Cantera  2.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions | Protected Attributes | List of all members
IdealSolidSolnPhase Class Reference

Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...

#include <IdealSolidSolnPhase.h>

Inheritance diagram for IdealSolidSolnPhase:
[legend]
Collaboration diagram for IdealSolidSolnPhase:
[legend]

Public Member Functions

 IdealSolidSolnPhase (int formCG=0)
 Constructor for IdealSolidSolnPhase. More...
 
 IdealSolidSolnPhase (const std::string &infile, const std::string &id="", int formCG=0)
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file. More...
 
 IdealSolidSolnPhase (XML_Node &root, const std::string &id="", int formCG=0)
 Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database. More...
 
 IdealSolidSolnPhase (const IdealSolidSolnPhase &)
 Copy Constructor. More...
 
IdealSolidSolnPhaseoperator= (const IdealSolidSolnPhase &)
 Assignment operator. More...
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 
virtual int eosType () const
 Equation of state flag. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Molar enthalpy of the solution. More...
 
virtual doublereal entropy_mole () const
 Molar entropy of the solution. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs free energy of the solution. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure of the solution. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume of the solution. More...
 
Mechanical Equation of State Properties

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown.

virtual doublereal pressure () const
 Pressure. More...
 
virtual void setPressure (doublereal p)
 Set the pressure at constant temperature. More...
 
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 
virtual void setDensity (const doublereal rho)
 Overwritten setDensity() function is necessary because the density is not an independent variable. More...
 
virtual void setMolarDensity (const doublereal rho)
 Overwritten setMolarDensity() function is necessary because the density is not an independent variable. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions, but don't normalize them to one. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions, and normalize them to one. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions, but don't normalize them to one. More...
 
virtual void setConcentrations (const doublereal *const c)
 Set the concentration,. More...
 
Chemical Potentials and Activities

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard state chemical potential at unit activity.

It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solid solution.

The activities are related to the generalized concentrations, \(\tilde C_k\), and standard concentrations, \(C^0_k\), by the following formula:

\[ a_k = \frac{\tilde C_k}{C^0_k} \]

The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upon the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations.

virtual void getActivityConcentrations (doublereal *c) const
 This method returns the array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k) const
 The standard concentration \( C^0_k \) used to normalize the generalized concentration. More...
 
virtual doublereal referenceConcentration (int k) const
 The reference (ie standard) concentration \( C^0_k \) used to normalize the generalized concentration. More...
 
virtual doublereal logStandardConc (size_t k) const
 Returns the log of the standard concentration of the kth species. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and general concentrations Note they have the same units, as their divisor is defined to be equal to the activity of the kth species in the solution, which is unitless. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of species activity coefficients. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \). More...
 
Partial Molar Properties of the Solution
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 returns an array of partial molar volumes of the species in the solution. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *mu0) const
 Get the standard state chemical potentials of the species. More...
 
void getEnthalpy_RT (doublereal *hrt) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
void getEntropy_R (doublereal *sr) const
 Get the nondimensional Entropies for the species standard states at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the pure species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
void getCp_R (doublereal *cpr) const
 Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species. More...
 
const vector_fpenthalpy_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
const vector_fpgibbs_RT_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
const vector_fpentropy_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
const vector_fpcp_R_ref () const
 Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More...
 
virtual void setPotentialEnergy (int k, doublereal pe)
 
virtual doublereal potentialEnergy (int k) const
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal cv_vib (int, double) const
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 Add a Species to this Phase. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Attributes

int m_formGC
 Format for the generalized concentrations. More...
 
doublereal m_Pref
 Value of the reference pressure for all species in this phase. More...
 
doublereal m_Pcurrent
 m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure. More...
 
vector_fp m_speciesMolarVolume
 Vector of molar volumes for each species in the solution. More...
 
vector_fp m_h0_RT
 Vector containing the species reference enthalpies at T = m_tlast. More...
 
vector_fp m_cp0_R
 Vector containing the species reference constant pressure heat capacities at T = m_tlast. More...
 
vector_fp m_g0_RT
 Vector containing the species reference Gibbs functions at T = m_tlast. More...
 
