Cantera  2.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Public Member Functions | Public Attributes | Private Member Functions | Static Private Member Functions | Private Attributes | List of all members
HMWSoln Class Reference

Class HMWSoln represents a dilute or concentrated liquid electrolyte phase which obeys the Pitzer formulation for nonideality. More...

#include <HMWSoln.h>

Inheritance diagram for HMWSoln:
[legend]
Collaboration diagram for HMWSoln:
[legend]

Public Member Functions

 HMWSoln ()
 Default Constructor. More...
 
 HMWSoln (const std::string &inputFile, const std::string &id="")
 Construct and initialize an HMWSoln ThermoPhase object directly from an ASCII input file. More...
 
 HMWSoln (XML_Node &phaseRef, const std::string &id="")
 Construct and initialize an HMWSoln ThermoPhase object directly from an XML database. More...
 
 HMWSoln (const HMWSoln &right)
 Copy Constructor. More...
 
HMWSolnoperator= (const HMWSoln &right)
 Assignment operator. More...
 
virtual ~HMWSoln ()
 Destructor. More...
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplicator from the ThermoPhase parent class. More...
 
void constructPhaseFile (std::string inputFile, std::string id)
 Import, construct, and initialize a HMWSoln phase specification from an XML tree into the current object. More...
 
void constructPhaseXML (XML_Node &phaseNode, std::string id)
 Import and initialize a HMWSoln phase specification in an XML tree into the current object. More...
 
virtual doublereal satPressure (doublereal T)
 Get the saturation pressure for a given temperature. More...
 
virtual void initThermo ()
 Internal initialization required after all species have been added. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Initialize the phase parameters from an XML file. More...
 
virtual double A_Debye_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the Debye Huckel constant as a function of temperature and pressure. More...
 
virtual double dA_DebyedT_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure. More...
 
virtual double dA_DebyedP_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the derivative of the Debye Huckel constant with respect to pressure, as a function of temperature and pressure. More...
 
double ADebye_L (double temperature=-1.0, double pressure=-1.0) const
 Return Pitzer's definition of A_L. More...
 
double ADebye_J (double temperature=-1.0, double pressure=-1.0) const
 Return Pitzer's definition of A_J. More...
 
double ADebye_V (double temperature=-1.0, double pressure=-1.0) const
 Return Pitzer's definition of A_V. More...
 
virtual double d2A_DebyedT2_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the 2nd derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure. More...
 
double AionicRadius (int k=0) const
 Reports the ionic radius of the kth species. More...
 
int formPitzer () const
 formPitzer(): More...
 
void printCoeffs () const
 Print out all of the input Pitzer coefficients. More...
 
void getUnscaledMolalityActivityCoefficients (doublereal *acMolality) const
 Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
int debugPrinting ()
 Return int specifying the amount of debug printing. More...
 
Utilities
virtual int eosType () const
 Equation of state type flag. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal relative_enthalpy () const
 Excess molar enthalpy of the solution from the mixing process. More...
 
virtual doublereal relative_molal_enthalpy () const
 Excess molar enthalpy of the solution from the mixing process on a molality basis. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

Activity is assumed to be molality-based here.

virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized activity concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations. More...
 
virtual void getActivities (doublereal *ac) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
Chemical Equilibrium
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
- Public Member Functions inherited from MolalityVPSSTP
 MolalityVPSSTP ()
 Default Constructor. More...
 
 MolalityVPSSTP (const MolalityVPSSTP &b)
 Copy constructor. More...
 
MolalityVPSSTPoperator= (const MolalityVPSSTP &b)
 Assignment operator. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set equation of state parameter values from XML entries. More...
 
void setState_TPM (doublereal t, doublereal p, const doublereal *const molalities)
 Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes. More...
 
void setState_TPM (doublereal t, doublereal p, const compositionMap &m)
 Set the temperature (K), pressure (Pa), and molalities. More...
 
void setState_TPM (doublereal t, doublereal p, const std::string &m)
 Set the temperature (K), pressure (Pa), and molalities. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual std::string report (bool show_thermo=true, doublereal threshold=1e-14) const
 returns a summary of the state of the phase as a string More...
 
void setpHScale (const int pHscaleType)
 Set the pH scale, which determines the scale for single-ion activity coefficients. More...
 
int pHScale () const
 Reports the pH scale, which determines the scale for single-ion activity coefficients. More...
 
void setSolvent (size_t k)
 This routine sets the index number of the solvent for the phase. More...
 
size_t solventIndex () const
 Returns the solvent index. More...
 
void setMoleFSolventMin (doublereal xmolSolventMIN)
 Sets the minimum mole fraction in the molality formulation. More...
 
doublereal moleFSolventMin () const
 Returns the minimum mole fraction in the molality formulation. More...
 
void calcMolalities () const
 Calculates the molality of all species and stores the result internally. More...
 
void getMolalities (doublereal *const molal) const
 This function will return the molalities of the species. More...
 
void setMolalities (const doublereal *const molal)
 Set the molalities of the solutes in a phase. More...
 
void setMolalitiesByName (const compositionMap &xMap)
 Set the molalities of a phase. More...
 
void setMolalitiesByName (const std::string &name)
 Set the molalities of a phase. More...
 
int activityConvention () const
 This method returns the activity convention. More...
 
void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getMolalityActivityCoefficients (doublereal *acMolality) const
 Get the array of non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual double osmoticCoefficient () const
 Calculate the osmotic coefficient. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object. More...
 
- Public Member Functions inherited from VPStandardStateTP
 VPStandardStateTP ()
 Constructor. More...
 
 VPStandardStateTP (const VPStandardStateTP &b)
 Copy Constructor. More...
 
VPStandardStateTPoperator= (const VPStandardStateTP &b)
 Assignment operator. More...
 
virtual ~VPStandardStateTP ()
 Destructor. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log concentration-like derivatives of the log activity coefficients. More...
 
void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More...
 
void getPureGibbs (doublereal *gpure) const
 Get the standard state Gibbs functions for each species at the current T and P. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual const vector_fpgetStandardVolumes () const
 
doublereal pressure () const
 Returns the current pressure of the phase. More...
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 Add a Species to this Phase. More...
 
void setVPSSMgr (VPSSMgr *vp_ptr)
 set the VPSS Mgr More...
 
VPSSMgrprovideVPSSMgr ()
 Return a pointer to the VPSSMgr for this phase. More...
 
void createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr)
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of the standard state of one species in the phase (J kmol-1) More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
virtual ~ThermoPhase ()
 Destructor. Deletes the species thermo manager. More...
 
 ThermoPhase (const ThermoPhase &right)
 Copy Constructor for the ThermoPhase object. More...
 
ThermoPhaseoperator= (const ThermoPhase &right)
 Assignment operator. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal cv_vib (int, double) const
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More...
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More...
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More...
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. More...
 
doublereal entropy_mass () const
 Specific entropy. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
virtual ~Phase ()
 Destructor. More...
 
 Phase (const Phase &right)
 Copy Constructor. More...
 
Phaseoperator= (const Phase &right)
 Assignment operator. More...
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addElement (const XML_Node &e)
 Add an element from an XML specification. More...
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree. More...
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species. More...
 
bool elementsFrozen ()
 True if freezeElements has been called. More...
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More...
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Public Attributes

int m_form_A_Debye
 Form of the constant outside the Debye-Huckel term called A. More...
 
int m_debugCalc
 
- Public Attributes inherited from Phase
enum CT_RealNumber_Range_Behavior realNumberRangeBehavior_
 Overflow behavior of real number calculations involving this thermo object. More...
 

Private Member Functions

void s_updateScaling_pHScaling () const
 Apply the current phScale to a set of activity Coefficients. More...
 
void s_updateScaling_pHScaling_dT () const
 Apply the current phScale to a set of derivatives of the activity Coefficients wrt temperature. More...
 
void s_updateScaling_pHScaling_dT2 () const
 Apply the current phScale to a set of 2nd derivatives of the activity Coefficients wrt temperature. More...
 
void s_updateScaling_pHScaling_dP () const
 Apply the current phScale to a set of derivatives of the activity Coefficients wrt pressure. More...
 
doublereal s_NBS_CLM_lnMolalityActCoeff () const
 Calculate the Chlorine activity coefficient on the NBS scale. More...
 
doublereal s_NBS_CLM_dlnMolalityActCoeff_dT () const
 Calculate the temperature derivative of the Chlorine activity coefficient on the NBS scale. More...
 
doublereal s_NBS_CLM_d2lnMolalityActCoeff_dT2 () const
 Calculate the second temperature derivative of the Chlorine activity coefficient on the NBS scale. More...
 
doublereal s_NBS_CLM_dlnMolalityActCoeff_dP () const
 Calculate the pressure derivative of the Chlorine activity coefficient. More...
 
void initLengths ()
 Initialize all of the species-dependent lengths in the object. More...
 
virtual void applyphScale (doublereal *acMolality) const
 Apply the current phScale to a set of activity Coefficients or activities. More...
 
void s_update_lnMolalityActCoeff () const
 
void s_update_dlnMolalityActCoeff_dT () const
 This function calculates the temperature derivative of the natural logarithm of the molality activity coefficients. More...
 
void s_update_d2lnMolalityActCoeff_dT2 () const
 This function calculates the temperature second derivative of the natural logarithm of the molality activity coefficients. More...
 
void s_update_dlnMolalityActCoeff_dP () const
 This function calculates the pressure derivative of the natural logarithm of the molality activity coefficients. More...
 
void s_updateIMS_lnMolalityActCoeff () const
 This function will be called to update the internally stored natural logarithm of the molality activity coefficients. More...
 
void s_updatePitzer_lnMolalityActCoeff () const
 Calculate the Pitzer portion of the activity coefficients. More...
 
void s_updatePitzer_dlnMolalityActCoeff_dT () const
 Calculates the temperature derivative of the natural logarithm of the molality activity coefficients. More...
 
void s_updatePitzer_d2lnMolalityActCoeff_dT2 () const
 This function calculates the temperature second derivative of the natural logarithm of the molality activity coefficients. More...
 
void s_updatePitzer_dlnMolalityActCoeff_dP () const
 Calculates the Pressure derivative of the natural logarithm of the molality activity coefficients. More...
 
void s_updatePitzer_CoeffWRTemp (int doDerivs=2) const
 Calculates the Pitzer coefficients' dependence on the temperature. More...
 
void calc_lambdas (double is) const
 Calculate the lambda interactions. More...
 
void calc_thetas (int z1, int z2, double *etheta, double *etheta_prime) const
 Calculate etheta and etheta_prime. More...
 
void counterIJ_setup () const
 Set up a counter variable for keeping track of symmetric binary interactions amongst the solute species. More...
 
void calcMolalitiesCropped () const
 Calculate the cropped molalities. More...
 
void readXMLBinarySalt (XML_Node &BinSalt)
 Process an XML node called "binarySaltParameters". More...
 
void readXMLThetaAnion (XML_Node &BinSalt)
 Process an XML node called "thetaAnion". More...
 
void readXMLThetaCation (XML_Node &BinSalt)
 Process an XML node called "thetaCation". More...
 
void readXMLPsiCommonAnion (XML_Node &BinSalt)
 Process an XML node called "psiCommonAnion". More...
 
void readXMLPsiCommonCation (XML_Node &BinSalt)
 Process an XML node called "psiCommonCation". More...
 
void readXMLLambdaNeutral (XML_Node &BinSalt)
 Process an XML node called "lambdaNeutral". More...
 
void readXMLMunnnNeutral (XML_Node &BinSalt)
 Process an XML node called "MunnnNeutral". More...
 
void readXMLZetaCation (const XML_Node &BinSalt)
 Process an XML node called "zetaCation". More...
 
void readXMLCroppingCoefficients (const XML_Node &acNode)
 Process an XML node called "croppingCoefficients" for the cropping coefficients values. More...
 
void calcIMSCutoffParams_ ()
 Precalculate the IMS Cutoff parameters for typeCutoff = 2. More...
 
void calcMCCutoffParams_ ()
 Calculate molality cut-off parameters. More...
 

Static Private Member Functions

static int interp_est (const std::string &estString)
 Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field. More...
 

Private Attributes

int m_formPitzer
 This is the form of the Pitzer parameterization used in this model. More...
 
int m_formPitzerTemp
 This is the form of the temperature dependence of Pitzer parameterization used in the model. More...
 
int m_formGC
 Format for the generalized concentration: More...
 
vector_int m_electrolyteSpeciesType
 Vector containing the electrolyte species type. More...
 
vector_fp m_Aionic
 a_k = Size of the ionic species in the DH formulation units = meters More...
 
double m_IionicMolality
 Current value of the ionic strength on the molality scale Associated Salts, if present in the mechanism, don't contribute to the value of the ionic strength in this version of the Ionic strength. More...
 
double m_maxIionicStrength
 Maximum value of the ionic strength allowed in the calculation of the activity coefficients. More...
 
double m_TempPitzerRef
 Reference Temperature for the Pitzer formulations. More...
 
double m_IionicMolalityStoich
 Stoichiometric ionic strength on the molality scale. More...
 
double m_A_Debye
 A_Debye -> this expression appears on the top of the ln actCoeff term in the general Debye-Huckel expression It depends on temperature. More...
 
PDSSm_waterSS
 Water standard state calculator. More...
 
double m_densWaterSS
 density of standard-state water More...
 
WaterPropsm_waterProps
 Pointer to the water property calculator. More...
 
vector_fp m_pp
 Temporary array used in equilibrium calculations. More...
 
vector_fp m_tmpV
 vector of size m_kk, used as a temporary holding area. More...
 
vector_fp m_speciesCharge_Stoich
 Stoichiometric species charge -> This is for calculations of the ionic strength which ignore ion-ion pairing into neutral molecules. More...
 
vector_fp m_Beta0MX_ij
 Array of 2D data used in the Pitzer/HMW formulation. More...
 
vector_fp m_Beta0MX_ij_L
 Derivative of Beta0_ij[i][j] wrt T. More...
 
vector_fp m_Beta0MX_ij_LL
 Derivative of Beta0_ij[i][j] wrt TT. More...
 
vector_fp m_Beta0MX_ij_P
 Derivative of Beta0_ij[i][j] wrt P. More...
 
Array2D m_Beta0MX_ij_coeff
 Array of coefficients for Beta0, a variable in Pitzer's papers. More...
 
vector_fp m_Beta1MX_ij
 
vector_fp m_Beta1MX_ij_L
 Derivative of Beta1_ij[i][j] wrt T. More...
 
vector_fp m_Beta1MX_ij_LL
 Derivative of Beta1_ij[i][j] wrt TT. More...
 
vector_fp m_Beta1MX_ij_P
 Derivative of Beta1_ij[i][j] wrt P. More...
 
Array2D m_Beta1MX_ij_coeff
 Array of coefficients for Beta1, a variable in Pitzer's papers. More...
 
vector_fp m_Beta2MX_ij
 Array of 2D data used in the Pitzer/HMW formulation. More...
 
vector_fp m_Beta2MX_ij_L
 Derivative of Beta2_ij[i][j] wrt T. More...
 
vector_fp m_Beta2MX_ij_LL
 Derivative of Beta2_ij[i][j] wrt TT. More...
 
vector_fp m_Beta2MX_ij_P
 Derivative of Beta2_ij[i][j] wrt P. More...
 
Array2D m_Beta2MX_ij_coeff
 Array of coefficients for Beta2, a variable in Pitzer's papers. More...
 
vector_fp m_Alpha1MX_ij
 Array of 2D data used in the Pitzer/HMW formulation. More...
 
vector_fp m_Alpha2MX_ij
 Array of 2D data used in the Pitzer/HMW formulation. More...
 
vector_fp m_CphiMX_ij
 Array of 2D data used in the Pitzer/HMW formulation. More...
 
vector_fp m_CphiMX_ij_L
 Derivative of Cphi_ij[i][j] wrt T. More...
 
vector_fp m_CphiMX_ij_LL
 Derivative of Cphi_ij[i][j] wrt TT. More...
 
vector_fp m_CphiMX_ij_P
 Derivative of Cphi_ij[i][j] wrt P. More...
 
Array2D m_CphiMX_ij_coeff
 Array of coefficients for CphiMX, a parameter in the activity coefficient formulation. More...
 
vector_fp m_Theta_ij
 Array of 2D data for Theta_ij[i][j] in the Pitzer/HMW formulation. More...
 
vector_fp m_Theta_ij_L
 Derivative of Theta_ij[i][j] wrt T. More...
 
vector_fp m_Theta_ij_LL
 Derivative of Theta_ij[i][j] wrt TT. More...
 
vector_fp m_Theta_ij_P
 Derivative of Theta_ij[i][j] wrt P. More...
 
