32 vector<AnyMap> speciesDefs;
35 speciesDefs.emplace_back(
species(
name)->parameters(
this));
37 root[
"species"] = std::move(speciesDefs);
47 explicit PhaseEquilGuard(
ThermoPhase& phase) : m_phase(phase)
49 m_phase.beginEquilibrate();
54 m_phase.endEquilibrate();
67 for (
size_t k = 0; k <
nSpecies(); k++) {
87 return Units(1.0, 0, -
static_cast<double>(
nDim()), 0, 0, 0, 1);
98 for (
size_t k = 0; k <
nSpecies(); k++) {
106 for (
size_t k = 0; k <
m_kk; k++) {
107 lnac[k] = std::log(lnac[k]);
115 for (
size_t k = 0; k <
m_kk; k++) {
163 }
catch (std::exception&) {
175 }
catch (std::exception&) {
188 }
catch (std::exception&) {
196 AnyMap state = input_state;
199 if (state.
hasKey(
"mass-fractions")) {
200 state[
"Y"] = state[
"mass-fractions"];
201 state.
erase(
"mass-fractions");
203 if (state.
hasKey(
"mole-fractions")) {
204 state[
"X"] = state[
"mole-fractions"];
205 state.
erase(
"mole-fractions");
207 if (state.
hasKey(
"temperature")) {
208 state[
"T"] = state[
"temperature"];
210 if (state.
hasKey(
"pressure")) {
211 state[
"P"] = state[
"pressure"];
213 if (state.
hasKey(
"enthalpy")) {
214 state[
"H"] = state[
"enthalpy"];
216 if (state.
hasKey(
"int-energy")) {
217 state[
"U"] = state[
"int-energy"];
219 if (state.
hasKey(
"internal-energy")) {
220 state[
"U"] = state[
"internal-energy"];
222 if (state.
hasKey(
"specific-volume")) {
223 state[
"V"] = state[
"specific-volume"];
225 if (state.
hasKey(
"entropy")) {
226 state[
"S"] = state[
"entropy"];
228 if (state.
hasKey(
"density")) {
229 state[
"D"] = state[
"density"];
231 if (state.
hasKey(
"vapor-fraction")) {
232 state[
"Q"] = state[
"vapor-fraction"];
237 if (state[
"X"].is<string>()) {
243 }
else if (state.
hasKey(
"Y")) {
244 if (state[
"Y"].is<string>()) {
252 if (state.
size() == 0) {
255 double T = state.
convert(
"T",
"K");
256 double P = state.
convert(
"P",
"Pa");
292 }
else if (state.
hasKey(
"T")) {
294 }
else if (state.
hasKey(
"P")) {
298 "'state' did not specify a recognized set of properties.\n"
299 "Keys provided were: {}", input_state.
keys_str());
312 double rtol,
bool doUV)
322 "Input specific volume is too small or negative. v = {}", v);
328 "Input pressure is too small or negative. p = {}", p);
341 }
else if (Tnew < Tmin) {
355 bool ignoreBounds =
false;
358 bool unstablePhase =
false;
361 double Tunstable = -1.0;
362 bool unstablePhaseNew =
false;
365 for (
int n = 0; n < 500; n++) {
370 unstablePhase =
true;
374 dt =
clip((Htarget - Hold)/cpd, -100.0, 100.0);
381 if ((dt > 0.0 && unstablePhase) || (dt <= 0.0 && !unstablePhase)) {
382 if (Hbot < Htarget && Tnew < (0.75 * Tbot + 0.25 * Told)) {
383 dt = 0.75 * (Tbot - Told);
386 }
else if (Htop > Htarget && Tnew > (0.75 * Ttop + 0.25 * Told)) {
387 dt = 0.75 * (Ttop - Told);
392 if (Tnew > Tmax && !ignoreBounds) {
395 if (Hmax >= Htarget) {
396 if (Htop < Htarget) {
405 if (Tnew < Tmin && !ignoreBounds) {
408 if (Hmin <= Htarget) {
409 if (Hbot > Htarget) {
422 for (
int its = 0; its < 10; its++) {
424 if (Tnew < Told / 3.0) {
426 dt = -2.0 * Told / 3.0;
437 unstablePhaseNew =
true;
440 unstablePhaseNew =
false;
443 if (unstablePhase ==
false && unstablePhaseNew ==
true) {
