19#include <unordered_set>
20#include <boost/algorithm/string.hpp>
30 throw IndexError(
"Kinetics::checkReactionIndex",
"reactions", i,
78 warn_deprecated(
"Kinetics::reactionPhaseIndex",
"The reacting phase is always "
79 "the first phase. To be removed after Cantera 3.1.");
91 throw IndexError(
"Kinetics::checkSpeciesIndex",
"species", k,
m_kk-1);
104 if (flag ==
"warn" || flag ==
"error" || flag ==
"mark-duplicate"
105 || flag ==
"modify-efficiency")
107 m_explicit_third_body_duplicates = flag;
109 throw CanteraError(
"Kinetics::setExplicitThirdBodyDuplicateHandling",
110 "Invalid flag '{}'", flag);
117 map<size_t, vector<size_t>> participants;
118 vector<map<int, double>> net_stoich;
119 std::unordered_set<size_t> unmatched_duplicates;
122 unmatched_duplicates.insert(i);
126 vector<InputFileError> errs;
129 unsigned long int key = 0;
131 net_stoich.emplace_back();
132 map<int, double>& net = net_stoich.back();
133 for (
const auto& [name, stoich] : R.
reactants) {
136 net[-1 -k] -= stoich;
138 for (
const auto& [name, stoich] : R.
products) {
145 vector<size_t>& related = participants[key];
146 for (
size_t m : related) {
150 unmatched_duplicates.erase(i);
151 unmatched_duplicates.erase(m);
153 }
else if (R.
type() != other.
type()) {
156 && R.
rate()->type() != other.
rate()->type())
168 bool thirdBodyOk =
true;
180 }
else if ((tb1.
name() ==
"M") != (tb2.
name() ==
"M")) {
182 if (m_explicit_third_body_duplicates ==
"mark-duplicate") {
186 }
else if (m_explicit_third_body_duplicates ==
"modify-efficiency") {
187 if (tb1.
name() ==
"M") {
193 }
else if (m_explicit_third_body_duplicates ==
"warn") {
196 "Undeclared duplicate third body reactions with a common "
197 "third body detected.\nAdd the field "
198 "'explicit-third-body-duplicates: mark-duplicate' or\n"
199 "'explicit-third-body-duplicates: modify-efficiency' to "
200 "the YAML phase entry\nto choose how these reactions "
201 "should be handled and suppress this warning.\n"
202 "Reaction {}: {}\nReaction {}: {}\n",
210 errs.emplace_back(
"Kinetics::checkDuplicates",
212 "Undeclared duplicate reactions detected:\n"
213 "Reaction {}: {}\nReaction {}: {}\n",
219 participants[key].push_back(i);
221 if (unmatched_duplicates.size()) {
222 size_t i = *unmatched_duplicates.begin();
224 errs.emplace_back(
"Kinetics::checkDuplicates",
226 "No duplicate found for declared duplicate reaction number {}"
234 }
else if (errs.size() == 1) {
237 fmt::memory_buffer msg;
238 for (
const auto& err : errs) {
241 throw CanteraError(
"Kinetics::checkDuplicates", to_string(msg));
247 std::unordered_set<int> keys;
248 for (
auto& [speciesKey, stoich] : r1) {
249 keys.insert(speciesKey);
251 for (
auto& [speciesKey, stoich] : r2) {
252 keys.insert(speciesKey);
254 int k1 = r1.begin()->first;
257 if (r1[k1] && r2[k1]) {
258 ratio = r2[k1]/r1[k1];
259 bool different =
false;
261 if ((r1[k] && !r2[k]) ||
263 (r1[k] && fabs(r2[k]/r1[k] - ratio) > 1.e-8)) {
274 if (r1[k1] == 0.0 || r2[-k1] == 0.0) {
277 ratio = r2[-k1]/r1[k1];
279 if ((r1[k] && !r2[-k]) ||
280 (!r1[k] && r2[-k]) ||
281 (r1[k] && fabs(r2[-k]/r1[k] - ratio) > 1.e-8)) {
290 for (
size_t n =
m_start.size()-1; n !=
npos; n--) {
300 for (
size_t n = 0; n <
m_thermo.size(); n++) {
312 for (
size_t n = 0; n <
m_thermo.size(); n++) {
318 throw CanteraError(
"Kinetics::speciesPhase",
"unknown species '{}'", nm);
328 throw CanteraError(
"Kinetics::speciesPhase",
"unknown species '{}'", nm);
333 for (
size_t n =
m_start.size()-1; n !=
npos; n--) {
339 "illegal species index: {}", k);
372 fill(deltaProp, deltaProp +
nReactions(), 0.0);
381 fill(deltaProp, deltaProp +
nReactions(), 0.0);
393 fill(cdot, cdot +
m_kk, 0.0);
406 fill(ddot, ddot +
m_kk, 0.0);
417 fill(net, net +
m_kk, 0.0);
426 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
438 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
450 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
462 Eigen::SparseMatrix<double> jac;
472 Eigen::SparseMatrix<double> jac;
482 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
494 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
506 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
518 Eigen::SparseMatrix<double> jac;
528 Eigen::SparseMatrix<double> jac;
538 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
546 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
554 Eigen::Map<Eigen::VectorXd> out(dwdot,
m_kk);
577 "The reacting (lowest dimensional) phase must be added first.");
590 string name = KineticsFactory::factory()->canonicalize(
kineticsType());
591 if (name !=
"none") {
592 out[
"kinetics"] = name;
594 out[
"reactions"] =
"none";
597 out[
"skip-undeclared-third-bodies"] =
true;
599 if (m_explicit_third_body_duplicates ==
"error") {
603 out[
"explicit-third-body-duplicates"] =
"error";
614 for (
size_t i = 0; i <
m_thermo.size(); i++) {
632 if (!r->checkSpecies(*
this)) {
639 if (r->rate_units.factor() == 0) {
640 r->rate()->setRateUnits(r->calculateRateCoeffUnits(*
this));
646 vector<size_t> rk, pk;
650 vector<double> rstoich, pstoich;
652 for (
const auto& [name, stoich] : r->reactants) {
654 rstoich.push_back(stoich);
657 for (
const auto& [name, stoich] : r->products) {
659 pstoich.push_back(stoich);
665 vector<double> rorder = rstoich;
666 for (
const auto& [name, order] : r->orders) {
669 auto rloc = std::find(rk.begin(), rk.end(), k);
670 if (rloc != rk.end()) {
671 rorder[rloc - rk.begin()] = order;
678 rstoich.push_back(0.0);
679 rorder.push_back(order);
691 m_rfn.push_back(0.0);
713 if (rNew->type() != rOld->type()) {
715 "Reaction types are different: {} != {}.",
716 rOld->type(), rNew->type());
719 if (rNew->rate()->type() != rOld->rate()->type()) {
721 "ReactionRate types are different: {} != {}.",
722 rOld->rate()->type(), rNew->rate()->type());
725 if (rNew->reactants != rOld->reactants) {
727 "Reactants are different: '{}' != '{}'.",
728 rOld->reactantString(), rNew->reactantString());
731 if (rNew->products != rOld->products) {
733 "Products are different: '{}' != '{}'.",
734 rOld->productString(), rNew->productString());
Base class for kinetics managers and also contains the kineticsmgr module documentation (see Kinetics...
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
A map of string keys to values whose type can vary at runtime.
Base class for exceptions thrown by Cantera classes.
const char * what() const override
Get a description of the error.
An array index is out of range.
size_t reactionPhaseIndex() const
Phase where the reactions occur.
virtual void resizeReactions()
Finalize Kinetics object and associated objects.
void checkPhaseIndex(size_t m) const
Check that the specified phase index is in range Throws an exception if m is greater than nPhases()
void checkSpeciesArraySize(size_t mm) const
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
virtual void getFwdRatesOfProgress(double *fwdROP)
Return the forward rates of progress of the reactions.
ThermoPhase & thermo(size_t n=0)
This method returns a reference to the nth ThermoPhase object defined in this kinetics mechanism.
vector< shared_ptr< Reaction > > m_reactions
Vector of Reaction objects represented by this Kinetics manager.
void checkSpeciesIndex(size_t k) const
Check that the specified species index is in range Throws an exception if k is greater than nSpecies(...
double checkDuplicateStoich(map< int, double > &r1, map< int, double > &r2) const
Check whether r1 and r2 represent duplicate stoichiometries This function returns a ratio if two reac...
vector< double > m_perturb
Vector of perturbation factors for each reaction's rate of progress vector.
vector< double > m_ropf
Forward rate-of-progress for each reaction.
shared_ptr< Reaction > reaction(size_t i)
Return the Reaction object for reaction i.
bool m_ready
Boolean indicating whether Kinetics object is fully configured.
virtual void getRevReactionDelta(const double *g, double *dg) const
Given an array of species properties 'g', return in array 'dg' the change in this quantity in the rev...
void setExplicitThirdBodyDuplicateHandling(const string &flag)
Specify how to handle duplicate third body reactions where one reaction has an explicit third body an...
virtual void getNetRatesOfProgress(double *netROP)
Net rates of progress.
vector< size_t > m_start
m_start is a vector of integers specifying the beginning position for the species vector for the n'th...
virtual string kineticsType() const
Identifies the Kinetics manager type.
vector< double > m_rkcn
Reciprocal of the equilibrium constant in concentration units.
shared_ptr< ThermoPhase > reactionPhase() const
Return pointer to phase where the reactions occur.
size_t m_kk
The number of species in all of the phases that participate in this kinetics mechanism.
virtual pair< size_t, size_t > checkDuplicates(bool throw_err=true) const
Check for unmarked duplicate reactions and unmatched marked duplicates.
virtual void getReactionDelta(const double *property, double *deltaProperty) const
Change in species properties.
void checkPhaseArraySize(size_t mm) const
Check that an array size is at least nPhases() Throws an exception if mm is less than nPhases().
vector< double > m_dH
The enthalpy change for each reaction to calculate Blowers-Masel rates.
vector< double > m_ropr
Reverse rate-of-progress for each reaction.
size_t nPhases() const
The number of phases participating in the reaction mechanism.
vector< shared_ptr< ThermoPhase > > m_thermo
m_thermo is a vector of pointers to ThermoPhase objects that are involved with this kinetics operator
virtual bool addReaction(shared_ptr< Reaction > r, bool resize=true)
Add a single reaction to the mechanism.
string kineticsSpeciesName(size_t k) const
Return the name of the kth species in the kinetics manager.
virtual void getDestructionRates(double *ddot)
Species destruction rates [kmol/m^3/s or kmol/m^2/s].
AnyMap parameters()
Return the parameters for a phase definition which are needed to reconstruct an identical object usin...
virtual void init()
Prepare the class for the addition of reactions, after all phases have been added.
virtual void modifyReaction(size_t i, shared_ptr< Reaction > rNew)
Modify the rate expression associated with a reaction.
vector< double > m_ropnet
Net rate-of-progress for each reaction.
virtual double productStoichCoeff(size_t k, size_t i) const
Stoichiometric coefficient of species k as a product in reaction i.
virtual void addThermo(shared_ptr< ThermoPhase > thermo)
Add a phase to the kinetics manager object.
vector< double > m_rbuf
Buffer used for storage of intermediate reaction-specific results.
Eigen::SparseMatrix< double > m_stoichMatrix
Net stoichiometry (products - reactants)
map< string, size_t > m_phaseindex
Mapping of the phase name to the position of the phase within the kinetics object.
size_t m_mindim
number of spatial dimensions of lowest-dimensional phase.
StoichManagerN m_productStoich
Stoichiometry manager for the products for each reaction.
StoichManagerN m_revProductStoich
Stoichiometry manager for the products of reversible reactions.
size_t nReactions() const
Number of reactions in the reaction mechanism.
virtual void getRevRatesOfProgress(double *revROP)
Return the Reverse rates of progress of the reactions.
bool m_hasUndeclaredThirdBodies
Flag indicating whether reactions include undeclared third bodies.
size_t kineticsSpeciesIndex(size_t k, size_t n) const
The location of species k of phase n in species arrays.
vector< double > m_rfn
Forward rate constant for each reaction.
StoichManagerN m_reactantStoich
Stoichiometry manager for the reactants for each reaction.
virtual void resizeSpecies()
Resize arrays with sizes that depend on the total number of species.
void checkReactionArraySize(size_t ii) const
Check that an array size is at least nReactions() Throws an exception if ii is less than nReactions()...
size_t nTotalSpecies() const
The total number of species in all phases participating in the kinetics mechanism.
virtual double reactantStoichCoeff(size_t k, size_t i) const
Stoichiometric coefficient of species k as a reactant in reaction i.
void checkReactionIndex(size_t m) const
Check that the specified reaction index is in range Throws an exception if i is greater than nReactio...
virtual void getNetProductionRates(double *wdot)
Species net production rates [kmol/m^3/s or kmol/m^2/s].
ThermoPhase & speciesPhase(const string &nm)
This function looks up the name of a species and returns a reference to the ThermoPhase object of the...
vector< double > m_delta_gibbs0
Delta G^0 for all reactions.
virtual void getCreationRates(double *cdot)
Species creation rates [kmol/m^3/s or kmol/m^2/s].
size_t speciesPhaseIndex(size_t k) const
This function takes as an argument the kineticsSpecies index (that is, the list index in the list of ...
size_t nDim() const
Returns the number of spatial dimensions (1, 2, or 3)
string speciesName(size_t k) const
Name of the species with index k.
size_t speciesIndex(const string &name) const
Returns the index of a species named 'name' within the Phase object.
Abstract base class which stores data about a reaction and its rate parameterization so that it can b...
shared_ptr< ReactionRate > rate()
Get reaction rate pointer.
bool usesThirdBody() const
Check whether reaction involves third body collider.
shared_ptr< ThirdBody > thirdBody()
Get pointer to third-body handler.
bool reversible
True if the current reaction is reversible. False otherwise.
string type() const
The type of reaction, including reaction rate information.
string equation() const
The chemical equation for this reaction.
Composition products
Product species and stoichiometric coefficients.
Composition reactants
Reactant species and stoichiometric coefficients.
AnyMap input
Input data used for specific models.
bool duplicate
True if the current reaction is marked as duplicate.
void resizeCoeffs(size_t nSpc, size_t nRxn)
Resize the sparse coefficient matrix.
void add(size_t rxn, const vector< size_t > &k)
Add a single reaction to the list of reactions that this stoichiometric manager object handles.
const Eigen::SparseMatrix< double > & stoichCoeffs() const
Return matrix containing stoichiometric coefficients.
Base class for a phase with thermodynamic properties.
A class for managing third-body efficiencies, including default values.
double efficiency(const string &k) const
Get the third-body efficiency for species k
Composition efficiencies
Map of species to third body efficiency.
string name() const
Name of the third body collider.
void fmt_append(fmt::memory_buffer &b, const std::string &tmpl, Args... args)
Versions 6.2.0 and 6.2.1 of fmtlib do not include this define before they include windows....
This file contains definitions for utility functions and text for modules, inputfiles and logging,...
virtual Eigen::SparseMatrix< double > fwdRatesOfProgress_ddCi()
Calculate derivatives for forward rates-of-progress with respect to species concentration at constant...
Eigen::SparseMatrix< double > creationRates_ddCi()
Calculate derivatives for species creation rates with respect to species concentration at constant te...
virtual Eigen::SparseMatrix< double > netRatesOfProgress_ddCi()
Calculate derivatives for net rates-of-progress with respect to species concentration at constant tem...
void getCreationRates_ddT(double *dwdot)
Calculate derivatives for species creation rates with respect to temperature at constant pressure,...
virtual Eigen::SparseMatrix< double > netRatesOfProgress_ddX()
Calculate derivatives for net rates-of-progress with respect to species mole fractions at constant te...
Eigen::SparseMatrix< double > destructionRates_ddX()
Calculate derivatives for species destruction rates with respect to species mole fractions at constan...
void getCreationRates_ddC(double *dwdot)
Calculate derivatives for species creation rates with respect to molar concentration at constant temp...
void getDestructionRates_ddP(double *dwdot)
Calculate derivatives for species destruction rates with respect to pressure at constant temperature,...
void getNetProductionRates_ddC(double *dwdot)
Calculate derivatives for species net production rates with respect to molar concentration at constan...
void getDestructionRates_ddT(double *dwdot)
Calculate derivatives for species destruction rates with respect to temperature at constant pressure,...
virtual void getFwdRatesOfProgress_ddP(double *drop)
Calculate derivatives for forward rates-of-progress with respect to pressure at constant temperature,...
Eigen::SparseMatrix< double > netProductionRates_ddX()
Calculate derivatives for species net production rates with respect to species mole fractions at cons...
Eigen::SparseMatrix< double > creationRates_ddX()
Calculate derivatives for species creation rates with respect to species mole fractions at constant t...
Eigen::SparseMatrix< double > destructionRates_ddCi()
Calculate derivatives for species destruction rates with respect to species concentration at constant...
void getNetProductionRates_ddT(double *dwdot)
Calculate derivatives for species net production rates with respect to temperature at constant pressu...
virtual Eigen::SparseMatrix< double > fwdRatesOfProgress_ddX()
Calculate derivatives for forward rates-of-progress with respect to species mole fractions at constan...
virtual void getRevRatesOfProgress_ddT(double *drop)
Calculate derivatives for reverse rates-of-progress with respect to temperature at constant pressure,...
void getCreationRates_ddP(double *dwdot)
Calculate derivatives for species creation rates with respect to pressure at constant temperature,...
virtual void getNetRatesOfProgress_ddT(double *drop)
Calculate derivatives for net rates-of-progress with respect to temperature at constant pressure,...
virtual void getRevRatesOfProgress_ddP(double *drop)
Calculate derivatives for reverse rates-of-progress with respect to pressure at constant temperature,...
Eigen::SparseMatrix< double > netProductionRates_ddCi()
Calculate derivatives for species net production rates with respect to species concentration at const...
virtual void getRevRatesOfProgress_ddC(double *drop)
Calculate derivatives for reverse rates-of-progress with respect to molar concentration at constant t...
void getNetProductionRates_ddP(double *dwdot)
Calculate derivatives for species net production rates with respect to pressure at constant temperatu...
virtual void getNetRatesOfProgress_ddP(double *drop)
Calculate derivatives for net rates-of-progress with respect to pressure at constant temperature,...
virtual Eigen::SparseMatrix< double > revRatesOfProgress_ddCi()
Calculate derivatives for forward rates-of-progress with respect to species concentration at constant...
virtual void getFwdRatesOfProgress_ddT(double *drop)
Calculate derivatives for forward rates-of-progress with respect to temperature at constant pressure,...
void getDestructionRates_ddC(double *dwdot)
Calculate derivatives for species destruction rates with respect to molar concentration at constant t...
virtual void getNetRatesOfProgress_ddC(double *drop)
Calculate derivatives for net rates-of-progress with respect to molar concentration at constant tempe...
virtual Eigen::SparseMatrix< double > revRatesOfProgress_ddX()
Calculate derivatives for reverse rates-of-progress with respect to species mole fractions at constan...
virtual void getFwdRatesOfProgress_ddC(double *drop)
Calculate derivatives for forward rates-of-progress with respect to molar concentration at constant t...
void warn_user(const string &method, const string &msg, const Args &... args)
Print a user warning raised from method as CanteraWarning.
Namespace for the Cantera kernel.
const size_t npos
index returned by functions to indicate "no position"
void warn_deprecated(const string &source, const AnyBase &node, const string &message)
A deprecation warning for syntax in an input file.
Contains declarations for string manipulation functions within Cantera.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...