Array2D m_Theta_ij_coeff
 Array of coefficients for Theta_ij[i][j] in the Pitzer/HMW formulation. More...
 
vector_fp m_Psi_ijk
 Array of 3D data used in the Pitzer/HMW formulation. More...
 
vector_fp m_Psi_ijk_L
 Derivative of Psi_ijk[n] wrt T. More...
 
vector_fp m_Psi_ijk_LL
 Derivative of Psi_ijk[n] wrt TT. More...
 
vector_fp m_Psi_ijk_P
 Derivative of Psi_ijk[n] wrt P. More...
 
Array2D m_Psi_ijk_coeff
 Array of coefficients for Psi_ijk[n] in the Pitzer/HMW formulation. More...
 
Array2D m_Lambda_nj
 Lambda coefficient for the ij interaction. More...
 
Array2D m_Lambda_nj_L
 Derivative of Lambda_nj[i][j] wrt T. see m_Lambda_ij. More...
 
Array2D m_Lambda_nj_LL
 Derivative of Lambda_nj[i][j] wrt TT. More...
 
Array2D m_Lambda_nj_P
 Derivative of Lambda_nj[i][j] wrt P. More...
 
Array2D m_Lambda_nj_coeff
 Array of coefficients for Lambda_nj[i][j] in the Pitzer/HMW formulation. More...
 
vector_fp m_Mu_nnn
 Mu coefficient for the self-ternary neutral coefficient. More...
 
vector_fp m_Mu_nnn_L
 Mu coefficient temperature derivative for the self-ternary neutral coefficient. More...
 
vector_fp m_Mu_nnn_LL
 Mu coefficient 2nd temperature derivative for the self-ternary neutral coefficient. More...
 
vector_fp m_Mu_nnn_P
 Mu coefficient pressure derivative for the self-ternary neutral coefficient. More...
 
Array2D m_Mu_nnn_coeff
 Array of coefficients form_Mu_nnn term. More...
 
vector_fp m_lnActCoeffMolal_Scaled
 Logarithm of the activity coefficients on the molality scale. More...
 
vector_fp m_lnActCoeffMolal_Unscaled
 Logarithm of the activity coefficients on the molality scale. More...
 
vector_fp m_dlnActCoeffMolaldT_Scaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt T. More...
 
vector_fp m_dlnActCoeffMolaldT_Unscaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt T. More...
 
vector_fp m_d2lnActCoeffMolaldT2_Scaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT. More...
 
vector_fp m_d2lnActCoeffMolaldT2_Unscaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT. More...
 
vector_fp m_dlnActCoeffMolaldP_Scaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt P. More...
 
vector_fp m_dlnActCoeffMolaldP_Unscaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt P. More...
 
vector_fp m_molalitiesCropped
 Cropped and modified values of the molalities used in activity coefficient calculations. More...
 
bool m_molalitiesAreCropped
 Boolean indicating whether the molalities are cropped or are modified. More...
 
vector_int m_CounterIJ
 a counter variable for keeping track of symmetric binary interactions amongst the solute species. More...
 
double elambda [17]
 This is elambda, MEC. More...
 
double elambda1 [17]
 This is elambda1, MEC. More...
 
vector_fp m_gfunc_IJ
 Various temporary arrays used in the calculation of the Pitzer activity coefficients. More...
 
vector_fp m_g2func_IJ
 This is the value of g2(x2) in Pitzer's papers. More...
 
vector_fp m_hfunc_IJ
 hfunc, was called gprime in Pitzer's paper. More...
 
vector_fp m_h2func_IJ
 hfunc2, was called gprime in Pitzer's paper. More...
 
vector_fp m_BMX_IJ
 Intermediate variable called BMX in Pitzer's paper This is the basic cation - anion interaction. More...
 
vector_fp m_BMX_IJ_L
 Derivative of BMX_IJ wrt T. More...
 
vector_fp m_BMX_IJ_LL
 Derivative of BMX_IJ wrt TT. More...
 
vector_fp m_BMX_IJ_P
 Derivative of BMX_IJ wrt P. More...
 
vector_fp m_BprimeMX_IJ
 Intermediate variable called BprimeMX in Pitzer's paper. More...
 
vector_fp m_BprimeMX_IJ_L
 Derivative of BprimeMX wrt T. More...
 
vector_fp m_BprimeMX_IJ_LL
 Derivative of BprimeMX wrt TT. More...
 
vector_fp m_BprimeMX_IJ_P
 Derivative of BprimeMX wrt P. More...
 
vector_fp m_BphiMX_IJ
 Intermediate variable called BphiMX in Pitzer's paper. More...
 
vector_fp m_BphiMX_IJ_L
 Derivative of BphiMX_IJ wrt T. More...
 
vector_fp m_BphiMX_IJ_LL
 Derivative of BphiMX_IJ wrt TT. More...
 
vector_fp m_BphiMX_IJ_P
 Derivative of BphiMX_IJ wrt P. More...
 
vector_fp m_Phi_IJ
 Intermediate variable called Phi in Pitzer's paper. More...
 
vector_fp m_Phi_IJ_L
 Derivative of m_Phi_IJ wrt T. More...
 
vector_fp m_Phi_IJ_LL
 Derivative of m_Phi_IJ wrt TT. More...
 
vector_fp m_Phi_IJ_P
 Derivative of m_Phi_IJ wrt P. More...
 
vector_fp m_Phiprime_IJ
 Intermediate variable called Phiprime in Pitzer's paper. More...
 
vector_fp m_PhiPhi_IJ
 Intermediate variable called PhiPhi in Pitzer's paper. More...
 
vector_fp m_PhiPhi_IJ_L
 Derivative of m_PhiPhi_IJ wrt T. More...
 
vector_fp m_PhiPhi_IJ_LL
 Derivative of m_PhiPhi_IJ wrt TT. More...
 
vector_fp m_PhiPhi_IJ_P
 Derivative of m_PhiPhi_IJ wrt P. More...
 
vector_fp m_CMX_IJ
 Intermediate variable called CMX in Pitzer's paper. More...
 
vector_fp m_CMX_IJ_L
 Derivative of m_CMX_IJ wrt T. More...
 
vector_fp m_CMX_IJ_LL
 Derivative of m_CMX_IJ wrt TT. More...
 
vector_fp m_CMX_IJ_P
 Derivative of m_CMX_IJ wrt P. More...
 
vector_fp m_gamma_tmp
 Intermediate storage of the activity coefficient itself. More...
 
vector_fp IMS_lnActCoeffMolal_
 Logarithm of the molal activity coefficients. More...
 
int IMS_typeCutoff_
 IMS Cutoff type. More...
 
doublereal IMS_X_o_cutoff_
 value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process; More...
 
doublereal IMS_gamma_o_min_
 gamma_o value for the cutoff process at the zero solvent point More...
 
doublereal IMS_gamma_k_min_
 gamma_k minimum for the cutoff process at the zero solvent point More...
 
doublereal IMS_cCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay. More...
 
doublereal IMS_slopefCut_
 Parameter in the polyExp cutoff treatment. More...
 
doublereal IMS_slopegCut_
 Parameter in the polyExp cutoff treatment. More...
 
doublereal MC_X_o_cutoff_
 value of the solvent mole fraction that centers the cutoff polynomials for the cutoff =1 process; More...
 
doublereal MC_X_o_min_
 gamma_o value for the cutoff process at the zero solvent point More...
 
doublereal MC_slopepCut_
 Parameter in the Molality Exp cutoff treatment. More...
 
doublereal m_last_is
 
Parameters in the polyExp cutoff treatment having to do with rate of exp decay
doublereal IMS_dfCut_
 
doublereal IMS_efCut_
 
doublereal IMS_afCut_
 
doublereal IMS_bfCut_
 
doublereal IMS_dgCut_
 
doublereal IMS_egCut_
 
doublereal IMS_agCut_
 
doublereal IMS_bgCut_
 
Parameters in the Molality Exp cutoff treatment
doublereal MC_dpCut_
 
doublereal MC_epCut_
 
doublereal MC_apCut_
 
doublereal MC_bpCut_
 
doublereal MC_cpCut_
 
doublereal CROP_ln_gamma_o_min
 
doublereal CROP_ln_gamma_o_max
 
doublereal CROP_ln_gamma_k_min
 
doublereal CROP_ln_gamma_k_max
 
std::vector< int > CROP_speciesCropped_
 This is a boolean-type vector indicating whether a species's activity coefficient is in the cropped regime. More...
 

Mechanical Equation of State Properties

virtual doublereal pressure () const
 Pressure. More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual doublereal density () const
 Returns the current value of the density. More...
 
void setDensity (const doublereal rho)
 Set the internally stored density (kg/m^3) of the phase. More...
 
void setMolarDensity (const doublereal conc)
 Set the internally stored molar density (kmol/m^3) for the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the temperature (K) More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 

Additional Inherited Members

- Protected Member Functions inherited from MolalityVPSSTP
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from VPStandardStateTP
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution. More...
 
const vector_fpGibbs_RT_ref () const
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
- Protected Attributes inherited from MolalityVPSSTP
size_t m_indexSolvent
 Index of the solvent. More...
 
int m_pHScalingType
 Scaling to be used for output of single-ion species activity coefficients. More...
 
size_t m_indexCLM
 Index of the phScale species. More...
 
doublereal m_weightSolvent
 Molecular weight of the Solvent. More...
 
doublereal m_xmolSolventMIN
 
doublereal m_Mnaught
 This is the multiplication factor that goes inside log expressions involving the molalities of species. More...
 
vector_fp m_molalities
 Current value of the molalities of the species in the phase. More...
 
- Protected Attributes inherited from VPStandardStateTP
doublereal m_Pcurrent
 Current value of the pressure - state variable. More...
 
doublereal m_Tlast_ss
 The last temperature at which the standard statethermodynamic properties were calculated at. More...
 
doublereal m_Plast_ss
 The last pressure at which the Standard State thermodynamic properties were calculated at. More...
 
doublereal m_P0
 
VPSSMgrm_VPSS_ptr
 Pointer to the VPSS manager that calculates all of the standard state info efficiently. More...
 
std::vector< PDSS * > m_PDSS_storage
 Storage for the PDSS objects for the species. More...
 
- Protected Attributes inherited from ThermoPhase
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string,
shared_ptr< Species > > 
m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Detailed Description

Class HMWSoln represents a dilute or concentrated liquid electrolyte phase which obeys the Pitzer formulation for nonideality.

As a prerequisite to the specification of thermodynamic quantities, The concentrations of the ionic species are assumed to obey the electroneutrality condition.


Specification of Species Standard State Properties


The solvent is assumed to be liquid water. A real model for liquid water (IAPWS 1995 formulation) is used as its standard state. All standard state properties for the solvent are based on this real model for water, and involve function calls to the object that handles the real water model, Cantera::WaterPropsIAPWS.

The standard states for solutes are on the unit molality basis. Therefore, in the documentation below, the normal \( o \) superscript is replaced with the \( \triangle \) symbol. The reference state symbol is now \( \triangle, ref \).

It is assumed that the reference state thermodynamics may be
obtained by a pointer to a populated species thermodynamic property
manager class (see ThermoPhase::m_spthermo). How to relate pressure
changes to the reference state thermodynamics is resolved at this level.

For solutes that rely on ThermoPhase::m_spthermo, are assumed to
have an incompressible standard state mechanical property.
In other words, the molar volumes are independent of temperature
and pressure.

For these incompressible,
standard states, the molar internal energy is
independent of pressure. Since the thermodynamic properties
are specified by giving the standard-state enthalpy, the
term \form#119 is subtracted from the specified molar
enthalpy to compute the molar internal energy. The entropy is
assumed to be independent of the pressure.

The enthalpy function is given by the following relation.

\[ h^\triangle_k(T,P) = h^{\triangle,ref}_k(T) + \tilde{v}_k \left( P - P_{ref} \right) \]

For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \tilde v\) is subtracted from the specified reference molar enthalpy to compute the molar internal energy.

\[ u^\triangle_k(T,P) = h^{\triangle,ref}_k(T) - P_{ref} \tilde{v}_k \]

The solute standard state heat capacity and entropy are independent of pressure. The solute standard state Gibbs free energy is obtained from the enthalpy and entropy functions.

The vector Phase::m_speciesSize[] is used to hold the base values of species sizes. These are defined as the molar volumes of species at infinite dilution at 300 K and 1 atm of water. m_speciesSize are calculated during the initialization of the HMWSoln object and are then not touched.

The current model assumes that an incompressible molar volume for all solutes. The molar volume for the water solvent, however, is obtained from a pure water equation of state, waterSS. Therefore, the water standard state varies with both T and P. It is an error to request standard state water properties at a T and P where the water phase is not a stable phase, i.e., beyond its spinodal curve.


Specification of Solution Thermodynamic Properties


Chemical potentials of the solutes, \( \mu_k \), and the solvent, \( \mu_o \), which are based on the molality form, have the following general format:

\[ \mu_k = \mu^{\triangle}_k(T,P) + R T ln(\gamma_k^{\triangle} \frac{m_k}{m^\triangle}) \]

\[ \mu_o = \mu^o_o(T,P) + RT ln(a_o) \]

where \( \gamma_k^{\triangle} \) is the molality based activity coefficient for species \(k\).

Individual activity coefficients of ions can not be independently measured. Instead, only binary pairs forming electroneutral solutions can be measured. This problem leads to a redundancy in the evaluation of species standard state properties. The redundancy issue is resolved by setting the standard state chemical potential enthalpy, entropy, and volume for the hydrogen ion, H+, to zero, for every temperature and pressure. After this convention is applied, all other standard state properties of ionic species contain meaningful information.

<H3> Ionic Strength </H3>

Most of the parameterizations within the model use the ionic strength
as a key variable. The ionic strength, \form#129 is defined as follows

\[ I = \frac{1}{2} \sum_k{m_k z_k^2} \]

\( m_k \) is the molality of the kth species. \( z_k \) is the charge of the kth species. Note, the ionic strength is a defined units quantity. The molality has defined units of gmol kg-1, and therefore the ionic strength has units of sqrt( gmol kg-1).

In some instances, from some authors, a different formulation is used for the ionic strength in the equations below. The different formulation is due to the possibility of the existence of weak acids and how association wrt to the weak acid equilibrium relation affects the calculation of the activity coefficients via the assumed value of the ionic strength.

If we are to assume that the association reaction doesn't have an effect on the ionic strength, then we will want to consider the associated weak acid as in effect being fully dissociated, when we calculate an effective value for the ionic strength. We will call this calculated value, the stoichiometric ionic strength, \( I_s \), putting a subscript s to denote it from the more straightforward calculation of \( I \).

\[ I_s = \frac{1}{2} \sum_k{m_k^s z_k^2} \]

Here, \( m_k^s \) is the value of the molalities calculated assuming that all weak acid-base pairs are in their fully dissociated states. This calculation may be simplified by considering that the weakly associated acid may be made up of two charged species, k1 and k2, each with their own charges, obeying the following relationship:

\[ z_k = z_{k1} + z_{k2} \]

Then, we may only need to specify one charge value, say, \( z_{k1}\), the cation charge number, in order to get both numbers, since we have already specified \( z_k \) in the definition of original species. Then, the stoichiometric ionic strength may be calculated via the following formula.

\[ I_s = \frac{1}{2} \left(\sum_{k,ions}{m_k z_k^2}+ \sum_{k,weak_assoc}(m_k z_{k1}^2 + m_k z_{k2}^2) \right) \]

The specification of which species are weakly associated acids is made in the input file via the stoichIsMods XML block, where the charge for k1 is also specified. An example is given below:

<stoichIsMods>
NaCl(aq):-1.0
</stoichIsMods>
Because we need the concept of a weakly associated acid in order to calculated

\( I_s \) we need to catalog all species in the phase. This is done using the following categories:

Polar and non-polar neutral species are differentiated, because some additions to the activity coefficient expressions distinguish between these two types of solutes. This is the so-called salt-out effect.

The type of species is specified in the electrolyteSpeciesType XML block. Note, this is not considered a part of the specification of the standard state for the species, at this time. Therefore, this information is put under the activityCoefficient XML block. An example is given below

<electrolyteSpeciesType>
H2L(L):solvent
H+:chargedSpecies
NaOH(aq):weakAcidAssociated
NaCl(aq):strongAcidAssociated
NH3(aq):polarNeutral
O2(aq):nonpolarNeutral
</electrolyteSpeciesType>
Much of the species electrolyte type information is inferred from other information in the
input file. For example, as species which is charged is given the "chargedSpecies" default
category. A neutral solute species is put into the "nonpolarNeutral" category by default.


