37 if (nm ==
"temperature") {
46 throw CanteraError(
"IdealGasMoleReactor::componentIndex",
47 "Component '{}' not found", nm);
62 if (m_thermo->
type() !=
"ideal-gas" && m_thermo->
type() !=
"plasma") {
64 "Incompatible phase type '{}' provided", m_thermo->
type());
73 return 1.5 * m_thermo->
maxTemp();
82 return 0.5 * m_thermo->
minTemp();
116 double& mcvdTdt = RHS[0];
117 double* dndt = RHS +
m_sidx;
134 for (
size_t n = 0; n <
m_nsp; n++) {
143 for (
auto outlet : m_outlet) {
144 for (
size_t n = 0; n <
m_nsp; n++) {
153 for (
auto inlet : m_inlet) {
156 for (
size_t n = 0; n <
m_nsp; n++) {
160 mcvdTdt -=
m_uk[n] * imw[n] * mdot_spec;
190 for (
int k = 0; k < dnk_dnj.outerSize(); k++) {
191 for (Eigen::SparseMatrix<double>::InnerIterator it(dnk_dnj, k); it; ++it) {
192 trips.emplace_back(
static_cast<int>(it.row() +
m_offset +
m_sidx),
201 * std::sqrt(std::numeric_limits<double>::epsilon());
203 vector<double> lhsPerturbed(
m_nv, 1.0), lhsCurrent(
m_nv, 1.0);
204 vector<double> rhsPerturbed(
m_nv, 0.0), rhsCurrent(
m_nv, 0.0);
205 vector<double> yCurrent(
m_nv);
207 vector<double> yPerturbed = yCurrent;
209 yPerturbed[0] += deltaTemp;
213 eval(time, lhsPerturbed.data(), rhsPerturbed.data());
216 eval(time, lhsCurrent.data(), rhsCurrent.data());
218 for (
size_t j = 0; j <
m_nv; j++) {
219 double ydotPerturbed = rhsPerturbed[j] / lhsPerturbed[j];
220 double ydotCurrent = rhsCurrent[j] / lhsCurrent[j];
222 (ydotPerturbed - ydotCurrent) / deltaTemp);
225 Eigen::VectorXd netProductionRates = Eigen::VectorXd::Zero(
m_nsp);
226 Eigen::VectorXd internal_energy = Eigen::VectorXd::Zero(
m_nsp);
227 Eigen::VectorXd specificHeat = Eigen::VectorXd::Zero(
m_nsp);
233 for (
size_t i = 0; i <
m_nsp; i++) {
235 netProductionRates[i] *=
m_vol;
238 double qdot = internal_energy.dot(netProductionRates);
240 Eigen::VectorXd uk_dnkdnj_sums = dnk_dnj.transpose() * internal_energy;
242 for (
size_t j = 0; j <
m_nsp; j++) {
244 (specificHeat[j] * qdot -
m_TotalCv * uk_dnkdnj_sums[j]) * denom);
250 double& f_species,
double* f_energy)
252 f_species = 1.0 /
m_vol;
253 for (
size_t k = 0; k <
m_nsp; k++) {
Base class for kinetics managers and also contains the kineticsmgr module documentation (see Kinetics...
Header file for class ReactorSurface.
Header for a simple thermodynamics model of a surface phase derived from ThermoPhase,...
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
Base class for exceptions thrown by Cantera classes.
double outletSpeciesMassFlowRate(size_t k)
Mass flow rate (kg/s) of outlet species k.
double enthalpy_mass()
specific enthalpy
double massFlowRate()
Mass flow rate (kg/s).
double upperBound(size_t k) const override
Get the upper bound on the k-th component of the local state vector.
void eval(double t, double *LHS, double *RHS) override
Evaluate the reactor governing equations.
size_t componentIndex(const string &nm) const override
Return the index in the solution vector for this reactor of the component named nm.
void evalSteady(double t, double *LHS, double *RHS) override
Evaluate the governing equations with modifications for the steady-state solver.
vector< double > m_uk
Species molar internal energies.
void getState(double *y) override
Get the current state of the reactor.
void getJacobianElements(vector< Eigen::Triplet< double > > &trips) override
Calculate an approximate Jacobian to accelerate preconditioned solvers.
vector< size_t > initializeSteady() override
Initialize the reactor before solving a steady-state problem.
double lowerBound(size_t k) const override
Get the lower bound on the k-th component of the local state vector.
string componentName(size_t k) override
Return the name of the solution component with index i.
void updateState(double *y) override
Set the state of the reactor to correspond to the state vector y.
void initialize(double t0=0.0) override
Initialize the reactor.
double m_initialTemperature
Initial temperature [K]; used for steady-state calculations.
double m_initialVolume
Initial volume [m³]; used for steady-state calculations.
void getJacobianScalingFactors(double &f_species, double *f_energy) override
Get scaling factors for the Jacobian matrix terms proportional to .
double m_TotalCv
Total heat capacity ( ) [J/K].
virtual void getNetProductionRates(double *wdot)
Species net production rates [kmol/m^3/s or kmol/m^2/s].
double upperBound(size_t k) const override
Get the upper bound on the k-th component of the local state vector.
void getMoles(double *y)
Get moles of the system from mass fractions stored by thermo object.
const size_t m_sidx
const value for the species start index
void setMassFromMoles(double *y)
Set internal mass variable based on moles given.
double lowerBound(size_t k) const override
Get the lower bound on the k-th component of the local state vector.
string componentName(size_t k) override
Return the name of the solution component with index i.
size_t speciesIndex(const string &name, bool raise=true) const
Returns the index of a species named 'name' within the Phase object.
void setState_TD(double t, double rho)
Set the internally stored temperature (K) and density (kg/m^3)
double temperature() const
Temperature (K).
const vector< double > & inverseMolecularWeights() const
Return a const reference to the internal vector of molecular weights.
virtual double density() const
Density (kg/m^3).
virtual void setMolesNoTruncate(const double *const N)
Set the state of the object with moles in [kmol].
FlowDevice & outlet(size_t n=0)
Return a reference to the n-th outlet FlowDevice connected to this reactor.
double m_pressure
Current pressure in the reactor [Pa].
ReactorNet * m_net
The ReactorNet that this reactor is part of.
size_t m_nv
Number of state variables for this reactor.
FlowDevice & inlet(size_t n=0)
Return a reference to the n-th inlet FlowDevice connected to this reactor.
double m_vol
Current volume of the reactor [m^3].
size_t m_offset
Offset into global ReactorNet state vector.
double m_mass
Current mass of the reactor [kg].
size_t m_nsp
Number of homogeneous species in the mixture.
virtual void updateConnected(bool updatePressure)
Update state information needed by connected reactors, flow devices, and walls.
double time()
Current value of the simulation time [s], for reactor networks that are solved in the time domain.
void evalWalls(double t) override
Evaluate terms related to Walls.
Kinetics * m_kin
Pointer to the homogeneous Kinetics object that handles the reactions.
vector< double > m_wdot
Species net molar production rates.
bool energyEnabled() const override
Returns true if solution of the energy equation is enabled.
double m_Qdot
net heat transfer into the reactor, through walls [W]
void updateSurfaceProductionRates()
Update m_sdot to reflect current production rates of bulk phase species due to reactions on adjacent ...
vector< double > m_sdot
Total production rate of bulk phase species on surfaces [kmol/s].
double m_vdot
net rate of volume change from moving walls [m^3/s]
void initialize(double t0=0.0) override
Initialize the reactor.
virtual double minTemp(size_t k=npos) const
Minimum temperature for which the thermodynamic data for the species or phase are valid.
virtual void getPartialMolarCp(double *cpbar) const
Return an array of partial molar heat capacities for the species in the mixture.
string type() const override
String indicating the thermodynamic model implemented.
virtual void getPartialMolarIntEnergies(double *ubar) const
Return an array of partial molar internal energies for the species in the mixture.
virtual double maxTemp(size_t k=npos) const
Maximum temperature for which the thermodynamic data for the species are valid.
double cv_mass() const
Specific heat at constant volume and composition [J/kg/K].
virtual double intrinsicHeating()
Intrinsic volumetric heating rate [W/m³].
Eigen::SparseMatrix< double > netProductionRates_ddCi()
Calculate derivatives for species net production rates with respect to species concentration at const...
const double GasConstant
Universal Gas Constant [J/kmol/K].
Namespace for the Cantera kernel.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...