHMW = 40

HMW - Strong electrolyte using the Pitzer formulation.

Definition at line 69 of file mix_defs.h.

Referenced by ThermoFactory::newThermoPhase().

const int cDebyeHuckel = 50

DebyeHuckel - Weak electrolyte using various Debye-Huckel formulations.

Definition at line 72 of file mix_defs.h.

Referenced by ThermoFactory::newThermoPhase().

const int cIdealMolalSoln = 60

IdealMolalSoln - molality based solution with molality-based act coeffs of 1.

Definition at line 75 of file mix_defs.h.

Referenced by ThermoFactory::newThermoPhase().

const int cMixtureFugacityTP = 700

Fugacity Models.

Definition at line 81 of file mix_defs.h.

const int cVPSS_IdealGas = 1001

Variable Pressure Standard State ThermoPhase objects.

Definition at line 96 of file mix_defs.h.

Referenced by ThermoFactory::newThermoPhase(), and VPSSMgrFactory::newVPSSMgr().

const int PHSCALE_PITZER = 0

Scale to be used for the output of single-ion activity coefficients is that used by Pitzer.

This is the internal scale used within the code. One property is that the activity coefficients for the cation and anion of a single salt will be equal. This scale is the one presumed by the formulation of the single-ion activity coefficients described in this report.

Activity coefficients for species k may be altered between scales s1 to s2 using the following formula

\[ ln(\gamma_k^{s2}) = ln(\gamma_k^{s1}) + \frac{z_k}{z_j} \left( ln(\gamma_j^{s2}) - ln(\gamma_j^{s1}) \right) \]

where j is any one species.

Definition at line 827 of file MolalityVPSSTP.h.

Referenced by HMWSoln::applyphScale(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), and MolalityVPSSTP::setpHScale().

const int PHSCALE_NBS = 1

Scale to be used for evaluation of single-ion activity coefficients is that used by the NBS standard for evaluation of the pH variable.

This is not the internal scale used within the code.

Activity coefficients for species k may be altered between scales s1 to s2 using the following formula

\[ ln(\gamma_k^{s2}) = ln(\gamma_k^{s1}) + \frac{z_k}{z_j} \left( ln(\gamma_j^{s2}) - ln(\gamma_j^{s1}) \right) \]

where j is any one species. For the NBS scale, j is equal to the Cl- species and

\[ ln(\gamma_{Cl-}^{s2}) = \frac{-A_{\phi} \sqrt{I}}{1.0 + 1.5 \sqrt{I}} \]

This is the NBS pH scale, which is used in all conventional pH measurements. and is based on the Bates-Guggenheim equations.

Definition at line 852 of file MolalityVPSSTP.h.

Referenced by HMWSoln::applyphScale(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), and MolalityVPSSTP::setpHScale().

const int cAC_CONVENTION_MOLAR = 0

Standard state uses the molar convention.

Definition at line 24 of file ThermoPhase.h.

Referenced by ThermoPhase::activityConvention().

const int cAC_CONVENTION_MOLALITY = 1

Standard state uses the molality convention.

Definition at line 26 of file ThermoPhase.h.

Referenced by MolalityVPSSTP::activityConvention(), and LiquidTransport::stefan_maxwell_solve().

const int cSS_CONVENTION_TEMPERATURE = 0

Standard state uses the molar convention.

Definition at line 34 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::standardStateConvention().

const int cSS_CONVENTION_VPSS = 1

Standard state uses the molality convention.

Definition at line 36 of file ThermoPhase.h.

Referenced by importPhase(), and VPStandardStateTP::standardStateConvention().

const int cSS_CONVENTION_SLAVE = 2

Standard state thermodynamics is obtained from slave ThermoPhase objects.

Definition at line 38 of file ThermoPhase.h.

Referenced by importPhase(), and LatticeSolidPhase::standardStateConvention().