<H3> Specification of the Excess Gibbs Free Energy </H3>

Pitzer's formulation may best be represented as a specification of the excess Gibbs
free energy, \form#215, defined as the deviation of the total Gibbs free energy from
that of an ideal molal solution.

\[ G = G^{id} + G^{ex} \]

The ideal molal solution contribution, not equal to an ideal solution contribution and in fact containing a singularity at the zero solvent mole fraction limit, is given below.

\[ G^{id} = n_o \mu^o_o + \sum_{k\ne o} n_k \mu_k^{\triangle} + \tilde{M}_o n_o ( RT (\sum{m_i(\ln(m_i)-1)})) \]

From the excess Gibbs free energy formulation, the activity coefficient expression and the osmotic coefficient expression for the solvent may be defined, by taking the appropriate derivatives. Using this approach guarantees that the entire system will obey the Gibbs-Duhem relations.

Pitzer employs the following general expression for the excess Gibbs free energy

\[ \begin{array}{cclc} \frac{G^{ex}}{\tilde{M}_o n_o RT} &= & \left( \frac{4A_{Debye}I}{3b} \right) \ln(1 + b \sqrt{I}) + 2 \sum_c \sum_a m_c m_a B_{ca} + \sum_c \sum_a m_c m_a Z C_{ca} \\&& + \sum_{c < c'} \sum m_c m_{c'} \left[ 2 \Phi_{c{c'}} + \sum_a m_a \Psi_{c{c'}a} \right] + \sum_{a < a'} \sum m_a m_{a'} \left[ 2 \Phi_{a{a'}} + \sum_c m_c \Psi_{a{a'}c} \right] \\&& + 2 \sum_n \sum_c m_n m_c \lambda_{nc} + 2 \sum_n \sum_a m_n m_a \lambda_{na} + 2 \sum_{n < n'} \sum m_n m_{n'} \lambda_{n{n'}} + \sum_n m^2_n \lambda_{nn} \end{array} \]

a is a subscript over all anions, c is a subscript extending over all cations, and i is a subscript that extends over all anions and cations. n is a subscript that extends only over neutral solute molecules. The second line contains cross terms where cations affect cations and/or cation/anion pairs, and anions affect anions or cation/anion pairs. Note part of the coefficients, \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) stem from the theory of unsymmetrical mixing of electrolytes with different charges. This theory depends on the total ionic strength of the solution, and therefore, \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) will depend on I, the ionic strength. \( B_{ca}\) is a strong function of the total ionic strength, I, of the electrolyte. The rest of the coefficients are assumed to be independent of the molalities or ionic strengths. However, all coefficients are potentially functions of the temperature and pressure of the solution.

A is the Debye-Huckel constant. Its specification is described in its own section below.

\( I\) is the ionic strength of the solution, and is given by:

\[ I = \frac{1}{2} \sum_k{m_k z_k^2} \]

In contrast to several other Debye-Huckel implementations (see DebyeHuckel), the parameter \( b\) in the above equation is a constant that does not vary with respect to ion identity. This is an important simplification as it avoids troubles with satisfaction of the Gibbs-Duhem analysis.

The function \( Z \) is given by

\[ Z = \sum_i m_i \left| z_i \right| \]

The value of \( B_{ca}\) is given by the following function

\[ B_{ca} = \beta^{(0)}_{ca} + \beta^{(1)}_{ca} g(\alpha^{(1)}_{ca} \sqrt{I}) + \beta^{(2)}_{ca} g(\alpha^{(2)}_{ca} \sqrt{I}) \]

where

\[ g(x) = 2 \frac{(1 - (1 + x)\exp[-x])}{x^2} \]

The formulation for \( B_{ca}\) combined with the formulation of the Debye-Huckel term in the eqn. for the excess Gibbs free energy stems essentially from an empirical fit to the ionic strength dependent data based over a wide sampling of binary electrolyte systems. \( C_{ca} \), \( \lambda_{nc} \), \( \lambda_{na} \), \( \lambda_{nn} \), \( \Psi_{c{c'}a} \), \( \Psi_{a{a'}c} \) are experimentally derived coefficients that may have pressure and/or temperature dependencies.

The \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) formulations are slightly more complicated. \( b \) is a universal constant defined to be equal to \( 1.2\ kg^{1/2}\ gmol^{-1/2} \). The exponential coefficient \( \alpha^{(1)}_{ca} \) is usually fixed at \( \alpha^{(1)}_{ca} = 2.0\ kg^{1/2} gmol^{-1/2}\) except for 2-2 electrolytes, while other parameters were fit to experimental data. For 2-2 electrolytes, \( \alpha^{(1)}_{ca} = 1.4\ kg^{1/2}\ gmol^{-1/2}\) is used in combination with either \( \alpha^{(2)}_{ca} = 12\ kg^{1/2}\ gmol^{-1/2}\) or \( \alpha^{(2)}_{ca} = k A_\psi \), where k is a constant. For electrolytes other than 2-2 electrolytes the \( \beta^{(2)}_{ca} g(\alpha^{(2)}_{ca} \sqrt{I}) \) term is not used in the fitting procedure; it is only used for divalent metal solfates and other high-valence electrolytes which exhibit significant association at low ionic strengths.

The \( \beta^{(0)}_{ca} \), \( \beta^{(1)}_{ca}\), \( \beta^{(2)}_{ca} \), and \( C_{ca} \) binary coefficients are referred to as ion-interaction or Pitzer parameters. These Pitzer parameters may vary with temperature and pressure but they do not depend on the ionic strength. Their values and temperature derivatives of their values have been tabulated for a range of electrolytes

The \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) contributions, which capture cation-cation and anion-anion interactions, also have an ionic strength dependence.

Ternary contributions \( \Psi_{c{c'}a} \) and \( \Psi_{a{a'}c} \) have been measured also for some systems. The success of the Pitzer method lies in its ability to model nonlinear activity coefficients of complex multicomponent systems with just binary and minor ternary contributions, which can be independently measured in binary or ternary subsystems.

<H3> Multicomponent Activity Coefficients for Solutes </H3>

The formulas for activity coefficients of solutes may be obtained by taking the
following derivative of the excess Gibbs Free Energy formulation described above:

\[ \ln(\gamma_k^\triangle) = \frac{d\left( \frac{G^{ex}}{M_o n_o RT} \right)}{d(m_k)}\Bigg|_{n_i} \]

In the formulas below the following conventions are used. The subscript M refers to a particular cation. The subscript X refers to a particular anion, whose activity is being currently evaluated. the subscript a refers to a summation over all anions in the solution, while the subscript c refers to a summation over all cations in the solutions.

The activity coefficient for a particular cation M is given by

\[ \ln(\gamma_M^\triangle) = -z_M^2(F) + \sum_a m_a \left( 2 B_{Ma} + Z C_{Ma} \right) + z_M \left( \sum_a \sum_c m_a m_c C_{ca} \right) + \sum_c m_c \left[ 2 \Phi_{Mc} + \sum_a m_a \Psi_{Mca} \right] + \sum_{a < a'} \sum m_a m_{a'} \Psi_{Ma{a'}} + 2 \sum_n m_n \lambda_{nM} \]

The activity coefficient for a particular anion X is given by

\[ \ln(\gamma_X^\triangle) = -z_X^2(F) + \sum_a m_c \left( 2 B_{cX} + Z C_{cX} \right) + \left|z_X \right| \left( \sum_a \sum_c m_a m_c C_{ca} \right) + \sum_a m_a \left[ 2 \Phi_{Xa} + \sum_c m_c \Psi_{cXa} \right] + \sum_{c < c'} \sum m_c m_{c'} \Psi_{c{c'}X} + 2 \sum_n m_n \lambda_{nM} \]

where the function \( F \) is given by

\[ F = - A_{\phi} \left[ \frac{\sqrt{I}}{1 + b \sqrt{I}} + \frac{2}{b} \ln{\left(1 + b\sqrt{I}\right)} \right] + \sum_a \sum_c m_a m_c B'_{ca} + \sum_{c < c'} \sum m_c m_{c'} \Phi'_{c{c'}} + \sum_{a < a'} \sum m_a m_{a'} \Phi'_{a{a'}} \]

We have employed the definition of \( A_{\phi} \), also used by Pitzer which is equal to

\[ A_{\phi} = \frac{A_{Debye}}{3} \]

In the above formulas, \( \Phi'_{c{c'}} \) and \( \Phi'_{a{a'}} \) are the ionic strength derivatives of \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \), respectively.

The function \( B'_{MX} \) is defined as:

\[ B'_{MX} = \left( \frac{\beta^{(1)}_{MX} h(\alpha^{(1)}_{MX} \sqrt{I})}{I} \right) \left( \frac{\beta^{(2)}_{MX} h(\alpha^{(2)}_{MX} \sqrt{I})}{I} \right) \]

where \( h(x) \) is defined as

\[ h(x) = g'(x) \frac{x}{2} = \frac{2\left(1 - \left(1 + x + \frac{x^2}{2} \right)\exp(-x) \right)}{x^2} \]

The activity coefficient for neutral species N is given by

\[ \ln(\gamma_N^\triangle) = 2 \left( \sum_i m_i \lambda_{iN}\right) \]

<H3> Activity of the Water Solvent </H3>

The activity for the solvent water, \form#141, is not independent and must be
determined either from the Gibbs-Duhem relation or from taking the appropriate derivative
of the same excess Gibbs free energy function as was used to formulate
the solvent activity coefficients. Pitzer's description follows the later approach to
derive a formula for the osmotic coefficient, \form#257.

\[ \phi - 1 = - \left( \frac{d\left(\frac{G^{ex}}{RT} \right)}{d(\tilde{M}_o n_o)} \right) \frac{1}{\sum_{i \ne 0} m_i} \]

The osmotic coefficient may be related to the water activity by the following relation:

\[ \phi = - \frac{1}{\tilde{M}_o \sum_{i \neq o} m_i} \ln(a_o) = - \frac{n_o}{\sum_{i \neq o}n_i} \ln(a_o) \]

The result is the following

\[ \begin{array}{ccclc} \phi - 1 &= & \frac{2}{\sum_{i \ne 0} m_i} \bigg[ & - A_{\phi} \frac{I^{3/2}}{1 + b \sqrt{I}} + \sum_c \sum_a m_c m_a \left( B^{\phi}_{ca} + Z C_{ca}\right) \\&&& + \sum_{c < c'} \sum m_c m_{c'} \left[ \Phi^{\phi}_{c{c'}} + \sum_a m_a \Psi_{c{c'}a} \right] + \sum_{a < a'} \sum m_a m_{a'} \left[ \Phi^{\phi}_{a{a'}} + \sum_c m_c \Psi_{a{a'}c} \right] \\&&& + \sum_n \sum_c m_n m_c \lambda_{nc} + \sum_n \sum_a m_n m_a \lambda_{na} + \sum_{n < n'} \sum m_n m_{n'} \lambda_{n{n'}} + \frac{1}{2} \left( \sum_n m^2_n \lambda_{nn}\right) \bigg] \end{array} \]

It can be shown that the expression

\[ B^{\phi}_{ca} = \beta^{(0)}_{ca} + \beta^{(1)}_{ca} \exp{(- \alpha^{(1)}_{ca} \sqrt{I})} + \beta^{(2)}_{ca} \exp{(- \alpha^{(2)}_{ca} \sqrt{I} )} \]

is consistent with the expression \( B_{ca} \) in the \( G^{ex} \) expression after carrying out the derivative wrt \( m_M \).

Also taking into account that \( {\Phi}_{c{c'}} \) and \( {\Phi}_{a{a'}} \) has an ionic strength dependence.

\[ \Phi^{\phi}_{c{c'}} = {\Phi}_{c{c'}} + I \frac{d{\Phi}_{c{c'}}}{dI} \]

\[ \Phi^{\phi}_{a{a'}} = \Phi_{a{a'}} + I \frac{d\Phi_{a{a'}}}{dI} \]

<H3> Temperature and Pressure Dependence of the Pitzer Parameters </H3>

In general most of the coefficients introduced in the previous section may
have a temperature and pressure dependence. The temperature and pressure
dependence of these coefficients strongly influence the value of the
excess Enthalpy and excess Volumes of Pitzer solutions. Therefore, these
are readily measurable quantities.
HMWSoln provides several
different methods for putting these dependencies into the coefficients.
HMWSoln has an implementation described by Silverter and Pitzer (1977),
which was used to fit experimental data for NaCl over an extensive range,
below the critical temperature of water.
They found a temperature functional form for fitting the 3 following
coefficients that describe the Pitzer parameterization for a single salt
to be adequate to describe how the excess Gibbs free energy values for
the binary salt changes with respect to temperature.
The following functional form
was used to fit the temperature dependence of the Pitzer Coefficients
for each cation - anion pair, M X.

\[ \beta^{(0)}_{MX} = q^{b0}_0 + q^{b0}_1 \left( T - T_r \right) + q^{b0}_2 \left( T^2 - T_r^2 \right) + q^{b0}_3 \left( \frac{1}{T} - \frac{1}{T_r}\right) + q^{b0}_4 \ln \left( \frac{T}{T_r} \right) \]

\[ \beta^{(1)}_{MX} = q^{b1}_0 + q^{b1}_1 \left( T - T_r \right) + q^{b1}_{2} \left( T^2 - T_r^2 \right) \]

\[ C^{\phi}_{MX} = q^{Cphi}_0 + q^{Cphi}_1 \left( T - T_r \right) + q^{Cphi}_2 \left( T^2 - T_r^2 \right) + q^{Cphi}_3 \left( \frac{1}{T} - \frac{1}{T_r}\right) + q^{Cphi}_4 \ln \left( \frac{T}{T_r} \right) \]

where

\[ C^{\phi}_{MX} = 2 {\left| z_M z_X \right|}^{1/2} C_{MX} \]

In later papers, Pitzer has added additional temperature dependencies to all of the other remaining second and third order virial coefficients. Some of these dependencies are justified and motivated by theory. Therefore, a formalism wherein all of the coefficients in the base theory have temperature dependencies associated with them has been implemented within the HMWSoln object. Much of the formalism, however, has been unexercised.

In the HMWSoln object, the temperature dependence of the Pitzer parameters are specified in the following way.

The temperature dependence is specified in an attributes field in the activityCoefficients XML block, called TempModel . Permissible values for that attribute are CONSTANT, COMPLEX1, and LINEAR.

The specification of the binary interaction between a cation and an anion is given by the coefficients, \( B_{MX}\) and \( C_{MX}\) The specification of \( B_{MX}\) is a function of \(\beta^{(0)}_{MX} \), \(\beta^{(1)}_{MX} \), \(\beta^{(2)}_{MX} \), \(\alpha^{(1)}_{MX} \), and \(\alpha^{(2)}_{MX} \). \( C_{MX}\) is calculated from \(C^{\phi}_{MX} \) from the formula above. All of the underlying coefficients are specified in the XML element block binarySaltParameters , which has the attribute cation and anion to identify the interaction. XML elements named beta0, beta1, beta2, Cphi, Alpha1, Alpha2 within each binarySaltParameters block specify the parameters. Within each of these blocks multiple parameters describing temperature or pressure dependence are serially listed in the order that they appear in the equation in this document. An example of the beta0 block that fits the COMPLEX1 temperature dependence given above is

<binarySaltParameters cation="Na+" anion="OH-">
<beta0> q0, q1, q2, q3, q4 </beta0>
</binarySaltParameters>

The parameters for \( \beta^{(0)}\) fit the following equation:

\[ \beta^{(0)} = q_0^{{\beta}0} + q_1^{{\beta}0} \left( T - T_r \right) + q_2^{{\beta}0} \left( T^2 - T_r^2 \right) + q_3^{{\beta}0} \left( \frac{1}{T} - \frac{1}{T_r} \right) + q_4^{{\beta}0} \ln \left( \frac{T}{T_r} \right) \]

This same COMPLEX1 temperature dependence given above is used for the following parameters: \( \beta^{(0)}_{MX} \), \( \beta^{(1)}_{MX} \), \( \beta^{(2)}_{MX} \), \( \Theta_{cc'} \), \(\Theta_{aa'} \), \( \Psi_{c{c'}a} \) and \( \Psi_{ca{a'}} \).

<H3> Like-Charged Binary Ion Parameters and the Mixing Parameters </H3>

The previous section contained the functions, \form#219,

\( \Phi_{a{a'}} \) and their derivatives wrt the ionic strength, \( \Phi'_{c{c'}} \) and \( \Phi'_{a{a'}} \). Part of these terms come from theory.

Since like charged ions repel each other and are generally not near each other, the virial coefficients for same-charged ions are small. However, Pitzer doesn't ignore these in his formulation. Relatively larger and longer range terms between like-charged ions exist however, which appear only for unsymmetrical mixing of same-sign charged ions with different charges. \( \Phi_{ij} \), where \( ij \) is either \( a{a'} \) or \( c{c'} \) is given by

\[ {\Phi}_{ij} = \Theta_{ij} + \,^E \Theta_{ij}(I) \]

\( \Theta_{ij} \) is the small virial coefficient expansion term. Dependent in general on temperature and pressure, its ionic strength dependence is ignored in Pitzer's approach. \( \,^E\Theta_{ij}(I) \) accounts for the electrostatic unsymmetrical mixing effects and is dependent only on the charges of the ions i, j, the total ionic strength and on the dielectric constant and density of the solvent. This seems to be a relatively well-documented part of the theory. They theory below comes from Pitzer summation (Pitzer) in the appendix. It's also mentioned in Bethke's book (Bethke), and the equations are summarized in Harvie & Weare (1980). Within the code, \( \,^E\Theta_{ij}(I) \) is evaluated according to the algorithm described in Appendix B [Pitzer] as

\[ \,^E\Theta_{ij}(I) = \left( \frac{z_i z_j}{4I} \right) \left( J(x_{ij}) - \frac{1}{2} J(x_{ii}) - \frac{1}{2} J(x_{jj}) \right) \]

where \( x_{ij} = 6 z_i z_j A_{\phi} \sqrt{I} \) and

\[ J(x) = \frac{1}{x} \int_0^{\infty}{\left( 1 + q + \frac{1}{2} q^2 - e^q \right) y^2 dy} \]

and \( q = - (\frac{x}{y}) e^{-y} \). \( J(x) \) is evaluated by numerical integration.

The \( \Theta_{ij} \) term is a constant that is specified by the XML element thetaCation and thetaAnion , which has the attribute cation1 , cation2 and anion1 , anion2 respectively to identify the interaction. No temperature or pressure dependence of this parameter is currently allowed. An example of the block is presented below.

<thetaCation cation1="Na+" cation2="H+">
<Theta> 0.036 </Theta>
</thetaCation>
<H3> Ternary Pitzer Parameters </H3>

The \form#231 and \form#288 terms
represent ternary interactions between two cations and
an anion and two anions and a cation, respectively.
In Pitzer's implementation these terms are usually small
in absolute size. Currently these parameters do not have
any dependence on temperature, pressure, or ionic strength.

Their values are input using the XML element
<TT> psiCommonCation </TT> and  <TT> psiCommonAnion </TT>.
The species id's are specified in attribute fields in
the XML element. The fields  <TT>cation</TT>,
<TT> anion1</TT>, and <TT> anion2</TT>
are used for  <TT>psiCommonCation</TT>. The fields <TT> anion</TT>,
<TT>cation1</TT> and  <TT>cation2</TT> are used for
<TT> psiCommonAnion</TT>. An example block is given below.
The <TT> Theta </TT> field below is a duplicate of the
<TT> thetaAnion </TT> field mentioned above. The two fields
are input into the same block for convenience, and because
their data are highly correlated, in practice.
It is an error for the
two blocks to specify different information about
thetaAnion (or thetaCation) in different blocks. It's
ok to specify duplicate but consistent information
in multiple blocks.
<psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">
<Theta> -0.05 </Theta>
<Psi> -0.006 </Psi>
</psiCommonCation>

Treatment of Neutral Species

Binary virial-coefficient-like interactions between two neutral species may be specified in the \( \lambda_{mn} \) terms that appear in the formulas above. Currently these interactions are independent of temperature, pressure, and ionic strength. Also, currently, the neutrality of the species are not checked. Therefore, this interaction may involve charged species in the solution as well. The identity of the species is specified by the species1 and species2 attributes to the XML lambdaNeutral node. These terms are symmetrical; species1 and species2 may be reversed and the term will be the same. An example is given below.

<lambdaNeutral species1="CO2" species2="CH4">
<lambda> 0.05 </lambda>
</lambdaNeutral>

Example of the Specification of Parameters for the Activity Coefficients

An example is given below.

An example activityCoefficients XML block for this formulation is supplied below

  <activityCoefficients model="Pitzer" TempModel="complex1">
              <!-- Pitzer Coefficients
                   These coefficients are from Pitzer's main
                   paper, in his book.
                -->
              <A_Debye model="water" />
              <ionicRadius default="3.042843"  units="Angstroms">
              </ionicRadius>
              <binarySaltParameters cation="Na+" anion="Cl-">
                <beta0> 0.0765, 0.008946, -3.3158E-6,
                        -777.03, -4.4706
                </beta0>
                <beta1> 0.2664, 6.1608E-5, 1.0715E-6, 0.0, 0.0 </beta1>
                <beta2> 0.0,   0.0, 0.0, 0.0, 0.0  </beta2>
                <Cphi> 0.00127, -4.655E-5, 0.0,
                       33.317, 0.09421
                </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="H+" anion="Cl-">
                <beta0> 0.1775, 0.0, 0.0, 0.0, 0.0 </beta0>
                <beta1> 0.2945, 0.0, 0.0, 0.0, 0.0 </beta1>
                <beta2> 0.0,    0.0, 0.0, 0.0, 0.0 </beta2>
                <Cphi> 0.0008, 0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="Na+" anion="OH-">
                <beta0> 0.0864, 0.0, 0.0, 0.0, 0.0 </beta0>
                <beta1> 0.253,  0.0, 0.0  0.0, 0.0 </beta1>
                <beta2> 0.0     0.0, 0.0, 0.0, 0.0 </beta2>
                <Cphi> 0.0044,  0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <thetaAnion anion1="Cl-" anion2="OH-">
                <Theta> -0.05,  0.0, 0.0, 0.0, 0.0 </Theta>
              </thetaAnion>

              <psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">
                <Theta> -0.05,  0.0, 0.0, 0.0, 0.0 </Theta>
                <Psi> -0.006 </Psi>
              </psiCommonCation>

              <thetaCation cation1="Na+" cation2="H+">
                <Theta> 0.036,  0.0, 0.0, 0.0, 0.0 </Theta>
              </thetaCation>

              <psiCommonAnion anion="Cl-" cation1="Na+" cation2="H+">
                <Theta> 0.036,  0.0, 0.0, 0.0, 0.0 </Theta>
                <Psi> -0.004 </Psi>
              </psiCommonAnion>

     </activityCoefficients>

Specification of the Debye-Huckel Constant

In the equations above, the formula for \( A_{Debye} \) is needed. The HMWSoln object uses two methods for specifying these quantities. The default method is to assume that \( A_{Debye} \) is a constant, given in the initialization process, and stored in the member double, m_A_Debye. Optionally, a full water treatment may be employed that makes \( A_{Debye} \) a full function of T and P and creates nontrivial entries for the excess heat capacity, enthalpy, and excess volumes of solution.

\[ A_{Debye} = \frac{F e B_{Debye}}{8 \pi \epsilon R T} {\left( C_o \tilde{M}_o \right)}^{1/2} \]

where

\[ B_{Debye} = \frac{F} {{(\frac{\epsilon R T}{2})}^{1/2}} \]

Therefore:

\[ A_{Debye} = \frac{1}{8 \pi} {\left(\frac{2 N_a \rho_o}{1000}\right)}^{1/2} {\left(\frac{N_a e^2}{\epsilon R T }\right)}^{3/2} \]

Units = sqrt(kg/gmol)

where

Nominal value at 298 K and 1 atm = 1.172576 (kg/gmol)1/2 based on:

An example of a fixed value implementation is given below.

<activityCoefficients model="Pitzer">
<!-- A_Debye units = sqrt(kg/gmol) -->
<A_Debye> 1.172576 </A_Debye>
<!-- object description continues -->
</activityCoefficients>

An example of a variable value implementation within the HMWSoln object is given below. The model attribute, "water", triggers the full implementation.

<activityCoefficients model="Pitzer">
<!-- A_Debye units = sqrt(kg/gmol) -->
<A_Debye model="water" />
<!-- object description continues -->
</activityCoefficients>

Temperature and Pressure Dependence of the Activity Coefficients

Temperature dependence of the activity coefficients leads to nonzero terms for the excess enthalpy and entropy of solution. This means that the partial molar enthalpies, entropies, and heat capacities are all non-trivial to compute. The following formulas are used.

The partial molar enthalpy, \( \bar s_k(T,P) \):

\[ \bar h_k(T,P) = h^{\triangle}_k(T,P) - R T^2 \frac{d \ln(\gamma_k^\triangle)}{dT} \]

The solvent partial molar enthalpy is equal to

\[ \bar h_o(T,P) = h^{o}_o(T,P) - R T^2 \frac{d \ln(a_o)}{dT} = h^{o}_o(T,P) + R T^2 (\sum_{k \neq o} m_k) \tilde{M_o} (\frac{d \phi}{dT}) \]

The partial molar entropy, \( \bar s_k(T,P) \):

\[ \bar s_k(T,P) = s^{\triangle}_k(T,P) - R \ln( \gamma^{\triangle}_k \frac{m_k}{m^{\triangle}})) - R T \frac{d \ln(\gamma^{\triangle}_k) }{dT} \]

\[ \bar s_o(T,P) = s^o_o(T,P) - R \ln(a_o) - R T \frac{d \ln(a_o)}{dT} \]

The partial molar heat capacity, \( C_{p,k}(T,P)\):

\[ \bar C_{p,k}(T,P) = C^{\triangle}_{p,k}(T,P) - 2 R T \frac{d \ln( \gamma^{\triangle}_k)}{dT} - R T^2 \frac{d^2 \ln(\gamma^{\triangle}_k) }{{dT}^2} \]

\[ \bar C_{p,o}(T,P) = C^o_{p,o}(T,P) - 2 R T \frac{d \ln(a_o)}{dT} - R T^2 \frac{d^2 \ln(a_o)}{{dT}^2} \]

The pressure dependence of the activity coefficients leads to non-zero terms for the excess Volume of the solution. Therefore, the partial molar volumes are functions of the pressure derivatives of the activity coefficients.

\[ \bar V_k(T,P) = V^{\triangle}_k(T,P) + R T \frac{d \ln(\gamma^{\triangle}_k) }{dP} \]

\[ \bar V_o(T,P) = V^o_o(T,P) + R T \frac{d \ln(a_o)}{dP} \]

The majority of work for these functions take place in the internal routines that calculate the first and second derivatives of the log of the activity coefficients wrt temperature, s_update_dlnMolalityActCoeff_dT(), s_update_d2lnMolalityActCoeff_dT2(), and the first derivative of the log activity coefficients wrt pressure, s_update_dlnMolalityActCoeff_dP().


Application within Kinetics Managers


For the time being, we have set the standard concentration for all solute species in this phase equal to the default concentration of the solvent at the system temperature and pressure multiplied by Mnaught (kg solvent / gmol solvent). The solvent standard concentration is just equal to its standard state concentration.

This means that the kinetics operator essentially works on an generalized concentration basis (kmol / m3), with units for the kinetic rate constant specified as if all reactants (solvent or solute) are on a concentration basis (kmol /m3). The concentration will be modified by the activity coefficients.

For example, a bulk-phase binary reaction between liquid solute species j and k, producing a new liquid solute species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 (C^o_o \tilde{M}_o a_j) (C^o_o \tilde{M}_o a_k) \]

where

\[ C_j^a = C^o_o \tilde{M}_o a_j \quad and \quad C_k^a = C^o_o \tilde{M}_o a_k \]

\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C^o_o \) is the concentration of water at 298 K and 1 atm. \( \tilde{M}_o \) has units of kg solvent per gmol solvent and is equal to

\[ \tilde{M}_o = \frac{M_o}{1000} \]

\( a_j \) is the activity of species j at the current temperature and pressure and concentration of the liquid phase is given by the molality based activity coefficient multiplied by the molality of the jth species.

\[ a_j = \gamma_j^\triangle m_j = \gamma_j^\triangle \frac{n_j}{\tilde{M}_o n_o} \]

\(k^1 \) has units of m3 kmol-1 s-1.

Therefore the generalized activity concentration of a solute species has the following form

\[ C_j^a = C^o_o \frac{\gamma_j^\triangle n_j}{n_o} \]

The generalized activity concentration of the solvent has the same units, but it's a simpler form

\[ C_o^a = C^o_o a_o \]

The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.

\[ \frac{a_j a_k}{ a_l} = K^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]

\( K^{o,1} \) is the dimensionless form of the equilibrium constant.

\[ R^{-1} = k^{-1} C_l^a = k^{-1} (C_o \tilde{M}_o a_l) \]

where

\[ k^{-1} = k^1 K^{o,1} C_o \tilde{M}_o \]

\( k^{-1} \) has units of s-1.

Note, this treatment may be modified in the future, as events dictate.


Instantiation of the Class


The constructor for this phase is now located in the default ThermoFactory for Cantera. The following code snippet may be used to initialize the phase using the default construction technique within Cantera.

ThermoPhase *HMW = newPhase("HMW_NaCl.xml", "NaCl_electrolyte");

A new HMWSoln object may be created by the following code snippets:

HMWSoln *HMW = new HMWSoln("HMW_NaCl.xml", "NaCl_electrolyte");

or

XML_Node *xm = get_XML_NameID("phase", "HMW_NaCl.xml#NaCl_electrolyte", 0);
HMWSoln *dh = new HMWSoln(*xm);

or by the following call to importPhase():

XML_Node *xm = get_XML_NameID("phase", "HMW_NaCl.xml#NaCl_electrolyte", 0);
HMWSoln dhphase;
importPhase(*xm, &dhphase);

XML Example


The phase model name for this is called StoichSubstance. It must be supplied as the model attribute of the thermo XML element entry. Within the phase XML block, the density of the phase must be specified. An example of an XML file this phase is given below.

 <phase id="NaCl_electrolyte" dim="3">
  <speciesArray datasrc="#species_waterSolution">
             H2O(L) Na+ Cl- H+ OH-
  </speciesArray>
  <state>
    <temperature units="K"> 300  </temperature>
    <pressure units="Pa">101325.0</pressure>
    <soluteMolalities>
           Na+:3.0
           Cl-:3.0
           H+:1.0499E-8
           OH-:1.3765E-6
    </soluteMolalities>
  </state>
  <!-- thermo model identifies the inherited class
       from ThermoPhase that will handle the thermodynamics.
    -->
  <thermo model="HMW">
     <standardConc model="solvent_volume" />
   <activityCoefficients model="Pitzer" TempModel="complex1">
              <!-- Pitzer Coefficients
                   These coefficients are from Pitzer's main
                   paper, in his book.
                -->
              <A_Debye model="water" />
              <ionicRadius default="3.042843"  units="Angstroms">
              </ionicRadius>
              <binarySaltParameters cation="Na+" anion="Cl-">
                <beta0> 0.0765, 0.008946, -3.3158E-6,
                        -777.03, -4.4706
                </beta0>
                <beta1> 0.2664, 6.1608E-5, 1.0715E-6 </beta1>
                <beta2> 0.0    </beta2>
                <Cphi> 0.00127, -4.655E-5, 0.0,
                       33.317, 0.09421
                </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="H+" anion="Cl-">
                <beta0> 0.1775, 0.0, 0.0, 0.0, 0.0</beta0>
                <beta1> 0.2945, 0.0, 0.0 </beta1>
                <beta2> 0.0    </beta2>
                <Cphi> 0.0008, 0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="Na+" anion="OH-">
                <beta0> 0.0864, 0.0, 0.0, 0.0, 0.0 </beta0>
                <beta1> 0.253, 0.0, 0.0 </beta1>
                <beta2> 0.0    </beta2>
                <Cphi> 0.0044, 0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <thetaAnion anion1="Cl-" anion2="OH-">
                <Theta> -0.05 </Theta>
              </thetaAnion>

              <psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">
                <Theta> -0.05 </Theta>
                <Psi> -0.006 </Psi>
              </psiCommonCation>

              <thetaCation cation1="Na+" cation2="H+">
                <Theta> 0.036 </Theta>
              </thetaCation>

              <psiCommonAnion anion="Cl-" cation1="Na+" cation2="H+">
                <Theta> 0.036 </Theta>
                <Psi> -0.004 </Psi>
              </psiCommonAnion>

     </activityCoefficients>

     <solvent> H2O(L) </solvent>
  </thermo>
  <elementArray datasrc="elements.xml"> O H Na Cl </elementArray>
  <kinetics model="none" >
  </kinetics>
</phase>

Definition at line 1225 of file HMWSoln.h.