vector_fp m_s0_R
 Vector containing the species reference entropies at T = m_tlast. More...
 
vector_fp m_expg0_RT
 Vector containing the species reference exp(-G/RT) functions at T = m_tlast. More...
 
vector_fp m_pe
 Vector of potential energies for the species. More...
 
vector_fp m_pp
 Temporary array used in equilibrium calculations. More...
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string,
shared_ptr< Species > > 
m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Utility Functions

virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 
virtual void setToEquilState (const doublereal *lambda_RT)
 Set mixture to an equilibrium state consistent with specified element potentials and the temperature. More...
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k. More...
 
void getSpeciesMolarVolumes (doublereal *smv) const
 Fill in a return vector containing the species molar volumes. More...
 
void _updateThermo () const
 This function gets called for every call to functions in this class. More...
 
void initLengths ()
 This internal function adjusts the lengths of arrays. More...
 

Additional Inherited Members

- Public Attributes inherited from Phase
enum CT_RealNumber_Range_Behavior realNumberRangeBehavior_
 Overflow behavior of real number calculations involving this thermo object. More...
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Detailed Description

Class IdealSolidSolnPhase represents a condensed phase ideal solution compound.

The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal solution mixtures.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and in the XML file. The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

Definition at line 51 of file IdealSolidSolnPhase.h.

Constructor & Destructor Documentation

IdealSolidSolnPhase ( int  formCG = 0)

Constructor for IdealSolidSolnPhase.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the XML data file.

Parameters
formCGThis parameter initializes the m_formGC variable.

Definition at line 24 of file IdealSolidSolnPhase.cpp.

Referenced by IdealSolidSolnPhase::duplMyselfAsThermoPhase().

IdealSolidSolnPhase ( const std::string &  infile,
const std::string &  id = "",
int  formCG = 0 
)

Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file.

This constructor will also fully initialize the object. The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the XML data file.

Parameters
infileFile name for the XML datafile containing information for this phase
idThe name of this phase. This is used to look up the phase in the XML datafile.
formCGThis parameter initializes the m_formGC variable.

Definition at line 35 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::initThermoFile().

IdealSolidSolnPhase ( XML_Node root,
const std::string &  id = "",
int  formCG = 0 
)

Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database.

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and/or read from the data file.

Parameters
rootXML tree containing a description of the phase. The tree must be positioned at the XML element named phase with id, "id", on input to this routine.
idThe name of this phase. This is used to look up the phase in the XML datafile.
formCGThis parameter initializes the m_formGC variable.

Definition at line 48 of file IdealSolidSolnPhase.cpp.

References Cantera::findXMLPhase(), and Cantera::importPhase().

Copy Constructor.

Definition at line 61 of file IdealSolidSolnPhase.cpp.

Member Function Documentation

IdealSolidSolnPhase & operator= ( const IdealSolidSolnPhase b)
ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Base Class Duplication Function

Given a pointer to ThermoPhase, this function can duplicate the object.

Reimplemented from ThermoPhase.

Definition at line 86 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::IdealSolidSolnPhase().

int eosType ( ) const
virtual

Equation of state flag.

Returns a value depending upon the value of m_formGC, which is defined at instantiation.

Reimplemented from ThermoPhase.

Definition at line 91 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC.

Referenced by IdealSolidSolnPhase::getUnitsStandardConc().

doublereal enthalpy_mole ( ) const
virtual

Molar enthalpy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T) + (P - P_{ref}) (\sum_k X_k \hat V^0_k) \]

The reference-state pure-species enthalpies at the reference pressure Pref \( \hat h^0_k(T) \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 115 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, IdealSolidSolnPhase::m_Pref, Phase::mean_X(), Phase::molarDensity(), IdealSolidSolnPhase::pressure(), and Phase::temperature().

doublereal entropy_mole ( ) const
virtual

Molar entropy of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 121 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), and Phase::sum_xlogx().

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs free energy of the solution.

Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]

The reference-state pure-species Gibbs free energies \( \hat g^0_k(T) \) are computed by the species thermodynamic property manager, while the standard state Gibbs free energies \( \hat g^0_k(T,P) \) are computed by the member function, gibbs_RT().