448 if (Hnew == Htarget) {
450 }
else if (Hnew > Htarget && (Htop < Htarget || Hnew < Htop)) {
453 }
else if (Hnew < Htarget && (Hbot > Htarget || Hnew > Hbot)) {
458 double Herr = Htarget - Hnew;
459 double acpd = std::max(fabs(cpd), 1.0E-5);
460 double denom = std::max(fabs(Htarget), acpd * Tnew);
461 double HConvErr = fabs((Herr)/denom);
462 if (HConvErr < rtol || fabs(dt/Tnew) < rtol) {
470 string ErrString =
"No convergence in 500 iterations\n";
472 ErrString += fmt::format(
473 "\tTarget Internal Energy = {}\n"
474 "\tCurrent Specific Volume = {}\n"
475 "\tStarting Temperature = {}\n"
476 "\tCurrent Temperature = {}\n"
477 "\tCurrent Internal Energy = {}\n"
478 "\tCurrent Delta T = {}\n",
479 Htarget, v, Tinit, Tnew, Hnew, dt);
481 ErrString += fmt::format(
482 "\tTarget Enthalpy = {}\n"
483 "\tCurrent Pressure = {}\n"
484 "\tStarting Temperature = {}\n"
485 "\tCurrent Temperature = {}\n"
486 "\tCurrent Enthalpy = {}\n"
487 "\tCurrent Delta T = {}\n",
488 Htarget, p, Tinit, Tnew, Hnew, dt);
491 ErrString += fmt::format(
492 "\t - The phase became unstable (Cp < 0) T_unstable_last = {}\n",
496 throw CanteraError(
"ThermoPhase::setState_HPorUV (UV)", ErrString);
498 throw CanteraError(
"ThermoPhase::setState_HPorUV (HP)", ErrString);
508 }
catch (std::exception&) {
521 }
catch (std::exception&) {
528 double rtol,
bool doSV)
536 "Input specific volume is too small or negative. v = {}", v);
542 "Input pressure is too small or negative. p = {}", p);
555 }
else if (Tnew < Tmin) {
569 bool ignoreBounds =
false;
572 bool unstablePhase =
false;
573 double Tunstable = -1.0;
574 bool unstablePhaseNew =
false;
577 for (
int n = 0; n < 500; n++) {
582 unstablePhase =
true;
586 dt =
clip((Starget - Sold)*Told/cpd, -100.0, 100.0);
590 if ((dt > 0.0 && unstablePhase) || (dt <= 0.0 && !unstablePhase)) {
591 if (Sbot < Starget && Tnew < Tbot) {
592 dt = 0.75 * (Tbot - Told);
595 }
else if (Stop > Starget && Tnew > Ttop) {
596 dt = 0.75 * (Ttop - Told);
601 if (Tnew > Tmax && !ignoreBounds) {
604 if (Smax >= Starget) {
605 if (Stop < Starget) {
613 }
else if (Tnew < Tmin && !ignoreBounds) {
616 if (Smin <= Starget) {
617 if (Sbot > Starget) {
630 for (
int its = 0; its < 10; its++) {
636 unstablePhaseNew =
true;
639 unstablePhaseNew =
false;
642 if (unstablePhase ==
false && unstablePhaseNew ==
true) {
647 if (Snew == Starget) {
649 }
else if (Snew > Starget && (Stop < Starget || Snew < Stop)) {
652 }
else if (Snew < Starget && (Sbot > Starget || Snew > Sbot)) {
657 double Serr = Starget - Snew;
658 double acpd = std::max(fabs(cpd), 1.0E-5);
659 double denom = std::max(fabs(Starget), acpd * Tnew);
660 double SConvErr = fabs((Serr * Tnew)/denom);
661 if (SConvErr < rtol || fabs(dt/Tnew) < rtol) {
669 string ErrString =
"No convergence in 500 iterations\n";
671 ErrString += fmt::format(
672 "\tTarget Entropy = {}\n"
673 "\tCurrent Specific Volume = {}\n"
674 "\tStarting Temperature = {}\n"
675 "\tCurrent Temperature = {}\n"
676 "\tCurrent Entropy = {}\n"
677 "\tCurrent Delta T = {}\n",
678 Starget, v, Tinit, Tnew, Snew, dt);
680 ErrString += fmt::format(
681 "\tTarget Entropy = {}\n"
682 "\tCurrent Pressure = {}\n"
683 "\tStarting Temperature = {}\n"