Constructor & Destructor Documentation

HMWSoln ( )

Default Constructor.

Definition at line 31 of file HMWSoln.cpp.

References HMWSoln::elambda, and HMWSoln::elambda1.

Referenced by HMWSoln::duplMyselfAsThermoPhase().

HMWSoln ( const std::string &  inputFile,
const std::string &  id = "" 
)

Construct and initialize an HMWSoln ThermoPhase object directly from an ASCII input file.

This constructor is a shell that calls the routine initThermo(), with a reference to the XML database to get the info for the phase.

Parameters
inputFileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.

Definition at line 81 of file HMWSoln.cpp.

References HMWSoln::elambda, HMWSoln::elambda1, and ThermoPhase::initThermoFile().

HMWSoln ( XML_Node phaseRef,
const std::string &  id = "" 
)

Construct and initialize an HMWSoln ThermoPhase object directly from an XML database.

Parameters
phaseRefXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)

Definition at line 132 of file HMWSoln.cpp.

References HMWSoln::elambda, HMWSoln::elambda1, Cantera::findXMLPhase(), and Cantera::importPhase().

HMWSoln ( const HMWSoln right)

Copy Constructor.

Copy constructor for the object. Constructed object will be a clone of this object, but will also own all of its data. This is a wrapper around the assignment operator

Parameters
rightObject to be copied.

Definition at line 183 of file HMWSoln.cpp.

~HMWSoln ( )
virtual

Destructor.

Definition at line 392 of file HMWSoln.cpp.

References HMWSoln::m_waterProps.

Member Function Documentation

HMWSoln & operator= ( const HMWSoln right)

Assignment operator.

Assignment operator for the object. Constructed object will be a clone of this object, but will also own all of its data.

Parameters
rightObject to be copied.

Definition at line 234 of file HMWSoln.cpp.

References HMWSoln::CROP_speciesCropped_, HMWSoln::IMS_cCut_, HMWSoln::IMS_gamma_k_min_, HMWSoln::IMS_gamma_o_min_, HMWSoln::IMS_lnActCoeffMolal_, HMWSoln::IMS_slopefCut_, HMWSoln::IMS_slopegCut_, HMWSoln::IMS_typeCutoff_, HMWSoln::IMS_X_o_cutoff_, HMWSoln::m_A_Debye, HMWSoln::m_Aionic, HMWSoln::m_Alpha1MX_ij, HMWSoln::m_Alpha2MX_ij, HMWSoln::m_Beta0MX_ij, HMWSoln::m_Beta0MX_ij_coeff, HMWSoln::m_Beta0MX_ij_L, HMWSoln::m_Beta0MX_ij_LL, HMWSoln::m_Beta0MX_ij_P, HMWSoln::m_Beta1MX_ij, HMWSoln::m_Beta1MX_ij_coeff, HMWSoln::m_Beta1MX_ij_L, HMWSoln::m_Beta1MX_ij_LL, HMWSoln::m_Beta1MX_ij_P, HMWSoln::m_Beta2MX_ij, HMWSoln::m_Beta2MX_ij_coeff, HMWSoln::m_Beta2MX_ij_L, HMWSoln::m_Beta2MX_ij_LL, HMWSoln::m_Beta2MX_ij_P, HMWSoln::m_BMX_IJ, HMWSoln::m_BMX_IJ_L, HMWSoln::m_BMX_IJ_LL, HMWSoln::m_BMX_IJ_P, HMWSoln::m_BphiMX_IJ, HMWSoln::m_BphiMX_IJ_L, HMWSoln::m_BphiMX_IJ_LL, HMWSoln::m_BphiMX_IJ_P, HMWSoln::m_BprimeMX_IJ, HMWSoln::m_BprimeMX_IJ_L, HMWSoln::m_BprimeMX_IJ_LL, HMWSoln::m_BprimeMX_IJ_P, HMWSoln::m_CMX_IJ, HMWSoln::m_CMX_IJ_L, HMWSoln::m_CMX_IJ_LL, HMWSoln::m_CMX_IJ_P, HMWSoln::m_CounterIJ, HMWSoln::m_CphiMX_ij, HMWSoln::m_CphiMX_ij_coeff, HMWSoln::m_CphiMX_ij_L, HMWSoln::m_CphiMX_ij_LL, HMWSoln::m_CphiMX_ij_P, HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, HMWSoln::m_debugCalc, HMWSoln::m_densWaterSS, HMWSoln::m_dlnActCoeffMolaldP_Scaled, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, HMWSoln::m_dlnActCoeffMolaldT_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, HMWSoln::m_form_A_Debye, HMWSoln::m_formGC, HMWSoln::m_formPitzer, HMWSoln::m_formPitzerTemp, HMWSoln::m_g2func_IJ, HMWSoln::m_gamma_tmp, HMWSoln::m_gfunc_IJ, HMWSoln::m_h2func_IJ, HMWSoln::m_hfunc_IJ, HMWSoln::m_IionicMolality, HMWSoln::m_IionicMolalityStoich, HMWSoln::m_Lambda_nj, HMWSoln::m_Lambda_nj_coeff, HMWSoln::m_Lambda_nj_L, HMWSoln::m_Lambda_nj_LL, HMWSoln::m_Lambda_nj_P, HMWSoln::m_lnActCoeffMolal_Scaled, HMWSoln::m_lnActCoeffMolal_Unscaled, HMWSoln::m_maxIionicStrength, HMWSoln::m_molalitiesAreCropped, HMWSoln::m_molalitiesCropped, HMWSoln::m_Mu_nnn, HMWSoln::m_Mu_nnn_coeff, HMWSoln::m_Mu_nnn_L, HMWSoln::m_Mu_nnn_LL, HMWSoln::m_Mu_nnn_P, HMWSoln::m_Phi_IJ, HMWSoln::m_Phi_IJ_L, HMWSoln::m_Phi_IJ_LL, HMWSoln::m_Phi_IJ_P, HMWSoln::m_PhiPhi_IJ, HMWSoln::m_PhiPhi_IJ_L, HMWSoln::m_PhiPhi_IJ_LL, HMWSoln::m_PhiPhi_IJ_P, HMWSoln::m_Phiprime_IJ, HMWSoln::m_pp, HMWSoln::m_Psi_ijk, HMWSoln::m_Psi_ijk_coeff, HMWSoln::m_Psi_ijk_L, HMWSoln::m_Psi_ijk_LL, HMWSoln::m_Psi_ijk_P, HMWSoln::m_speciesCharge_Stoich, HMWSoln::m_TempPitzerRef, HMWSoln::m_Theta_ij, HMWSoln::m_Theta_ij_coeff, HMWSoln::m_Theta_ij_L, HMWSoln::m_Theta_ij_LL, HMWSoln::m_Theta_ij_P, HMWSoln::m_tmpV, HMWSoln::m_waterProps, HMWSoln::m_waterSS, HMWSoln::MC_slopepCut_, HMWSoln::MC_X_o_cutoff_, HMWSoln::MC_X_o_min_, and MolalityVPSSTP::operator=().

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplicator from the ThermoPhase parent class.

Given a pointer to a ThermoPhase object, this function will duplicate the ThermoPhase object and all underlying structures. This is basically a wrapper around the copy constructor.

Returns
returns a pointer to a ThermoPhase

Reimplemented from MolalityVPSSTP.

Definition at line 398 of file HMWSoln.cpp.

References HMWSoln::HMWSoln().

void constructPhaseFile ( std::string  inputFile,
std::string  id 
)

Import, construct, and initialize a HMWSoln phase specification from an XML tree into the current object.

Definition at line 964 of file HMWSoln_input.cpp.

References XML_Node::build(), Cantera::findInputFile(), and Cantera::findXMLPhase().

void constructPhaseXML ( XML_Node phaseNode,
std::string  id 
)

Import and initialize a HMWSoln phase specification in an XML tree into the current object.

Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species.

Then, we read the species molar volumes from the XML tree to finish the initialization.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Definition at line 993 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::fpValueCheck(), Cantera::getStringArray(), XML_Node::hasChild(), XML_Node::id(), Cantera::importPhase(), Cantera::lowercase(), and PITZERFORM_BASE.

Referenced by Cantera::newPhase().

int eosType ( ) const
virtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Reimplemented from ThermoPhase.

Definition at line 403 of file HMWSoln.cpp.

References Cantera::cHMWSoln0, and HMWSoln::m_formGC.

doublereal enthalpy_mole ( ) const
virtual

Molar enthalpy. Units: J/kmol.

Molar enthalpy of the solution. Units: J/kmol. (HKM -> Bump up to Parent object)

Reimplemented from ThermoPhase.

Definition at line 425 of file HMWSoln.cpp.

References DATA_PTR, Phase::getMoleFractions(), HMWSoln::getPartialMolarEnthalpies(), HMWSoln::m_pp, HMWSoln::m_tmpV, and Phase::mean_X().

doublereal relative_enthalpy ( ) const
virtual

Excess molar enthalpy of the solution from the mixing process.

Units: J/ kmol.

Note this is kmol of the total solution.

Definition at line 432 of file HMWSoln.cpp.

References DATA_PTR, Cantera::GasConstant, VPStandardStateTP::getEnthalpy_RT(), HMWSoln::getPartialMolarEnthalpies(), HMWSoln::m_gamma_tmp, Phase::m_kk, HMWSoln::m_tmpV, Phase::mean_X(), and Phase::temperature().

Referenced by HMWSoln::relative_molal_enthalpy().

doublereal relative_molal_enthalpy ( ) const
virtual

Excess molar enthalpy of the solution from the mixing process on a molality basis.

Units: J/ (kmol add salt).

Note this is kmol of the guessed at salt composition

Definition at line 445 of file HMWSoln.cpp.

References Phase::charge(), DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, HMWSoln::m_tmpV, Cantera::npos, and HMWSoln::relative_enthalpy().

doublereal entropy_mole ( ) const
virtual

Molar entropy. Units: J/kmol/K.

Molar entropy of the solution. Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of temperature since the volume expansivities are equal to zero.

See Also
SpeciesThermo
 (HKM -> Bump up to Parent object)

Reimplemented from ThermoPhase.

Definition at line 485 of file HMWSoln.cpp.

References DATA_PTR, HMWSoln::getPartialMolarEntropies(), HMWSoln::m_tmpV, and Phase::mean_X().

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 491 of file HMWSoln.cpp.

References DATA_PTR, HMWSoln::getChemPotentials(), HMWSoln::m_tmpV, and Phase::mean_X().

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 497 of file HMWSoln.cpp.

References DATA_PTR, HMWSoln::getPartialMolarCp(), HMWSoln::m_tmpV, and Phase::mean_X().

Referenced by HMWSoln::cv_mole().

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 503 of file HMWSoln.cpp.

References HMWSoln::cp_mole(), ThermoPhase::isothermalCompressibility(), Phase::molarVolume(), Phase::temperature(), and ThermoPhase::thermalExpansionCoeff().

doublereal pressure ( ) const
virtual

Pressure.

In this equation of state implementation, the density is a function only of the mole fractions. Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown. Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.

Reimplemented from ThermoPhase.

Definition at line 517 of file HMWSoln.cpp.

References VPStandardStateTP::m_Pcurrent.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::calcDensity(), HMWSoln::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), and HMWSoln::satPressure().

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method sets the pressure within the object. The water model is a completely compressible model. Also, the dielectric constant is pressure dependent.

Parameters
pinput Pressure (Pa)
Todo:
Implement a variable pressure capability

Reimplemented from VPStandardStateTP.

Definition at line 522 of file HMWSoln.cpp.

References HMWSoln::setState_TP(), and Phase::temperature().

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

Reimplemented from VPStandardStateTP.

Definition at line 527 of file HMWSoln.cpp.

References ValueCache::getId(), Phase::getMoleFractions(), HMWSoln::getPartialMolarVolumes(), ValueCache::getScalar(), Phase::m_cache, Phase::m_kk, HMWSoln::m_pp, HMWSoln::m_tmpV, Phase::meanMolecularWeight(), HMWSoln::pressure(), Phase::setDensity(), Phase::stateMFNumber(), Phase::temperature(), and CachedValue< T >::validate().

Referenced by HMWSoln::setState_TP().

double density ( ) const
virtual

Returns the current value of the density.

Returns
value of the density. Units: kg/m^3

Reimplemented from Phase.

Definition at line 547 of file HMWSoln.cpp.

References Phase::density().

Referenced by HMWSoln::setDensity().

void setDensity ( const doublereal  rho)
virtual

Set the internally stored density (kg/m^3) of the phase.

Overwritten setDensity() function is necessary because the density is not an independent variable.

This function will now throw an error condition.

Note, in general, setting the phase density is now a nonlinear calculation. P and T are the fundamental variables. This routine should be revamped to do the nonlinear problem.

Todo:

May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.

Now have a compressible ss equation for liquid water. Therefore, this phase is compressible. May still want to change the independent variable however.

Parameters
rhoInput density (kg/m^3).

Reimplemented from Phase.

Definition at line 552 of file HMWSoln.cpp.

References HMWSoln::density().

void setMolarDensity ( const doublereal  conc)
virtual

Set the internally stored molar density (kmol/m^3) for the phase.

Overwritten setMolarDensity() function is necessary because of the underlying water model.

This function will now throw an error condition if the input isn't exactly equal to the current molar density.

Parameters
concInput molar density (kmol/m^3).

Reimplemented from Phase.

Definition at line 562 of file HMWSoln.cpp.

void setTemperature ( const doublereal  temp)
virtual

Set the temperature (K)

This function sets the temperature, and makes sure that the value propagates to underlying objects, such as the water standard state model.

Todo:
Make Phase::setTemperature a virtual function
Parameters
tempTemperature in kelvin

Reimplemented from VPStandardStateTP.

Definition at line 568 of file HMWSoln.cpp.

References VPStandardStateTP::m_Pcurrent, and HMWSoln::setState_TP().

void setState_TP ( doublereal  t,
doublereal  p 
)
virtual

Set the temperature (K) and pressure (Pa)

Set the temperature and pressure.

Parameters
tTemperature (K)
pPressure (Pa)

Reimplemented from VPStandardStateTP.

Definition at line 573 of file HMWSoln.cpp.

References HMWSoln::calcDensity(), PDSS::density(), HMWSoln::m_densWaterSS, VPStandardStateTP::m_Pcurrent, HMWSoln::m_waterSS, Phase::setTemperature(), and VPStandardStateTP::updateStandardStateThermo().

Referenced by HMWSoln::setPressure(), and HMWSoln::setTemperature().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized activity concentrations.

The generalized activity concentrations, \( C_k^a\), are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below. These generalized concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.

The generalized activity concentration of a solute species has the following form

\[ C_j^a = C^o_o \frac{\gamma_j^\triangle n_j}{n_o} \]

The generalized activity concentration of the solvent has the same units, but it's a simpler form

\[ C_o^a = C^o_o a_o \]

Parameters
cArray of generalized concentrations. The units are kmol m-3 for both the solvent and the solute species

Reimplemented from MolalityVPSSTP.

Definition at line 604 of file HMWSoln.cpp.

References HMWSoln::getActivities(), Phase::m_kk, and HMWSoln::standardConcentration().

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration for use

We have set the standard concentration for all solute species in this phase equal to the default concentration of the solvent at the system temperature and pressure multiplied by Mnaught (kg solvent / gmol solvent). The solvent standard concentration is just equal to its standard state concentration.

\[ C_j^0 = C^o_o \tilde{M}_o \quad and C_o^0 = C^o_o \]

The consequence of this is that the standard concentrations have unequal units between the solvent and the solute. However, both the solvent and the solute activity concentrations will have the same units of kmol kg-3.

This means that the kinetics operator essentially works on an generalized concentration basis (kmol / m3), with units for the kinetic rate constant specified as if all reactants (solvent or solute) are on a concentration basis (kmol /m3). The concentration will be modified by the activity coefficients.

For example, a bulk-phase binary reaction between liquid solute species j and k, producing a new liquid solute species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 (C^o_o \tilde{M}_o a_j) (C^o_o \tilde{M}_o a_k) \]

where

\[ C_j^a = C^o_o \tilde{M}_o a_j \quad and \quad C_k^a = C^o_o \tilde{M}_o a_k \]

\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C^o_o \) is the concentration of water at 298 K and 1 atm. \( \tilde{M}_o \) has units of kg solvent per gmol solvent and is equal to

\[ \tilde{M}_o = \frac{M_o}{1000} \]

\( a_j \) is the activity of species j at the current temperature and pressure and concentration of the liquid phase is given by the molality based activity coefficient multiplied by the molality of the jth species.

\[ a_j = \gamma_j^\triangle m_j = \gamma_j^\triangle \frac{n_j}{\tilde{M}_o n_o} \]

\(k^1 \) has units of m3 kmol-1 s-1.

Therefore the generalized activity concentration of a solute species has the following form

\[ C_j^a = C^o_o \frac{\gamma_j^\triangle n_j}{n_o} \]

The generalized activity concentration of the solvent has the same units, but it's a simpler form

\[ C_o^a = C^o_o a_o \]

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.
Parameters
kSpecies index

Reimplemented from MolalityVPSSTP.

Definition at line 617 of file HMWSoln.cpp.

References DATA_PTR, VPStandardStateTP::getStandardVolumes(), MolalityVPSSTP::m_indexSolvent, MolalityVPSSTP::m_Mnaught, and HMWSoln::m_tmpV.

Referenced by HMWSoln::getActivityConcentrations().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and generalized concentrations.

Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.

Parameters
uAOutput vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.
Deprecated:
To be removed after Cantera 2.2.

Reimplemented from MolalityVPSSTP.

Definition at line 627 of file HMWSoln.cpp.

References Phase::nDim(), and Cantera::warn_deprecated().

void getActivities ( doublereal *  ac) const
virtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

(note solvent is on molar scale).

Parameters
acOutput vector of activities. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 653 of file HMWSoln.cpp.

References MolalityVPSSTP::m_indexSolvent, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, MolalityVPSSTP::m_molalities, Phase::moleFraction(), and VPStandardStateTP::updateStandardStateThermo().

Referenced by HMWSoln::getActivityConcentrations().

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{\triangle}_k(T,P) + R T ln(\gamma_k^{\triangle} m_k) \]

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 689 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getStandardChemPotentials(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, MolalityVPSSTP::m_molalities, Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().

Referenced by HMWSoln::gibbs_mole().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the molality-based activity coefficient wrt temperature

\[ \bar h_k(T,P) = h^{\triangle}_k(T,P) - R T^2 \frac{d \ln(\gamma_k^\triangle)}{dT} \]

The solvent partial molar enthalpy is equal to

\[ \bar h_o(T,P) = h^{o}_o(T,P) - R T^2 \frac{d \ln(a_o)}{dT} = h^{o}_o(T,P) + R T^2 (\sum_{k \neq o} m_k) \tilde{M_o} (\frac{d \phi}{dT}) \]

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 717 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getEnthalpy_RT(), HMWSoln::m_dlnActCoeffMolaldT_Scaled, Phase::m_kk, HMWSoln::s_update_dlnMolalityActCoeff_dT(), and Phase::temperature().

Referenced by HMWSoln::enthalpy_mole(), and HMWSoln::relative_enthalpy().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Maxwell's equations provide an answer for how calculate this (p.215 Smith and Van Ness)

d(chemPot_i)/dT = -sbar_i

For this phase, the partial molar entropies are equal to the SS species entropies plus the ideal solution contribution plus complicated functions of the temperature derivative of the activity coefficients.

\[ \bar s_k(T,P) = s^{\triangle}_k(T,P) - R \ln( \gamma^{\triangle}_k \frac{m_k}{m^{\triangle}})) - R T \frac{d \ln(\gamma^{\triangle}_k) }{dT} \]

\[ \bar s_o(T,P) = s^o_o(T,P) - R \ln(a_o) - R T \frac{d \ln(a_o)}{dT} \]

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 743 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), HMWSoln::m_dlnActCoeffMolaldT_Scaled, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, MolalityVPSSTP::m_molalities, Phase::moleFraction(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), Cantera::SmallNumber, and Phase::temperature().

Referenced by HMWSoln::entropy_mole().

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

For this solution, the partial molar volumes are functions of the pressure derivatives of the activity coefficients.

\[ \bar V_k(T,P) = V^{\triangle}_k(T,P) + R T \frac{d \ln(\gamma^{\triangle}_k) }{dP} \]

\[ \bar V_o(T,P) = V^o_o(T,P) + R T \frac{d \ln(a_o)}{dP} \]

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 788 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getStandardVolumes(), HMWSoln::m_dlnActCoeffMolaldP_Scaled, Phase::m_kk, HMWSoln::s_update_dlnMolalityActCoeff_dP(), and Phase::temperature().

Referenced by HMWSoln::calcDensity().

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

The following formulas are implemented within the code.

\[ \bar C_{p,k}(T,P) = C^{\triangle}_{p,k}(T,P) - 2 R T \frac{d \ln( \gamma^{\triangle}_k)}{dT} - R T^2 \frac{d^2 \ln(\gamma^{\triangle}_k) }{{dT}^2} \]

\[ \bar C_{p,o}(T,P) = C^o_{p,o}(T,P) - 2 R T \frac{d \ln(a_o)}{dT} - R T^2 \frac{d^2 \ln(a_o)}{{dT}^2} \]

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 806 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getCp_R(), HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Scaled, Phase::m_kk, HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), and Phase::temperature().

Referenced by HMWSoln::cp_mole().

virtual void setToEquilState ( const doublereal *  lambda_RT)
inlinevirtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented from MolalityVPSSTP.

Definition at line 1823 of file HMWSoln.h.

References VPStandardStateTP::updateStandardStateThermo().

doublereal satPressure ( doublereal  T)
virtual

Get the saturation pressure for a given temperature.

Note the limitations of this function. Stability considerations concerning multiphase equilibrium are ignored in this calculation. Therefore, the call is made directly to the SS of water underneath. The object is put back into its original state at the end of the call.

Todo:
This is probably not implemented correctly. The stability of the salt should be added into this calculation. The underlying water model may be called to get the stability of the pure water solution, if needed.
Parameters
TTemperature (kelvin)

Reimplemented from ThermoPhase.

Definition at line 837 of file HMWSoln.cpp.

References HMWSoln::m_waterSS, HMWSoln::pressure(), PDSS::satPressure(), PDSS::setState_TP(), and Phase::temperature().

void initThermo ( )
virtual

Internal initialization required after all species have been added.

Initialize. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase().

Reimplemented from MolalityVPSSTP.

Definition at line 958 of file HMWSoln_input.cpp.

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Initialize the phase parameters from an XML file.

This gets called from importPhase(). It processes the XML file after the species are set up. This is the main routine for reading in activity coefficient parameters.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from VPStandardStateTP.

Definition at line 1115 of file HMWSoln_input.cpp.

References XML_Node::attrib(), Cantera::cEST_solvent, XML_Node::child(), DATA_PTR, XML_Node::findByAttr(), XML_Node::findByName(), Cantera::fpValue(), Cantera::fpValueCheck(), Cantera::get_XML_NameID(), Cantera::getChildValue(), Cantera::getFloat(), Cantera::getMap(), Cantera::getOptionalFloat(), Cantera::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), XML_Node::id(), Cantera::interp_est(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, Cantera::OneAtm, PITZERFORM_BASE, XML_Node::root(), and Cantera::toSI().

double A_Debye_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the Debye Huckel constant as a function of temperature and pressure.

A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

Units = sqrt(kg/gmol)

Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 848 of file HMWSoln.cpp.

References WaterProps::ADebye(), ValueCache::getId(), ValueCache::getScalar(), HMWSoln::m_A_Debye, Phase::m_cache, HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), Phase::temperature(), and CachedValue< T >::validate().

Referenced by HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::s_NBS_CLM_lnMolalityActCoeff(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

double dA_DebyedT_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.

A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

Units = sqrt(kg/gmol)

Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 880 of file HMWSoln.cpp.

References WaterProps::ADebye(), HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), and Phase::temperature().

Referenced by HMWSoln::ADebye_L(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

double dA_DebyedP_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the derivative of the Debye Huckel constant with respect to pressure, as a function of temperature and pressure.

A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

Units = sqrt(kg/gmol)

Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 904 of file HMWSoln.cpp.

References WaterProps::ADebye(), ValueCache::getId(), ValueCache::getScalar(), Phase::m_cache, HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), Phase::temperature(), CachedValue< T >::validate(), and CachedValue< T >::value.

Referenced by HMWSoln::ADebye_V(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dP(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

double ADebye_L ( double  temperature = -1.0,
double  pressure = -1.0 
) const

Return Pitzer's definition of A_L.

This is basically the derivative of the A_phi multiplied by 4 R T**2

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
       dA_phidT = d(A_Debye)/dT / 3.0
       A_L = dA_phidT * (4 * R * T * T)

       Units = sqrt(kg/gmol) (RT)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 936 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedT_TP(), Cantera::GasConstant, and Phase::temperature().

Referenced by HMWSoln::ADebye_J().

double ADebye_J ( double  temperature = -1.0,
double  pressure = -1.0 
) const

Return Pitzer's definition of A_J.

This is basically the temperature derivative of A_L, and the second derivative of A_phi

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
       dA_phidT = d(A_Debye)/dT / 3.0
       A_J = 2 A_L/T + 4 * R * T * T * d2(A_phi)/dT2

       Units = sqrt(kg/gmol) (R)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 958 of file HMWSoln.cpp.

References HMWSoln::ADebye_L(), HMWSoln::d2A_DebyedT2_TP(), Cantera::GasConstant, and Phase::temperature().

double ADebye_V ( double  temperature = -1.0,
double  pressure = -1.0 
) const

Return Pitzer's definition of A_V.

This is the derivative wrt pressure of A_phi multiplied by - 4 R T

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
       dA_phidT = d(A_Debye)/dP / 3.0
       A_V = - dA_phidP * (4 * R * T)

       Units = sqrt(kg/gmol) (RT) / Pascal
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 947 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedP_TP(), Cantera::GasConstant, and Phase::temperature().

double d2A_DebyedT2_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the 2nd derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.

A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

Units = sqrt(kg/gmol)

Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 970 of file HMWSoln.cpp.

References WaterProps::ADebye(), HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), and Phase::temperature().

Referenced by HMWSoln::ADebye_J(), HMWSoln::s_NBS_CLM_d2lnMolalityActCoeff_dT2(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

double AionicRadius ( int  k = 0) const

Reports the ionic radius of the kth species.

Parameters
kSpecies index

Definition at line 997 of file HMWSoln.cpp.

References HMWSoln::m_Aionic.

int formPitzer ( ) const
inline

formPitzer():

Returns the form of the Pitzer parameterization used

Definition at line 2022 of file HMWSoln.h.

References HMWSoln::m_formPitzer.

void printCoeffs ( ) const
void getUnscaledMolalityActivityCoefficients ( doublereal *  acMolality) const
virtual

Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.

See Denbigh p. 278 for a thorough discussion. This class must be overwritten in classes which derive from MolalityVPSSTP. This function takes over from the molar-based activity coefficient calculation, getActivityCoefficients(), in derived classes.

Parameters
acMolalityOutput vector containing the molality based activity coefficients. length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 674 of file HMWSoln.cpp.

References HMWSoln::A_Debye_TP(), Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Unscaled, and VPStandardStateTP::updateStandardStateThermo().

void s_updateScaling_pHScaling ( ) const
private

Apply the current phScale to a set of activity Coefficients.

See the Eq3/6 Manual for a thorough discussion.

Definition at line 5148 of file HMWSoln.cpp.

References AssertTrace, Phase::charge(), MolalityVPSSTP::m_indexCLM, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, HMWSoln::m_lnActCoeffMolal_Unscaled, MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_lnMolalityActCoeff().

void s_updateScaling_pHScaling_dT ( ) const
private

Apply the current phScale to a set of derivatives of the activity Coefficients wrt temperature.

See the Eq3/6 Manual for a thorough discussion of the need

Definition at line 5163 of file HMWSoln.cpp.

References AssertTrace, Phase::charge(), HMWSoln::m_dlnActCoeffMolaldT_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, MolalityVPSSTP::m_indexCLM, Phase::m_kk, MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dT().

Referenced by HMWSoln::s_update_dlnMolalityActCoeff_dT().

void s_updateScaling_pHScaling_dT2 ( ) const
private

Apply the current phScale to a set of 2nd derivatives of the activity Coefficients wrt temperature.

See the Eq3/6 Manual for a thorough discussion of the need

Definition at line 5178 of file HMWSoln.cpp.

References AssertTrace, Phase::charge(), HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, MolalityVPSSTP::m_indexCLM, Phase::m_kk, MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_d2lnMolalityActCoeff_dT2().

Referenced by HMWSoln::s_update_d2lnMolalityActCoeff_dT2().

void s_updateScaling_pHScaling_dP ( ) const
private

Apply the current phScale to a set of derivatives of the activity Coefficients wrt pressure.

See the Eq3/6 Manual for a thorough discussion of the need

Definition at line 5193 of file HMWSoln.cpp.

References AssertTrace, Phase::charge(), HMWSoln::m_dlnActCoeffMolaldP_Scaled, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, MolalityVPSSTP::m_indexCLM, Phase::m_kk, MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dP().

Referenced by HMWSoln::s_update_dlnMolalityActCoeff_dP().

doublereal s_NBS_CLM_lnMolalityActCoeff ( ) const
private

Calculate the Chlorine activity coefficient on the NBS scale.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 5208 of file HMWSoln.cpp.

References HMWSoln::A_Debye_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::applyphScale(), and HMWSoln::s_updateScaling_pHScaling().

doublereal s_NBS_CLM_dlnMolalityActCoeff_dT ( ) const
private

Calculate the temperature derivative of the Chlorine activity coefficient on the NBS scale.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 5216 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedT_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::s_updateScaling_pHScaling_dT().

doublereal s_NBS_CLM_d2lnMolalityActCoeff_dT2 ( ) const
private

Calculate the second temperature derivative of the Chlorine activity coefficient on the NBS scale.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 5223 of file HMWSoln.cpp.

References HMWSoln::d2A_DebyedT2_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::s_updateScaling_pHScaling_dT2().

doublereal s_NBS_CLM_dlnMolalityActCoeff_dP ( ) const
private

Calculate the pressure derivative of the Chlorine activity coefficient.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 5230 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedP_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::s_updateScaling_pHScaling_dP().

void initLengths ( )
private

Initialize all of the species-dependent lengths in the object.

Definition at line 1006 of file HMWSoln.cpp.

References HMWSoln::counterIJ_setup(), HMWSoln::CROP_speciesCropped_, HMWSoln::IMS_lnActCoeffMolal_, HMWSoln::m_Aionic, HMWSoln::m_Alpha1MX_ij, HMWSoln::m_Alpha2MX_ij, HMWSoln::m_Beta0MX_ij, HMWSoln::m_Beta0MX_ij_coeff, HMWSoln::m_Beta0MX_ij_L, HMWSoln::m_Beta0MX_ij_LL, HMWSoln::m_Beta0MX_ij_P, HMWSoln::m_Beta1MX_ij, HMWSoln::m_Beta1MX_ij_coeff, HMWSoln::m_Beta1MX_ij_L, HMWSoln::m_Beta1MX_ij_LL, HMWSoln::m_Beta1MX_ij_P, HMWSoln::m_Beta2MX_ij, HMWSoln::m_Beta2MX_ij_coeff, HMWSoln::m_Beta2MX_ij_L, HMWSoln::m_Beta2MX_ij_LL, HMWSoln::m_Beta2MX_ij_P, HMWSoln::m_BMX_IJ, HMWSoln::m_BMX_IJ_L, HMWSoln::m_BMX_IJ_LL, HMWSoln::m_BMX_IJ_P, HMWSoln::m_BphiMX_IJ, HMWSoln::m_BphiMX_IJ_L, HMWSoln::m_BphiMX_IJ_LL, HMWSoln::m_BphiMX_IJ_P, HMWSoln::m_BprimeMX_IJ, HMWSoln::m_BprimeMX_IJ_L, HMWSoln::m_BprimeMX_IJ_LL, HMWSoln::m_BprimeMX_IJ_P, HMWSoln::m_CMX_IJ, HMWSoln::m_CMX_IJ_L, HMWSoln::m_CMX_IJ_LL, HMWSoln::m_CMX_IJ_P, HMWSoln::m_CounterIJ, HMWSoln::m_CphiMX_ij, HMWSoln::m_CphiMX_ij_coeff, HMWSoln::m_CphiMX_ij_L, HMWSoln::m_CphiMX_ij_LL, HMWSoln::m_CphiMX_ij_P, HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, HMWSoln::m_dlnActCoeffMolaldP_Scaled, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, HMWSoln::m_dlnActCoeffMolaldT_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, HMWSoln::m_electrolyteSpeciesType, HMWSoln::m_formPitzerTemp, HMWSoln::m_g2func_IJ, HMWSoln::m_gamma_tmp, HMWSoln::m_gfunc_IJ, HMWSoln::m_h2func_IJ, HMWSoln::m_hfunc_IJ, Phase::m_kk, HMWSoln::m_Lambda_nj, HMWSoln::m_Lambda_nj_coeff, HMWSoln::m_Lambda_nj_L, HMWSoln::m_Lambda_nj_LL, HMWSoln::m_Lambda_nj_P, HMWSoln::m_lnActCoeffMolal_Scaled, HMWSoln::m_lnActCoeffMolal_Unscaled, HMWSoln::m_molalitiesCropped, HMWSoln::m_Mu_nnn, HMWSoln::m_Mu_nnn_coeff, HMWSoln::m_Mu_nnn_L, HMWSoln::m_Mu_nnn_LL, HMWSoln::m_Mu_nnn_P, HMWSoln::m_Phi_IJ, HMWSoln::m_Phi_IJ_L, HMWSoln::m_Phi_IJ_LL, HMWSoln::m_Phi_IJ_P, HMWSoln::m_PhiPhi_IJ, HMWSoln::m_PhiPhi_IJ_L, HMWSoln::m_PhiPhi_IJ_LL, HMWSoln::m_PhiPhi_IJ_P, HMWSoln::m_Phiprime_IJ, HMWSoln::m_pp, HMWSoln::m_Psi_ijk, HMWSoln::m_Psi_ijk_coeff, HMWSoln::m_Psi_ijk_L, HMWSoln::m_Psi_ijk_LL, HMWSoln::m_Psi_ijk_P, HMWSoln::m_speciesCharge_Stoich, Phase::m_speciesSize, HMWSoln::m_Theta_ij, HMWSoln::m_Theta_ij_coeff, HMWSoln::m_Theta_ij_L, HMWSoln::m_Theta_ij_LL, HMWSoln::m_Theta_ij_P, HMWSoln::m_tmpV, and Array2D::resize().

void applyphScale ( doublereal *  acMolality) const
privatevirtual

Apply the current phScale to a set of activity Coefficients or activities.

See the Eq3/6 Manual for a thorough discussion.

Parameters
acMolalityinput/Output vector containing the molality based activity coefficients. length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 5134 of file HMWSoln.cpp.

References AssertTrace, Phase::charge(), MolalityVPSSTP::m_indexCLM, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Unscaled, MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_lnMolalityActCoeff().

void s_update_dlnMolalityActCoeff_dT ( ) const
private

This function calculates the temperature derivative of the natural logarithm of the molality activity coefficients.

This function does all of the direct work. The solvent activity coefficient is on the molality scale. It's derivative is too.

Definition at line 2561 of file HMWSoln.cpp.

References HMWSoln::CROP_speciesCropped_, ValueCache::getId(), ValueCache::getScalar(), Phase::m_cache, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, Phase::m_kk, HMWSoln::pressure(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updateScaling_pHScaling_dT(), Phase::stateMFNumber(), Phase::temperature(), and CachedValue< T >::validate().

Referenced by HMWSoln::getPartialMolarCp(), HMWSoln::getPartialMolarEnthalpies(), and HMWSoln::getPartialMolarEntropies().

void s_update_d2lnMolalityActCoeff_dT2 ( ) const
private
void s_update_dlnMolalityActCoeff_dP ( ) const
private

This function calculates the pressure derivative of the natural logarithm of the molality activity coefficients.

Assumes that the activity coefficients are current.

Definition at line 4109 of file HMWSoln.cpp.

References HMWSoln::CROP_speciesCropped_, ValueCache::getId(), ValueCache::getScalar(), Phase::m_cache, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, Phase::m_kk, HMWSoln::pressure(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updateScaling_pHScaling_dP(), Phase::stateMFNumber(), Phase::temperature(), and CachedValue< T >::validate().

Referenced by HMWSoln::getPartialMolarVolumes().

void s_updateIMS_lnMolalityActCoeff ( ) const
private
void s_updatePitzer_lnMolalityActCoeff ( ) const
private
void s_updatePitzer_dlnMolalityActCoeff_dT ( ) const
private
void s_updatePitzer_d2lnMolalityActCoeff_dT2 ( ) const
private
void s_updatePitzer_dlnMolalityActCoeff_dP ( ) const
private
void s_updatePitzer_CoeffWRTemp ( int  doDerivs = 2) const
private
void calc_lambdas ( double  is) const
private

Calculate the lambda interactions.

Calculate E-lambda terms for charge combinations of like sign, using method of Pitzer (1975). This implementation is based on Bethke, Appendix 2.

Parameters
isIonic strength

Definition at line 4876 of file HMWSoln.cpp.

References HMWSoln::elambda, HMWSoln::elambda1, and HMWSoln::m_debugCalc.

Referenced by HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

void calc_thetas ( int  z1,
int  z2,
double *  etheta,
double *  etheta_prime 
) const
private

Calculate etheta and etheta_prime.

This interaction accounts for the mixing effects of like-signed ions with different charges. This interaction will be nonzero for species with the same charge. this routine is not to be called for neutral species; it core dumps or error exits.

MEC implementation routine.

Parameters
z1charge of the first molecule
z2charge of the second molecule
ethetareturn pointer containing etheta
etheta_primeReturn pointer containing etheta_prime.

This routine uses the internal variables, elambda[] and elambda1[].

There is no prohibition against calling

Definition at line 4934 of file HMWSoln.cpp.

References AssertThrowMsg, HMWSoln::elambda, and HMWSoln::elambda1.

Referenced by HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

void counterIJ_setup ( void  ) const
private

Set up a counter variable for keeping track of symmetric binary interactions amongst the solute species.

The purpose of this is to squeeze the ij parameters into a compressed single counter.

n = m_kk*i + j m_Counter[n] = counter

Definition at line 1381 of file HMWSoln.cpp.

References HMWSoln::m_CounterIJ, and Phase::m_kk.

Referenced by HMWSoln::initLengths(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

void calcMolalitiesCropped ( ) const
private
void readXMLBinarySalt ( XML_Node BinSalt)
private

Process an XML node called "binarySaltParameters".

This node contains all of the parameters necessary to describe the Pitzer model for that particular binary salt. This function reads the XML file and writes the coefficients it finds to an internal data structures.

Parameters
BinSaltreference to the XML_Node named binarySaltParameters containing the anion - cation interaction

Definition at line 53 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::fpValueCheck(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and XML_Node::value().

void readXMLThetaAnion ( XML_Node BinSalt)
private

Process an XML node called "thetaAnion".

This node contains all of the parameters necessary to describe the binary interactions between two anions.

Parameters
BinSaltreference to the XML_Node named thetaAnion containing the anion - anion interaction

Definition at line 252 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLThetaCation ( XML_Node BinSalt)
private

Process an XML node called "thetaCation".

This node contains all of the parameters necessary to describe the binary interactions between two cations.

Parameters
BinSaltreference to the XML_Node named thetaCation containing the cation - cation interaction

Definition at line 332 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLPsiCommonAnion ( XML_Node BinSalt)
private

Process an XML node called "psiCommonAnion".

This node contains all of the parameters necessary to describe the ternary interactions between one anion and two cations.

Parameters
BinSaltreference to the XML_Node named psiCommonAnion containing the anion - cation1 - cation2 interaction

Definition at line 549 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::fpValueCheck(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and XML_Node::value().

void readXMLPsiCommonCation ( XML_Node BinSalt)
private

Process an XML node called "psiCommonCation".

This node contains all of the parameters necessary to describe the ternary interactions between one cation and two anions.

Parameters
BinSaltreference to the XML_Node named psiCommonCation containing the cation - anion1 - anion2 interaction

Definition at line 411 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::fpValueCheck(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and XML_Node::value().

void readXMLLambdaNeutral ( XML_Node BinSalt)
private

Process an XML node called "lambdaNeutral".

This node contains all of the parameters necessary to describe the binary interactions between one neutral species and any other species (neutral or otherwise) in the mechanism.

Parameters
BinSaltreference to the XML_Node named lambdaNeutral containing multiple Neutral - species interactions

Definition at line 688 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLMunnnNeutral ( XML_Node BinSalt)
private

Process an XML node called "MunnnNeutral".

This node contains all of the parameters necessary to describe the self-ternary interactions for one neutral species.

Parameters
BinSaltreference to the XML_Node named Munnn containing the self-ternary interaction

Definition at line 767 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLZetaCation ( const XML_Node BinSalt)
private

Process an XML node called "zetaCation".

This node contains all of the parameters necessary to describe the ternary interactions between one neutral, one cation, and one anion.

Parameters
BinSaltreference to the XML_Node named psiCommonCation containing the neutral - cation - anion interaction

Definition at line 835 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLCroppingCoefficients ( const XML_Node acNode)
private

Process an XML node called "croppingCoefficients" for the cropping coefficients values.

Parameters
acNodeActivity Coefficient XML Node

Definition at line 932 of file HMWSoln_input.cpp.

References XML_Node::child(), Cantera::getOptionalFloat(), and XML_Node::hasChild().

void calcIMSCutoffParams_ ( )
private

Precalculate the IMS Cutoff parameters for typeCutoff = 2.

Definition at line 1647 of file HMWSoln_input.cpp.

void calcMCCutoffParams_ ( )
private

Calculate molality cut-off parameters.

Definition at line 1696 of file HMWSoln_input.cpp.

int interp_est ( const std::string &  estString)
staticprivate

Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field.

Parameters
estStringstring name of the electrolyte species type

Definition at line 28 of file HMWSoln_input.cpp.

References Cantera::cEST_solvent, and Cantera::lowercase().

int debugPrinting ( )

Return int specifying the amount of debug printing.

This will return 0 if DEBUG_MODE is not turned on

Definition at line 5237 of file HMWSoln.cpp.

References HMWSoln::m_debugCalc.

Member Data Documentation

int m_formPitzer
private

This is the form of the Pitzer parameterization used in this model.

The options are described at the top of this document, and in the general documentation. The list is repeated here:

PITZERFORM_BASE = 0 (only one supported atm)

Definition at line 2111 of file HMWSoln.h.

Referenced by HMWSoln::formPitzer(), and HMWSoln::operator=().

int m_formPitzerTemp
private

This is the form of the temperature dependence of Pitzer parameterization used in the model.

PITZER_TEMP_CONSTANT 0 PITZER_TEMP_LINEAR 1 PITZER_TEMP_COMPLEX1 2

Definition at line 2121 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

int m_formGC
private

Format for the generalized concentration:

0 = unity 1 = molar_volume 2 = solvent_volume (default)

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor.

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N

The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

(HKM Note: Using option #1 may lead to spurious results and has been included only with warnings. The reason is that it molar volumes of electrolytes may often be negative. The molar volume of H+ is defined to be zero too. Either options 0 or 2 are the appropriate choice. Option 0 leads to bulk reaction rate constants which have units of s-1. Option 2 leads to bulk reaction rate constants for bimolecular rxns which have units of m-3 kmol-1 s-1.)

Definition at line 2152 of file HMWSoln.h.

Referenced by HMWSoln::eosType(), and HMWSoln::operator=().

vector_int m_electrolyteSpeciesType
private

Vector containing the electrolyte species type.

The possible types are:

  • solvent
  • Charged Species
  • weakAcidAssociated
  • strongAcidAssociated
  • polarNeutral
  • nonpolarNeutral .

Definition at line 2164 of file HMWSoln.h.

Referenced by HMWSoln::initLengths().

vector_fp m_Aionic
private

a_k = Size of the ionic species in the DH formulation units = meters

Definition at line 2170 of file HMWSoln.h.

Referenced by HMWSoln::AionicRadius(), HMWSoln::initLengths(), and HMWSoln::operator=().

double m_IionicMolality
mutableprivate

Current value of the ionic strength on the molality scale Associated Salts, if present in the mechanism, don't contribute to the value of the ionic strength in this version of the Ionic strength.

Definition at line 2178 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), HMWSoln::s_NBS_CLM_d2lnMolalityActCoeff_dT2(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dP(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dT(), HMWSoln::s_NBS_CLM_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

double m_maxIionicStrength
private

Maximum value of the ionic strength allowed in the calculation of the activity coefficients.

Definition at line 2184 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

double m_TempPitzerRef
private

Reference Temperature for the Pitzer formulations.

Definition at line 2187 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

double m_IionicMolalityStoich
mutableprivate

Stoichiometric ionic strength on the molality scale.

This differs from m_IionicMolality in the sense that associated salts are treated as unassociated salts, when calculating the Ionic strength by this method.

Definition at line 2195 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

int m_form_A_Debye

Form of the constant outside the Debye-Huckel term called A.

It's normally a function of temperature and pressure. However, it can be set from the input file in order to aid in numerical comparisons. Acceptable forms:

  A_DEBYE_CONST  0
  A_DEBYE_WATER  1

The A_DEBYE_WATER form may be used for water solvents with needs to cover varying temperatures and pressures. Note, the dielectric constant of water is a relatively strong function of T, and its variability must be accounted for,

Definition at line 2214 of file HMWSoln.h.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), and HMWSoln::operator=().

double m_A_Debye
mutableprivate

A_Debye -> this expression appears on the top of the ln actCoeff term in the general Debye-Huckel expression It depends on temperature.

And, therefore, most be recalculated whenever T or P changes. This variable is a local copy of the calculation.

A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

 where B_Debye = F / sqrt(epsilon R T/2)
                 (dw/1000)^(1/2)

A_Debye = (1/ (8 Pi)) (2 Na * dw/1000)^(1/2) (e * e / (epsilon * kb * T))^(3/2)

Units = sqrt(kg/gmol)

Nominal value = 1.172576 sqrt(kg/gmol) based on: epsilon/epsilon_0 = 78.54 (water at 25C) epsilon_0 = 8.854187817E-12 C2 N-1 m-2 e = 1.60217653 E-19 C F = 9.6485309E7 C kmol-1 R = 8.314472E3 kg m2 s-2 kmol-1 K-1 T = 298.15 K B_Debye = 3.28640E9 sqrt(kg/gmol)/m dw = C_0 * M_0 (density of water) (kg/m3) = 1.0E3 at 25C

Definition at line 2248 of file HMWSoln.h.

Referenced by HMWSoln::A_Debye_TP(), and HMWSoln::operator=().

PDSS* m_waterSS
private

Water standard state calculator.

derived from the equation of state for water.

Definition at line 2254 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), HMWSoln::satPressure(), and HMWSoln::setState_TP().

double m_densWaterSS
private

density of standard-state water

internal temporary variable

Definition at line 2260 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::setState_TP().

WaterProps* m_waterProps
private

Pointer to the water property calculator.

Definition at line 2263 of file HMWSoln.h.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), HMWSoln::operator=(), and HMWSoln::~HMWSoln().

vector_fp m_pp
mutableprivate

Temporary array used in equilibrium calculations.

Definition at line 2266 of file HMWSoln.h.

Referenced by HMWSoln::calcDensity(), HMWSoln::enthalpy_mole(), HMWSoln::initLengths(), and HMWSoln::operator=().

vector_fp m_tmpV
mutableprivate
vector_fp m_speciesCharge_Stoich
private

Stoichiometric species charge -> This is for calculations of the ionic strength which ignore ion-ion pairing into neutral molecules.

The Stoichiometric species charge is the charge of one of the ion that would occur if the species broke into two charged ion pairs. NaCl -> m_speciesCharge_Stoich = -1; HSO4- -> H+ + SO42- = -2 -> The other charge is calculated. For species that aren't ion pairs, its equal to the m_speciesCharge[] value.

Definition at line 2283 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), and HMWSoln::operator=().

vector_fp m_Beta0MX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation.

