Cantera  2.2.1
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SurfPhase.h
Go to the documentation of this file.
1 /**
2  * @file SurfPhase.h
3  * Header for a simple thermodynamics model of a surface phase
4  * derived from ThermoPhase,
5  * assuming an ideal solution model
6  * (see \ref thermoprops and class \link Cantera::SurfPhase SurfPhase\endlink).
7  */
8 
9 // Copyright 2002 California Institute of Technology
10 
11 #ifndef CT_SURFPHASE_H
12 #define CT_SURFPHASE_H
13 
14 #include "mix_defs.h"
15 #include "ThermoPhase.h"
16 
17 namespace Cantera
18 {
19 
20 //! A simple thermodynamic model for a surface phase,
21 //! assuming an ideal solution model.
22 /*!
23  * The surface consists of a grid of equivalent sites.
24  * Surface species may be defined to
25  * occupy one or more sites. The surface species are assumed to be
26  * independent, and thus the species form an ideal solution.
27  *
28  * The density of surface sites is given by the variable \f$ n_0 \f$,
29  * which has SI units of kmol m-2.
30  *
31  * <b> Specification of Species Standard State Properties </b>
32  *
33  * It is assumed that the reference state thermodynamics may be
34  * obtained by a pointer to a populated species thermodynamic property
35  * manager class (see ThermoPhase::m_spthermo). How to relate pressure
36  * changes to the reference state thermodynamics is resolved at this level.
37  *
38  * Pressure is defined as an independent variable in this phase. However, it has
39  * no effect on any quantities, as the molar concentration is a constant.
40  *
41  * Therefore, The standard state internal energy for species <I>k</I> is
42  * equal to the enthalpy for species <I>k</I>.
43  *
44  * \f[
45  * u^o_k = h^o_k
46  * \f]
47  *
48  * Also, the standard state chemical potentials, entropy, and heat capacities
49  * are independent of pressure. The standard state Gibbs free energy is obtained
50  * from the enthalpy and entropy functions.
51  *
52  * <b> Specification of Solution Thermodynamic Properties </b>
53  *
54  * The activity of species defined in the phase is given by
55  * \f[
56  * a_k = \theta_k
57  * \f]
58  *
59  * The chemical potential for species <I>k</I> is equal to
60  * \f[
61  * \mu_k(T,P) = \mu^o_k(T) + R T \log(\theta_k)
62  * \f]
63  *
64  * Pressure is defined as an independent variable in this phase. However, it has
65  * no effect on any quantities, as the molar concentration is a constant.
66  *
67  * The internal energy for species k is equal to the enthalpy for species <I>k</I>
68  * \f[
69  * u_k = h_k
70  * \f]
71  *
72  * The entropy for the phase is given by the following relation, which is
73  * independent of the pressure:
74  *
75  * \f[
76  * s_k(T,P) = s^o_k(T) - R \log(\theta_k)
77  * \f]
78  *
79  * <b> %Application within Kinetics Managers </b>
80  *
81  * The activity concentration,\f$ C^a_k \f$, used by the kinetics manager, is equal to
82  * the actual concentration, \f$ C^s_k \f$, and is given by the following
83  * expression.
84  * \f[
85  * C^a_k = C^s_k = \frac{\theta_k n_0}{s_k}
86  * \f]
87  *
88  * The standard concentration for species <I>k</I> is:
89  * \f[
90  * C^0_k = \frac{n_0}{s_k}
91  * \f]
92  *
93  * <b> Instantiation of the Class </b>
94  *
95  * The constructor for this phase is located in the default ThermoFactory
96  * for %Cantera. A new SurfPhase may be created by the following code snippet:
97  *
98  * @code
99  * XML_Node *xc = get_XML_File("diamond.xml");
100  * XML_Node * const xs = xc->findNameID("phase", "diamond_100");
101  * ThermoPhase *diamond100TP_tp = newPhase(*xs);
102  * SurfPhase *diamond100TP = dynamic_cast <SurfPhase *>(diamond100TP_tp);
103  * @endcode
104  *
105  * or by the following constructor:
106  *
107  * @code
108  * XML_Node *xc = get_XML_File("diamond.xml");
109  * XML_Node * const xs = xc->findNameID("phase", "diamond_100");
110  * SurfPhase *diamond100TP = new SurfPhase(*xs);
111  * @endcode
112  *
113  * <b> XML Example </b>
114  *
115  * An example of an XML Element named phase setting up a SurfPhase object named diamond_100
116  * is given below.
117  *
118  * @code
119  * <phase dim="2" id="diamond_100">
120  * <elementArray datasrc="elements.xml">H C</elementArray>
121  * <speciesArray datasrc="#species_data">c6HH c6H* c6*H c6** c6HM c6HM* c6*M c6B </speciesArray>
122  * <reactionArray datasrc="#reaction_data"/>
123  * <state>
124  * <temperature units="K">1200.0</temperature>
125  * <coverages>c6H*:0.1, c6HH:0.9</coverages>
126  * </state>
127  * <thermo model="Surface">
128  * <site_density units="mol/cm2">3e-09</site_density>
129  * </thermo>
130  * <kinetics model="Interface"/>
131  * <transport model="None"/>
132  * <phaseArray>
133  * gas_phase diamond_bulk
134  * </phaseArray>
135  * </phase>
136  * @endcode
137  *
138  * The model attribute, "Surface", on the thermo element identifies the phase as being
139  * a SurfPhase object.
140  *
141  * @ingroup thermoprops
142  */
143 class SurfPhase : public ThermoPhase
144 {
145 public:
146  //! Constructor.
147  /*!
148  * @param n0 Site Density of the Surface Phase
149  * Units: kmol m-2.
150  */
151  SurfPhase(doublereal n0 = 1.0);
152 
153  //! Construct and initialize a SurfPhase ThermoPhase object
154  //! directly from an ASCII input file
155  /*!
156  * @param infile name of the input file
157  * @param id name of the phase id in the file.
158  * If this is blank, the first phase in the file is used.
159  */
160  SurfPhase(const std::string& infile, std::string id);
161 
162  //! Construct and initialize a SurfPhase ThermoPhase object
163  //! directly from an XML database
164  /*!
165  * @param xmlphase XML node pointing to a SurfPhase description
166  */
167  SurfPhase(XML_Node& xmlphase);
168 
169  //! Copy Constructor
170  /*!
171  * Copy constructor for the object. Constructed
172  * object will be a clone of this object, but will
173  * also own all of its data.
174  * This is a wrapper around the assignment operator
175  *
176  * @param right Object to be copied.
177  */
178  SurfPhase(const SurfPhase& right);
179 
180  //! Assignment operator
181  /*!
182  * Assignment operator for the object. Constructed
183  * object will be a clone of this object, but will
184  * also own all of its data.
185  *
186  * @param right Object to be copied.
187  */
188  SurfPhase& operator=(const SurfPhase& right);
189 
190  //! Duplicator from the ThermoPhase parent class
191  /*
192  * Given a pointer to a ThermoPhase object, this function will
193  * duplicate the ThermoPhase object and all underlying structures.
194  * This is basically a wrapper around the copy constructor.
195  *
196  * @return returns a pointer to a ThermoPhase
197  */
199 
200  //! Equation of state type flag.
201  /*!
202  * Redefine this to return cSurf, listed in mix_defs.h.
203  */
204  virtual int eosType() const {
205  return cSurf;
206  }
207 
208  //! Return the Molar Enthalpy. Units: J/kmol.
209  /*!
210  * For an ideal solution,
211  * \f[
212  * \hat h(T,P) = \sum_k X_k \hat h^0_k(T),
213  * \f]
214  * and is a function only of temperature.
215  * The standard-state pure-species Enthalpies
216  * \f$ \hat h^0_k(T) \f$ are computed by the species thermodynamic
217  * property manager.
218  *
219  * \see SpeciesThermo
220  */
221  virtual doublereal enthalpy_mole() const;
222 
223  //! Return the Molar Internal Energy. Units: J/kmol
224  /**
225  * For a surface phase, the pressure is not a relevant
226  * thermodynamic variable, and so the Enthalpy is equal to the
227  * Internal Energy.
228  */
229  virtual doublereal intEnergy_mole() const;
230 
231  //! Return the Molar Entropy. Units: J/kmol-K
232  /**
233  * \f[
234  * \hat s(T,P) = \sum_k X_k (\hat s^0_k(T) - R \log(\theta_k))
235  * \f]
236  */
237  virtual doublereal entropy_mole() const;
238 
239  virtual doublereal cp_mole() const;
240 
241  virtual doublereal cv_mole() const;
242 
243  //! Get the species chemical potentials. Units: J/kmol.
244  /*!
245  * This function returns a vector of chemical potentials of the
246  * species in solution at the current temperature, pressure
247  * and mole fraction of the solution.
248  *
249  * @param mu Output vector of species chemical
250  * potentials. Length: m_kk. Units: J/kmol
251  */
252  virtual void getChemPotentials(doublereal* mu) const;
253 
254  //! Returns an array of partial molar enthalpies for the species
255  //! in the mixture. Units (J/kmol)
256  /*!
257  * @param hbar Output vector of species partial molar enthalpies.
258  * Length: m_kk. units are J/kmol.
259  */
260  virtual void getPartialMolarEnthalpies(doublereal* hbar) const;
261 
262  //! Returns an array of partial molar entropies of the species in the
263  //! solution. Units: J/kmol/K.
264  /*!
265  * @param sbar Output vector of species partial molar entropies.
266  * Length = m_kk. units are J/kmol/K.
267  */
268  virtual void getPartialMolarEntropies(doublereal* sbar) const;
269 
270  //! Return an array of partial molar heat capacities for the
271  //! species in the mixture. Units: J/kmol/K
272  /*!
273  * @param cpbar Output vector of species partial molar heat
274  * capacities at constant pressure.
275  * Length = m_kk. units are J/kmol/K.
276  */
277  virtual void getPartialMolarCp(doublereal* cpbar) const;
278 
279  //! Return an array of partial molar volumes for the
280  //! species in the mixture. Units: m^3/kmol.
281  /*!
282  * @param vbar Output vector of species partial molar volumes.
283  * Length = m_kk. units are m^3/kmol.
284  */
285  virtual void getPartialMolarVolumes(doublereal* vbar) const;
286 
287  //! Get the array of chemical potentials at unit activity for the
288  //! standard state species at the current <I>T</I> and <I>P</I> of the solution.
289  /*!
290  * These are the standard state chemical potentials \f$ \mu^0_k(T,P)
291  * \f$. The values are evaluated at the current
292  * temperature and pressure of the solution
293  *
294  * @param mu0 Output vector of chemical potentials.
295  * Length: m_kk.
296  */
297  virtual void getStandardChemPotentials(doublereal* mu0) const;
298 
299  //! Return a vector of activity concentrations for each species
300  /*!
301  * For this phase the activity concentrations,\f$ C^a_k \f$, are defined to be
302  * equal to the actual concentrations, \f$ C^s_k \f$.
303  * Activity concentrations are
304  *
305  * \f[
306  * C^a_k = C^s_k = \frac{\theta_k n_0}{s_k}
307  * \f]
308  *
309  * where \f$ \theta_k \f$ is the surface site fraction for species k,
310  * \f$ n_0 \f$ is the surface site density for the phase, and
311  * \f$ s_k \f$ is the surface size of species k.
312  *
313  * \f$ C^a_k\f$ that are defined such that \f$ a_k = C^a_k /
314  * C^0_k, \f$ where \f$ C^0_k \f$ is a standard concentration
315  * defined below and \f$ a_k \f$ are activities used in
316  * the thermodynamic functions. These activity concentrations are used
317  * by kinetics manager classes to compute the forward and
318  * reverse rates of elementary reactions. Note that they may
319  * or may not have units of concentration --- they might be
320  * partial pressures, mole fractions, or surface coverages,
321  *
322  * @param c vector of activity concentration (kmol m-2).
323  */
324  virtual void getActivityConcentrations(doublereal* c) const;
325 
326  //! Return the standard concentration for the kth species
327  /*!
328  * The standard concentration \f$ C^0_k \f$ used to normalize
329  * the activity (i.e., generalized) concentration.
330  * For this phase, the standard concentration is species-
331  * specific
332  *
333  * \f[
334  * C^0_k = \frac{n_0}{s_k}
335  * \f]
336  *
337  * This definition implies that the activity is equal to \f$ \theta_k \f$.
338  *
339  * @param k Optional parameter indicating the species. The default
340  * is to assume this refers to species 0.
341  * @return
342  * Returns the standard Concentration in units of m3 kmol-1.
343  */
344  virtual doublereal standardConcentration(size_t k = 0) const;
345 
346  //! Return the log of the standard concentration for the kth species
347  /*!
348  * @param k species index (default 0)
349  */
350  virtual doublereal logStandardConc(size_t k=0) const;
351 
352  //! Set the equation of state parameters from the argument list
353  /*!
354  * @internal
355  * Set equation of state parameters.
356  *
357  * @param n number of parameters. Must be one
358  * @param c array of \a n coefficients
359  * c[0] = The site density (kmol m-2)
360  */
361  virtual void setParameters(int n, doublereal* const c);
362 
363  //! Set the Equation-of-State parameters by reading an XML Node Input
364  /*!
365  * The Equation-of-State data consists of one item, the site density.
366  *
367  * @param thermoData Reference to an XML_Node named thermo
368  * containing the equation-of-state data. The
369  * XML_Node is within the phase XML_Node describing
370  * the SurfPhase object.
371  *
372  * An example of the contents of the thermoData XML_Node is provided
373  * below. The units attribute is used to supply the units of the
374  * site density in any convenient form. Internally it is changed
375  * into MKS form.
376  *
377  * @code
378  * <thermo model="Surface">
379  * <site_density units="mol/cm2"> 3e-09 </site_density>
380  * </thermo>
381  * @endcode
382  */
383  virtual void setParametersFromXML(const XML_Node& thermoData);
384 
385  //! Initialize the SurfPhase object after all species have been set up
386  virtual void initThermo();
387 
388  //! Set the initial state of the Surface Phase from an XML_Node
389  /*!
390  * State variables that can be set by this routine are
391  * the temperature and the surface site coverages.
392  *
393  * @param state XML_Node containing the state information
394  *
395  * An example of the XML code block is given below.
396  *
397  * @code
398  * <state>
399  * <temperature units="K">1200.0</temperature>
400  * <coverages>c6H*:0.1, c6HH:0.9</coverages>
401  * </state>
402  * @endcode
403  */
404  virtual void setStateFromXML(const XML_Node& state);
405 
406  //! Returns the site density
407  /*!
408  * Site density kmol m-2
409  */
410  doublereal siteDensity() {
411  return m_n0;
412  }
413 
414  //! Set the site density of the surface phase (kmol m-2)
415  /*!
416  * @param n0 Site density of the surface phase (kmol m-2)
417  */
418  void setSiteDensity(doublereal n0);
419 
420  //! Get the nondimensional Gibbs functions for the species
421  //! in their standard states at the current <I>T</I> and <I>P</I> of the solution.
422  /*!
423  * @param grt Output vector of nondimensional standard state Gibbs free energies
424  * Length: m_kk.
425  */
426  virtual void getGibbs_RT(doublereal* grt) const;
427 
428  //! Get the nondimensional Enthalpy functions for the species standard states
429  //! at their standard states at the current <I>T</I> and <I>P</I> of the solution.
430  /*!
431  * @param hrt Output vector of nondimensional standard state enthalpies.
432  * Length: m_kk.
433  */
434  virtual void getEnthalpy_RT(doublereal* hrt) const;
435 
436  //! Get the array of nondimensional Entropy functions for the
437  //! species standard states at the current <I>T</I> and <I>P</I> of the solution.
438  /*!
439  * @param sr Output vector of nondimensional standard state entropies.
440  * Length: m_kk.
441  */
442  virtual void getEntropy_R(doublereal* sr) const;
443 
444  //! Get the nondimensional Heat Capacities at constant
445  //! pressure for the species standard states
446  //! at the current <I>T</I> and <I>P</I> of the solution
447  /*!
448  * @param cpr Output vector of nondimensional standard state heat capacities
449  * Length: m_kk.
450  */
451  virtual void getCp_R(doublereal* cpr) const;
452 
453  //! Get the molar volumes of the species standard states at the current
454  //! <I>T</I> and <I>P</I> of the solution.
455  /*!
456  * units = m^3 / kmol
457  *
458  * @param vol Output vector containing the standard state volumes.
459  * Length: m_kk.
460  */
461  virtual void getStandardVolumes(doublereal* vol) const;
462 
463  //! Return the thermodynamic pressure (Pa).
464  virtual doublereal pressure() const {
465  return m_press;
466  }
467 
468  //! Set the internally stored pressure (Pa) at constant
469  //! temperature and composition
470  /*!
471  * @param p input Pressure (Pa)
472  */
473  virtual void setPressure(doublereal p) {
474  m_press = p;
475  }
476 
477  virtual void getPureGibbs(doublereal* g) const;
478 
479  //! Returns the vector of nondimensional
480  //! Gibbs Free Energies of the reference state at the current temperature
481  //! of the solution and the reference pressure for the species.
482  /*!
483  * @param grt Output vector containing the nondimensional reference state
484  * Gibbs Free energies. Length: m_kk.
485  */
486  virtual void getGibbs_RT_ref(doublereal* grt) const;
487 
488  //! Returns the vector of nondimensional
489  //! enthalpies of the reference state at the current temperature
490  //! of the solution and the reference pressure for the species.
491  /*!
492  * @param hrt Output vector of nondimensional standard state enthalpies.
493  * Length: m_kk.
494  */
495  virtual void getEnthalpy_RT_ref(doublereal* hrt) const;
496 
497  //! Returns the vector of nondimensional
498  //! entropies of the reference state at the current temperature
499  //! of the solution and the reference pressure for each species.
500  /*!
501  * @param er Output vector containing the nondimensional reference state
502  * entropies. Length: m_kk.
503  */
504  virtual void getEntropy_R_ref(doublereal* er) const;
505 
506  //! Returns the vector of nondimensional constant pressure heat capacities
507  //! of the reference state at the current temperature of the solution and
508  //! reference pressure for each species.
509  /*!
510  * @param cprt Output vector of nondimensional reference state
511  * heat capacities at constant pressure for the species.
512  * Length: m_kk
513  */
514  virtual void getCp_R_ref(doublereal* cprt) const;
515 
516  //! Set the surface site fractions to a specified state.
517  /*!
518  * This routine converts to concentrations
519  * in kmol/m2, using m_n0, the surface site density,
520  * and size(k), which is defined to be the number of
521  * surface sites occupied by the kth molecule.
522  * It then calls Phase::setConcentrations to set the
523  * internal concentration in the object.
524  *
525  * @param theta This is the surface site fraction
526  * for the kth species in the surface phase.
527  * This is a dimensionless quantity.
528  *
529  * This routine normalizes the theta's to 1, before application
530  */
531  void setCoverages(const doublereal* theta);
532 
533  //! Set the surface site fractions to a specified state.
534  /*!
535  * This routine converts to concentrations
536  * in kmol/m2, using m_n0, the surface site density,
537  * and size(k), which is defined to be the number of
538  * surface sites occupied by the kth molecule.
539  * It then calls Phase::setConcentrations to set the
540  * internal concentration in the object.
541  *
542  * @param theta This is the surface site fraction
543  * for the kth species in the surface phase.
544  * This is a dimensionless quantity.
545  */
546  void setCoveragesNoNorm(const doublereal* theta);
547 
548  //! Set the coverages from a string of colon-separated name:value pairs.
549  /*!
550  * @param cov String containing colon-separated name:value pairs
551  */
552  void setCoveragesByName(const std::string& cov);
553 
554  //! Set the coverages from a map of name:value pairs
555  void setCoveragesByName(const compositionMap& cov);
556 
557  //! Return a vector of surface coverages
558  /*!
559  * Get the coverages.
560  *
561  * @param theta Array theta must be at least as long as
562  * the number of species.
563  */
564  void getCoverages(doublereal* theta) const;
565 
566 protected:
567  //! Surface site density (kmol m-2)
568  doublereal m_n0;
569 
570  //! log of the surface site density
571  doublereal m_logn0;
572 
573  //! Current value of the pressure (Pa)
574  doublereal m_press;
575 
576  //! Temporary storage for the reference state enthalpies
577  mutable vector_fp m_h0;
578 
579  //! Temporary storage for the reference state entropies
580  mutable vector_fp m_s0;
581 
582  //! Temporary storage for the reference state heat capacities
583  mutable vector_fp m_cp0;
584 
585  //! Temporary storage for the reference state Gibbs energies
586  mutable vector_fp m_mu0;
587 
588  //! Temporary work array
589  mutable vector_fp m_work;
590 
591  //! vector storing the log of the size of each species.
592  /*!
593  * The size of each species is defined as the number of surface
594  * sites each species occupies.
595  */
597 
598 private:
599  //! Update the species reference state thermodynamic functions
600  /*!
601  * The polynomials for the standard state functions are only
602  * reevaluated if the temperature has changed.
603  *
604  * @param force Boolean, which if true, forces a reevaluation
605  * of the thermo polynomials.
606  * default = false.
607  */
608  void _updateThermo(bool force=false) const;
609 };
610 }
611 
612 #endif
std::map< std::string, doublereal > compositionMap
Map connecting a string name with a double.
Definition: ct_defs.h:149
void setCoveragesNoNorm(const doublereal *theta)
Set the surface site fractions to a specified state.
Definition: SurfPhase.cpp:307
virtual void getCp_R_ref(doublereal *cprt) const
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
Definition: SurfPhase.cpp:252
virtual void getGibbs_RT(doublereal *grt) const
Get the nondimensional Gibbs functions for the species in their standard states at the current T and ...
Definition: SurfPhase.cpp:205
void setCoveragesByName(const std::string &cov)
Set the coverages from a string of colon-separated name:value pairs.
Definition: SurfPhase.cpp:327
doublereal m_press
Current value of the pressure (Pa)
Definition: SurfPhase.h:574
void setCoverages(const doublereal *theta)
Set the surface site fractions to a specified state.
Definition: SurfPhase.cpp:284
virtual void getEntropy_R_ref(doublereal *er) const
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
Definition: SurfPhase.cpp:247
virtual doublereal logStandardConc(size_t k=0) const
Return the log of the standard concentration for the kth species.
Definition: SurfPhase.cpp:185
SurfPhase(doublereal n0=1.0)
Constructor.
Definition: SurfPhase.cpp:21
Class XML_Node is a tree-based representation of the contents of an XML file.
Definition: xml.h:100
virtual void getStandardVolumes(doublereal *vol) const
Get the molar volumes of the species standard states at the current T and P of the solution...
Definition: SurfPhase.cpp:229
virtual void getGibbs_RT_ref(doublereal *grt) const
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
Definition: SurfPhase.cpp:237
vector_fp m_work
Temporary work array.
Definition: SurfPhase.h:589
void getCoverages(doublereal *theta) const
Return a vector of surface coverages.
Definition: SurfPhase.cpp:319
virtual void getActivityConcentrations(doublereal *c) const
Return a vector of activity concentrations for each species.
Definition: SurfPhase.cpp:175
virtual doublereal entropy_mole() const
Return the Molar Entropy. Units: J/kmol-K.
Definition: SurfPhase.cpp:104
Base class for a phase with thermodynamic properties.
Definition: ThermoPhase.h:97
const int cSurf
A surface phase. Used by class SurfPhase.
Definition: mix_defs.h:40
doublereal m_n0
Surface site density (kmol m-2)
Definition: SurfPhase.h:568
A simple thermodynamic model for a surface phase, assuming an ideal solution model.
Definition: SurfPhase.h:143
virtual void getPureGibbs(doublereal *g) const
Get the Gibbs functions for the standard state of the species at the current T and P of the solution...
Definition: SurfPhase.cpp:199
SurfPhase & operator=(const SurfPhase &right)
Assignment operator.
Definition: SurfPhase.cpp:68
doublereal m_logn0
log of the surface site density
Definition: SurfPhase.h:571
virtual int eosType() const
Equation of state type flag.
Definition: SurfPhase.h:204
virtual void initThermo()
Initialize the SurfPhase object after all species have been set up.
Definition: SurfPhase.cpp:257
virtual void setStateFromXML(const XML_Node &state)
Set the initial state of the Surface Phase from an XML_Node.
Definition: SurfPhase.cpp:374
virtual void getCp_R(doublereal *cpr) const
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
Definition: SurfPhase.cpp:223
virtual void getPartialMolarEnthalpies(doublereal *hbar) const
Returns an array of partial molar enthalpies for the species in the mixture.
Definition: SurfPhase.cpp:126
virtual doublereal pressure() const
Return the thermodynamic pressure (Pa).
Definition: SurfPhase.h:464
vector_fp m_logsize
vector storing the log of the size of each species.
Definition: SurfPhase.h:596
virtual void getEnthalpy_RT(doublereal *hrt) const
Get the nondimensional Enthalpy functions for the species standard states at their standard states at...
Definition: SurfPhase.cpp:211
virtual void getEnthalpy_RT_ref(doublereal *hrt) const
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
Definition: SurfPhase.cpp:242
ThermoPhase * duplMyselfAsThermoPhase() const
Duplicator from the ThermoPhase parent class.
Definition: SurfPhase.cpp:85
virtual doublereal intEnergy_mole() const
Return the Molar Internal Energy. Units: J/kmol.
Definition: SurfPhase.cpp:99
void _updateThermo(bool force=false) const
Update the species reference state thermodynamic functions.
Definition: SurfPhase.cpp:350
vector_fp m_s0
Temporary storage for the reference state entropies.
Definition: SurfPhase.h:580
virtual void getPartialMolarVolumes(doublereal *vbar) const
Return an array of partial molar volumes for the species in the mixture.
Definition: SurfPhase.cpp:153
virtual doublereal cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
Definition: SurfPhase.cpp:115
virtual void setPressure(doublereal p)
Set the internally stored pressure (Pa) at constant temperature and composition.
Definition: SurfPhase.h:473
virtual doublereal cv_mole() const
Molar heat capacity at constant volume. Units: J/kmol/K.
Definition: SurfPhase.cpp:121
vector_fp m_h0
Temporary storage for the reference state enthalpies.
Definition: SurfPhase.h:577
void setSiteDensity(doublereal n0)
Set the site density of the surface phase (kmol m-2)
Definition: SurfPhase.cpp:274
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
Definition: ct_defs.h:157
vector_fp m_mu0
Temporary storage for the reference state Gibbs energies.
Definition: SurfPhase.h:586
virtual doublereal standardConcentration(size_t k=0) const
Return the standard concentration for the kth species.
Definition: SurfPhase.cpp:180
virtual void setParametersFromXML(const XML_Node &thermoData)
Set the Equation-of-State parameters by reading an XML Node Input.
Definition: SurfPhase.cpp:367
virtual void getEntropy_R(doublereal *sr) const
Get the array of nondimensional Entropy functions for the species standard states at the current T an...
Definition: SurfPhase.cpp:217
virtual doublereal enthalpy_mole() const
Return the Molar Enthalpy. Units: J/kmol.
Definition: SurfPhase.cpp:90
virtual void getPartialMolarEntropies(doublereal *sbar) const
Returns an array of partial molar entropies of the species in the solution.
Definition: SurfPhase.cpp:135
Header file for class ThermoPhase, the base class for phases with thermodynamic properties, and the text for the Module thermoprops (see Thermodynamic Properties and class ThermoPhase).
virtual void getPartialMolarCp(doublereal *cpbar) const
Return an array of partial molar heat capacities for the species in the mixture.
Definition: SurfPhase.cpp:143
virtual void getChemPotentials(doublereal *mu) const
Get the species chemical potentials. Units: J/kmol.
Definition: SurfPhase.cpp:164
vector_fp m_cp0
Temporary storage for the reference state heat capacities.
Definition: SurfPhase.h:583
doublereal siteDensity()
Returns the site density.
Definition: SurfPhase.h:410
virtual void getStandardChemPotentials(doublereal *mu0) const
Get the array of chemical potentials at unit activity for the standard state species at the current T...
Definition: SurfPhase.cpp:158
virtual void setParameters(int n, doublereal *const c)
Set the equation of state parameters from the argument list.
Definition: SurfPhase.cpp:190