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 126 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::mean_X(), Phase::sum_xlogx(), and Phase::temperature().

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]

The heat capacity is independent of pressure. The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 131 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::cp_R_ref(), Cantera::GasConstant, and Phase::mean_X().

Referenced by IdealSolidSolnPhase::cv_mole().

virtual doublereal cv_mole ( ) const
inlinevirtual

Molar heat capacity at constant volume of the solution.

Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_v(T,P) = \hat c_p(T,P) \]

The two heat capacities are equal.

Reimplemented from ThermoPhase.

Definition at line 187 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::cp_mole().

virtual doublereal pressure ( ) const
inlinevirtual

Pressure.

Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.

Reimplemented from ThermoPhase.

Definition at line 208 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::m_Pcurrent.

Referenced by IdealSolidSolnPhase::enthalpy_mole().

void setPressure ( doublereal  p)
virtual

Set the pressure at constant temperature.

Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.

Parameters
pInput Pressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 169 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::m_Pcurrent.

void calcDensity ( )

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

Definition at line 140 of file IdealSolidSolnPhase.cpp.

References Cantera::dot(), IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFractdivMMW(), and Phase::setDensity().

Referenced by IdealSolidSolnPhase::setConcentrations(), IdealSolidSolnPhase::setMassFractions(), IdealSolidSolnPhase::setMassFractions_NoNorm(), IdealSolidSolnPhase::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions_NoNorm(), and IdealSolidSolnPhase::setPressure().

void setDensity ( const doublereal  rho)
virtual

Overwritten setDensity() function is necessary because the density is not an independent variable.

This function will now throw an error condition

May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.

Parameters
rhoInput density

Reimplemented from Phase.

Definition at line 155 of file IdealSolidSolnPhase.cpp.

References Phase::density().

void setMolarDensity ( const doublereal  rho)
virtual

Overwritten setMolarDensity() function is necessary because the density is not an independent variable.

This function will now throw an error condition.

Parameters
rhoInput Density

Reimplemented from Phase.

Definition at line 175 of file IdealSolidSolnPhase.cpp.

void setMoleFractions ( const doublereal *const  x)
virtual

Set the mole fractions.

Parameters
xInput vector of mole fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 181 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and Phase::setMoleFractions().

void setMoleFractions_NoNorm ( const doublereal *const  x)
virtual

Set the mole fractions, but don't normalize them to one.

Parameters
xInput vector of mole fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 187 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and Phase::setMoleFractions().

void setMassFractions ( const doublereal *const  y)
virtual

Set the mass fractions, and normalize them to one.

Parameters
yInput vector of mass fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 193 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and Phase::setMassFractions().

void setMassFractions_NoNorm ( const doublereal *const  y)
virtual

Set the mass fractions, but don't normalize them to one.

Parameters
yInput vector of mass fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 199 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and Phase::setMassFractions_NoNorm().

void setConcentrations ( const doublereal *const  c)
virtual

Set the concentration,.

Parameters
cInput vector of concentrations. Length: m_kk.

Reimplemented from Phase.

Definition at line 205 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::calcDensity(), and Phase::setConcentrations().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns the array of generalized concentrations.

The generalized concentrations are used in the evaluation of the rates of progress for reactions involving species in this phase. The generalized concentration divided by the standard concentration is also equal to the activity of species.

For this implementation the activity is defined to be the mole fraction of the species. The generalized concentration is defined to be equal to the mole fraction divided by the partial molar volume. The generalized concentrations for species in this phase therefore have units of kmol m-3. Rate constants must reflect this fact.

On a general note, the following must be true. For an ideal solution, the generalized concentration must consist of the mole fraction multiplied by a constant. The constant may be fairly arbitrarily chosen, with differences adsorbed into the reaction rate expression. 1/V_N, 1/V_k, or 1 are equally good, as long as the standard concentration is adjusted accordingly. However, it must be a constant (and not the concentration, btw, which is a function of the mole fractions) in order for the ideal solution properties to hold at the same time having the standard concentration to be independent of the mole fractions.

