32 for (
size_t k = 0; k <
nSpecies(); k++) {
52 return Units(1.0, 0, -
static_cast<double>(
nDim()), 0, 0, 0, 1);
63 for (
size_t k = 0; k <
nSpecies(); k++) {
71 for (
size_t k = 0; k <
m_kk; k++) {
72 lnac[k] = std::log(lnac[k]);
80 for (
size_t k = 0; k <
m_kk; k++) {
128 }
catch (std::exception&) {
140 }
catch (std::exception&) {
153 }
catch (std::exception&) {
161 AnyMap state = input_state;
164 if (state.
hasKey(
"mass-fractions")) {
165 state[
"Y"] = state[
"mass-fractions"];
166 state.
erase(
"mass-fractions");
168 if (state.
hasKey(
"mole-fractions")) {
169 state[
"X"] = state[
"mole-fractions"];
170 state.
erase(
"mole-fractions");
172 if (state.
hasKey(
"temperature")) {
173 state[
"T"] = state[
"temperature"];
175 if (state.
hasKey(
"pressure")) {
176 state[
"P"] = state[
"pressure"];
178 if (state.
hasKey(
"enthalpy")) {
179 state[
"H"] = state[
"enthalpy"];
181 if (state.
hasKey(
"int-energy")) {
182 state[
"U"] = state[
"int-energy"];
184 if (state.
hasKey(
"internal-energy")) {
185 state[
"U"] = state[
"internal-energy"];
187 if (state.
hasKey(
"specific-volume")) {
188 state[
"V"] = state[
"specific-volume"];
190 if (state.
hasKey(
"entropy")) {
191 state[
"S"] = state[
"entropy"];
193 if (state.
hasKey(
"density")) {
194 state[
"D"] = state[
"density"];
196 if (state.
hasKey(
"vapor-fraction")) {
197 state[
"Q"] = state[
"vapor-fraction"];
202 if (state[
"X"].is<string>()) {
208 }
else if (state.
hasKey(
"Y")) {
209 if (state[
"Y"].is<string>()) {
217 if (state.
size() == 0) {
220 double T = state.
convert(
"T",
"K");
221 double P = state.
convert(
"P",
"Pa");
257 }
else if (state.
hasKey(
"T")) {
259 }
else if (state.
hasKey(
"P")) {
263 "'state' did not specify a recognized set of properties.\n"
264 "Keys provided were: {}", input_state.
keys_str());
277 double rtol,
bool doUV)
287 "Input specific volume is too small or negative. v = {}", v);
293 "Input pressure is too small or negative. p = {}", p);
306 }
else if (Tnew < Tmin) {
320 bool ignoreBounds =
false;
323 bool unstablePhase =
false;
326 double Tunstable = -1.0;
327 bool unstablePhaseNew =
false;
330 for (
int n = 0; n < 500; n++) {
335 unstablePhase =
true;
339 dt =
clip((Htarget - Hold)/cpd, -100.0, 100.0);
346 if ((dt > 0.0 && unstablePhase) || (dt <= 0.0 && !unstablePhase)) {
347 if (Hbot < Htarget && Tnew < (0.75 * Tbot + 0.25 * Told)) {
348 dt = 0.75 * (Tbot - Told);
351 }
else if (Htop > Htarget && Tnew > (0.75 * Ttop + 0.25 * Told)) {
352 dt = 0.75 * (Ttop - Told);
357 if (Tnew > Tmax && !ignoreBounds) {
360 if (Hmax >= Htarget) {
361 if (Htop < Htarget) {
370 if (Tnew < Tmin && !ignoreBounds) {
373 if (Hmin <= Htarget) {
374 if (Hbot > Htarget) {
387 for (
int its = 0; its < 10; its++) {
389 if (Tnew < Told / 3.0) {
391 dt = -2.0 * Told / 3.0;
402 unstablePhaseNew =
true;
405 unstablePhaseNew =
false;
408 if (unstablePhase ==
false && unstablePhaseNew ==
true) {
413 if (Hnew == Htarget) {
415 }
else if (Hnew > Htarget && (Htop < Htarget || Hnew < Htop)) {
418 }
else if (Hnew < Htarget && (Hbot > Htarget || Hnew > Hbot)) {
423 double Herr = Htarget - Hnew;
424 double acpd = std::max(fabs(cpd), 1.0E-5);
425 double denom = std::max(fabs(Htarget), acpd * Tnew);
426 double HConvErr = fabs((Herr)/denom);
427 if (HConvErr < rtol || fabs(dt/Tnew) < rtol) {
435 string ErrString =
"No convergence in 500 iterations\n";
437 ErrString += fmt::format(
438 "\tTarget Internal Energy = {}\n"