Beta0_ij[i][j] is the value of the Beta0 coefficient for the ij salt. It will be nonzero iff i and j are both charged and have opposite sign. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2294 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Beta0MX_ij_L
mutableprivate

Derivative of Beta0_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2300 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Beta0MX_ij_LL
mutableprivate

Derivative of Beta0_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2306 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Beta0MX_ij_P
mutableprivate

Derivative of Beta0_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2312 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Beta0MX_ij_coeff
mutableprivate

Array of coefficients for Beta0, a variable in Pitzer's papers.

column index is counterIJ m_Beta0MX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2320 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Beta1MX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation. Beta1_ij[i][j] is the value of the Beta1 coefficient for the ij salt. It will be nonzero iff i and j are both charged and have opposite sign. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2331 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Beta1MX_ij_L
mutableprivate

Derivative of Beta1_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2337 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Beta1MX_ij_LL
mutableprivate

Derivative of Beta1_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2343 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Beta1MX_ij_P
mutableprivate

Derivative of Beta1_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2349 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Beta1MX_ij_coeff
mutableprivate

Array of coefficients for Beta1, a variable in Pitzer's papers.

column index is counterIJ m_Beta1MX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2357 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Beta2MX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation.

Beta2_ij[i][j] is the value of the Beta2 coefficient for the ij salt. It will be nonzero iff i and j are both charged and have opposite sign, and i and j both have charges of 2 or more. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2369 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Beta2MX_ij_L
mutableprivate

Derivative of Beta2_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2375 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Beta2MX_ij_LL
mutableprivate

Derivative of Beta2_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2381 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Beta2MX_ij_P
mutableprivate

Derivative of Beta2_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2387 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Beta2MX_ij_coeff
mutableprivate

Array of coefficients for Beta2, a variable in Pitzer's papers.

column index is counterIJ m_Beta2MX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction. This was added for the YMP database version of the code since it contains temperature-dependent parameters for some 2-2 electrolytes.

Definition at line 2397 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Alpha1MX_ij
private

Array of 2D data used in the Pitzer/HMW formulation.

Alpha1MX_ij[i][j] is the value of the alpha1 coefficient for the ij interaction. It will be nonzero iff i and j are both charged and have opposite sign. It is symmetric wrt i, j. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2408 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Alpha2MX_ij
private

Array of 2D data used in the Pitzer/HMW formulation.

Alpha2MX_ij[i][j] is the value of the alpha2 coefficient for the ij interaction. It will be nonzero iff i and j are both charged and have opposite sign, and i and j both have charges of 2 or more, usually. It is symmetric wrt i, j. counterIJ, where counterIJ = m_counterIJ[i][j], is used to access this array.

Definition at line 2420 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_CphiMX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation.

CphiMX_ij[i][j] is the value of the Cphi coefficient for the ij interaction. It will be nonzero iff i and j are both charged and have opposite sign, and i and j both have charges of 2 or more. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2432 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_CphiMX_ij_L
mutableprivate

Derivative of Cphi_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2438 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_CphiMX_ij_LL
mutableprivate

Derivative of Cphi_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2444 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_CphiMX_ij_P
mutableprivate

Derivative of Cphi_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2450 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_CphiMX_ij_coeff
mutableprivate

Array of coefficients for CphiMX, a parameter in the activity coefficient formulation.

Column index is counterIJ m_CphiMX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2459 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Theta_ij
mutableprivate

Array of 2D data for Theta_ij[i][j] in the Pitzer/HMW formulation.

Array of 2D data used in the Pitzer/HMW formulation. Theta_ij[i][j] is the value of the theta coefficient for the ij interaction. It will be nonzero for charged ions with the same sign. It is symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

HKM Recent Pitzer papers have used a functional form for Theta_ij, which depends on the ionic strength.

Definition at line 2473 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Theta_ij_L
mutableprivate

Derivative of Theta_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2479 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Theta_ij_LL
mutableprivate

Derivative of Theta_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2485 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Theta_ij_P
mutableprivate

Derivative of Theta_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2491 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Theta_ij_coeff
private

Array of coefficients for Theta_ij[i][j] in the Pitzer/HMW formulation.

Theta_ij[i][j] is the value of the theta coefficient for the ij interaction. It will be nonzero for charged ions with the same sign. It is symmetric. Column index is counterIJ. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

m_Theta_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2505 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Psi_ijk
mutableprivate

Array of 3D data used in the Pitzer/HMW formulation.

Psi_ijk[n] is the value of the psi coefficient for the ijk interaction where

n = k + j * m_kk + i * m_kk * m_kk;

It is potentially nonzero everywhere. The first two coordinates are symmetric wrt cations, and the last two coordinates are symmetric wrt anions.

Definition at line 2518 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Psi_ijk_L
mutableprivate

Derivative of Psi_ijk[n] wrt T.

see m_Psi_ijk for reference on the indexing into this variable.

Definition at line 2524 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Psi_ijk_LL
mutableprivate

Derivative of Psi_ijk[n] wrt TT.

see m_Psi_ijk for reference on the indexing into this variable.

Definition at line 2530 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Psi_ijk_P
mutableprivate

Derivative of Psi_ijk[n] wrt P.

see m_Psi_ijk for reference on the indexing into this variable.

Definition at line 2536 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Psi_ijk_coeff
private

Array of coefficients for Psi_ijk[n] in the Pitzer/HMW formulation.

Psi_ijk[n] is the value of the psi coefficient for the ijk interaction where

n = k + j * m_kk + i * m_kk * m_kk;

It is potentially nonzero everywhere. The first two coordinates are symmetric wrt cations, and the last two coordinates are symmetric wrt anions.

m_Psi_ijk_coeff.ptrColumn(n) is a double* containing the vector of coefficients for the n interaction.

Definition at line 2553 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

Array2D m_Lambda_nj
mutableprivate

Lambda coefficient for the ij interaction.

Array of 2D data used in the Pitzer/HMW formulation. Lambda_nj[n][j] represents the lambda coefficient for the ij interaction. This is a general interaction representing neutral species. The neutral species occupy the first index, i.e., n. The charged species occupy the j coordinate. neutral, neutral interactions are also included here.

Definition at line 2564 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

Array2D m_Lambda_nj_L
mutableprivate

Derivative of Lambda_nj[i][j] wrt T. see m_Lambda_ij.

Definition at line 2567 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

Array2D m_Lambda_nj_LL
mutableprivate

Derivative of Lambda_nj[i][j] wrt TT.

Definition at line 2570 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

Array2D m_Lambda_nj_P
mutableprivate

Derivative of Lambda_nj[i][j] wrt P.

Definition at line 2573 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Lambda_nj_coeff
private

Array of coefficients for Lambda_nj[i][j] in the Pitzer/HMW formulation.

Lambda_ij[i][j] is the value of the theta coefficient for the ij interaction. Array of 2D data used in the Pitzer/HMW formulation. Lambda_ij[i][j] represents the lambda coefficient for the ij interaction. This is a general interaction representing neutral species. The neutral species occupy the first index, i.e., i. The charged species occupy the j coordinate. Neutral, neutral interactions are also included here.

n = j + m_kk * i

m_Lambda_ij_coeff.ptrColumn(n) is a double* containing the vector of coefficients for the (i,j) interaction.

Definition at line 2591 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Mu_nnn
mutableprivate

Mu coefficient for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn[i] represents the Mu coefficient for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2600 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Mu_nnn_L
mutableprivate

Mu coefficient temperature derivative for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn_L[i] represents the Mu coefficient temperature derivative for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2609 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Mu_nnn_LL
mutableprivate

Mu coefficient 2nd temperature derivative for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn_L[i] represents the Mu coefficient 2nd temperature derivative for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2618 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Mu_nnn_P
mutableprivate

Mu coefficient pressure derivative for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn_L[i] represents the Mu coefficient pressure derivative for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2627 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Mu_nnn_coeff
private

Array of coefficients form_Mu_nnn term.

Definition at line 2630 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_lnActCoeffMolal_Scaled
mutableprivate

Logarithm of the activity coefficients on the molality scale.

mutable because we change this if the composition or temperature or pressure changes.

index is the species index

Definition at line 2640 of file HMWSoln.h.

Referenced by HMWSoln::getActivities(), HMWSoln::getChemPotentials(), HMWSoln::getPartialMolarEntropies(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling().

vector_fp m_lnActCoeffMolal_Unscaled
mutableprivate

Logarithm of the activity coefficients on the molality scale.

mutable because we change this if the composition or temperature or pressure changes.

index is the species index

Definition at line 2650 of file HMWSoln.h.

Referenced by HMWSoln::applyphScale(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and HMWSoln::s_updateScaling_pHScaling().

vector_fp m_dlnActCoeffMolaldT_Scaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt T.

index is the species index

Definition at line 2657 of file HMWSoln.h.

Referenced by HMWSoln::getPartialMolarCp(), HMWSoln::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEntropies(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling_dT().

vector_fp m_dlnActCoeffMolaldT_Unscaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt T.

index is the species index

Definition at line 2664 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updateScaling_pHScaling_dT().

vector_fp m_d2lnActCoeffMolaldT2_Scaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT.

index is the species index

Definition at line 2671 of file HMWSoln.h.

Referenced by HMWSoln::getPartialMolarCp(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling_dT2().

vector_fp m_d2lnActCoeffMolaldT2_Unscaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT.

index is the species index

Definition at line 2678 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), and HMWSoln::s_updateScaling_pHScaling_dT2().

vector_fp m_dlnActCoeffMolaldP_Scaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt P.

index is the species index

Definition at line 2685 of file HMWSoln.h.

Referenced by HMWSoln::getPartialMolarVolumes(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling_dP().

vector_fp m_dlnActCoeffMolaldP_Unscaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt P.

index is the species index

Definition at line 2692 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), and HMWSoln::s_updateScaling_pHScaling_dP().

vector_fp m_molalitiesCropped
mutableprivate
bool m_molalitiesAreCropped
mutableprivate

Boolean indicating whether the molalities are cropped or are modified.

Definition at line 2703 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

vector_int m_CounterIJ
mutableprivate
double elambda[17]
mutableprivate

This is elambda, MEC.

Definition at line 2714 of file HMWSoln.h.

Referenced by HMWSoln::calc_lambdas(), HMWSoln::calc_thetas(), and HMWSoln::HMWSoln().

double elambda1[17]
mutableprivate

This is elambda1, MEC.

Definition at line 2717 of file HMWSoln.h.

Referenced by HMWSoln::calc_lambdas(), HMWSoln::calc_thetas(), and HMWSoln::HMWSoln().

vector_fp m_gfunc_IJ
mutableprivate

Various temporary arrays used in the calculation of the Pitzer activity coefficients.

The subscript, L, denotes the same quantity's derivative wrt temperatureThis is the value of g(x) in Pitzer's papers

vector index is counterIJ

Definition at line 2730 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_g2func_IJ
mutableprivate
vector_fp m_hfunc_IJ
mutableprivate

hfunc, was called gprime in Pitzer's paper.

However, it's not the derivative of gfunc(x), so I renamed it.

vector index is counterIJ

Definition at line 2743 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_h2func_IJ
mutableprivate

hfunc2, was called gprime in Pitzer's paper.

However, it's not the derivative of gfunc(x), so I renamed it.

vector index is counterIJ

Definition at line 2750 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BMX_IJ
mutableprivate

Intermediate variable called BMX in Pitzer's paper This is the basic cation - anion interaction.

vector index is counterIJ

Definition at line 2757 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BMX_IJ_L
mutableprivate

Derivative of BMX_IJ wrt T.

vector index is counterIJ

Definition at line 2763 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_BMX_IJ_LL
mutableprivate

Derivative of BMX_IJ wrt TT.

vector index is counterIJ

Definition at line 2769 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_BMX_IJ_P
mutableprivate

Derivative of BMX_IJ wrt P.

vector index is counterIJ

Definition at line 2775 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_BprimeMX_IJ
mutableprivate

Intermediate variable called BprimeMX in Pitzer's paper.

vector index is counterIJ

Definition at line 2781 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BprimeMX_IJ_L
mutableprivate

Derivative of BprimeMX wrt T.

vector index is counterIJ

Definition at line 2787 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_BprimeMX_IJ_LL
mutableprivate

Derivative of BprimeMX wrt TT.

vector index is counterIJ

Definition at line 2793 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_BprimeMX_IJ_P
mutableprivate

Derivative of BprimeMX wrt P.

vector index is counterIJ

Definition at line 2799 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_BphiMX_IJ
mutableprivate

Intermediate variable called BphiMX in Pitzer's paper.

vector index is counterIJ

Definition at line 2805 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BphiMX_IJ_L
mutableprivate

Derivative of BphiMX_IJ wrt T.

vector index is counterIJ

Definition at line 2811 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_BphiMX_IJ_LL
mutableprivate

Derivative of BphiMX_IJ wrt TT.

vector index is counterIJ

Definition at line 2817 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_BphiMX_IJ_P
mutableprivate

Derivative of BphiMX_IJ wrt P.

vector index is counterIJ

Definition at line 2823 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_Phi_IJ
mutableprivate

Intermediate variable called Phi in Pitzer's paper.

vector index is counterIJ

Definition at line 2829 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Phi_IJ_L
mutableprivate

Derivative of m_Phi_IJ wrt T.

vector index is counterIJ

Definition at line 2835 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Phi_IJ_LL
mutableprivate

Derivative of m_Phi_IJ wrt TT.

vector index is counterIJ

Definition at line 2841 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Phi_IJ_P
mutableprivate

Derivative of m_Phi_IJ wrt P.

vector index is counterIJ

Definition at line 2847 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_Phiprime_IJ
mutableprivate
vector_fp m_PhiPhi_IJ
mutableprivate

Intermediate variable called PhiPhi in Pitzer's paper.

vector index is counterIJ

Definition at line 2859 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_PhiPhi_IJ_L
mutableprivate

Derivative of m_PhiPhi_IJ wrt T.

vector index is counterIJ

Definition at line 2865 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_PhiPhi_IJ_LL
mutableprivate

Derivative of m_PhiPhi_IJ wrt TT.

vector index is counterIJ

Definition at line 2871 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_PhiPhi_IJ_P
mutableprivate

Derivative of m_PhiPhi_IJ wrt P.

vector index is counterIJ

Definition at line 2877 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_CMX_IJ
mutableprivate

Intermediate variable called CMX in Pitzer's paper.

vector index is counterIJ

Definition at line 2883 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_CMX_IJ_L
mutableprivate

Derivative of m_CMX_IJ wrt T.

vector index is counterIJ

Definition at line 2889 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_CMX_IJ_LL
mutableprivate

Derivative of m_CMX_IJ wrt TT.

vector index is counterIJ

Definition at line 2895 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_CMX_IJ_P
mutableprivate

Derivative of m_CMX_IJ wrt P.

vector index is counterIJ

Definition at line 2901 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_gamma_tmp
mutableprivate

Intermediate storage of the activity coefficient itself.

vector index is the species index

Definition at line 2907 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::relative_enthalpy(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp IMS_lnActCoeffMolal_
mutableprivate

Logarithm of the molal activity coefficients.

Normally these are all one. However, stability schemes will change that

Definition at line 2913 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

int IMS_typeCutoff_
private

IMS Cutoff type.

Definition at line 2916 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_X_o_cutoff_
private

value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 2920 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_gamma_o_min_
private

gamma_o value for the cutoff process at the zero solvent point

Definition at line 2923 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_gamma_k_min_
private

gamma_k minimum for the cutoff process at the zero solvent point

Definition at line 2926 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_cCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 2929 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_slopefCut_
private

Parameter in the polyExp cutoff treatment.

This is the slope of the f function at the zero solvent point Default value is 0.6

Definition at line 2936 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal IMS_slopegCut_
private

Parameter in the polyExp cutoff treatment.

This is the slope of the g function at the zero solvent point Default value is 0.0

Definition at line 2943 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal MC_X_o_cutoff_
private

value of the solvent mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 2959 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal MC_X_o_min_
private

gamma_o value for the cutoff process at the zero solvent point

Definition at line 2962 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal MC_slopepCut_
private

Parameter in the Molality Exp cutoff treatment.

This is the slope of the p function at the zero solvent point Default value is 0.0

Definition at line 2969 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

std::vector<int> CROP_speciesCropped_
mutableprivate

This is a boolean-type vector indicating whether a species's activity coefficient is in the cropped regime.

  • 0 = Not in cropped regime
  • 1 = In a transition regime where it is altered but there still may be a temperature or pressure dependence
  • 2 = In a cropped regime where there is no temperature or pressure dependence

Definition at line 2992 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), and HMWSoln::s_update_dlnMolalityActCoeff_dT().

int m_debugCalc
mutable

The documentation for this class was generated from the following files: