22 if (thermo.
type() !=
"ideal-gas") {
24 "Incompatible phase type provided");
33 "Error: reactor is empty.");
58 }
else if (nm ==
"temperature") {
60 }
else if (nm ==
"volume") {
98 double& mcvdTdt = RHS[0];
99 double* dndt = RHS +
m_sidx;
118 for (
size_t n = 0; n <
m_nsp; n++) {
127 for (
auto outlet : m_outlet) {
128 for (
size_t n = 0; n <
m_nsp; n++) {
137 for (
auto inlet : m_inlet) {
140 for (
size_t n = 0; n <
m_nsp; n++) {
144 mcvdTdt -=
m_uk[n] * imw[n] * mdot_spec;
160 "Reactor must be initialized first.");
168 size_t ssize = m_nv -
m_sidx;
171 if (!m_surfaces.empty()) {
172 vector<Eigen::Triplet<double>> species_trips;
173 for (
int k = 0; k < dnk_dnj.outerSize(); k++) {
174 for (Eigen::SparseMatrix<double>::InnerIterator it(dnk_dnj, k); it; ++it) {
175 species_trips.emplace_back(
static_cast<int>(it.row()),
176 static_cast<int>(it.col()), it.value());
180 dnk_dnj.resize(ssize, ssize);
181 dnk_dnj.setFromTriplets(species_trips.begin(), species_trips.end());
186 for (
int k = 0; k < dnk_dnj.outerSize(); k++) {
187 for (Eigen::SparseMatrix<double>::InnerIterator it(dnk_dnj, k); it; ++it) {
189 static_cast<int>(it.col() +
m_sidx), it.value());
196 * std::sqrt(std::numeric_limits<double>::epsilon());
198 vector<double> lhsPerturbed(m_nv, 1.0), lhsCurrent(m_nv, 1.0);
199 vector<double> rhsPerturbed(m_nv, 0.0), rhsCurrent(m_nv, 0.0);
200 vector<double> yCurrent(m_nv);
202 vector<double> yPerturbed = yCurrent;
204 yPerturbed[0] += deltaTemp;
208 eval(time, lhsPerturbed.data(), rhsPerturbed.data());
211 eval(time, lhsCurrent.data(), rhsCurrent.data());
213 for (
size_t j = 0; j < m_nv; j++) {
214 double ydotPerturbed = rhsPerturbed[j] / lhsPerturbed[j];
215 double ydotCurrent = rhsCurrent[j] / lhsCurrent[j];
217 (ydotPerturbed - ydotCurrent) / deltaTemp);
220 Eigen::VectorXd netProductionRates = Eigen::VectorXd::Zero(ssize);
221 Eigen::VectorXd internal_energy = Eigen::VectorXd::Zero(ssize);
222 Eigen::VectorXd specificHeat = Eigen::VectorXd::Zero(ssize);
228 for (
size_t i = 0; i <
m_nsp; i++) {
230 netProductionRates[i] *=
m_vol;
233 double qdot = internal_energy.dot(netProductionRates);
236 double* moles = yCurrent.data() +
m_sidx;
237 for (
size_t i = 0; i < ssize; i++) {
238 NCv += moles[i] * specificHeat[i];
241 double denom = 1 / (NCv * NCv);
242 Eigen::VectorXd uk_dnkdnj_sums = dnk_dnj.transpose() * internal_energy;
244 for (
size_t j = 0; j < ssize; j++) {
246 (specificHeat[j] * qdot - NCv * uk_dnkdnj_sums[j]) * denom);
250 Eigen::SparseMatrix<double> jac(m_nv, m_nv);
Base class for kinetics managers and also contains the kineticsmgr module documentation (see Kinetics...
Header file for class ReactorSurface.
Header for a simple thermodynamics model of a surface phase derived from ThermoPhase,...
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
Base class for exceptions thrown by Cantera classes.
double outletSpeciesMassFlowRate(size_t k)
Mass flow rate (kg/s) of outlet species k.
double enthalpy_mass()
specific enthalpy
double massFlowRate()
Mass flow rate (kg/s).
void eval(double t, double *LHS, double *RHS) override
Evaluate the reactor governing equations.
size_t componentIndex(const string &nm) const override
Return the index in the solution vector for this reactor of the component named nm.
Eigen::SparseMatrix< double > jacobian() override
Calculate an approximate Jacobian to accelerate preconditioned solvers.
vector< double > m_uk
Species molar internal energies.
void getState(double *y) override
Get the the current state of the reactor.
string componentName(size_t k) override
Return the name of the solution component with index i.
void setThermo(ThermoPhase &thermo) override
Specify the mixture contained in the reactor.
void updateState(double *y) override
Set the state of the reactor to correspond to the state vector y.
void initialize(double t0=0.0) override
Initialize the reactor.
virtual void getNetProductionRates(double *wdot)
Species net production rates [kmol/m^3/s or kmol/m^2/s].
void evalSurfaces(double *LHS, double *RHS, double *sdot) override
Evaluate terms related to surface reactions.
void getSurfaceInitialConditions(double *y) override
Get initial conditions for SurfPhase objects attached to this reactor.
void getMoles(double *y)
Get moles of the system from mass fractions stored by thermo object.
const size_t m_sidx
const value for the species start index
void setMassFromMoles(double *y)
Set internal mass variable based on moles given.
virtual void addSurfaceJacobian(vector< Eigen::Triplet< double > > &triplets)
For each surface in the reactor, update vector of triplets with all relevant surface jacobian derivat...
string componentName(size_t k) override
Return the name of the solution component with index i.
void initialize(double t0=0.0) override
Initialize the reactor.
void updateSurfaceState(double *y) override
Update the state of SurfPhase objects attached to this reactor.
void restoreState(const vector< double > &state)
Restore a state saved on a previous call to saveState.
void setState_TD(double t, double rho)
Set the internally stored temperature (K) and density (kg/m^3)
double temperature() const
Temperature (K).
const vector< double > & inverseMolecularWeights() const
Return a const reference to the internal vector of molecular weights.
virtual double density() const
Density (kg/m^3).
virtual void setMolesNoTruncate(const double *const N)
Set the state of the object with moles in [kmol].
virtual void setThermo(ThermoPhase &thermo)
Specify the mixture contained in the reactor.
FlowDevice & outlet(size_t n=0)
Return a reference to the n-th outlet FlowDevice connected to this reactor.
double m_pressure
Current pressure in the reactor [Pa].
ReactorNet * m_net
The ReactorNet that this reactor is part of.
FlowDevice & inlet(size_t n=0)
Return a reference to the n-th inlet FlowDevice connected to this reactor.
double m_vol
Current volume of the reactor [m^3].
size_t m_nsp
Number of homogeneous species in the mixture.
double time()
Current value of the simulation time [s], for reactor networks that are solved in the time domain.
Kinetics * m_kin
Pointer to the homogeneous Kinetics object that handles the reactions.
vector< double > m_wdot
Species net molar production rates.
virtual void evalWalls(double t)
Evaluate terms related to Walls.
double m_Qdot
net heat transfer into the reactor, through walls [W]
vector< Eigen::Triplet< double > > m_jac_trips
Vector of triplets representing the jacobian.
vector< double > m_sdot
Production rates of gas phase species on surfaces [kmol/s].
double m_vdot
net rate of volume change from moving walls [m^3/s]
virtual size_t speciesIndex(const string &nm) const
Return the index in the solution vector for this reactor of the species named nm, in either the homog...
virtual void updateConnected(bool updatePressure)
Update the state information needed by connected reactors, flow devices, and reactor walls.
Base class for a phase with thermodynamic properties.
virtual void getPartialMolarCp(double *cpbar) const
Return an array of partial molar heat capacities for the species in the mixture.
string type() const override
String indicating the thermodynamic model implemented.
virtual void getPartialMolarIntEnergies(double *ubar) const
Return an array of partial molar internal energies for the species in the mixture.
double cv_mass() const
Specific heat at constant volume. Units: J/kg/K.
Eigen::SparseMatrix< double > netProductionRates_ddCi()
Calculate derivatives for species net production rates with respect to species concentration at const...
const double GasConstant
Universal Gas Constant [J/kmol/K].
Namespace for the Cantera kernel.
const size_t npos
index returned by functions to indicate "no position"
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...