439 "\tCurrent Specific Volume = {}\n"
440 "\tStarting Temperature = {}\n"
441 "\tCurrent Temperature = {}\n"
442 "\tCurrent Internal Energy = {}\n"
443 "\tCurrent Delta T = {}\n",
444 Htarget, v, Tinit, Tnew, Hnew, dt);
446 ErrString += fmt::format(
447 "\tTarget Enthalpy = {}\n"
448 "\tCurrent Pressure = {}\n"
449 "\tStarting Temperature = {}\n"
450 "\tCurrent Temperature = {}\n"
451 "\tCurrent Enthalpy = {}\n"
452 "\tCurrent Delta T = {}\n",
453 Htarget, p, Tinit, Tnew, Hnew, dt);
456 ErrString += fmt::format(
457 "\t - The phase became unstable (Cp < 0) T_unstable_last = {}\n",
461 throw CanteraError(
"ThermoPhase::setState_HPorUV (UV)", ErrString);
463 throw CanteraError(
"ThermoPhase::setState_HPorUV (HP)", ErrString);
473 }
catch (std::exception&) {
486 }
catch (std::exception&) {
493 double rtol,
bool doSV)
501 "Input specific volume is too small or negative. v = {}", v);
507 "Input pressure is too small or negative. p = {}", p);
520 }
else if (Tnew < Tmin) {
534 bool ignoreBounds =
false;
537 bool unstablePhase =
false;
538 double Tunstable = -1.0;
539 bool unstablePhaseNew =
false;
542 for (
int n = 0; n < 500; n++) {
547 unstablePhase =
true;
551 dt =
clip((Starget - Sold)*Told/cpd, -100.0, 100.0);
555 if ((dt > 0.0 && unstablePhase) || (dt <= 0.0 && !unstablePhase)) {
556 if (Sbot < Starget && Tnew < Tbot) {
557 dt = 0.75 * (Tbot - Told);
560 }
else if (Stop > Starget && Tnew > Ttop) {
561 dt = 0.75 * (Ttop - Told);
566 if (Tnew > Tmax && !ignoreBounds) {
569 if (Smax >= Starget) {
570 if (Stop < Starget) {
578 }
else if (Tnew < Tmin && !ignoreBounds) {
581 if (Smin <= Starget) {
582 if (Sbot > Starget) {
595 for (
int its = 0; its < 10; its++) {
601 unstablePhaseNew =
true;
604 unstablePhaseNew =
false;
607 if (unstablePhase ==
false && unstablePhaseNew ==
true) {
612 if (Snew == Starget) {
614 }
else if (Snew > Starget && (Stop < Starget || Snew < Stop)) {
617 }
else if (Snew < Starget && (Sbot > Starget || Snew > Sbot)) {
622 double Serr = Starget - Snew;
623 double acpd = std::max(fabs(cpd), 1.0E-5);
624 double denom = std::max(fabs(Starget), acpd * Tnew);
625 double SConvErr = fabs((Serr * Tnew)/denom);
626 if (SConvErr < rtol || fabs(dt/Tnew) < rtol) {
634 string ErrString =
"No convergence in 500 iterations\n";
636 ErrString += fmt::format(
637 "\tTarget Entropy = {}\n"
638 "\tCurrent Specific Volume = {}\n"
639 "\tStarting Temperature = {}\n"
640 "\tCurrent Temperature = {}\n"
641 "\tCurrent Entropy = {}\n"
642 "\tCurrent Delta T = {}\n",
643 Starget, v, Tinit, Tnew, Snew, dt);
645 ErrString += fmt::format(
646 "\tTarget Entropy = {}\n"
647 "\tCurrent Pressure = {}\n"
648 "\tStarting Temperature = {}\n"
649 "\tCurrent Temperature = {}\n"
650 "\tCurrent Entropy = {}\n"
651 "\tCurrent Delta T = {}\n",
652 Starget, p, Tinit, Tnew, Snew, dt);
655 ErrString += fmt::format(
"\t - The phase became unstable (Cp < 0) T_unstable_last = {}\n",
659 throw CanteraError(
"ThermoPhase::setState_SPorSV (SV)", ErrString);
661 throw CanteraError(
"ThermoPhase::setState_SPorSV (SP)", ErrString);
674 for (
size_t k = 0; k !=
m_kk; ++k) {
678 o2req += x *
nAtoms(k, iC);
681 o2req += x *
nAtoms(k, iS);
684 o2req += x * 0.25 *
nAtoms(k, iH);
689 "No composition specified");
699 for (
size_t k = 0; k !=
m_kk; ++k) {
705 "No composition specified");
707 return 0.5 * o2pres / sum;
723 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