In this implementation the form of the generalized concentrations depend upon the member attribute, m_formGC.

HKM Note: We have absorbed the pressure dependence of the pure species state into the thermodynamics functions. Therefore the standard state on which the activities are based depend on both temperature and pressure. If we hadn't, it would have appeared in this function in a very awkward exp[] format.

Parameters
cPointer to array of doubles of length m_kk, which on exit will contain the generalized concentrations.

Reimplemented from ThermoPhase.

Definition at line 215 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::meanMolecularWeight(), and Phase::moleFractdivMMW().

doublereal standardConcentration ( size_t  k) const
virtual

The standard concentration \( C^0_k \) used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. This is the inverse of the species molar volume. Units for the standard concentration are kmol m-3.

Parameters
kSpecies number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter.

Reimplemented from ThermoPhase.

Definition at line 239 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

doublereal referenceConcentration ( int  k) const
virtual

The reference (ie standard) concentration \( C^0_k \) used to normalize the generalized concentration.

In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. (clone of the standard concentration -> suggest changing the name). This is the inverse of the species molar volume.

Parameters
kSpecies index.

Definition at line 251 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

doublereal logStandardConc ( size_t  k) const
virtual

Returns the log of the standard concentration of the kth species.

Parameters
kSpecies number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter.

Reimplemented from ThermoPhase.

Definition at line 264 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and general concentrations Note they have the same units, as their divisor is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

Parameters
uAOutput vector containing the units:
uA[0] = kmol units - default  = 1
uA[1] = m    units - default  = -nDim(), the number of spatial
                              dimensions in the Phase class.
uA[2] = kg   units - default  = 0;
uA[3] = Pa(pressure) units - default = 0;
uA[4] = Temperature units - default = 0;
uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.

For EOS types other than cIdealSolidSolnPhase0, the default kmol/m3 holds for standard concentration units. For cIdealSolidSolnPhase0 type, the standard concentration is unitless.

Deprecated:
To be removed after Cantera 2.2.

Reimplemented from ThermoPhase.

Definition at line 285 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::eosType(), Phase::nDim(), and Cantera::warn_deprecated().

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of species activity coefficients.

Parameters
acoutput vector of activity coefficients. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 318 of file IdealSolidSolnPhase.cpp.

References Phase::m_kk.

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials.

Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{ref}_k(T) + V_k * (p - p_o) + R T ln(X_k) \]

or another way to phrase this is

\[ \mu_k = \mu^o_k(T,p) + R T ln(X_k) \]

where \( \mu^o_k(T,p) = \mu^{ref}_k(T) + V_k * (p - p_o)\)

Parameters
muOutput vector of chemical potentials.

Reimplemented from ThermoPhase.

Definition at line 325 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().

void getChemPotentials_RT ( doublereal *  mu) const
virtual

Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \).

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k + RT ln(X_k) \]

where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).

Parameters
muOutput vector of dimensionless chemical potentials. Length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 337 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol) For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
hbarOutput vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 352 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Cantera::scale(), and Phase::temperature().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]

The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
sbarOutput vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 358 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, Phase::moleFraction(), and Cantera::SmallNumber.

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters
cpbarOutput vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 367 of file IdealSolidSolnPhase.cpp.

References Cantera::GasConstant, IdealSolidSolnPhase::getCp_R(), and Phase::m_kk.

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

returns an array of partial molar volumes of the species in the solution.

Units: m^3 kmol-1.

For this solution, thepartial molar volumes are equal to the constant species molar volumes.

Parameters
vbarOutput vector of partial molar volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 375 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::getStandardVolumes().

virtual void getStandardChemPotentials ( doublereal *  mu0) const
inlinevirtual

Get the standard state chemical potentials of the species.

This is the array of chemical potentials at unit activity \( \mu^0_k(T,P) \). We define these here as the chemical potentials of the pure species at the temperature and pressure of the solution. This function is used in the evaluation of the equilibrium constant Kc. Therefore, Kc will also depend on T and P. This is the norm for liquid and solid systems.

units = J / kmol

Parameters
mu0Output vector of standard state chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 570 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::getPureGibbs().

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.

We assume an incompressible constant partial molar volume here:

\[ h^0_k(T,P) = h^{ref}_k(T) + (P - P_{ref}) * V_k \]

where \(V_k\) is the molar volume of pure species k. \( h^{ref}_k(T)\) is the enthalpy of the pure species k at the reference pressure, \(P_{ref}\).

Parameters
hrtVector of length m_kk, which on return hrt[k] will contain the nondimensional standard state enthalpy of species k.

Reimplemented from ThermoPhase.

Definition at line 406 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::temperature().

void getEntropy_R ( doublereal *  sr) const
virtual

Get the nondimensional Entropies for the species standard states at the current T and P of the solution.

Note, this is equal to the reference state entropies due to the zero volume expansivity: i.e., (dS/dP)_T = (dV/dT)_P = 0.0

Parameters
srVector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy for species k.

Reimplemented from ThermoPhase.

Definition at line 416 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::entropy_R_ref().

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution.

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]

where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).

Parameters
grtVector of length m_kk, which on return sr[k] will contain the nondimensional standard state Gibbs function for species k.

Reimplemented from ThermoPhase.

Definition at line 395 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::_RT(), DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, and IdealSolidSolnPhase::m_speciesMolarVolume.

void getPureGibbs ( doublereal *  gpure) const
virtual

Get the Gibbs functions for the pure species at the current T and P of the solution.

We assume an incompressible constant partial molar volume here:

\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]

where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).

Parameters
gpureOutput vector of Gibbs functions for species Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 384 of file IdealSolidSolnPhase.cpp.

References ThermoPhase::_RT(), DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, and IdealSolidSolnPhase::m_speciesMolarVolume.

Referenced by IdealSolidSolnPhase::getStandardChemPotentials().

void getIntEnergy_RT ( doublereal *  urt) const
virtual

Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.

Parameters
urtOutput vector of standard state nondimensional internal energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 422 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::temperature().

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.

\[ Cp^0_k(T,P) = Cp^{ref}_k(T) \]

where \(V_k\) is the molar volume of pure species k. \( Cp^{ref}_k(T)\) is the constant pressure heat capacity of species k at the reference pressure, \(p_{ref}\).

Parameters
cprVector of length m_kk, which on return cpr[k] will contain the nondimensional constant pressure heat capacity for species k.

Reimplemented from ThermoPhase.

Definition at line 431 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::cp_R_ref().

Referenced by IdealSolidSolnPhase::getPartialMolarCp().

void getStandardVolumes ( doublereal *  vol) const
virtual

Get the molar volumes of each species in their standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector of standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 437 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

Referenced by IdealSolidSolnPhase::getPartialMolarVolumes().

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing reference nondimensional enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 446 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_h0_RT, and Phase::m_kk.

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing reference nondimensional Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 454 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

units = J/kmol

Parameters
gOutput vector containing reference Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 462 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), Cantera::GasConstant, IdealSolidSolnPhase::m_g0_RT, Phase::m_kk, and Phase::temperature().

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
erOutput vector containing reference nondimensional entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 480 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), Phase::m_kk, and IdealSolidSolnPhase::m_s0_R.

void getIntEnergy_RT_ref ( doublereal *  urt) const
virtual

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector containing reference nondimensional internal energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 471 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::temperature().

void getCp_R_ref ( doublereal *  cprt) const
virtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.

Parameters
cprtOutput vector containing reference nondimensional heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 488 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_cp0_R, and Phase::m_kk.

const vector_fp & enthalpy_RT_ref ( ) const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 496 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_h0_RT.

Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), and IdealSolidSolnPhase::getPartialMolarEnthalpies().

const vector_fp& gibbs_RT_ref ( ) const
inline

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 756 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_g0_RT.

Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::gibbs_mole(), and IdealSolidSolnPhase::setToEquilState().

const vector_fp & entropy_R_ref ( ) const

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 502 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_s0_R.

Referenced by IdealSolidSolnPhase::entropy_mole(), IdealSolidSolnPhase::getEntropy_R(), and IdealSolidSolnPhase::getPartialMolarEntropies().

const vector_fp& cp_R_ref ( ) const
inline

Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.

Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.

Definition at line 777 of file IdealSolidSolnPhase.h.

References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_cp0_R.

Referenced by IdealSolidSolnPhase::cp_mole(), and IdealSolidSolnPhase::getCp_R().

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from ThermoPhase.

Definition at line 512 of file IdealSolidSolnPhase.cpp.

References XML_Node::attrib(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), Cantera::getFloat(), XML_Node::hasChild(), XML_Node::id(), IdealSolidSolnPhase::initLengths(), ThermoPhase::initThermoXML(), Cantera::lowercase(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, XML_Node::root(), and Phase::speciesName().

void setToEquilState ( const doublereal *  lambda_RT)
virtual

Set mixture to an equilibrium state consistent with specified element potentials and the temperature.

Parameters
lambda_RTvector of non-dimensional element potentials \( \lambda_m/RT \).

Reimplemented from ThermoPhase.

Definition at line 608 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, Phase::nAtoms(), Phase::nElements(), and ThermoPhase::setState_PX().

double speciesMolarVolume ( int  k) const

Report the molar volume of species k.

units - \( m^3 kmol^-1 \)

Parameters
kspecies index

Definition at line 626 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

void getSpeciesMolarVolumes ( doublereal *  smv) const

Fill in a return vector containing the species molar volumes.

units - \( m^3 kmol^-1 \)

Parameters
smvoutput vector containing species molar volumes. Length: m_kk.

Definition at line 631 of file IdealSolidSolnPhase.cpp.

References IdealSolidSolnPhase::m_speciesMolarVolume.

void _updateThermo ( ) const
private

This function gets called for every call to functions in this class.

It checks to see whether the temperature has changed and thus the reference thermodynamics functions for all of the species must be recalculated. If the temperature has changed, the species thermo manager is called to recalculate G, Cp, H, and S at the current temperature.

Definition at line 636 of file IdealSolidSolnPhase.cpp.

References DATA_PTR, Cantera::GasConstant, IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_pe, IdealSolidSolnPhase::m_s0_R, ThermoPhase::m_spthermo, ThermoPhase::m_tlast, Phase::temperature(), and SpeciesThermo::update().

Referenced by IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::entropy_R_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), IdealSolidSolnPhase::getEntropy_R_ref(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT_ref(), IdealSolidSolnPhase::gibbs_RT_ref(), and IdealSolidSolnPhase::logStandardConc().

void initLengths ( )
private

Member Data Documentation

int m_formGC
protected

Format for the generalized concentrations.

m_formGC GeneralizedConc StandardConc
0 (default) X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N

The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

Definition at line 859 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::eosType(), IdealSolidSolnPhase::getActivityConcentrations(), IdealSolidSolnPhase::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), IdealSolidSolnPhase::operator=(), IdealSolidSolnPhase::referenceConcentration(), and IdealSolidSolnPhase::standardConcentration().

doublereal m_Pref
protected

Value of the reference pressure for all species in this phase.

The T dependent polynomials are evaluated at the reference pressure. Note, because this is a single value, all species are required to have the same reference pressure.

Definition at line 867 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().

doublereal m_Pcurrent
protected

m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.

The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.

Definition at line 876 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::operator=(), IdealSolidSolnPhase::pressure(), and IdealSolidSolnPhase::setPressure().

vector_fp m_speciesMolarVolume
protected
vector_fp m_h0_RT
mutableprotected
vector_fp m_cp0_R
mutableprotected

Vector containing the species reference constant pressure heat capacities at T = m_tlast.

Definition at line 891 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

vector_fp m_g0_RT
mutableprotected
vector_fp m_s0_R
mutableprotected
vector_fp m_expg0_RT
mutableprotected

Vector containing the species reference exp(-G/RT) functions at T = m_tlast.

Definition at line 903 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

vector_fp m_pe
mutableprotected

Vector of potential energies for the species.

Definition at line 906 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().

vector_fp m_pp
mutableprotected

Temporary array used in equilibrium calculations.

Definition at line 909 of file IdealSolidSolnPhase.h.

Referenced by IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().


The documentation for this class was generated from the following files: