Loading [MathJax]/extensions/tex2jax.js
Cantera  3.2.0a1
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
ThermoPhase.h
Go to the documentation of this file.
1/**
2 * @file ThermoPhase.h
3 * Header file for class ThermoPhase, the base class for phases with
4 * thermodynamic properties, and the text for the Module thermoprops
5 * (see @ref thermoprops and class @link Cantera::ThermoPhase ThermoPhase@endlink).
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
11#ifndef CT_THERMOPHASE_H
12#define CT_THERMOPHASE_H
13
14#include "Phase.h"
15#include "MultiSpeciesThermo.h"
16#include "cantera/base/Units.h"
17#include "cantera/base/AnyMap.h"
19
20namespace Cantera
21{
22
23/**
24 * @defgroup thermoprops Thermodynamic Properties
25 *
26 * These classes are used to compute the thermodynamic properties of phases of matter.
27 * The main base class for describing thermodynamic properties of phases within %Cantera
28 * is called ThermoPhase. %ThermoPhase is a large class that describes the interface
29 * within %Cantera to thermodynamic functions for a phase.
30 *
31 * ## Categorizing the Different ThermoPhase Objects
32 *
33 * ThermoPhase objects may be cataloged into four general bins.
34 *
35 * The first type are those whose underlying species have a reference state associated
36 * with them. The reference state describes the thermodynamic functions for a species at
37 * a single reference pressure, @f$ p_0 @f$. The thermodynamic functions are specified
38 * via derived objects of the SpeciesThermoInterpType object class, and usually consist
39 * of polynomials in temperature such as the NASA polynomial or the Shomate polynomial.
40 * Calculators for these reference states, which manage the calculation for all of the
41 * species in a phase, are all derived from the virtual base class
42 * SpeciesThermoInterpType. Calculators are needed because the actual calculation of the
43 * reference state thermodynamics has been shown to be relatively expensive. A great
44 * deal of work has gone into devising efficient schemes for calculating the
45 * thermodynamic polynomials of a set of species in a phase, in particular gas species
46 * in ideal gas phases whose reference state thermodynamics is specified by NASA
47 * polynomials.
48 *
49 * The reference state thermodynamics combined with the mixing rules and an assumption
50 * about the pressure dependence yields the thermodynamic functions for the phase.
51 * Expressions involving the specification of the fugacities of species would fall into
52 * this category of %ThermoPhase objects. Note, however, that at this time, we do not
53 * have any nontrivial examples of these types of phases. In general, the independent
54 * variables that completely describe the state of the system for this class are
55 * temperature, the phase density, and @f$ N - 1 @f$ species mole or mass fractions.
56 * Additionally, if the phase involves charged species, the phase electric potential is
57 * an added independent variable. Examples of this first class of %ThermoPhase models,
58 * which includes the IdealGasPhase object, the most commonly used object with %Cantera,
59 * include:
60 *
61 * - IdealGasPhase
62 * - StoichSubstance
63 * - SurfPhase
64 * - EdgePhase
65 * - LatticePhase
66 * - LatticeSolidPhase
67 * - PureFluidPhase
68 * - IdealSolidSolnPhase
69 * - VPStandardStateTP
70 *
71 * The second class of objects are all derivatives of the VPStandardStateTP class listed
72 * above. These classes assume that there exists a standard state for each species in
73 * the phase, where the thermodynamic functions are specified as a function of
74 * temperature and pressure. Standard state objects for each species are all derived
75 * from the PDSS virtual base class. In turn, these standard states may employ reference
76 * state calculation to aid in their calculations. However, there are some PDSS objects
77 * which do not employ reference state calculations. An example of this is real equation
78 * of state for liquid water used within the calculation of brine thermodynamics. In
79 * general, the independent variables that completely describe the state of the system
80 * for this class are temperature, the phase pressure, and @f$ N - 1 @f$ species mole or
81 * mass fractions or molalities. The standard state thermodynamics combined with the
82 * mixing rules yields the thermodynamic functions for the phase. Mixing rules are given
83 * in terms of specifying the molar-base activity coefficients or activities. Lists of
84 * phases which belong to this group are given below
85 *
86 * - IdealSolnGasVPSS
87 * - MolalityVPSSTP
88 *
89 * Note, the ideal gas and ideal solution approximations are lumped together in the
90 * class IdealSolnGasVPSS, because at this level they look alike having the same mixing
91 * rules with respect to the specification of the excess thermodynamic properties.
92 *
93 * The third class of objects are all derivatives of the MolalityVPSSTP object. They
94 * assume that the standard states are temperature and pressure dependent but they also
95 * assume that the standard states are molality-based. In other words, they assume that
96 * the standard state of the solute species are in a pseudo state of 1 molality but at
97 * infinite dilution. A solvent must be specified in these calculations, defined as the
98 * first species in the phase, and its standard state is the pure solvent state. Phases
99 * which belong to this group include:
100 *
101 * - DebyeHuckel
102 * - IdealMolalSoln
103 * - HMWSoln
104 *
105 * The fourth class of %ThermoPhase objects are stoichiometric phases. Stoichiometric
106 * phases are phases which consist of one and only one species. The class
107 * SingleSpeciesTP is the base class for these substances. Within the class, the general
108 * %ThermoPhase interface is dumbed down so that phases consisting of one species may be
109 * succinctly described. These phases may have PDSS classes or SpeciesThermoInterpType
110 * calculators associated with them. In general, the independent variables that
111 * completely describe the state of the system for this class are temperature and either
112 * the phase density or the phase pressure. Classes in this group include:
113 *
114 * - StoichSubstance
115 * - WaterSSTP
116 *
117 * ## Creating ThermoPhase objects
118 *
119 * Instances of subclasses of ThermoPhase should be created using the factory methods
120 * newThermo(const string&, const string&), newThermo(const AnyMap&, const AnyMap&), or
121 * newThermoModel(). This allows new classes to be used with the various %Cantera
122 * language interfaces.
123 *
124 * ## Defining new thermodynamic models
125 *
126 * To implement a new equation of state, derive a class from ThermoPhase or a relevant
127 * existing derived class and overload the virtual methods in ThermoPhase. Methods that
128 * are not needed can be left unimplemented, which will cause an exception to be thrown
129 * if they are called.
130 */
131
132//! @name CONSTANTS - Specification of the Molality convention
133//! @{
134
135//! Standard state uses the molar convention
137//! Standard state uses the molality convention
139
140//! @}
141//! @name CONSTANTS - Specification of the SS convention
142//! @{
143
144//! Standard state uses the molar convention
146//! Standard state uses the molality convention
148//! Standard state thermodynamics is obtained from slave ThermoPhase objects
150//! @}
151
152//! Differentiate between mole fractions and mass fractions for input mixture
153//! composition
154enum class ThermoBasis
155{
156 mass,
157 molar
158};
159
160//! Base class for a phase with thermodynamic properties.
161/*!
162 * Class ThermoPhase is the base class for the family of classes that represent
163 * phases of matter of any type. It defines a common public interface, and
164 * implements a few methods. Most of the methods, however, are declared virtual
165 * and are meant to be overloaded in derived classes. The standard way used
166 * throughout %Cantera to compute properties of phases of matter is through
167 * pointers of type `ThermoPhase*` that point to objects of subclasses of
168 * ThermoPhase.
169 *
170 * Class ThermoPhase extends class Phase by adding methods to compute
171 * thermodynamic properties in addition to the ones that are used to define the
172 * state of a substance (temperature, density/pressure and composition). The
173 * distinction is that the methods declared in ThermoPhase require knowing the
174 * particular equation of state of the phase of interest, while those of class
175 * Phase do not, since they only involve data values stored within the object.
176 * These methods are then implemented by the classes derived from ThermoPhase to
177 * represent a phase with a specific equation of state.
178 *
179 * ## Calculating and accessing thermodynamic properties
180 *
181 * The calculation of thermodynamic functions within %ThermoPhase is broken down roughly
182 * into two or more steps. First, the standard state properties of all of the species
183 * are calculated at the current temperature and at either the current pressure or at a
184 * reference pressure. If the calculation is carried out at a reference pressure instead
185 * of at the current pressure the calculation is called a "reference state properties"
186 * calculation, just to make the distinction (even though it may be considered to be a
187 * fixed-pressure standard-state calculation). The next step is to adjust the reference
188 * state calculation to the current pressure. The thermodynamic functions then are
189 * considered to be at the standard state of each species. Lastly the mixing
190 * contributions are added to arrive at the thermodynamic functions for the solution.
191 *
192 * The %ThermoPhase class provides interfaces to thermodynamic properties calculated for
193 * the reference state of each species, the standard state values for each species, the
194 * thermodynamic functions for solution values, both on a per mole of solution basis
195 * (such as ThermoPhase::enthalpy_mole()), on a per kg of solution basis, and on a
196 * partial molar basis for each species (such as
197 * ThermoPhase::getPartialMolarEnthalpies). At each level, functions for the enthalpy,
198 * entropy, Gibbs free energy, internal energy, and volume are provided. So, 5 levels
199 * (reference state, standard state, partial molar, per mole of solution, and per mass
200 * of solution) and 5 functions multiplied together makes 25 possible functions. That's
201 * why %ThermoPhase is such a large class.
202 *
203 * ## Setting the State of the phase
204 *
205 * Typically, the way the ThermoPhase object works is that there are a set of functions
206 * that set the state of the phase via setting the internal independent variables. Then,
207 * there are another set of functions that query the thermodynamic functions evaluated
208 * at the current %State of the phase. Internally, most of the intermediate work
209 * generally occurs at the point where the internal state of the system is set and not
210 * at the time when individual thermodynamic functions are queried (though the actual
211 * breakdown in work is dependent on the individual derived ThermoPhase object).
212 * Therefore, for efficiency, the user should lump together queries of thermodynamic
213 * functions after setting the state. Moreover, in setting the state, if the density is
214 * the independent variable, the following order should be used:
215 *
216 * - Set the temperature
217 * - Set the mole or mass fractions or set the molalities
218 * - set the pressure.
219 *
220 * For classes which inherit from VPStandardStateTP, the above order may be used, or the
221 * following order may be used. It's not important.
222 *
223 * - Set the temperature
224 * - Set the pressure
225 * - Set the mole or mass fractions or set the molalities
226 *
227 * See the @ref sec-thermophase-set-state "list of methods" that can be used to set
228 * the complete state of ThermoPhase objects.
229 *
230 * ## Treatment of the phase potential and the electrochemical potential of a species
231 *
232 * The electrochemical potential of species k in a phase p, @f$ \zeta_k @f$, is related
233 * to the chemical potential as:
234 *
235 * @f[
236 * \zeta_{k}(T,P) = \mu_{k}(T,P) + z_k \phi_p
237 * @f]
238 *
239 * where @f$ \nu_k @f$ is the charge of species k, and @f$ \phi_p @f$ is the electric
240 * potential of phase p.
241 *
242 * The potential @f$ \phi_p @f$ is tracked and internally stored within the base
243 * ThermoPhase object. It constitutes a specification of the internal state of the
244 * phase; it's the third state variable, the first two being temperature and density
245 * (or, pressure, for incompressible equations of state). It may be set with the
246 * function, setElectricPotential(), and may be queried with the function
247 * electricPotential().
248 *
249 * Note, the overall electrochemical potential of a phase may not be changed by the
250 * potential because many phases enforce charge neutrality:
251 *
252 * @f[
253 * 0 = \sum_k z_k X_k
254 * @f]
255 *
256 * Whether charge neutrality is necessary for a phase is also specified within the
257 * ThermoPhase object, by the function call chargeNeutralityNecessary(). Note, that it
258 * is not necessary for the ideal gas phase, currently. However, it is necessary for
259 * liquid phases such as DebyeHuckel and HMWSoln for the proper specification of the
260 * chemical potentials.
261 *
262 * This equation, when applied to the @f$ \zeta_k @f$ equation described above, results
263 * in a zero net change in the effective Gibbs free energy of the phase. However,
264 * specific charged species in the phase may increase or decrease their electrochemical
265 * potentials, which will have an effect on interfacial reactions involving charged
266 * species, when there is a potential drop between phases. This effect is used within
267 * the InterfaceKinetics and EdgeKinetics classes.
268 *
269 * ## Specification of Activities and Activity Conventions
270 *
271 * The activity @f$ a_k @f$ and activity coefficient @f$ \gamma_k @f$ of a species in
272 * solution is related to the chemical potential by
273 *
274 * @f[
275 * \mu_k = \mu_k^0(T,P) + \hat R T \ln a_k = \mu_k^0(T,P) + \hat R T \ln x_k \gamma_k
276 * @f]
277 *
278 * The quantity @f$ \mu_k^0(T,P) @f$ is the standard chemical potential at unit
279 * activity, which depends on the temperature and pressure, but not on the composition.
280 * The activity is dimensionless. Within liquid electrolytes it's common to use a
281 * molality convention, where solute species employ the molality-based activity
282 * coefficients:
283 *
284 * @f[
285 * \mu_k = \mu_k^\triangle(T,P) + R T \ln a_k^{\triangle} =
286 * \mu_k^\triangle(T,P) + R T \ln \frac{\gamma_k^{\triangle} m_k}{m^\triangle}
287 * @f]
288 *
289 * And the solvent employs the convention
290 * @f[
291 * \mu_o = \mu^o_o(T,P) + RT \ln a_o
292 * @f]
293 *
294 * where @f$ a_o @f$ is often redefined in terms of the osmotic coefficient @f$ \phi
295 * @f$:
296 *
297 * @f[
298 * \phi = \frac{- \ln a_o}{\tilde{M}_o \sum_{i \ne o} m_i}
299 * @f]
300 *
301 * ThermoPhase classes which employ the molality based convention are all derived from
302 * the MolalityVPSSTP class. See the class description for further information on its
303 * capabilities.
304 *
305 * The activity convention used by a ThermoPhase object may be queried via the
306 * activityConvention() function. A zero means molar based, while a one
307 * means molality based.
308 *
309 * The function getActivities() returns a vector of activities. Whether these are
310 * molar-based or molality-based depends on the value of activityConvention().
311 *
312 * The function getActivityCoefficients() always returns molar-based activity
313 * coefficients regardless of the activity convention used. The function
314 * MolalityVPSSTP::getMolalityActivityCoefficients() returns molality
315 * based activity coefficients for those ThermoPhase objects derived
316 * from the MolalityVPSSTP class. The function MolalityVPSSTP::osmoticCoefficient()
317 * returns the osmotic coefficient.
318
319 * ## Activity Concentrations: Relationship of ThermoPhase to Kinetics Expressions
320 *
321 * %Cantera can handle both thermodynamics and kinetics mechanisms. Reversible kinetics
322 * mechanisms within %Cantera must be compatible with thermodynamics in the sense that
323 * at equilibrium, or at infinite times, the concentrations of species must conform to
324 * thermodynamics. This means that for every valid reversible kinetics reaction in a
325 * mechanism, it must be reducible to an expression involving the ratio of the product
326 * activity to the reactant activities being equal to the exponential of the
327 * dimensionless standard state gibbs free energies of reaction. Irreversible kinetics
328 * reactions do not have this requirement; however, their usage can yield unexpected and
329 * inconsistent results in many situations.
330 *
331 * The actual units used in a kinetics expression depend on the context or the relative
332 * field of study. For example, in gas phase kinetics, species in kinetics expressions
333 * are expressed in terms of concentrations, for example, gmol cm-3. In solid phase
334 * studies, however, kinetics is usually expressed in terms of unitless activities,
335 * which most often equate to solid phase mole fractions. In order to accommodate
336 * variability here, %Cantera has come up with the idea of activity concentrations,
337 * @f$ C^a_k @f$. Activity concentrations are the expressions used directly in kinetics
338 * expressions. These activity (or generalized) concentrations are used by kinetics
339 * manager classes to compute the forward and reverse rates of elementary reactions.
340 * Note that they may or may not have units of concentration --- they might be partial
341 * pressures, mole fractions, or surface coverages, The activity concentrations for
342 * species *k*, @f$ C^a_k @f$, are related to the activity for species *k*, @f$ a_k @f$,
343 * via the expression:
344 *
345 * @f[
346 * a_k = C^a_k / C^0_k
347 * @f]
348 *
349 * @f$ C^0_k @f$ are called standard concentrations. They serve as multiplicative
350 * factors between the activities and the generalized concentrations. Standard
351 * concentrations may be different for each species. They may depend on both the
352 * temperature and the pressure. However, they may not depend on the composition of the
353 * phase. For example, for the IdealGasPhase object the standard concentration is
354 * defined as
355 *
356 * @f[
357 * C^0_k = \frac{P}{RT}
358 * @f]
359 *
360 * while in many solid phase kinetics problems,
361 *
362 * @f[
363 * C^0_k = 1.0
364 * @f]
365 *
366 * is employed making the units for activity concentrations in solids unitless.
367 *
368 * ThermoPhase member functions dealing with this concept include
369 * getActivityConcentrations(), which provides a vector of the current activity
370 * concentrations. The function standardConcentration() returns the standard
371 * concentration of the kth species. The function logStandardConc(), returns the natural
372 * log of the kth standard concentration. The function standardConcentrationUnits()
373 * returns the units of the standard concentration.
374 *
375 * ### Equilibrium constants
376 *
377 * - @f$ K_a @f$ is the equilibrium constant defined in terms of the standard state
378 * Gibbs free energy values. It is by definition dimensionless.
379 *
380 * - @f$ K_p @f$ is the equilibrium constant defined in terms of the reference state
381 * Gibbs free energy values. It is by definition dimensionless. The pressure
382 * dependence is handled entirely on the RHS of the equilibrium expression.
383 *
384 * - @f$ K_c @f$ is the equilibrium constant defined in terms of the activity
385 * concentrations. The dimensions depend on the number of products and reactants.
386 *
387 * The kinetics manager requires the calculation of @f$ K_c @f$ for the calculation of
388 * the reverse rate constant.
389 *
390 * @ingroup thermoprops
391 */
392class ThermoPhase : public Phase
393{
394public:
395 //! Constructor. Note that ThermoPhase is meant to be used as a base class,
396 //! so this constructor should not be called explicitly.
397 ThermoPhase() = default;
398
399 //! @name Information Methods
400 //! @{
401
402 string type() const override {
403 return "none";
404 }
405
406 //! Boolean indicating whether phase is ideal
407 virtual bool isIdeal() const {
408 return false;
409 }
410
411 //! String indicating the mechanical phase of the matter in this Phase.
412 /*!
413 * Options for the string are:
414 * * `unspecified`
415 * * `supercritical`
416 * * `gas`
417 * * `liquid`
418 * * `solid`
419 * * `solid-liquid-mix`
420 * * `solid-gas-mix`
421 * * `liquid-gas-mix`
422 * * `solid-liquid-gas-mix`
423 *
424 * `unspecified` is the default and should be used when the Phase does not
425 * distinguish between mechanical phases or does not have enough information to
426 * determine which mechanical phase(s) are present.
427 *
428 * @todo Needs to be implemented for all phase types. Currently only implemented for
429 * PureFluidPhase.
430 */
431 virtual string phaseOfMatter() const {
432 return "unspecified";
433 }
434
435 /**
436 * Returns the reference pressure in Pa. This function is a wrapper
437 * that calls the species thermo refPressure function.
438 */
439 virtual double refPressure() const {
440 return m_spthermo.refPressure();
441 }
442
443 //! Minimum temperature for which the thermodynamic data for the species
444 //! or phase are valid.
445 /*!
446 * If no argument is supplied, the value returned will be the lowest
447 * temperature at which the data for @e all species are valid. Otherwise,
448 * the value will be only for species @e k. This function is a wrapper that
449 * calls the species thermo minTemp function.
450 *
451 * @param k index of the species. Default is -1, which will return the max
452 * of the min value over all species.
453 */
454 virtual double minTemp(size_t k = npos) const {
455 return m_spthermo.minTemp(k);
456 }
457
458 //! Report the 298 K Heat of Formation of the standard state of one species
459 //! (J kmol-1)
460 /*!
461 * The 298K Heat of Formation is defined as the enthalpy change to create
462 * the standard state of the species from its constituent elements in their
463 * standard states at 298 K and 1 bar.
464 *
465 * @param k species index
466 * @returns the current value of the Heat of Formation at 298K
467 * and 1 bar
468 */
469 double Hf298SS(const size_t k) const {
470 return m_spthermo.reportOneHf298(k);
471 }
472
473 //! Modify the value of the 298 K Heat of Formation of one species in the
474 //! phase (J kmol-1)
475 /*!
476 * The 298K heat of formation is defined as the enthalpy change to create
477 * the standard state of the species from its constituent elements in their
478 * standard states at 298 K and 1 bar.
479 *
480 * @param k Species k
481 * @param Hf298New Specify the new value of the Heat of Formation at
482 * 298K and 1 bar
483 */
484 virtual void modifyOneHf298SS(const size_t k, const double Hf298New) {
485 m_spthermo.modifyOneHf298(k, Hf298New);
487 }
488
489 //! Restore the original heat of formation of one or more species
490 /*!
491 * Resets changes made by modifyOneHf298SS(). If the species index is not
492 * specified, the heats of formation for all species are restored.
493 */
494 virtual void resetHf298(const size_t k=npos);
495
496 //! Maximum temperature for which the thermodynamic data for the species
497 //! are valid.
498 /*!
499 * If no argument is supplied, the value returned will be the highest
500 * temperature at which the data for @e all species are valid. Otherwise,
501 * the value will be only for species @e k. This function is a wrapper that
502 * calls the species thermo maxTemp function.
503 *
504 * @param k index of the species. Default is -1, which will return the min
505 * of the max value over all species.
506 */
507 virtual double maxTemp(size_t k = npos) const {
508 return m_spthermo.maxTemp(k);
509 }
510
511 //! Returns the chargeNeutralityNecessity boolean
512 /*!
513 * Some phases must have zero net charge in order for their thermodynamics
514 * functions to be valid. If this is so, then the value returned from this
515 * function is true. If this is not the case, then this is false. Now, ideal
516 * gases have this parameter set to false, while solution with molality-
517 * based activity coefficients have this parameter set to true.
518 */
521 }
522
523 //! @}
524 //! @name Molar Thermodynamic Properties of the Solution
525 //! @{
526
527 //! Molar enthalpy. Units: J/kmol.
528 /**
529 * Returns the amount of enthalpy per mole,
530 * @f[
531 * \hat{h} = \sum_k X_k \hat{h}_k
532 * @f]
533 * @see getPartialMolarEnthalpies()
534 */
535 virtual double enthalpy_mole() const {
537 return mean_X(m_workS);
538 }
539
540 //! Molar internal energy. Units: J/kmol.
541 virtual double intEnergy_mole() const {
542 return enthalpy_mole() - pressure()* molarVolume();
543 }
544
545 //! Molar entropy. Units: J/kmol/K.
546 /**
547 * Returns the amount of entropy per mole,
548 * @f[
549 * \hat{s} = \sum_k X_k \hat{s}_k
550 * @f]
551 * @see getPartialMolarEnthalpies()
552 */
553 virtual double entropy_mole() const {
555 return mean_X(m_workS);
556 }
557
558 //! Molar Gibbs function. Units: J/kmol.
559 /*!
560 * Returns the Gibbs free energy per mole,
561 * @f[
562 * \hat{g} = \sum_k X_k \mu_k
563 * @f]
564 * @see getChemPotentials()
565 */
566 virtual double gibbs_mole() const {
568 return mean_X(m_workS);
569 }
570
571 //! Molar heat capacity at constant pressure. Units: J/kmol/K.
572 /*!
573 * @f[
574 * \hat{c}_p = \sum_k X_k \hat{c}_{p,k}
575 * @f]
576 * @see getPartialMolarCp()
577 */
578 virtual double cp_mole() const {
580 return mean_X(m_workS);
581 }
582
583 //! Molar heat capacity at constant volume. Units: J/kmol/K.
584 virtual double cv_mole() const {
585 throw NotImplementedError("ThermoPhase::cv_mole",
586 "Not implemented for phase type '{}'", type());
587 }
588
589 //! @}
590 //! @name Mechanical Properties
591 //! @{
592
593 //! Returns the isothermal compressibility. Units: 1/Pa.
594 /*!
595 * The isothermal compressibility is defined as
596 * @f[
597 * \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T
598 * @f]
599 * or
600 * @f[
601 * \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T
602 * @f]
603 */
604 virtual double isothermalCompressibility() const {
605 throw NotImplementedError("ThermoPhase::isothermalCompressibility",
606 "Not implemented for phase type '{}'", type());
607 }
608
609 //! Return the volumetric thermal expansion coefficient. Units: 1/K.
610 /*!
611 * The thermal expansion coefficient is defined as
612 * @f[
613 * \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P
614 * @f]
615 */
616 virtual double thermalExpansionCoeff() const {
617 throw NotImplementedError("ThermoPhase::thermalExpansionCoeff",
618 "Not implemented for phase type '{}'", type());
619 }
620
621 //! Return the speed of sound. Units: m/s.
622 /*!
623 * The speed of sound is defined as
624 * @f[
625 * c = \sqrt{\left(\frac{\partial P}{\partial\rho}\right)_s}
626 * @f]
627 */
628 virtual double soundSpeed() const {
629 throw NotImplementedError("ThermoPhase::soundSpeed",
630 "Not implemented for phase type '{}'", type());
631 }
632
633 //! @}
634 //! @name Electric Potential
635 //!
636 //! The phase may be at some non-zero electrical potential. These methods
637 //! set or get the value of the electric potential.
638 //! @{
639
640 //! Set the electric potential of this phase (V).
641 /*!
642 * This is used by classes InterfaceKinetics and EdgeKinetics to
643 * compute the rates of charge-transfer reactions, and in computing
644 * the electrochemical potentials of the species.
645 *
646 * Each phase may have its own electric potential.
647 *
648 * @param v Input value of the electric potential in Volts
649 */
650 void setElectricPotential(double v) {
651 m_phi = v;
653 }
654
655 //! Returns the electric potential of this phase (V).
656 /*!
657 * Units are Volts (which are Joules/coulomb)
658 */
659 double electricPotential() const {
660 return m_phi;
661 }
662
663 //! @}
664 //! @name Activities, Standard States, and Activity Concentrations
665 //!
666 //! The activity @f$ a_k @f$ of a species in solution is related to the
667 //! chemical potential by @f[ \mu_k = \mu_k^0(T,P) + \hat R T \ln a_k. @f]
668 //! The quantity @f$ \mu_k^0(T,P) @f$ is the standard chemical potential at
669 //! unit activity, which depends on temperature and pressure, but not on
670 //! composition. The activity is dimensionless.
671 //! @{
672
673 //! This method returns the convention used in specification of the
674 //! activities, of which there are currently two, molar- and molality-based
675 //! conventions.
676 /*!
677 * Currently, there are two activity conventions:
678 * - Molar-based activities
679 * %Unit activity of species at either a hypothetical pure
680 * solution of the species or at a hypothetical
681 * pure ideal solution at infinite dilution
682 * cAC_CONVENTION_MOLAR 0
683 * - default
684 *
685 * - Molality-based activities
686 * (unit activity of solutes at a hypothetical 1 molal
687 * solution referenced to infinite dilution at all
688 * pressures and temperatures).
689 * cAC_CONVENTION_MOLALITY 1
690 */
691 virtual int activityConvention() const;
692
693 //! This method returns the convention used in specification of the standard
694 //! state, of which there are currently two, temperature based, and variable
695 //! pressure based.
696 /*!
697 * Currently, there are two standard state conventions:
698 * - Temperature-based activities
699 * cSS_CONVENTION_TEMPERATURE 0
700 * - default
701 *
702 * - Variable Pressure and Temperature -based activities
703 * cSS_CONVENTION_VPSS 1
704 *
705 * - Thermodynamics is set via slave ThermoPhase objects with
706 * nothing being carried out at this ThermoPhase object level
707 * cSS_CONVENTION_SLAVE 2
708 */
709 virtual int standardStateConvention() const;
710
711 //! Returns the units of the "standard concentration" for this phase
712 /*!
713 * These are the units of the values returned by the functions
714 * getActivityConcentrations() and standardConcentration(), which can
715 * vary between different ThermoPhase-derived classes, or change within
716 * a single class depending on input options. See the documentation for
717 * standardConcentration() for the derived class for specific details.
718 */
719 virtual Units standardConcentrationUnits() const;
720
721 //! This method returns an array of generalized concentrations
722 /*!
723 * @f$ C^a_k @f$ are defined such that @f$ a_k = C^a_k / C^0_k, @f$ where
724 * @f$ C^0_k @f$ is a standard concentration defined below and @f$ a_k @f$
725 * are activities used in the thermodynamic functions. These activity (or
726 * generalized) concentrations are used by kinetics manager classes to
727 * compute the forward and reverse rates of elementary reactions. Note that
728 * they may or may not have units of concentration --- they might be partial
729 * pressures, mole fractions, or surface coverages, for example.
730 *
731 * @param c Output array of generalized concentrations. The units depend
732 * upon the implementation of the reaction rate expressions within
733 * the phase.
734 */
735 virtual void getActivityConcentrations(double* c) const {
736 throw NotImplementedError("ThermoPhase::getActivityConcentrations",
737 "Not implemented for phase type '{}'", type());
738 }
739
740 //! Return the standard concentration for the kth species
741 /*!
742 * The standard concentration @f$ C^0_k @f$ used to normalize the activity
743 * (that is, generalized) concentration. In many cases, this quantity will be
744 * the same for all species in a phase - for example, for an ideal gas @f$
745 * C^0_k = P/\hat R T @f$. For this reason, this method returns a single
746 * value, instead of an array. However, for phases in which the standard
747 * concentration is species-specific (such as surface species of different
748 * sizes), this method may be called with an optional parameter indicating
749 * the species.
750 *
751 * @param k Optional parameter indicating the species. The default
752 * is to assume this refers to species 0.
753 * @return
754 * Returns the standard concentration. The units are by definition
755 * dependent on the ThermoPhase and kinetics manager representation.
756 */
757 virtual double standardConcentration(size_t k=0) const {
758 throw NotImplementedError("ThermoPhase::standardConcentration",
759 "Not implemented for phase type '{}'", type());
760 }
761
762 //! Natural logarithm of the standard concentration of the kth species.
763 /*!
764 * @param k index of the species (defaults to zero)
765 */
766 virtual double logStandardConc(size_t k=0) const;
767
768 //! Get the array of non-dimensional activities at the current solution
769 //! temperature, pressure, and solution concentration.
770 /*!
771 * Note, for molality based formulations, this returns the molality based
772 * activities.
773 *
774 * We resolve this function at this level by calling on the
775 * activityConcentration function. However, derived classes may want to
776 * override this default implementation.
777 *
778 * @param a Output vector of activities. Length: m_kk.
779 */
780 virtual void getActivities(double* a) const;
781
782 //! Get the array of non-dimensional molar-based activity coefficients at
783 //! the current solution temperature, pressure, and solution concentration.
784 /*!
785 * @param ac Output vector of activity coefficients. Length: m_kk.
786 */
787 virtual void getActivityCoefficients(double* ac) const {
788 if (m_kk == 1) {
789 ac[0] = 1.0;
790 } else {
791 throw NotImplementedError("ThermoPhase::getActivityCoefficients",
792 "Not implemented for phase type '{}'", type());
793 }
794 }
795
796 //! Get the array of non-dimensional molar-based ln activity coefficients at
797 //! the current solution temperature, pressure, and solution concentration.
798 /*!
799 * @param lnac Output vector of ln activity coefficients. Length: m_kk.
800 */
801 virtual void getLnActivityCoefficients(double* lnac) const;
802
803 //! @}
804 //! @name Partial Molar Properties of the Solution
805 //! @{
806
807 //! Get the species chemical potentials. Units: J/kmol.
808 /*!
809 * This function returns a vector of chemical potentials of the species in
810 * solution at the current temperature, pressure and mole fraction of the
811 * solution.
812 *
813 * @param mu Output vector of species chemical
814 * potentials. Length: m_kk. Units: J/kmol
815 */
816 virtual void getChemPotentials(double* mu) const {
817 throw NotImplementedError("ThermoPhase::getChemPotentials",
818 "Not implemented for phase type '{}'", type());
819 }
820
821 //! Get the species electrochemical potentials.
822 /*!
823 * These are partial molar quantities. This method adds a term @f$ F z_k
824 * \phi_p @f$ to each chemical potential. The electrochemical potential of
825 * species k in a phase p, @f$ \zeta_k @f$, is related to the chemical
826 * potential via the following equation,
827 *
828 * @f[
829 * \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p
830 * @f]
831 *
832 * @param mu Output vector of species electrochemical
833 * potentials. Length: m_kk. Units: J/kmol
834 */
835 void getElectrochemPotentials(double* mu) const;
836
837 //! Returns an array of partial molar enthalpies for the species
838 //! in the mixture. Units (J/kmol)
839 /*!
840 * @param hbar Output vector of species partial molar enthalpies.
841 * Length: m_kk. units are J/kmol.
842 */
843 virtual void getPartialMolarEnthalpies(double* hbar) const {
844 throw NotImplementedError("ThermoPhase::getPartialMolarEnthalpies",
845 "Not implemented for phase type '{}'", type());
846 }
847
848 //! Returns an array of partial molar entropies of the species in the
849 //! solution. Units: J/kmol/K.
850 /*!
851 * @param sbar Output vector of species partial molar entropies.
852 * Length = m_kk. units are J/kmol/K.
853 */
854 virtual void getPartialMolarEntropies(double* sbar) const {
855 throw NotImplementedError("ThermoPhase::getPartialMolarEntropies",
856 "Not implemented for phase type '{}'", type());
857 }
858
859 //! Return an array of partial molar internal energies for the
860 //! species in the mixture. Units: J/kmol.
861 /*!
862 * @param ubar Output vector of species partial molar internal energies.
863 * Length = m_kk. units are J/kmol.
864 */
865 virtual void getPartialMolarIntEnergies(double* ubar) const {
866 throw NotImplementedError("ThermoPhase::getPartialMolarIntEnergies",
867 "Not implemented for phase type '{}'", type());
868 }
869
870 //! Return an array of partial molar heat capacities for the
871 //! species in the mixture. Units: J/kmol/K
872 /*!
873 * @param cpbar Output vector of species partial molar heat
874 * capacities at constant pressure.
875 * Length = m_kk. units are J/kmol/K.
876 */
877 virtual void getPartialMolarCp(double* cpbar) const {
878 throw NotImplementedError("ThermoPhase::getPartialMolarCp",
879 "Not implemented for phase type '{}'", type());
880 }
881
882 //! Return an array of partial molar volumes for the
883 //! species in the mixture. Units: m^3/kmol.
884 /*!
885 * @param vbar Output vector of species partial molar volumes.
886 * Length = m_kk. units are m^3/kmol.
887 */
888 virtual void getPartialMolarVolumes(double* vbar) const {
889 throw NotImplementedError("ThermoPhase::getPartialMolarVolumes",
890 "Not implemented for phase type '{}'", type());
891 }
892
893 //! @}
894 //! @name Properties of the Standard State of the Species in the Solution
895 //! @{
896
897 //! Get the array of chemical potentials at unit activity for the species at
898 //! their standard states at the current *T* and *P* of the solution.
899 /*!
900 * These are the standard state chemical potentials @f$ \mu^0_k(T,P)
901 * @f$. The values are evaluated at the current temperature and pressure of
902 * the solution
903 *
904 * @param mu Output vector of chemical potentials.
905 * Length: m_kk.
906 */
907 virtual void getStandardChemPotentials(double* mu) const {
908 throw NotImplementedError("ThermoPhase::getStandardChemPotentials",
909 "Not implemented for phase type '{}'", type());
910 }
911
912 //! Get the nondimensional Enthalpy functions for the species at their
913 //! standard states at the current *T* and *P* of the solution.
914 /*!
915 * @param hrt Output vector of nondimensional standard state enthalpies.
916 * Length: m_kk.
917 */
918 virtual void getEnthalpy_RT(double* hrt) const {
919 throw NotImplementedError("ThermoPhase::getEnthalpy_RT",
920 "Not implemented for phase type '{}'", type());
921 }
922
923 //! Get the array of nondimensional Entropy functions for the standard state
924 //! species at the current *T* and *P* of the solution.
925 /*!
926 * @param sr Output vector of nondimensional standard state entropies.
927 * Length: m_kk.
928 */
929 virtual void getEntropy_R(double* sr) const {
930 throw NotImplementedError("ThermoPhase::getEntropy_R",
931 "Not implemented for phase type '{}'", type());
932 }
933
934 //! Get the nondimensional Gibbs functions for the species in their standard
935 //! states at the current *T* and *P* of the solution.
936 /*!
937 * @param grt Output vector of nondimensional standard state Gibbs free
938 * energies. Length: m_kk.
939 */
940 virtual void getGibbs_RT(double* grt) const {
941 throw NotImplementedError("ThermoPhase::getGibbs_RT",
942 "Not implemented for phase type '{}'", type());
943 }
944
945 //! Get the Gibbs functions for the standard state of the species at the
946 //! current *T* and *P* of the solution
947 /*!
948 * Units are Joules/kmol
949 * @param gpure Output vector of standard state Gibbs free energies.
950 * Length: m_kk.
951 */
952 virtual void getPureGibbs(double* gpure) const {
953 throw NotImplementedError("ThermoPhase::getPureGibbs",
954 "Not implemented for phase type '{}'", type());
955 }
956
957 //! Returns the vector of nondimensional Internal Energies of the standard
958 //! state species at the current *T* and *P* of the solution
959 /*!
960 * @param urt output vector of nondimensional standard state internal energies
961 * of the species. Length: m_kk.
962 */
963 virtual void getIntEnergy_RT(double* urt) const {
964 throw NotImplementedError("ThermoPhase::getIntEnergy_RT",
965 "Not implemented for phase type '{}'", type());
966 }
967
968 //! Get the nondimensional Heat Capacities at constant pressure for the
969 //! species standard states at the current *T* and *P* of the
970 //! solution
971 /*!
972 * @param cpr Output vector of nondimensional standard state heat
973 * capacities. Length: m_kk.
974 */
975 virtual void getCp_R(double* cpr) const {
976 throw NotImplementedError("ThermoPhase::getCp_R",
977 "Not implemented for phase type '{}'", type());
978 }
979
980 //! Get the molar volumes of the species standard states at the current
981 //! *T* and *P* of the solution.
982 /*!
983 * units = m^3 / kmol
984 *
985 * @param vol Output vector containing the standard state volumes.
986 * Length: m_kk.
987 */
988 virtual void getStandardVolumes(double* vol) const {
989 throw NotImplementedError("ThermoPhase::getStandardVolumes",
990 "Not implemented for phase type '{}'", type());
991 }
992
993 //! @}
994 //! @name Thermodynamic Values for the Species Reference States
995 //! @{
996
997 //! Returns the vector of nondimensional enthalpies of the reference state
998 //! at the current temperature of the solution and the reference pressure
999 //! for the species.
1000 /*!
1001 * @param hrt Output vector containing the nondimensional reference
1002 * state enthalpies. Length: m_kk.
1003 */
1004 virtual void getEnthalpy_RT_ref(double* hrt) const {
1005 throw NotImplementedError("ThermoPhase::getEnthalpy_RT_ref",
1006 "Not implemented for phase type '{}'", type());
1007 }
1008
1009 //! Returns the vector of nondimensional Gibbs Free Energies of the
1010 //! reference state at the current temperature of the solution and the
1011 //! reference pressure for the species.
1012 /*!
1013 * @param grt Output vector containing the nondimensional reference state
1014 * Gibbs Free energies. Length: m_kk.
1015 */
1016 virtual void getGibbs_RT_ref(double* grt) const {
1017 throw NotImplementedError("ThermoPhase::getGibbs_RT_ref",
1018 "Not implemented for phase type '{}'", type());
1019 }
1020
1021 //! Returns the vector of the Gibbs function of the reference state at the
1022 //! current temperature of the solution and the reference pressure for the
1023 //! species.
1024 /*!
1025 * @param g Output vector containing the reference state
1026 * Gibbs Free energies. Length: m_kk. Units: J/kmol.
1027 */
1028 virtual void getGibbs_ref(double* g) const {
1029 throw NotImplementedError("ThermoPhase::getGibbs_ref",
1030 "Not implemented for phase type '{}'", type());
1031 }
1032
1033 //! Returns the vector of nondimensional entropies of the reference state at
1034 //! the current temperature of the solution and the reference pressure for
1035 //! each species.
1036 /*!
1037 * @param er Output vector containing the nondimensional reference
1038 * state entropies. Length: m_kk.
1039 */
1040 virtual void getEntropy_R_ref(double* er) const {
1041 throw NotImplementedError("ThermoPhase::getEntropy_R_ref",
1042 "Not implemented for phase type '{}'", type());
1043 }
1044
1045 //! Returns the vector of nondimensional internal Energies of the reference
1046 //! state at the current temperature of the solution and the reference
1047 //! pressure for each species.
1048 /*!
1049 * @param urt Output vector of nondimensional reference state internal
1050 * energies of the species. Length: m_kk
1051 */
1052 virtual void getIntEnergy_RT_ref(double* urt) const {
1053 throw NotImplementedError("ThermoPhase::getIntEnergy_RT_ref",
1054 "Not implemented for phase type '{}'", type());
1055 }
1056
1057 //! Returns the vector of nondimensional constant pressure heat capacities
1058 //! of the reference state at the current temperature of the solution and
1059 //! reference pressure for each species.
1060 /*!
1061 * @param cprt Output vector of nondimensional reference state
1062 * heat capacities at constant pressure for the species.
1063 * Length: m_kk
1064 */
1065 virtual void getCp_R_ref(double* cprt) const {
1066 throw NotImplementedError("ThermoPhase::getCp_R_ref",
1067 "Not implemented for phase type '{}'", type());
1068 }
1069
1070 //! Get the molar volumes of the species reference states at the current
1071 //! *T* and *P_ref* of the solution.
1072 /*!
1073 * units = m^3 / kmol
1074 *
1075 * @param vol Output vector containing the standard state volumes.
1076 * Length: m_kk.
1077 */
1078 virtual void getStandardVolumes_ref(double* vol) const {
1079 throw NotImplementedError("ThermoPhase::getStandardVolumes_ref",
1080 "Not implemented for phase type '{}'", type());
1081 }
1082
1083 // The methods below are not virtual, and should not be overloaded.
1084
1085 //! @}
1086 //! @name Specific Properties
1087 //! @{
1088
1089 //! Specific enthalpy. Units: J/kg.
1090 double enthalpy_mass() const {
1092 }
1093
1094 //! Specific internal energy. Units: J/kg.
1095 double intEnergy_mass() const {
1097 }
1098
1099 //! Specific entropy. Units: J/kg/K.
1100 double entropy_mass() const {
1102 }
1103
1104 //! Specific Gibbs function. Units: J/kg.
1105 double gibbs_mass() const {
1107 }
1108
1109 //! Specific heat at constant pressure. Units: J/kg/K.
1110 double cp_mass() const {
1111 return cp_mole()/meanMolecularWeight();
1112 }
1113
1114 //! Specific heat at constant volume. Units: J/kg/K.
1115 double cv_mass() const {
1116 return cv_mole()/meanMolecularWeight();
1117 }
1118 //! @}
1119
1120 //! Return the Gas Constant multiplied by the current temperature
1121 /*!
1122 * The units are Joules kmol-1
1123 */
1124 double RT() const {
1125 return temperature() * GasConstant;
1126 }
1127
1128 //! @name Setting the State
1129 //! @anchor sec-thermophase-set-state
1130 //!
1131 //! These methods set all or part of the thermodynamic state.
1132 //! @{
1133
1134 //! Set the temperature (K), pressure (Pa), and mole fractions.
1135 /*!
1136 * Note, the mole fractions are set first before the pressure is set.
1137 * Setting the pressure may involve the solution of a nonlinear equation.
1138 *
1139 * @param t Temperature (K)
1140 * @param p Pressure (Pa)
1141 * @param x Vector of mole fractions.
1142 * Length is equal to m_kk.
1143 */
1144 virtual void setState_TPX(double t, double p, const double* x);
1145
1146 //! Set the temperature (K), pressure (Pa), and mole fractions.
1147 /*!
1148 * Note, the mole fractions are set first before the pressure is set.
1149 * Setting the pressure may involve the solution of a nonlinear equation.
1150 *
1151 * @param t Temperature (K)
1152 * @param p Pressure (Pa)
1153 * @param x Composition map of mole fractions. Species not in
1154 * the composition map are assumed to have zero mole fraction
1155 */
1156 virtual void setState_TPX(double t, double p, const Composition& x);
1157
1158 //! Set the temperature (K), pressure (Pa), and mole fractions.
1159 /*!
1160 * Note, the mole fractions are set first before the pressure is set.
1161 * Setting the pressure may involve the solution of a nonlinear equation.
1162 *
1163 * @param t Temperature (K)
1164 * @param p Pressure (Pa)
1165 * @param x String containing a composition map of the mole fractions.
1166 * Species not in the composition map are assumed to have zero
1167 * mole fraction
1168 */
1169 virtual void setState_TPX(double t, double p, const string& x);
1170
1171 //! Set the internally stored temperature (K), pressure (Pa), and mass
1172 //! fractions of the phase.
1173 /*!
1174 * Note, the mass fractions are set first before the pressure is set.
1175 * Setting the pressure may involve the solution of a nonlinear equation.
1176 *
1177 * @param t Temperature (K)
1178 * @param p Pressure (Pa)
1179 * @param y Vector of mass fractions.
1180 * Length is equal to m_kk.
1181 */
1182 virtual void setState_TPY(double t, double p, const double* y);
1183
1184 //! Set the internally stored temperature (K), pressure (Pa), and mass
1185 //! fractions of the phase
1186 /*!
1187 * Note, the mass fractions are set first before the pressure is set.
1188 * Setting the pressure may involve the solution of a nonlinear equation.
1189 *
1190 * @param t Temperature (K)
1191 * @param p Pressure (Pa)
1192 * @param y Composition map of mass fractions. Species not in
1193 * the composition map are assumed to have zero mass fraction
1194 */
1195 virtual void setState_TPY(double t, double p, const Composition& y);
1196
1197 //! Set the internally stored temperature (K), pressure (Pa), and mass
1198 //! fractions of the phase
1199 /*!
1200 * Note, the mass fractions are set first before the pressure is set.
1201 * Setting the pressure may involve the solution of a nonlinear equation.
1202 *
1203 * @param t Temperature (K)
1204 * @param p Pressure (Pa)
1205 * @param y String containing a composition map of the mass fractions.
1206 * Species not in the composition map are assumed to have zero
1207 * mass fraction
1208 */
1209 virtual void setState_TPY(double t, double p, const string& y);
1210
1211 //! Set the temperature (K) and pressure (Pa)
1212 /*!
1213 * Setting the pressure may involve the solution of a nonlinear equation.
1214 *
1215 * @param t Temperature (K)
1216 * @param p Pressure (Pa)
1217 */
1218 virtual void setState_TP(double t, double p);
1219
1220 //! Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of
1221 //! the phase.
1222 /*!
1223 * @param h Specific enthalpy (J/kg)
1224 * @param p Pressure (Pa)
1225 * @param tol Optional parameter setting the tolerance of the calculation.
1226 * Important for some applications where numerical Jacobians
1227 * are being calculated.
1228 */
1229 virtual void setState_HP(double h, double p, double tol=1e-9);
1230
1231 //! Set the specific internal energy (J/kg) and specific volume (m^3/kg).
1232 /*!
1233 * This function fixes the internal state of the phase so that the specific
1234 * internal energy and specific volume have the value of the input
1235 * parameters.
1236 *
1237 * @param u specific internal energy (J/kg)
1238 * @param v specific volume (m^3/kg).
1239 * @param tol Optional parameter setting the tolerance of the calculation.
1240 * Important for some applications where numerical Jacobians
1241 * are being calculated.
1242 */
1243 virtual void setState_UV(double u, double v, double tol=1e-9);
1244
1245 //! Set the specific entropy (J/kg/K) and pressure (Pa).
1246 /*!
1247 * This function fixes the internal state of the phase so that the specific
1248 * entropy and the pressure have the value of the input parameters.
1249 *
1250 * @param s specific entropy (J/kg/K)
1251 * @param p specific pressure (Pa).
1252 * @param tol Optional parameter setting the tolerance of the calculation.
1253 * Important for some applications where numerical Jacobians
1254 * are being calculated.
1255 */
1256 virtual void setState_SP(double s, double p, double tol=1e-9);
1257
1258 //! Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
1259 /*!
1260 * This function fixes the internal state of the phase so that the specific
1261 * entropy and specific volume have the value of the input parameters.
1262 *
1263 * @param s specific entropy (J/kg/K)
1264 * @param v specific volume (m^3/kg).
1265 * @param tol Optional parameter setting the tolerance of the calculation.
1266 * Important for some applications where numerical Jacobians
1267 * are being calculated.
1268 */
1269 virtual void setState_SV(double s, double v, double tol=1e-9);
1270
1271 //! Set the specific entropy (J/kg/K) and temperature (K).
1272 /*!
1273 * This function fixes the internal state of the phase so that the specific
1274 * entropy and temperature have the value of the input parameters.
1275 * This base class function will throw an exception if not overridden.
1276 *
1277 * @param s specific entropy (J/kg/K)
1278 * @param t temperature (K)
1279 * @param tol Optional parameter setting the tolerance of the calculation.
1280 * Important for some applications where numerical Jacobians
1281 * are being calculated.
1282 */
1283 virtual void setState_ST(double s, double t, double tol=1e-9) {
1284 throw NotImplementedError("ThermoPhase::setState_ST",
1285 "Not implemented for phase type '{}'", type());
1286 }
1287
1288 //! Set the temperature (K) and specific volume (m^3/kg).
1289 /*!
1290 * This function fixes the internal state of the phase so that the
1291 * temperature and specific volume have the value of the input parameters.
1292 * This base class function will throw an exception if not overridden.
1293 *
1294 * @param t temperature (K)
1295 * @param v specific volume (m^3/kg)
1296 * @param tol Optional parameter setting the tolerance of the calculation.
1297 * Important for some applications where numerical Jacobians
1298 * are being calculated.
1299 */
1300 virtual void setState_TV(double t, double v, double tol=1e-9) {
1301 throw NotImplementedError("ThermoPhase::setState_TV",
1302 "Not implemented for phase type '{}'", type());
1303 }
1304
1305 //! Set the pressure (Pa) and specific volume (m^3/kg).
1306 /*!
1307 * This function fixes the internal state of the phase so that the
1308 * pressure and specific volume have the value of the input parameters.
1309 * This base class function will throw an exception if not overridden.
1310 *
1311 * @param p pressure (Pa)
1312 * @param v specific volume (m^3/kg)
1313 * @param tol Optional parameter setting the tolerance of the calculation.
1314 * Important for some applications where numerical Jacobians
1315 * are being calculated.
1316 */
1317 virtual void setState_PV(double p, double v, double tol=1e-9) {
1318 throw NotImplementedError("ThermoPhase::setState_PV",
1319 "Not implemented for phase type '{}'", type());
1320 }
1321
1322 //! Set the specific internal energy (J/kg) and pressure (Pa).
1323 /*!
1324 * This function fixes the internal state of the phase so that the specific
1325 * internal energy and pressure have the value of the input parameters.
1326 * This base class function will throw an exception if not overridden.
1327 *
1328 * @param u specific internal energy (J/kg)
1329 * @param p pressure (Pa)
1330 * @param tol Optional parameter setting the tolerance of the calculation.
1331 * Important for some applications where numerical Jacobians
1332 * are being calculated.
1333 */
1334 virtual void setState_UP(double u, double p, double tol=1e-9) {
1335 throw NotImplementedError("ThermoPhase::setState_UP",
1336 "Not implemented for phase type '{}'", type());
1337 }
1338
1339 //! Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
1340 /*!
1341 * This function fixes the internal state of the phase so that the specific
1342 * volume and the specific enthalpy have the value of the input parameters.
1343 * This base class function will throw an exception if not overridden.
1344 *
1345 * @param v specific volume (m^3/kg)
1346 * @param h specific enthalpy (J/kg)
1347 * @param tol Optional parameter setting the tolerance of the calculation.
1348 * Important for some applications where numerical Jacobians
1349 * are being calculated.
1350 */
1351 virtual void setState_VH(double v, double h, double tol=1e-9) {
1352 throw NotImplementedError("ThermoPhase::setState_VH",
1353 "Not implemented for phase type '{}'", type());
1354 }
1355
1356 //! Set the temperature (K) and the specific enthalpy (J/kg)
1357 /*!
1358 * This function fixes the internal state of the phase so that the
1359 * temperature and specific enthalpy have the value of the input parameters.
1360 * This base class function will throw an exception if not overridden.
1361 *
1362 * @param t temperature (K)
1363 * @param h specific enthalpy (J/kg)
1364 * @param tol Optional parameter setting the tolerance of the calculation.
1365 * Important for some applications where numerical Jacobians
1366 * are being calculated.
1367 */
1368 virtual void setState_TH(double t, double h, double tol=1e-9) {
1369 throw NotImplementedError("ThermoPhase::setState_TH",
1370 "Not implemented for phase type '{}'", type());
1371 }
1372
1373 //! Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
1374 /*!
1375 * This function fixes the internal state of the phase so that the
1376 * temperature and pressure have the value of the input parameters.
1377 * This base class function will throw an exception if not overridden.
1378 *
1379 * @param s specific entropy (J/kg/K)
1380 * @param h specific enthalpy (J/kg)
1381 * @param tol Optional parameter setting the tolerance of the calculation.
1382 * Important for some applications where numerical Jacobians
1383 * are being calculated.
1384 */
1385 virtual void setState_SH(double s, double h, double tol=1e-9) {
1386 throw NotImplementedError("ThermoPhase::setState_SH",
1387 "Not implemented for phase type '{}'", type());
1388 }
1389
1390 //! Set the density (kg/m**3) and pressure (Pa) at constant composition
1391 /*!
1392 * This method must be reimplemented in derived classes, where it may
1393 * involve the solution of a nonlinear equation. Within %Cantera, the
1394 * independent variable is the density. Therefore, this function solves for
1395 * the temperature that will yield the desired input pressure and density.
1396 * The composition is held constant during this process.
1397 *
1398 * This base class function will print an error, if not overridden.
1399 *
1400 * @param rho Density (kg/m^3)
1401 * @param p Pressure (Pa)
1402 * @since New in %Cantera 3.0.
1403 */
1404 virtual void setState_DP(double rho, double p) {
1405 throw NotImplementedError("ThermoPhase::setState_DP",
1406 "Not implemented for phase type '{}'", type());
1407 }
1408
1409 //! Set the state using an AnyMap containing any combination of properties
1410 //! supported by the thermodynamic model
1411 /*!
1412 * Accepted keys are:
1413 * * `X` (mole fractions)
1414 * * `Y` (mass fractions)
1415 * * `T` or `temperature`
1416 * * `P` or `pressure` [Pa]
1417 * * `H` or `enthalpy` [J/kg]
1418 * * `U` or `internal-energy` [J/kg]
1419 * * `S` or `entropy` [J/kg/K]
1420 * * `V` or `specific-volume` [m^3/kg]
1421 * * `D` or `density` [kg/m^3]
1422 *
1423 * Composition can be specified as either an AnyMap of species names to
1424 * values or as a composition string. All other values can be given as
1425 * floating point values in Cantera's default units, or as strings with the
1426 * units specified, which will be converted using the Units class.
1427 *
1428 * If no thermodynamic property pair is given, or only one of temperature or
1429 * pressure is given, then 298.15 K and 101325 Pa will be used as necessary
1430 * to fully set the state.
1431 */
1432 virtual void setState(const AnyMap& state);
1433
1434 //! @}
1435 //! @name Set Mixture Composition by Mixture Fraction
1436 //! @{
1437
1438 //! Set the mixture composition according to the
1439 //! mixture fraction = kg fuel / (kg oxidizer + kg fuel)
1440 /*!
1441 * Fuel and oxidizer compositions are given either as
1442 * mole fractions or mass fractions (specified by `basis`)
1443 * and do not need to be normalized. Pressure and temperature are
1444 * kept constant. Elements C, S, H and O are considered for the oxidation.
1445 *
1446 * @param mixFrac mixture fraction (between 0 and 1)
1447 * @param fuelComp composition of the fuel
1448 * @param oxComp composition of the oxidizer
1449 * @param basis either ThermoPhase::molar or ThermoPhase::mass.
1450 * Fuel and oxidizer composition are interpreted
1451 * as mole or mass fractions (default: molar)
1452 */
1453 void setMixtureFraction(double mixFrac, const double* fuelComp,
1454 const double* oxComp, ThermoBasis basis=ThermoBasis::molar);
1455 //! @copydoc ThermoPhase::setMixtureFraction
1456 void setMixtureFraction(double mixFrac, const string& fuelComp,
1457 const string& oxComp, ThermoBasis basis=ThermoBasis::molar);
1458 //! @copydoc ThermoPhase::setMixtureFraction
1459 void setMixtureFraction(double mixFrac, const Composition& fuelComp,
1460 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar);
1461 //! @}
1462 //! @name Compute Mixture Fraction
1463 //! @{
1464
1465 //! Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for
1466 //! the current mixture given fuel and oxidizer compositions.
1467 /*!
1468 * Fuel and oxidizer compositions are given either as
1469 * mole fractions or mass fractions (specified by `basis`)
1470 * and do not need to be normalized.
1471 * The mixture fraction @f$ Z @f$ can be computed from a single element
1472 * @f[ Z_m = \frac{Z_{\mathrm{mass},m}-Z_{\mathrm{mass},m,\mathrm{ox}}}
1473 * {Z_{\mathrm{mass},\mathrm{fuel}}-Z_{\mathrm{mass},m,\mathrm{ox}}} @f] where
1474 * @f$ Z_{\mathrm{mass},m} @f$ is the elemental mass fraction of element m
1475 * in the mixture, and @f$ Z_{\mathrm{mass},m,\mathrm{ox}} @f$ and
1476 * @f$ Z_{\mathrm{mass},m,\mathrm{fuel}} @f$ are the elemental mass fractions
1477 * of the oxidizer and fuel, or from the Bilger mixture fraction,
1478 * which considers the elements C, S, H and O @cite bilger1979
1479 * @f[ Z_{\mathrm{Bilger}} = \frac{\beta-\beta_{\mathrm{ox}}}
1480 * {\beta_{\mathrm{fuel}}-\beta_{\mathrm{ox}}} @f]
1481 * with @f$ \beta = 2\frac{Z_C}{M_C}+2\frac{Z_S}{M_S}+\frac{1}{2}\frac{Z_H}{M_H}
1482 * -\frac{Z_O}{M_O} @f$
1483 * and @f$ M_m @f$ the atomic weight of element @f$ m @f$.
1484 *
1485 * @param fuelComp composition of the fuel
1486 * @param oxComp composition of the oxidizer
1487 * @param basis either ThermoBasis::molar or ThermoBasis::mass.
1488 * Fuel and oxidizer composition are interpreted
1489 * as mole or mass fractions (default: molar)
1490 * @param element either "Bilger" to compute the mixture fraction
1491 * in terms of the Bilger mixture fraction, or
1492 * an element name, to compute the mixture fraction
1493 * based on a single element (default: "Bilger")
1494 * @returns mixture fraction (kg fuel / kg mixture)
1495 */
1496 double mixtureFraction(const double* fuelComp, const double* oxComp,
1497 ThermoBasis basis=ThermoBasis::molar,
1498 const string& element="Bilger") const;
1499 //! @copydoc ThermoPhase::mixtureFraction
1500 double mixtureFraction(const string& fuelComp, const string& oxComp,
1501 ThermoBasis basis=ThermoBasis::molar,
1502 const string& element="Bilger") const;
1503 //! @copydoc ThermoPhase::mixtureFraction
1504 double mixtureFraction(const Composition& fuelComp, const Composition& oxComp,
1505 ThermoBasis basis=ThermoBasis::molar,
1506 const string& element="Bilger") const;
1507 //! @}
1508 //! @name Set Mixture Composition by Equivalence Ratio
1509 //! @{
1510
1511 //! Set the mixture composition according to the equivalence ratio.
1512 /*!
1513 * Fuel and oxidizer compositions are given either as
1514 * mole fractions or mass fractions (specified by `basis`)
1515 * and do not need to be normalized. Pressure and temperature are
1516 * kept constant. Elements C, S, H and O are considered for the oxidation.
1517 *
1518 * @param phi equivalence ratio
1519 * @param fuelComp composition of the fuel
1520 * @param oxComp composition of the oxidizer
1521 * @param basis either ThermoBasis::mole or ThermoBasis::mass.
1522 * Fuel and oxidizer composition are interpreted
1523 * as mole or mass fractions (default: molar)
1524 */
1525 void setEquivalenceRatio(double phi, const double* fuelComp, const double* oxComp,
1526 ThermoBasis basis=ThermoBasis::molar);
1527 //! @copydoc ThermoPhase::setEquivalenceRatio
1528 void setEquivalenceRatio(double phi, const string& fuelComp,
1529 const string& oxComp, ThermoBasis basis=ThermoBasis::molar);
1530 //! @copydoc ThermoPhase::setEquivalenceRatio
1531 void setEquivalenceRatio(double phi, const Composition& fuelComp,
1532 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar);
1533 //! @}
1534
1535 //! @name Compute Equivalence Ratio
1536 //! @{
1537
1538 //! Compute the equivalence ratio for the current mixture
1539 //! given the compositions of fuel and oxidizer
1540 /*!
1541 * The equivalence ratio @f$ \phi @f$ is computed from
1542 * @f[ \phi = \frac{Z}{1-Z}\frac{1-Z_{\mathrm{st}}}{Z_{\mathrm{st}}} @f]
1543 * where @f$ Z @f$ is the Bilger mixture fraction @cite bilger1979 of the mixture
1544 * given the specified fuel and oxidizer compositions
1545 * @f$ Z_{\mathrm{st}} @f$ is the mixture fraction at stoichiometric
1546 * conditions. Fuel and oxidizer compositions are given either as
1547 * mole fractions or mass fractions (specified by `basis`)
1548 * and do not need to be normalized.
1549 * Elements C, S, H and O are considered for the oxidation.
1550 * If fuel and oxidizer composition are unknown or not specified,
1551 * use the version that takes no arguments.
1552 *
1553 * @param fuelComp composition of the fuel
1554 * @param oxComp composition of the oxidizer
1555 * @param basis either ThermoPhase::mole or ThermoPhase::mass.
1556 * Fuel and oxidizer composition are interpreted
1557 * as mole or mass fractions (default: molar)
1558 * @returns equivalence ratio
1559 * @see mixtureFraction for the definition of the Bilger mixture fraction
1560 * @see equivalenceRatio() for the computation of @f$ \phi @f$ without arguments
1561 */
1562 double equivalenceRatio(const double* fuelComp, const double* oxComp,
1563 ThermoBasis basis=ThermoBasis::molar) const;
1564 //! @copydoc ThermoPhase::equivalenceRatio
1565 double equivalenceRatio(const string& fuelComp, const string& oxComp,
1566 ThermoBasis basis=ThermoBasis::molar) const;
1567 //! @copydoc ThermoPhase::equivalenceRatio
1568 double equivalenceRatio(const Composition& fuelComp,
1569 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar) const;
1570 //! @}
1571
1572 //! Compute the equivalence ratio for the current mixture
1573 //! from available oxygen and required oxygen
1574 /*!
1575 * Computes the equivalence ratio @f$ \phi @f$ from
1576 * @f[ \phi =
1577 * \frac{Z_{\mathrm{mole},C} + Z_{\mathrm{mole},S} + \frac{1}{4}Z_{\mathrm{mole},H}}
1578 * {\frac{1}{2}Z_{\mathrm{mole},O}} @f]
1579 * where @f$ Z_{\mathrm{mole},m} @f$ is the elemental mole fraction
1580 * of element @f$ m @f$. In this special case, the equivalence ratio
1581 * is independent of a fuel or oxidizer composition because it only
1582 * considers the locally available oxygen compared to the required oxygen
1583 * for complete oxidation. It is the same as assuming that the oxidizer
1584 * only contains O (and inert elements) and the fuel contains only
1585 * H, C and S (and inert elements). If either of these conditions is
1586 * not met, use the version of this functions which takes the fuel and
1587 * oxidizer compositions as input
1588 *
1589 * @returns equivalence ratio
1590 * @see equivalenceRatio compute the equivalence ratio from specific
1591 * fuel and oxidizer compositions
1592 */
1593 double equivalenceRatio() const;
1594
1595 //! @name Compute Stoichiometric Air to Fuel Ratio
1596 //! @{
1597
1598 //! Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel)
1599 //! given fuel and oxidizer compositions.
1600 /*!
1601 * Fuel and oxidizer compositions are given either as
1602 * mole fractions or mass fractions (specified by `basis`)
1603 * and do not need to be normalized.
1604 * Elements C, S, H and O are considered for the oxidation.
1605 * Note that the stoichiometric air to fuel ratio @f$ \mathit{AFR}_{\mathrm{st}} @f$
1606 * does not depend on the current mixture composition. The current air to fuel ratio
1607 * can be computed from @f$ \mathit{AFR} = \mathit{AFR}_{\mathrm{st}}/\phi @f$
1608 * where @f$ \phi @f$ is the equivalence ratio of the current mixture
1609 *
1610 * @param fuelComp composition of the fuel
1611 * @param oxComp composition of the oxidizer
1612 * @param basis either ThermoPhase::mole or ThermoPhase::mass.
1613 * Fuel and oxidizer composition are interpreted
1614 * as mole or mass fractions (default: molar)
1615 * @returns Stoichiometric Air to Fuel Ratio (kg oxidizer / kg fuel)
1616 */
1617 double stoichAirFuelRatio(const double* fuelComp, const double* oxComp,
1618 ThermoBasis basis=ThermoBasis::molar) const;
1619 //! @copydoc ThermoPhase::stoichAirFuelRatio
1620 double stoichAirFuelRatio(const string& fuelComp, const string& oxComp,
1621 ThermoBasis basis=ThermoBasis::molar) const;
1622 //! @copydoc ThermoPhase::stoichAirFuelRatio
1623 double stoichAirFuelRatio(const Composition& fuelComp,
1624 const Composition& oxComp, ThermoBasis basis=ThermoBasis::molar) const;
1625 //! @}
1626
1627 //! Return intermediate or model-specific parameters used by particular
1628 //! derived classes. Specific parameters are described in overidden
1629 //! methods of classes that derive from the base class.
1631 {
1632 return AnyMap();
1633 }
1634
1635private:
1636
1637 //! Carry out work in HP and UV calculations.
1638 /*!
1639 * @param h Specific enthalpy or internal energy (J/kg)
1640 * @param p Pressure (Pa) or specific volume (m^3/kg)
1641 * @param tol Optional parameter setting the tolerance of the calculation.
1642 * Important for some applications where numerical Jacobians
1643 * are being calculated.
1644 * @param doUV True if solving for UV, false for HP.
1645 */
1646 void setState_HPorUV(double h, double p, double tol=1e-9, bool doUV = false);
1647
1648 //! Carry out work in SP and SV calculations.
1649 /*!
1650 * @param s Specific entropy (J/kg)
1651 * @param p Pressure (Pa) or specific volume (m^3/kg)
1652 * @param tol Optional parameter setting the tolerance of the calculation.
1653 * Important for some applications where numerical Jacobians
1654 * are being calculated.
1655 * @param doSV True if solving for SV, false for SP.
1656 */
1657 void setState_SPorSV(double s, double p, double tol=1e-9, bool doSV = false);
1658
1659 //! Helper function used by setState_HPorUV and setState_SPorSV.
1660 //! Sets the temperature and (if set_p is true) the pressure.
1661 void setState_conditional_TP(double t, double p, bool set_p);
1662
1663 //! Helper function for computing the amount of oxygen required for complete
1664 //! oxidation.
1665 /*!
1666 * @param y array of (possibly non-normalized) mass fractions (length m_kk)
1667 * @returns amount of required oxygen in kmol O / kg mixture
1668 */
1669 double o2Required(const double* y) const;
1670
1671 //! Helper function for computing the amount of oxygen
1672 //! available in the current mixture.
1673 /*!
1674 * @param y array of (possibly non-normalized) mass fractions (length m_kk)
1675 * @returns amount of O in kmol O / kg mixture
1676 */
1677 double o2Present(const double* y) const;
1678
1679public:
1680 //! @name Chemical Equilibrium
1681 //!
1682 //! Chemical equilibrium.
1683 //! @{
1684
1685 //! Equilibrate a ThermoPhase object
1686 /*!
1687 * Set this phase to chemical equilibrium by calling one of several
1688 * equilibrium solvers. The XY parameter indicates what two thermodynamic
1689 * quantities are to be held constant during the equilibration process.
1690 *
1691 * @param XY String representation of what two properties are being
1692 * held constant
1693 * @param solver Name of the solver to be used to equilibrate the phase.
1694 * If solver = 'element_potential', the ChemEquil element potential
1695 * solver will be used. If solver = 'vcs', the VCS solver will be used.
1696 * If solver = 'gibbs', the MultiPhaseEquil solver will be used. If
1697 * solver = 'auto', the solvers will be tried in order if the initial
1698 * solver(s) fail.
1699 * @param rtol Relative tolerance
1700 * @param max_steps Maximum number of steps to take to find the solution
1701 * @param max_iter For the 'gibbs' and 'vcs' solvers, this is the maximum
1702 * number of outer temperature or pressure iterations to take when T
1703 * and/or P is not held fixed.
1704 * @param estimate_equil For MultiPhaseEquil solver, an integer indicating
1705 * whether the solver should estimate its own initial condition. If 0,
1706 * the initial mole fraction vector in the ThermoPhase object is used
1707 * as the initial condition. If 1, the initial mole fraction vector is
1708 * used if the element abundances are satisfied. If -1, the initial
1709 * mole fraction vector is thrown out, and an estimate is formulated.
1710 * @param log_level loglevel Controls amount of diagnostic output.
1711 * log_level=0 suppresses diagnostics, and increasingly-verbose
1712 * messages are written as loglevel increases.
1713 *
1714 * @ingroup equilGroup
1715 */
1716 void equilibrate(const string& XY, const string& solver="auto",
1717 double rtol=1e-9, int max_steps=50000, int max_iter=100,
1718 int estimate_equil=0, int log_level=0);
1719
1720 //!This method is used by the ChemEquil equilibrium solver.
1721 /*!
1722 * It sets the state such that the chemical potentials satisfy
1723 * @f[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m}
1724 * \left(\frac{\lambda_m} {\hat R T}\right) @f] where
1725 * @f$ \lambda_m @f$ is the element potential of element m. The
1726 * temperature is unchanged. Any phase (ideal or not) that
1727 * implements this method can be equilibrated by ChemEquil.
1728 *
1729 * @param mu_RT Input vector of dimensionless chemical potentials
1730 * The length is equal to nSpecies().
1731 */
1732 virtual void setToEquilState(const double* mu_RT) {
1733 throw NotImplementedError("ThermoPhase::setToEquilState");
1734 }
1735
1736 //! Indicates whether this phase type can be used with class MultiPhase for
1737 //! equilibrium calculations. Returns `false` for special phase types which
1738 //! already represent multi-phase mixtures, namely PureFluidPhase.
1739 virtual bool compatibleWithMultiPhase() const {
1740 return true;
1741 }
1742
1743 //! @}
1744 //! @name Critical State Properties
1745 //!
1746 //! These methods are only implemented by subclasses that implement
1747 //! liquid-vapor equations of state.
1748 //! @{
1749
1750 //! Critical temperature (K).
1751 virtual double critTemperature() const {
1752 throw NotImplementedError("ThermoPhase::critTemperature");
1753 }
1754
1755 //! Critical pressure (Pa).
1756 virtual double critPressure() const {
1757 throw NotImplementedError("ThermoPhase::critPressure");
1758 }
1759
1760 //! Critical volume (m3/kmol).
1761 virtual double critVolume() const {
1762 throw NotImplementedError("ThermoPhase::critVolume");
1763 }
1764
1765 //! Critical compressibility (unitless).
1766 virtual double critCompressibility() const {
1767 throw NotImplementedError("ThermoPhase::critCompressibility");
1768 }
1769
1770 //! Critical density (kg/m3).
1771 virtual double critDensity() const {
1772 throw NotImplementedError("ThermoPhase::critDensity");
1773 }
1774
1775 //! @}
1776 //! @name Saturation Properties
1777 //!
1778 //! These methods are only implemented by subclasses that implement full
1779 //! liquid-vapor equations of state.
1780 //! @{
1781
1782 //! Return the saturation temperature given the pressure
1783 /*!
1784 * @param p Pressure (Pa)
1785 */
1786 virtual double satTemperature(double p) const {
1787 throw NotImplementedError("ThermoPhase::satTemperature");
1788 }
1789
1790 //! Return the saturation pressure given the temperature
1791 /*!
1792 * @param t Temperature (Kelvin)
1793 */
1794 virtual double satPressure(double t) {
1795 throw NotImplementedError("ThermoPhase::satPressure");
1796 }
1797
1798 //! Return the fraction of vapor at the current conditions
1799 virtual double vaporFraction() const {
1800 throw NotImplementedError("ThermoPhase::vaporFraction");
1801 }
1802
1803 //! Set the state to a saturated system at a particular temperature
1804 /*!
1805 * @param t Temperature (kelvin)
1806 * @param x Fraction of vapor
1807 */
1808 virtual void setState_Tsat(double t, double x) {
1809 throw NotImplementedError("ThermoPhase::setState_Tsat");
1810 }
1811
1812 //! Set the state to a saturated system at a particular pressure
1813 /*!
1814 * @param p Pressure (Pa)
1815 * @param x Fraction of vapor
1816 */
1817 virtual void setState_Psat(double p, double x) {
1818 throw NotImplementedError("ThermoPhase::setState_Psat");
1819 }
1820
1821 //! Set the temperature, pressure, and vapor fraction (quality).
1822 /*!
1823 * An exception is thrown if the thermodynamic state is not consistent.
1824 *
1825 * For temperatures below the critical temperature, if the vapor fraction is
1826 * not 0 or 1, the pressure and temperature must fall on the saturation
1827 * line.
1828 *
1829 * Above the critical temperature, the vapor fraction must be 1 if the
1830 * pressure is less than the critical pressure. Above the critical pressure,
1831 * the vapor fraction is not defined, and its value is ignored.
1832 *
1833 * @param T Temperature (K)
1834 * @param P Pressure (Pa)
1835 * @param Q vapor fraction
1836 */
1837 void setState_TPQ(double T, double P, double Q);
1838
1839 //! @}
1840 //! @name Initialization Methods - For Internal Use (ThermoPhase)
1841 //!
1842 //! The following methods are used in the process of constructing
1843 //! the phase and setting its parameters from a specification in an
1844 //! input file. They are not normally used in application programs.
1845 //! To see how they are used, see importPhase().
1846 //! @{
1847
1848 bool addSpecies(shared_ptr<Species> spec) override;
1849
1850 void modifySpecies(size_t k, shared_ptr<Species> spec) override;
1851
1852 //! Return a changeable reference to the calculation manager for species
1853 //! reference-state thermodynamic properties
1854 /*!
1855 * @param k Species id. The default is -1, meaning return the default
1856 */
1857 virtual MultiSpeciesThermo& speciesThermo(int k = -1);
1858
1859 virtual const MultiSpeciesThermo& speciesThermo(int k = -1) const;
1860
1861 /**
1862 * Initialize a ThermoPhase object using an input file.
1863 *
1864 * Used to implement constructors for derived classes which take a
1865 * file name and phase name as arguments.
1866 *
1867 * @param inputFile Input file containing the description of the phase. If blank,
1868 * no setup will be performed.
1869 * @param id Optional parameter identifying the name of the phase. If
1870 * blank, the first phase definition encountered will be used.
1871 */
1872 void initThermoFile(const string& inputFile, const string& id);
1873
1874 //! Initialize the ThermoPhase object after all species have been set up
1875 /*!
1876 * This method is provided to allow subclasses to perform any initialization
1877 * required after all species have been added. For example, it might be used
1878 * to resize internal work arrays that must have an entry for each species.
1879 * The base class implementation does nothing, and subclasses that do not
1880 * require initialization do not need to overload this method. Derived
1881 * classes which do override this function should call their parent class's
1882 * implementation of this function as their last action.
1883 *
1884 * When importing from an AnyMap phase description (or from a YAML file),
1885 * setupPhase() adds all the species, stores the input data in #m_input, and then
1886 * calls this method to set model parameters from the data stored in #m_input.
1887 */
1888 virtual void initThermo();
1889
1890 //! Set equation of state parameters from an AnyMap phase description.
1891 //! Phases that need additional parameters from the root node should
1892 //! override this method.
1893 virtual void setParameters(const AnyMap& phaseNode,
1894 const AnyMap& rootNode=AnyMap());
1895
1896 //! Returns the parameters of a ThermoPhase object such that an identical
1897 //! one could be reconstructed using the newThermo(AnyMap&) function.
1898 //! @param withInput If true, include additional input data fields associated
1899 //! with the phase description, such as user-defined fields from a YAML input
1900 //! file, as returned by the input() method.
1901 AnyMap parameters(bool withInput=true) const;
1902
1903 //! Get phase-specific parameters of a Species object such that an
1904 //! identical one could be reconstructed and added to this phase.
1905 /*!
1906 * @param name Name of the species
1907 * @param speciesNode Mapping to be populated with parameters
1908 */
1909 virtual void getSpeciesParameters(const string& name, AnyMap& speciesNode) const {}
1910
1911 //! Access input data associated with the phase description
1912 const AnyMap& input() const;
1913 AnyMap& input();
1914
1915 void invalidateCache() override;
1916
1917 //! @}
1918 //! @name Derivatives of Thermodynamic Variables needed for Applications
1919 //!
1920 //! Derivatives of the activity coefficients are needed to evaluate terms arising
1921 //! in multicomponent transport models for non-ideal systems. While %Cantera does
1922 //! not currently implement such models, these derivatives are provided by a few
1923 //! phase models.
1924 //! @{
1925
1926 //! Get the change in activity coefficients wrt changes in state (temp, mole
1927 //! fraction, etc) along a line in parameter space or along a line in
1928 //! physical space
1929 /*!
1930 * @param dTds Input of temperature change along the path
1931 * @param dXds Input vector of changes in mole fraction along the
1932 * path. length = m_kk Along the path length it must
1933 * be the case that the mole fractions sum to one.
1934 * @param dlnActCoeffds Output vector of the directional derivatives of the
1935 * log Activity Coefficients along the path. length =
1936 * m_kk units are 1/units(s). if s is a physical
1937 * coordinate then the units are 1/m.
1938 */
1939 virtual void getdlnActCoeffds(const double dTds, const double* const dXds,
1940 double* dlnActCoeffds) const {
1941 throw NotImplementedError("ThermoPhase::getdlnActCoeffds");
1942 }
1943
1944 //! Get the array of ln mole fraction derivatives of the log activity
1945 //! coefficients - diagonal component only
1946 /*!
1947 * For ideal mixtures (unity activity coefficients), this can return zero.
1948 * Implementations should take the derivative of the logarithm of the
1949 * activity coefficient with respect to the logarithm of the mole fraction
1950 * variable that represents the standard state. This quantity is to be used
1951 * in conjunction with derivatives of that mole fraction variable when the
1952 * derivative of the chemical potential is taken.
1953 *
1954 * units = dimensionless
1955 *
1956 * @param dlnActCoeffdlnX_diag Output vector of derivatives of the log
1957 * Activity Coefficients wrt the mole fractions. length = m_kk
1958 */
1959 virtual void getdlnActCoeffdlnX_diag(double* dlnActCoeffdlnX_diag) const {
1960 throw NotImplementedError("ThermoPhase::getdlnActCoeffdlnX_diag");
1961 }
1962
1963 //! Get the array of log species mole number derivatives of the log activity
1964 //! coefficients
1965 /*!
1966 * For ideal mixtures (unity activity coefficients), this can return zero.
1967 * Implementations should take the derivative of the logarithm of the
1968 * activity coefficient with respect to the logarithm of the concentration-
1969 * like variable (for example, moles) that represents the standard state. This
1970 * quantity is to be used in conjunction with derivatives of that species
1971 * mole number variable when the derivative of the chemical potential is
1972 * taken.
1973 *
1974 * units = dimensionless
1975 *
1976 * @param dlnActCoeffdlnN_diag Output vector of derivatives of the
1977 * log Activity Coefficients. length = m_kk
1978 */
1979 virtual void getdlnActCoeffdlnN_diag(double* dlnActCoeffdlnN_diag) const {
1980 throw NotImplementedError("ThermoPhase::getdlnActCoeffdlnN_diag");
1981 }
1982
1983 //! Get the array of derivatives of the log activity coefficients with
1984 //! respect to the log of the species mole numbers
1985 /*!
1986 * Implementations should take the derivative of the logarithm of the
1987 * activity coefficient with respect to a species log mole number (with all
1988 * other species mole numbers held constant). The default treatment in the
1989 * ThermoPhase object is to set this vector to zero.
1990 *
1991 * units = 1 / kmol
1992 *
1993 * dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log
1994 * act_coeff for the *m*-th species with respect to the number of moles of
1995 * the *k*-th species.
1996 *
1997 * @f[
1998 * \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i}
1999 * @f]
2000 *
2001 * When implemented, this method is used within the VCS equilibrium solver to
2002 * calculate the Jacobian elements, which accelerates convergence of the algorithm.
2003 *
2004 * @param ld Number of rows in the matrix
2005 * @param dlnActCoeffdlnN Output vector of derivatives of the
2006 * log Activity Coefficients. length = m_kk * m_kk
2007 */
2008 virtual void getdlnActCoeffdlnN(const size_t ld, double* const dlnActCoeffdlnN);
2009
2010 virtual void getdlnActCoeffdlnN_numderiv(const size_t ld,
2011 double* const dlnActCoeffdlnN);
2012
2013 //! @}
2014 //! @name Printing
2015 //! @{
2016
2017 //! returns a summary of the state of the phase as a string
2018 /*!
2019 * @param show_thermo If true, extra information is printed out
2020 * about the thermodynamic state of the system.
2021 * @param threshold Show information about species with mole fractions
2022 * greater than *threshold*.
2023 */
2024 virtual string report(bool show_thermo=true, double threshold=-1e-14) const;
2025
2026 //! @}
2027
2028 //! Set the link to the Solution object that owns this ThermoPhase
2029 //! @param soln Weak pointer to the parent Solution object
2030 virtual void setSolution(std::weak_ptr<Solution> soln) {
2031 m_soln = soln;
2032 }
2033
2034protected:
2035 //! Store the parameters of a ThermoPhase object such that an identical
2036 //! one could be reconstructed using the newThermo(AnyMap&) function. This
2037 //! does not include user-defined fields available in input().
2038 virtual void getParameters(AnyMap& phaseNode) const;
2039
2040 //! Pointer to the calculation manager for species reference-state
2041 //! thermodynamic properties
2042 /*!
2043 * This class is called when the reference-state thermodynamic properties
2044 * of all the species in the phase needs to be evaluated.
2045 */
2047
2048 //! Data supplied via setParameters. When first set, this may include
2049 //! parameters used by different phase models when initThermo() is called.
2051
2052 //! Stored value of the electric potential for this phase. Units are Volts.
2053 double m_phi = 0.0;
2054
2055 //! Boolean indicating whether a charge neutrality condition is a necessity
2056 /*!
2057 * Note, the charge neutrality condition is not a necessity for ideal gas
2058 * phases. There may be a net charge in those phases, because the NASA
2059 * polynomials for ionized species in Ideal gases take this condition into
2060 * account. However, liquid phases usually require charge neutrality in
2061 * order for their derived thermodynamics to be valid.
2062 */
2064
2065 //! Contains the standard state convention
2067
2068 //! last value of the temperature processed by reference state
2069 mutable double m_tlast = 0.0;
2070
2071 //! reference to Solution
2072 std::weak_ptr<Solution> m_soln;
2073};
2074
2075}
2076
2077#endif
Header for a general species thermodynamic property manager for a phase (see MultiSpeciesThermo).
Header file for class Phase.
Header for unit conversion utilities, which are used to translate user input from input files (See In...
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:432
A species thermodynamic property manager for a phase.
virtual double refPressure() const
The reference-state pressure (Pa) for all species.
virtual double minTemp(size_t k=npos) const
Minimum temperature.
virtual double maxTemp(size_t k=npos) const
Maximum temperature.
virtual void modifyOneHf298(const size_t k, const double Hf298New)
Modify the value of the 298 K Heat of Formation of the standard state of one species in the phase (J ...
virtual double reportOneHf298(const size_t k) const
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
An error indicating that an unimplemented function has been called.
Class Phase is the base class for phases of matter, managing the species and elements in a phase,...
Definition Phase.h:96
vector< double > m_workS
Vector of size m_kk, used as a temporary holding area.
Definition Phase.h:879
size_t m_kk
Number of species in the phase.
Definition Phase.h:855
double temperature() const
Temperature (K).
Definition Phase.h:563
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:656
double mean_X(const double *const Q) const
Evaluate the mole-fraction-weighted mean of an array Q.
Definition Phase.cpp:616
virtual double molarVolume() const
Molar volume (m^3/kmol).
Definition Phase.cpp:581
virtual double pressure() const
Return the thermodynamic pressure (Pa).
Definition Phase.h:581
string name() const
Return the name of the phase.
Definition Phase.cpp:20
Base class for a phase with thermodynamic properties.
int m_ssConvention
Contains the standard state convention.
virtual void getPartialMolarEnthalpies(double *hbar) const
Returns an array of partial molar enthalpies for the species in the mixture.
virtual double critTemperature() const
Critical temperature (K).
virtual void setState_HP(double h, double p, double tol=1e-9)
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
double electricPotential() const
Returns the electric potential of this phase (V).
virtual void getEntropy_R(double *sr) const
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
virtual void setState_UV(double u, double v, double tol=1e-9)
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
bool chargeNeutralityNecessary() const
Returns the chargeNeutralityNecessity boolean.
virtual double cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
double equivalenceRatio() const
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
virtual void setParameters(const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
Set equation of state parameters from an AnyMap phase description.
virtual double thermalExpansionCoeff() const
Return the volumetric thermal expansion coefficient. Units: 1/K.
virtual void getEnthalpy_RT_ref(double *hrt) const
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
virtual double enthalpy_mole() const
Molar enthalpy. Units: J/kmol.
virtual void setState_TP(double t, double p)
Set the temperature (K) and pressure (Pa)
virtual double standardConcentration(size_t k=0) const
Return the standard concentration for the kth species.
virtual void getCp_R_ref(double *cprt) const
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
virtual void setState_TV(double t, double v, double tol=1e-9)
Set the temperature (K) and specific volume (m^3/kg).
virtual double logStandardConc(size_t k=0) const
Natural logarithm of the standard concentration of the kth species.
double o2Present(const double *y) const
Helper function for computing the amount of oxygen available in the current mixture.
virtual void setState_PV(double p, double v, double tol=1e-9)
Set the pressure (Pa) and specific volume (m^3/kg).
virtual void setState(const AnyMap &state)
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic...
virtual double minTemp(size_t k=npos) const
Minimum temperature for which the thermodynamic data for the species or phase are valid.
virtual void getdlnActCoeffdlnN_diag(double *dlnActCoeffdlnN_diag) const
Get the array of log species mole number derivatives of the log activity coefficients.
virtual void setState_TPX(double t, double p, const double *x)
Set the temperature (K), pressure (Pa), and mole fractions.
void setState_SPorSV(double s, double p, double tol=1e-9, bool doSV=false)
Carry out work in SP and SV calculations.
double RT() const
Return the Gas Constant multiplied by the current temperature.
virtual void getPartialMolarCp(double *cpbar) const
Return an array of partial molar heat capacities for the species in the mixture.
virtual double critPressure() const
Critical pressure (Pa).
virtual void getGibbs_RT_ref(double *grt) const
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
virtual double soundSpeed() const
Return the speed of sound. Units: m/s.
virtual void setState_TPY(double t, double p, const double *y)
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
double m_tlast
last value of the temperature processed by reference state
virtual void setState_ST(double s, double t, double tol=1e-9)
Set the specific entropy (J/kg/K) and temperature (K).
void setState_HPorUV(double h, double p, double tol=1e-9, bool doUV=false)
Carry out work in HP and UV calculations.
double gibbs_mass() const
Specific Gibbs function. Units: J/kg.
virtual void getActivityConcentrations(double *c) const
This method returns an array of generalized concentrations.
double stoichAirFuelRatio(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer composit...
string type() const override
String indicating the thermodynamic model implemented.
AnyMap parameters(bool withInput=true) const
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed usin...
virtual AnyMap getAuxiliaryData()
Return intermediate or model-specific parameters used by particular derived classes.
bool m_chargeNeutralityNecessary
Boolean indicating whether a charge neutrality condition is a necessity.
virtual void getPureGibbs(double *gpure) const
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
virtual string report(bool show_thermo=true, double threshold=-1e-14) const
returns a summary of the state of the phase as a string
virtual void getPartialMolarIntEnergies(double *ubar) const
Return an array of partial molar internal energies for the species in the mixture.
virtual void getIntEnergy_RT(double *urt) const
Returns the vector of nondimensional Internal Energies of the standard state species at the current T...
virtual void getCp_R(double *cpr) const
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
virtual double maxTemp(size_t k=npos) const
Maximum temperature for which the thermodynamic data for the species are valid.
double m_phi
Stored value of the electric potential for this phase. Units are Volts.
virtual double isothermalCompressibility() const
Returns the isothermal compressibility. Units: 1/Pa.
double mixtureFraction(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel a...
double o2Required(const double *y) const
Helper function for computing the amount of oxygen required for complete oxidation.
virtual double satTemperature(double p) const
Return the saturation temperature given the pressure.
virtual void getdlnActCoeffds(const double dTds, const double *const dXds, double *dlnActCoeffds) const
Get the change in activity coefficients wrt changes in state (temp, mole fraction,...
void getElectrochemPotentials(double *mu) const
Get the species electrochemical potentials.
virtual void getdlnActCoeffdlnN(const size_t ld, double *const dlnActCoeffdlnN)
Get the array of derivatives of the log activity coefficients with respect to the log of the species ...
virtual void getGibbs_RT(double *grt) const
Get the nondimensional Gibbs functions for the species in their standard states at the current T and ...
virtual double critVolume() const
Critical volume (m3/kmol).
virtual void setSolution(std::weak_ptr< Solution > soln)
Set the link to the Solution object that owns this ThermoPhase.
virtual void getActivityCoefficients(double *ac) const
Get the array of non-dimensional molar-based activity coefficients at the current solution temperatur...
virtual string phaseOfMatter() const
String indicating the mechanical phase of the matter in this Phase.
virtual void getStandardVolumes(double *vol) const
Get the molar volumes of the species standard states at the current T and P of the solution.
virtual void setState_Tsat(double t, double x)
Set the state to a saturated system at a particular temperature.
virtual double entropy_mole() const
Molar entropy. Units: J/kmol/K.
void setElectricPotential(double v)
Set the electric potential of this phase (V).
double cv_mass() const
Specific heat at constant volume. Units: J/kg/K.
virtual int activityConvention() const
This method returns the convention used in specification of the activities, of which there are curren...
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
double entropy_mass() const
Specific entropy. Units: J/kg/K.
virtual double critDensity() const
Critical density (kg/m3).
virtual void getGibbs_ref(double *g) const
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
virtual MultiSpeciesThermo & speciesThermo(int k=-1)
Return a changeable reference to the calculation manager for species reference-state thermodynamic pr...
virtual void setState_UP(double u, double p, double tol=1e-9)
Set the specific internal energy (J/kg) and pressure (Pa).
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
virtual void setState_SP(double s, double p, double tol=1e-9)
Set the specific entropy (J/kg/K) and pressure (Pa).
virtual void modifyOneHf298SS(const size_t k, const double Hf298New)
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
virtual int standardStateConvention() const
This method returns the convention used in specification of the standard state, of which there are cu...
void modifySpecies(size_t k, shared_ptr< Species > spec) override
Modify the thermodynamic data associated with a species.
virtual void setState_SH(double s, double h, double tol=1e-9)
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
virtual void getdlnActCoeffdlnX_diag(double *dlnActCoeffdlnX_diag) const
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component o...
std::weak_ptr< Solution > m_soln
reference to Solution
void invalidateCache() override
Invalidate any cached values which are normally updated only when a change in state is detected.
virtual void getActivities(double *a) const
Get the array of non-dimensional activities at the current solution temperature, pressure,...
void setMixtureFraction(double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
virtual void getStandardVolumes_ref(double *vol) const
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
virtual double vaporFraction() const
Return the fraction of vapor at the current conditions.
virtual void resetHf298(const size_t k=npos)
Restore the original heat of formation of one or more species.
virtual void getStandardChemPotentials(double *mu) const
Get the array of chemical potentials at unit activity for the species at their standard states at the...
virtual void getEnthalpy_RT(double *hrt) const
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
virtual void getEntropy_R_ref(double *er) const
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
virtual void getChemPotentials(double *mu) const
Get the species chemical potentials. Units: J/kmol.
double cp_mass() const
Specific heat at constant pressure. Units: J/kg/K.
virtual void setState_TH(double t, double h, double tol=1e-9)
Set the temperature (K) and the specific enthalpy (J/kg)
virtual void getLnActivityCoefficients(double *lnac) const
Get the array of non-dimensional molar-based ln activity coefficients at the current solution tempera...
double intEnergy_mass() const
Specific internal energy. Units: J/kg.
virtual void getSpeciesParameters(const string &name, AnyMap &speciesNode) const
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
virtual Units standardConcentrationUnits() const
Returns the units of the "standard concentration" for this phase.
virtual void getIntEnergy_RT_ref(double *urt) const
Returns the vector of nondimensional internal Energies of the reference state at the current temperat...
double Hf298SS(const size_t k) const
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
ThermoPhase()=default
Constructor.
virtual bool isIdeal() const
Boolean indicating whether phase is ideal.
virtual double cv_mole() const
Molar heat capacity at constant volume. Units: J/kmol/K.
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double satPressure(double t)
Return the saturation pressure given the temperature.
virtual double refPressure() const
Returns the reference pressure in Pa.
virtual double critCompressibility() const
Critical compressibility (unitless).
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
AnyMap m_input
Data supplied via setParameters.
virtual double intEnergy_mole() const
Molar internal energy. Units: J/kmol.
virtual void setState_DP(double rho, double p)
Set the density (kg/m**3) and pressure (Pa) at constant composition.
void setEquivalenceRatio(double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the equivalence ratio.
void setState_TPQ(double T, double P, double Q)
Set the temperature, pressure, and vapor fraction (quality).
virtual void setState_VH(double v, double h, double tol=1e-9)
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
virtual void getPartialMolarEntropies(double *sbar) const
Returns an array of partial molar entropies of the species in the solution.
virtual double gibbs_mole() const
Molar Gibbs function. Units: J/kmol.
virtual void setState_SV(double s, double v, double tol=1e-9)
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
const AnyMap & input() const
Access input data associated with the phase description.
virtual void setState_Psat(double p, double x)
Set the state to a saturated system at a particular pressure.
void setState_conditional_TP(double t, double p, bool set_p)
Helper function used by setState_HPorUV and setState_SPorSV.
virtual void getPartialMolarVolumes(double *vbar) const
Return an array of partial molar volumes for the species in the mixture.
double enthalpy_mass() const
Specific enthalpy. Units: J/kg.
A representation of the units associated with a dimensional quantity.
Definition Units.h:35
void equilibrate(const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
Equilibrate a ThermoPhase object.
virtual bool compatibleWithMultiPhase() const
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
virtual void setToEquilState(const double *mu_RT)
This method is used by the ChemEquil equilibrium solver.
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
const int cSS_CONVENTION_VPSS
Standard state uses the molality convention.
const int cAC_CONVENTION_MOLAR
Standard state uses the molar convention.
const int cSS_CONVENTION_TEMPERATURE
Standard state uses the molar convention.
ThermoBasis
Differentiate between mole fractions and mass fractions for input mixture composition.
const int cSS_CONVENTION_SLAVE
Standard state thermodynamics is obtained from slave ThermoPhase objects.
map< string, double > Composition
Map from string names to doubles.
Definition ct_defs.h:177
const int cAC_CONVENTION_MOLALITY
Standard state uses the molality convention.