724 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
729 const double* oxComp,
732 vector<double> fuel, ox;
733 if (basis == ThermoBasis::molar) {
738 fuelComp = fuel.data();
745 if (o2_required_fuel < 0.0 || o2_required_ox > 0.0) {
747 "Fuel composition contains too much oxygen or "
748 "oxidizer contains not enough oxygen. "
749 "Fuel and oxidizer composition mixed up?");
752 if (o2_required_ox == 0.0) {
753 return std::numeric_limits<double>::infinity();
756 return o2_required_fuel / (-o2_required_ox);
764 "Equivalence ratio phi must be >= 0");
769 vector<double> fuel, ox;
770 if (basis == ThermoBasis::molar) {
775 fuelComp = fuel.data();
781 double sum_f = std::accumulate(fuelComp, fuelComp+
m_kk, 0.0);
782 double sum_o = std::accumulate(oxComp, oxComp+
m_kk, 0.0);
784 vector<double> y(
m_kk);
785 for (
size_t k = 0; k !=
m_kk; ++k) {
786 y[k] = phi * fuelComp[k]/sum_f + AFR_st * oxComp[k]/sum_o;
797 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
798 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
815 if (o2_present == 0.0) {
816 return std::numeric_limits<double>::infinity();
819 return o2_required / o2_present;
835 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
836 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
841 const double* oxComp,
851 return std::numeric_limits<double>::infinity();
854 vector<double> fuel, ox;
855 if (basis == ThermoBasis::molar) {
860 fuelComp = fuel.data();
866 return std::max(Z / (1.0 - Z) * AFR_st, 0.0);
881 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
882 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
889 if (mixFrac < 0.0 || mixFrac > 1.0) {
891 "Mixture fraction must be between 0 and 1");
894 vector<double> fuel, ox;
895 if (basis == ThermoBasis::molar) {
900 fuelComp = fuel.data();
904 double sum_yf = std::accumulate(fuelComp, fuelComp+
m_kk, 0.0);
905 double sum_yo = std::accumulate(oxComp, oxComp+
m_kk, 0.0);
907 if (sum_yf == 0.0 || sum_yo == 0.0) {
909 "No fuel and/or oxidizer composition specified");
914 vector<double> y(
m_kk);
916 for (
size_t k = 0; k !=
m_kk; ++k) {
917 y[k] = mixFrac * fuelComp[k]/sum_yf + (1.0-mixFrac) * oxComp[k]/sum_yo;
927 const string& element)
const
938 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
939 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
946 vector<double> fuel, ox;
947 if (basis == ThermoBasis::molar) {
952 fuelComp = fuel.data();
956 if (element ==
"Bilger")
962 if (o2_required_fuel < 0.0 || o2_required_ox > 0.0) {
964 "Fuel composition contains too much oxygen or "
965 "oxidizer contains not enough oxygen. "
966 "Fuel and oxidizer composition mixed up?");
969 double denominator = o2_required_fuel - o2_required_ox;
971 if (denominator == 0.0) {
973 "Fuel and oxidizer have the same composition");
976 double Z = (o2_required_mix - o2_required_ox) / denominator;
978 return std::min(std::max(Z, 0.0), 1.0);
981 double sum_yf = std::accumulate(fuelComp, fuelComp+
m_kk, 0.0);
982 double sum_yo = std::accumulate(oxComp, oxComp+
m_kk, 0.0);
984 if (sum_yf == 0.0 || sum_yo == 0.0) {
986 "No fuel and/or oxidizer composition specified");
989 auto elementalFraction = [
this](
size_t m,
const double* y) {
991 for (
size_t k = 0; k !=
m_kk; ++k) {
998 double Z_m_fuel = elementalFraction(m, fuelComp)/sum_yf;
999 double Z_m_ox = elementalFraction(m, oxComp)/sum_yo;
1002 if (Z_m_fuel == Z_m_ox) {
1004 "Fuel and oxidizer have the same composition for element {}",
1007 double Z = (Z_m_mix - Z_m_ox) / (Z_m_fuel - Z_m_ox);
1008 return std::min(std::max(Z, 0.0), 1.0);
1025 if (inputFile.empty()) {
1029 size_t dot = inputFile.find_last_of(
".");
1032 extension = inputFile.substr(
dot+1);
1034 if (extension ==
"xml" || extension ==
"cti") {
1036 "The CTI and XML formats are no longer supported.");
1040 auto& phase = root[
"phases"].getMapWhere(
"name",
id);
1049 "Missing species thermo data");
1061 "Temperature ({}), pressure ({}) and vapor fraction ({}) "
1062 "are inconsistent, above the critical temperature.",
1068 if (std::abs(Psat / P - 1) < 1e-6) {
1070 }
else if ((Q == 0 && P >= Psat) || (Q == 1 && P <= Psat)) {
1074 "Temperature ({}), pressure ({}) and vapor fraction ({}) "
1075 "are inconsistent.\nPsat at this T: {}\n"
1076 "Consider specifying the state using two fully independent "
1077 "properties (for example, temperature and density)",
1084 if (!spec->thermo) {
1086 "Species {} has no thermo data", spec->name);
1090 spec->thermo->validate(spec->name);
1098 if (!spec->thermo) {
1100 "Species {} has no thermo data", spec->name);
1105 "New species '{}' does not match existing species '{}' at index {}",
1108 spec->thermo->validate(spec->name);
1129 phaseNode[
"name"] =
name();
1132 for (
size_t i = 0; i <
nElements(); i++) {
1140 if (stateVars.count(
"T")) {
1144 if (stateVars.count(
"D")) {
1145 state[
"density"].setQuantity(
density(),
"kg/m^3");
1146 }
else if (stateVars.count(
"P")) {
1147 state[
"P"].setQuantity(
pressure(),
"Pa");
1150 if (stateVars.count(
"Y")) {
1151 map<string, double> Y;
1152 for (
size_t k = 0; k <
m_kk; k++) {
1160 }
else if (stateVars.count(
"X")) {
1161 map<string, double> X;
1162 for (
size_t k = 0; k <
m_kk; k++) {
1172 phaseNode[
"state"] = std::move(state);
1176 phaseNode[
"__type__"] =
"Phase";
1196 double rtol,
int max_steps,
int max_iter,
1197 int estimate_equil,
int log_level)
1199 if (solver ==
"auto" || solver ==
"element_potential") {
1200 vector<double> initial_state;
1202 debuglog(
"Trying ChemEquil solver\n", log_level);
1207 int ret = E.
equilibrate(*
this, XY.c_str(), log_level-1);
1210 "ChemEquil solver failed. Return code: {}", ret);
1212 debuglog(
"ChemEquil solver succeeded\n", log_level);
1214 }
catch (std::exception& err) {
1215 debuglog(
"ChemEquil solver failed.\n", log_level);
1218 if (solver ==
"auto") {
1225 if (solver ==
"auto" || solver ==
"vcs" || solver ==
"gibbs") {
1229 M.
equilibrate(XY, solver, rtol, max_steps, max_iter,
1230 estimate_equil, log_level);
1234 if (solver !=
"auto") {
1236 "Invalid solver specified: '{}'", solver);
1242 for (
size_t m = 0; m <
m_kk; m++) {
1243 for (
size_t k = 0; k <
m_kk; k++) {
1244 dlnActCoeffdlnN[ld * k + m] = 0.0;
1250void ThermoPhase::getdlnActCoeffdlnN_numderiv(
const size_t ld,
1251 double*
const dlnActCoeffdlnN)
1253 double deltaMoles_j = 0.0;
1257 vector<double> ActCoeff_Base(
m_kk);
1259 vector<double> Xmol_Base(
m_kk);
1263 vector<double> ActCoeff(
m_kk);
1264 vector<double> Xmol(
m_kk);
1265 double v_totalMoles = 1.0;
1266 double TMoles_base = v_totalMoles;
1269 for (
size_t j = 0; j <
m_kk; j++) {
1275 double moles_j_base = v_totalMoles * Xmol_Base[j];
1276 deltaMoles_j = 1.0E-7 * moles_j_base + v_totalMoles * 1.0E-13 + 1.0E-150;
1280 v_totalMoles = TMoles_base + deltaMoles_j;
1281 for (
size_t k = 0; k <
m_kk; k++) {
1282 Xmol[k] = Xmol_Base[k] * TMoles_base / v_totalMoles;
1284 Xmol[j] = (moles_j_base + deltaMoles_j) / v_totalMoles;
1292 double*
const lnActCoeffCol = dlnActCoeffdlnN + ld * j;
1293 for (
size_t k = 0; k <
m_kk; k++) {
1294 lnActCoeffCol[k] = (2*moles_j_base + deltaMoles_j) *(ActCoeff[k] - ActCoeff_Base[k]) /
1295 ((ActCoeff[k] + ActCoeff_Base[k]) * deltaMoles_j);
1298 v_totalMoles = TMoles_base;
1307 if (
type() ==
"none") {
1309 "Not implemented for thermo model 'none'");
1312 fmt::memory_buffer b;
1314 int name_width = 18;
1316 string blank_leader = fmt::format(
"{:{}}",
"", name_width);
1318 string string_property = fmt::format(
"{{:>{}}} {{}}\n", name_width);
1320 string one_property = fmt::format(
"{{:>{}}} {{:<.5g}} {{}}\n", name_width);
1322 constexpr auto two_prop_header =
"{} {:^15} {:^15}\n";
1323 string kg_kmol_header = fmt::format(
1324 two_prop_header, blank_leader,
"1 kg",
"1 kmol"
1326 string Y_X_header = fmt::format(
1327 two_prop_header, blank_leader,
"mass frac. Y",
"mole frac. X"
1329 string two_prop_sep = fmt::format(
1330 "{} {:-^15} {:-^15}\n", blank_leader,
"",
""
1332 string two_property = fmt::format(
1333 "{{:>{}}} {{:15.5g}} {{:15.5g}} {{}}\n", name_width
1336 string three_prop_header = fmt::format(
1337 "{} {:^15} {:^15} {:^15}\n", blank_leader,
"mass frac. Y",
1338 "mole frac. X",
"chem. pot. / RT"
1340 string three_prop_sep = fmt::format(
1341 "{} {:-^15} {:-^15} {:-^15}\n", blank_leader,
"",
"",
""
1343 string three_property = fmt::format(
1344 "{{:>{}}} {{:15.5g}} {{:15.5g}} {{:15.5g}}\n", name_width
1349 fmt_append(b,
"\n {}:\n",
name());
1351 fmt_append(b,
"\n");
1352 fmt_append(b, one_property,
"temperature",
temperature(),
"K");
1353 fmt_append(b, one_property,
"pressure",
pressure(),
"Pa");
1354 fmt_append(b, one_property,
"density",
density(),
"kg/m^3");
1355 fmt_append(b, one_property,
1360 fmt_append(b, one_property,
"potential", phi,
"V");
1363 fmt_append(b, string_property,
"phase of matter",
phaseOfMatter());
1366 fmt_append(b,
"\n");
1367 fmt_append(b, kg_kmol_header);
1368 fmt_append(b, two_prop_sep);
1369 fmt_append(b, two_property,
1371 fmt_append(b, two_property,
1373 fmt_append(b, two_property,
1375 fmt_append(b, two_property,
1377 fmt_append(b, two_property,
1380 fmt_append(b, two_property,
1383 fmt_append(b, string_property,
1384 "heat capacity c_v",
"<not implemented>");
1388 vector<double> x(
m_kk);
1389 vector<double> y(
m_kk);
1390 vector<double> mu(
m_kk);
1395 double xMinor = 0.0;
1396 double yMinor = 0.0;
1397 fmt_append(b,
"\n");
1399 fmt_append(b, three_prop_header);
1400 fmt_append(b, three_prop_sep);
1401 for (
size_t k = 0; k <
m_kk; k++) {
1402 if (abs(x[k]) >= threshold) {
1404 fmt_append(b, three_property,
1407 fmt_append(b, two_property,
speciesName(k), y[k], x[k],
"");
1416 fmt_append(b, Y_X_header);
1417 fmt_append(b, two_prop_sep);
1418 for (
size_t k = 0; k <
m_kk; k++) {
1419 if (abs(x[k]) >= threshold) {
1420 fmt_append(b, two_property,
speciesName(k), y[k], x[k],
"");
1429 string minor = fmt::format(
"[{:+5d} minor]", nMinor);
1430 fmt_append(b, two_property, minor, yMinor, xMinor,
"");
1433 return to_string(b) + err.
what();
1435 return to_string(b);
Headers for the MultiPhase object that is used to set up multiphase equilibrium problems (see Chemica...
Pure Virtual Base class for individual species reference state thermodynamic managers and text for th...
Declaration for class Cantera::Species.
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
A map of string keys to values whose type can vary at runtime.
size_t size() const
Returns the number of elements in this map.
bool hasKey(const string &key) const
Returns true if the map contains an item named key.
double convert(const string &key, const string &units) const
Convert the item stored by the given key to the units specified in units.
void setFlowStyle(bool flow=true)
Use "flow" style when outputting this AnyMap to YAML.
void erase(const string &key)
Erase the value held by key.
static AnyMap fromYamlFile(const string &name, const string &parent_name="")
Create an AnyMap from a YAML file.
void update(const AnyMap &other, bool keepExisting=true)
Add items from other to this AnyMap.
static bool addOrderingRules(const string &objectType, const vector< vector< string > > &specs)
Add global rules for setting the order of elements when outputting AnyMap objects to YAML.
string keys_str() const
Return a string listing the keys in this AnyMap, for use in error messages, for example.
Base class for exceptions thrown by Cantera classes.
const char * what() const override
Get a description of the error.
Class ChemEquil implements a chemical equilibrium solver for single-phase solutions.
int equilibrate(ThermoPhase &s, const char *XY, int loglevel=0)
Equilibrate a phase, holding the elemental composition fixed at the initial value found within the Th...
EquilOpt options
Options controlling how the calculation is carried out.
double relTolerance
Relative tolerance.
int maxIterations
Maximum number of iterations.
string canonicalize(const string &name)
Get the canonical name registered for a type.
A class for multiphase mixtures.
void init()
Process phases and build atomic composition array.
void addPhase(shared_ptr< ThermoPhase > p, double moles)
Add a phase to the mixture.
A species thermodynamic property manager for a phase.
bool ready(size_t nSpecies)
Check if data for all species (0 through nSpecies-1) has been installed.
virtual void install_STIT(size_t index, shared_ptr< SpeciesThermoInterpType > stit)
Install a new species thermodynamic property parameterization for one species.
virtual void modifySpecies(size_t index, shared_ptr< SpeciesThermoInterpType > spec)
Modify the species thermodynamic property parameterization for a species.
virtual void resetHf298(const size_t k)
Restore the original heat of formation of one or more species.
An error indicating that an unimplemented function has been called.
double massFraction(size_t k) const
Return the mass fraction of a single species.
virtual bool addSpecies(shared_ptr< Species > spec)
Add a Species to this Phase.
virtual void setMoleFractions(const double *const x)
Set the mole fractions to the specified values.
void assertCompressible(const string &setter) const
Ensure that phase is compressible.
void restoreState(const vector< double > &state)
Restore a state saved on a previous call to saveState.
virtual void restorePartialState(size_t lenstate, const double *state)
Set the internal thermodynamic state of the phase, excluding composition.
size_t nSpecies() const
Returns the number of species in the phase.
virtual void setMassFractions_NoNorm(const double *const y)
Set the mass fractions to the specified values without normalizing.
virtual map< string, size_t > nativeState() const
Return a map of properties defining the native state of a substance.
size_t m_kk
Number of species in the phase.
virtual void modifySpecies(size_t k, shared_ptr< Species > spec)
Modify the thermodynamic data associated with a species.
size_t nDim() const
Returns the number of spatial dimensions (1, 2, or 3)
void setState_TD(double t, double rho)
Set the internally stored temperature (K) and density (kg/m^3)
double temperature() const
Temperature (K).
virtual void setPressure(double p)
Set the internally stored pressure (Pa) at constant temperature and composition.
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
void moleFractionsToMassFractions(const double *X, double *Y) const
Converts a mixture composition from mass fractions to mole fractions.
void saveState(vector< double > &state) const
Save the current internal state of the phase.
size_t elementIndex(const string &name) const
Return the index of element named 'name'.
void setMassFractionsByName(const Composition &yMap)
Set the species mass fractions by name.
string speciesName(size_t k) const
Name of the species with index k.
virtual void setDensity(const double density_)
Set the internally stored density (kg/m^3) of the phase.
vector< double > getCompositionFromMap(const Composition &comp) const
Converts a Composition to a vector with entries for each species Species that are not specified are s...
void getMoleFractions(double *const x) const
Get the species mole fraction vector.
void setMoleFractionsByName(const Composition &xMap)
Set the species mole fractions by name.
const double * massFractions() const
Return a const pointer to the mass fraction array.
const vector< double > & molecularWeights() const
Return a const reference to the internal vector of molecular weights.
double moleFraction(size_t k) const
Return the mole fraction of a single species.
const vector< string > & elementNames() const
Return a read-only reference to the vector of element names.
virtual double density() const
Density (kg/m^3).
double nAtoms(size_t k, size_t m) const
Number of atoms of element m in species k.
virtual void setTemperature(double temp)
Set the internally stored temperature of the phase (K).
size_t nElements() const
Number of elements.
virtual void savePartialState(size_t lenstate, double *state) const
Save the current thermodynamic state of the phase, excluding composition.
virtual void setMassFractions(const double *const y)
Set the mass fractions to the specified values and normalize them.
const vector< string > & speciesNames() const
Return a const reference to the vector of species names.
double molecularWeight(size_t k) const
Molecular weight of species k.
virtual void invalidateCache()
Invalidate any cached values which are normally updated only when a change in state is detected.
void getMassFractions(double *const y) const
Get the species mass fractions.
virtual size_t partialStateSize() const
Get the size of the partial state vector of the phase.
virtual double pressure() const
Return the thermodynamic pressure (Pa).
string elementName(size_t m) const
Name of the element with index m.
double charge(size_t k) const
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the...
string name() const
Return the name of the phase.
static ThermoFactory * factory()
Static function that creates a static instance of the factory.
int m_ssConvention
Contains the standard state convention.
virtual double critTemperature() const
Critical temperature (K).
virtual void setState_HP(double h, double p, double tol=1e-9)
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
double electricPotential() const
Returns the electric potential of this phase (V).
virtual void setState_UV(double u, double v, double tol=1e-9)
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
virtual double cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
double equivalenceRatio() const
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
virtual void setParameters(const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
Set equation of state parameters from an AnyMap phase description.
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
virtual double enthalpy_mole() const
Molar enthalpy. Units: J/kmol.
virtual void setState_TP(double t, double p)
Set the temperature (K) and pressure (Pa)
virtual double standardConcentration(size_t k=0) const
Return the standard concentration for the kth species.
virtual void setState_TV(double t, double v, double tol=1e-9)
Set the temperature (K) and specific volume (m^3/kg).
virtual double logStandardConc(size_t k=0) const
Natural logarithm of the standard concentration of the kth species.
double o2Present(const double *y) const
Helper function for computing the amount of oxygen available in the current mixture.
virtual void setState_PV(double p, double v, double tol=1e-9)
Set the pressure (Pa) and specific volume (m^3/kg).
virtual void setState(const AnyMap &state)
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic...
virtual double minTemp(size_t k=npos) const
Minimum temperature for which the thermodynamic data for the species or phase are valid.
virtual void setState_TPX(double t, double p, const double *x)
Set the temperature (K), pressure (Pa), and mole fractions.
void setState_SPorSV(double s, double p, double tol=1e-9, bool doSV=false)
Carry out work in SP and SV calculations.
double RT() const
Return the Gas Constant multiplied by the current temperature.
virtual double critPressure() const
Critical pressure (Pa).
virtual void setState_TPY(double t, double p, const double *y)
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
double m_tlast
last value of the temperature processed by reference state
virtual void setState_ST(double s, double t, double tol=1e-9)
Set the specific entropy (J/kg/K) and temperature (K).
void setState_HPorUV(double h, double p, double tol=1e-9, bool doUV=false)
Carry out work in HP and UV calculations.
double gibbs_mass() const
Specific Gibbs function. Units: J/kg.
virtual void getActivityConcentrations(double *c) const
This method returns an array of generalized concentrations.
double stoichAirFuelRatio(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer composit...
string type() const override
String indicating the thermodynamic model implemented.
AnyMap parameters(bool withInput=true) const
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed usin...
virtual string report(bool show_thermo=true, double threshold=-1e-14) const
returns a summary of the state of the phase as a string
virtual double maxTemp(size_t k=npos) const
Maximum temperature for which the thermodynamic data for the species are valid.
double mixtureFraction(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel a...
double o2Required(const double *y) const
Helper function for computing the amount of oxygen required for complete oxidation.
void getElectrochemPotentials(double *mu) const
Get the species electrochemical potentials.
virtual void getdlnActCoeffdlnN(const size_t ld, double *const dlnActCoeffdlnN)
Get the array of derivatives of the log activity coefficients with respect to the log of the species ...
virtual void getActivityCoefficients(double *ac) const
Get the array of non-dimensional molar-based activity coefficients at the current solution temperatur...
virtual string phaseOfMatter() const
String indicating the mechanical phase of the matter in this Phase.
virtual void setState_Tsat(double t, double x)
Set the state to a saturated system at a particular temperature.
virtual double entropy_mole() const
Molar entropy. Units: J/kmol/K.
double cv_mass() const
Specific heat at constant volume. Units: J/kg/K.
virtual int activityConvention() const
This method returns the convention used in specification of the activities, of which there are curren...
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
double entropy_mass() const
Specific entropy. Units: J/kg/K.
virtual MultiSpeciesThermo & speciesThermo(int k=-1)
Return a changeable reference to the calculation manager for species reference-state thermodynamic pr...
virtual void setState_UP(double u, double p, double tol=1e-9)
Set the specific internal energy (J/kg) and pressure (Pa).
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
virtual void setState_SP(double s, double p, double tol=1e-9)
Set the specific entropy (J/kg/K) and pressure (Pa).
virtual int standardStateConvention() const
This method returns the convention used in specification of the standard state, of which there are cu...
void modifySpecies(size_t k, shared_ptr< Species > spec) override
Modify the thermodynamic data associated with a species.
virtual void setState_SH(double s, double h, double tol=1e-9)
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
void invalidateCache() override
Invalidate any cached values which are normally updated only when a change in state is detected.
virtual void getActivities(double *a) const
Get the array of non-dimensional activities at the current solution temperature, pressure,...
void setMixtureFraction(double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
virtual void resetHf298(const size_t k=npos)
Restore the original heat of formation of one or more species.
virtual void getChemPotentials(double *mu) const
Get the species chemical potentials. Units: J/kmol.
double cp_mass() const
Specific heat at constant pressure. Units: J/kg/K.
virtual void setState_TH(double t, double h, double tol=1e-9)
Set the temperature (K) and the specific enthalpy (J/kg)
virtual void getLnActivityCoefficients(double *lnac) const
Get the array of non-dimensional molar-based ln activity coefficients at the current solution tempera...
double intEnergy_mass() const
Specific internal energy. Units: J/kg.
virtual Units standardConcentrationUnits() const
Returns the units of the "standard concentration" for this phase.
virtual double cv_mole() const
Molar heat capacity at constant volume. Units: J/kmol/K.
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double satPressure(double t)
Return the saturation pressure given the temperature.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
AnyMap m_input
Data supplied via setParameters.
virtual double intEnergy_mole() const
Molar internal energy. Units: J/kmol.
virtual void setState_DP(double rho, double p)
Set the density (kg/m**3) and pressure (Pa) at constant composition.
void setEquivalenceRatio(double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the equivalence ratio.
void setState_TPQ(double T, double P, double Q)
Set the temperature, pressure, and vapor fraction (quality).
virtual void setState_VH(double v, double h, double tol=1e-9)
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
virtual double gibbs_mole() const
Molar Gibbs function. Units: J/kmol.
virtual void setState_SV(double s, double v, double tol=1e-9)
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
const AnyMap & input() const
Access input data associated with the phase description.
virtual void setState_Psat(double p, double x)
Set the state to a saturated system at a particular pressure.
void setState_conditional_TP(double t, double p, bool set_p)
Helper function used by setState_HPorUV and setState_SPorSV.
double enthalpy_mass() const
Specific enthalpy. Units: J/kg.
A representation of the units associated with a dimensional quantity.
Composition parseCompString(const string &ss, const vector< string > &names)
Parse a composition string into a map consisting of individual key:composition pairs.
void equilibrate(const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
Equilibrate a ThermoPhase object.
void debuglog(const string &msg, int loglevel)
Write a message to the log only if loglevel > 0.
double dot(InputIter x_begin, InputIter x_end, InputIter2 y_begin)
Function that calculates a templated inner product.
T clip(const T &value, const T &lower, const T &upper)
Clip value such that lower <= value <= upper.
const double Faraday
Faraday constant [C/kmol].
const double OneAtm
One atmosphere [Pa].
void setupPhase(ThermoPhase &thermo, const AnyMap &phaseNode, const AnyMap &rootNode)
Initialize a ThermoPhase object.
Namespace for the Cantera kernel.
const size_t npos
index returned by functions to indicate "no position"
const int cAC_CONVENTION_MOLAR
Standard state uses the molar convention.
const double SmallNumber
smallest number to compare to zero.
ThermoBasis
Differentiate between mole fractions and mass fractions for input mixture composition.
map< string, double > Composition
Map from string names to doubles.
Contains declarations for string manipulation functions within Cantera.