684 "\tCurrent Temperature = {}\n"
685 "\tCurrent Entropy = {}\n"
686 "\tCurrent Delta T = {}\n",
687 Starget, p, Tinit, Tnew, Snew, dt);
690 ErrString += fmt::format(
"\t - The phase became unstable (Cp < 0) T_unstable_last = {}\n",
694 throw CanteraError(
"ThermoPhase::setState_SPorSV (SV)", ErrString);
696 throw CanteraError(
"ThermoPhase::setState_SPorSV (SP)", ErrString);
709 for (
size_t k = 0; k !=
m_kk; ++k) {
713 o2req += x *
nAtoms(k, iC);
716 o2req += x *
nAtoms(k, iS);
719 o2req += x * 0.25 *
nAtoms(k, iH);
724 "No composition specified");
734 for (
size_t k = 0; k !=
m_kk; ++k) {
740 "No composition specified");
742 return 0.5 * o2pres / sum;
758 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
759 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
764 const double* oxComp,
767 vector<double> fuel, ox;
768 if (basis == ThermoBasis::molar) {
773 fuelComp = fuel.data();
780 if (o2_required_fuel < 0.0 || o2_required_ox > 0.0) {
782 "Fuel composition contains too much oxygen or "
783 "oxidizer contains not enough oxygen. "
784 "Fuel and oxidizer composition mixed up?");
787 if (o2_required_ox == 0.0) {
788 return std::numeric_limits<double>::infinity();
791 return o2_required_fuel / (-o2_required_ox);
799 "Equivalence ratio phi must be >= 0");
804 vector<double> fuel, ox;
805 if (basis == ThermoBasis::molar) {
810 fuelComp = fuel.data();
816 double sum_f = std::accumulate(fuelComp, fuelComp+
m_kk, 0.0);
817 double sum_o = std::accumulate(oxComp, oxComp+
m_kk, 0.0);
819 vector<double> y(
m_kk);
820 for (
size_t k = 0; k !=
m_kk; ++k) {
821 y[k] = phi * fuelComp[k]/sum_f + AFR_st * oxComp[k]/sum_o;
832 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
833 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
850 if (o2_present == 0.0) {
851 return std::numeric_limits<double>::infinity();
854 return o2_required / o2_present;
870 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
871 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
876 const double* oxComp,
886 return std::numeric_limits<double>::infinity();
889 vector<double> fuel, ox;
890 if (basis == ThermoBasis::molar) {
895 fuelComp = fuel.data();
901 return std::max(Z / (1.0 - Z) * AFR_st, 0.0);
916 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
917 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
924 if (mixFrac < 0.0 || mixFrac > 1.0) {
926 "Mixture fraction must be between 0 and 1");
929 vector<double> fuel, ox;
930 if (basis == ThermoBasis::molar) {
935 fuelComp = fuel.data();
939 double sum_yf = std::accumulate(fuelComp, fuelComp+
m_kk, 0.0);
940 double sum_yo = std::accumulate(oxComp, oxComp+
m_kk, 0.0);
942 if (sum_yf == 0.0 || sum_yo == 0.0) {
944 "No fuel and/or oxidizer composition specified");
949 vector<double> y(
m_kk);
951 for (
size_t k = 0; k !=
m_kk; ++k) {
952 y[k] = mixFrac * fuelComp[k]/sum_yf + (1.0-mixFrac) * oxComp[k]/sum_yo;
962 const string& element)
const
973 parseCompString(fuelComp.find(
":") != string::npos ? fuelComp : fuelComp+
":1.0"),
974 parseCompString(oxComp.find(
":") != string::npos ? oxComp : oxComp+
":1.0"),
981 vector<double> fuel, ox;
982 if (basis == ThermoBasis::molar) {
987 fuelComp = fuel.data();
991 if (element ==
"Bilger")
997 if (o2_required_fuel < 0.0 || o2_required_ox > 0.0) {
999 "Fuel composition contains too much oxygen or "
1000 "oxidizer contains not enough oxygen. "
1001 "Fuel and oxidizer composition mixed up?");
1004 double denominator = o2_required_fuel - o2_required_ox;
1006 if (denominator == 0.0) {
1008 "Fuel and oxidizer have the same composition");
1011 double Z = (o2_required_mix - o2_required_ox) / denominator;
1013 return std::min(std::max(Z, 0.0), 1.0);
1016 double sum_yf = std::accumulate(fuelComp, fuelComp+
m_kk, 0.0);
1017 double sum_yo = std::accumulate(oxComp, oxComp+
m_kk, 0.0);
1019 if (sum_yf == 0.0 || sum_yo == 0.0) {
1021 "No fuel and/or oxidizer composition specified");
1024 auto elementalFraction = [
this](
size_t m,
const double* y) {
1026 for (
size_t k = 0; k !=
m_kk; ++k) {
1033 double Z_m_fuel = elementalFraction(m, fuelComp)/sum_yf;
1034 double Z_m_ox = elementalFraction(m, oxComp)/sum_yo;
1037 if (Z_m_fuel == Z_m_ox) {
1039 "Fuel and oxidizer have the same composition for element {}",
1042 double Z = (Z_m_mix - Z_m_ox) / (Z_m_fuel - Z_m_ox);
1043 return std::min(std::max(Z, 0.0), 1.0);
1060 if (inputFile.empty()) {
1064 size_t dot = inputFile.find_last_of(
".");
1067 extension = inputFile.substr(
dot+1);
1069 if (extension ==
"xml" || extension ==
"cti") {
1071 "The CTI and XML formats are no longer supported.");
1075 auto& phase =
root[
"phases"].getMapWhere(
"name",
id);
1084 "Missing species thermo data");
1096 "Temperature ({}), pressure ({}) and vapor fraction ({}) "
1097 "are inconsistent, above the critical temperature.",
1103 if (std::abs(Psat / P - 1) < 1e-6) {
1105 }
else if ((Q == 0 && P >= Psat) || (Q == 1 && P <= Psat)) {
1109 "Temperature ({}), pressure ({}) and vapor fraction ({}) "
1110 "are inconsistent.\nPsat at this T: {}\n"
1111 "Consider specifying the state using two fully independent "
1112 "properties (for example, temperature and density)",
1119 if (!spec->thermo) {
1121 "Species {} has no thermo data", spec->name);
1125 spec->thermo->validate(spec->name);
1133 if (!spec->thermo) {
1135 "Species {} has no thermo data", spec->name);
1140 "New species '{}' does not match existing species '{}' at index {}",
1143 spec->thermo->validate(spec->name);
1164 phaseNode[
"name"] =
name();
1167 for (
size_t i = 0; i <
nElements(); i++) {
1175 if (stateVars.count(
"T")) {
1179 if (stateVars.count(
"D")) {
1180 state[
"density"].setQuantity(
density(),
"kg/m^3");
1181 }
else if (stateVars.count(
"P")) {
1182 state[
"P"].setQuantity(
pressure(),
"Pa");
1185 if (stateVars.count(
"Y")) {
1186 map<string, double> Y;
1187 for (
size_t k = 0; k <
m_kk; k++) {
1195 }
else if (stateVars.count(
"X")) {
1196 map<string, double> X;
1197 for (
size_t k = 0; k <
m_kk; k++) {
1207 phaseNode[
"state"] = std::move(state);
1211 phaseNode[
"__type__"] =
"Phase";
1231 double rtol,
int max_steps,
int max_iter,
1232 int estimate_equil,
int log_level)
1234 if (solver ==
"auto" || solver ==
"element_potential") {
1235 vector<double> initial_state;
1237 debuglog(
"Trying ChemEquil solver\n", log_level);
1239 PhaseEquilGuard guard(*
this);
1243 int ret = E.
equilibrate(*
this, XY.c_str(), log_level-1);
1246 "ChemEquil solver failed. Return code: {}", ret);
1248 debuglog(
"ChemEquil solver succeeded\n", log_level);
1250 }
catch (std::exception& err) {
1251 debuglog(
"ChemEquil solver failed.\n", log_level);
1254 if (solver ==
"auto") {
1261 if (solver ==
"auto" || solver ==
"vcs" || solver ==
"gibbs") {
1265 M.
equilibrate(XY, solver, rtol, max_steps, max_iter,
1266 estimate_equil, log_level);
1270 if (solver !=
"auto") {
1272 "Invalid solver specified: '{}'", solver);
1278 for (
size_t m = 0; m <
m_kk; m++) {
1279 for (
size_t k = 0; k <
m_kk; k++) {
1280 dlnActCoeffdlnN[ld * k + m] = 0.0;
1286void ThermoPhase::getdlnActCoeffdlnN_numderiv(
const size_t ld,
1287 double*
const dlnActCoeffdlnN)
1289 double deltaMoles_j = 0.0;
1293 vector<double> ActCoeff_Base(
m_kk);
1295 vector<double> Xmol_Base(
m_kk);
1299 vector<double> ActCoeff(
m_kk);
1300 vector<double> Xmol(
m_kk);
1301 double v_totalMoles = 1.0;
1302 double TMoles_base = v_totalMoles;
1305 for (
size_t j = 0; j <
m_kk; j++) {
1311 double moles_j_base = v_totalMoles * Xmol_Base[j];
1312 deltaMoles_j = 1.0E-7 * moles_j_base + v_totalMoles * 1.0E-13 + 1.0E-150;
1316 v_totalMoles = TMoles_base + deltaMoles_j;
1317 for (
size_t k = 0; k <
m_kk; k++) {
1318 Xmol[k] = Xmol_Base[k] * TMoles_base / v_totalMoles;
1320 Xmol[j] = (moles_j_base + deltaMoles_j) / v_totalMoles;
1328 double*
const lnActCoeffCol = dlnActCoeffdlnN + ld * j;
1329 for (
size_t k = 0; k <
m_kk; k++) {
1330 lnActCoeffCol[k] = (2*moles_j_base + deltaMoles_j) *(ActCoeff[k] - ActCoeff_Base[k]) /
1331 ((ActCoeff[k] + ActCoeff_Base[k]) * deltaMoles_j);
1334 v_totalMoles = TMoles_base;
1343 if (
type() ==
"none") {
1345 "Not implemented for thermo model 'none'");
1348 fmt::memory_buffer b;
1350 int name_width = 18;
1352 string blank_leader = fmt::format(
"{:{}}",
"", name_width);
1354 string string_property = fmt::format(
"{{:>{}}} {{}}\n", name_width);
1356 string one_property = fmt::format(
"{{:>{}}} {{:<.5g}} {{}}\n", name_width);
1358 constexpr auto two_prop_header =
"{} {:^15} {:^15}\n";
1359 string kg_kmol_header = fmt::format(
1360 two_prop_header, blank_leader,
"1 kg",
"1 kmol"
1362 string Y_X_header = fmt::format(
1363 two_prop_header, blank_leader,
"mass frac. Y",
"mole frac. X"
1365 string two_prop_sep = fmt::format(
1366 "{} {:-^15} {:-^15}\n", blank_leader,
"",
""
1368 string two_property = fmt::format(
1369 "{{:>{}}} {{:15.5g}} {{:15.5g}} {{}}\n", name_width
1372 string three_prop_header = fmt::format(
1373 "{} {:^15} {:^15} {:^15}\n", blank_leader,
"mass frac. Y",
1374 "mole frac. X",
"chem. pot. / RT"
1376 string three_prop_sep = fmt::format(
1377 "{} {:-^15} {:-^15} {:-^15}\n", blank_leader,
"",
"",
""
1379 string three_property = fmt::format(
1380 "{{:>{}}} {{:15.5g}} {{:15.5g}} {{:15.5g}}\n", name_width
1385 fmt_append(b,
"\n {}:\n",
name());
1387 fmt_append(b,
"\n");
1388 fmt_append(b, one_property,
"temperature",
temperature(),
"K");
1389 fmt_append(b, one_property,
"pressure",
pressure(),
"Pa");
1390 fmt_append(b, one_property,
"density",
density(),
"kg/m^3");
1391 fmt_append(b, one_property,
1396 fmt_append(b, one_property,
"potential", phi,
"V");
1399 fmt_append(b, string_property,
"phase of matter",
phaseOfMatter());
1402 fmt_append(b,
"\n");
1403 fmt_append(b, kg_kmol_header);
1404 fmt_append(b, two_prop_sep);
1405 fmt_append(b, two_property,
1407 fmt_append(b, two_property,
1409 fmt_append(b, two_property,
1411 fmt_append(b, two_property,
1413 fmt_append(b, two_property,
1416 fmt_append(b, two_property,
1419 fmt_append(b, string_property,
1420 "heat capacity c_v",
"<not implemented>");
1424 vector<double> x(
m_kk);
1425 vector<double> y(
m_kk);
1426 vector<double> mu(
m_kk);
1431 double xMinor = 0.0;
1432 double yMinor = 0.0;
1433 fmt_append(b,
"\n");
1435 fmt_append(b, three_prop_header);
1436 fmt_append(b, three_prop_sep);
1437 for (
size_t k = 0; k <
m_kk; k++) {
1438 if (abs(x[k]) >= threshold) {
1440 fmt_append(b, three_property,
1443 fmt_append(b, two_property,
speciesName(k), y[k], x[k],
"");
1452 fmt_append(b, Y_X_header);
1453 fmt_append(b, two_prop_sep);
1454 for (
size_t k = 0; k <
m_kk; k++) {
1455 if (abs(x[k]) >= threshold) {
1456 fmt_append(b, two_property,
speciesName(k), y[k], x[k],
"");
1465 string minor = fmt::format(
"[{:+5d} minor]", nMinor);
1466 fmt_append(b, two_property, minor, yMinor, xMinor,
"");
1469 return to_string(b) + err.
what();
1471 return to_string(b);
Headers for the MultiPhase object that is used to set up multiphase equilibrium problems (see Chemica...
Pure Virtual Base class for individual species reference state thermodynamic managers and text for th...
Declaration for class Cantera::Species.
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
A map of string keys to values whose type can vary at runtime.
size_t size() const
Returns the number of elements in this map.
bool hasKey(const string &key) const
Returns true if the map contains an item named key.
void applyUnits()
Use the supplied UnitSystem to set the default units, and recursively process overrides from nodes na...
double convert(const string &key, const string &units) const
Convert the item stored by the given key to the units specified in units.
void setFlowStyle(bool flow=true)
Use "flow" style when outputting this AnyMap to YAML.
void erase(const string &key)
Erase the value held by key.
static AnyMap fromYamlFile(const string &name, const string &parent_name="")
Create an AnyMap from a YAML file.
void update(const AnyMap &other, bool keepExisting=true)
Add items from other to this AnyMap.
static bool addOrderingRules(const string &objectType, const vector< vector< string > > &specs)
Add global rules for setting the order of elements when outputting AnyMap objects to YAML.
string keys_str() const
Return a string listing the keys in this AnyMap, for use in error messages, for example.
Base class for exceptions thrown by Cantera classes.
const char * what() const override
Get a description of the error.
Class ChemEquil implements a chemical equilibrium solver for single-phase solutions.
int equilibrate(ThermoPhase &s, const char *XY, int loglevel=0)
Equilibrate a phase, holding the elemental composition fixed at the initial value found within the Th...
EquilOpt options
Options controlling how the calculation is carried out.
double relTolerance
Relative tolerance.
int maxIterations
Maximum number of iterations.
string canonicalize(const string &name)
Get the canonical name registered for a type.
A class for multiphase mixtures.
void init()
Process phases and build atomic composition array.
void addPhase(shared_ptr< ThermoPhase > p, double moles)
Add a phase to the mixture.
A species thermodynamic property manager for a phase.
bool ready(size_t nSpecies)
Check if data for all species (0 through nSpecies-1) has been installed.
virtual void install_STIT(size_t index, shared_ptr< SpeciesThermoInterpType > stit)
Install a new species thermodynamic property parameterization for one species.
virtual void modifySpecies(size_t index, shared_ptr< SpeciesThermoInterpType > spec)
Modify the species thermodynamic property parameterization for a species.
virtual void resetHf298(const size_t k)
Restore the original heat of formation of one or more species.
An error indicating that an unimplemented function has been called.
double massFraction(size_t k) const
Return the mass fraction of a single species.
virtual bool addSpecies(shared_ptr< Species > spec)
Add a Species to this Phase.
virtual void setMoleFractions(const double *const x)
Set the mole fractions to the specified values.
void assertCompressible(const string &setter) const
Ensure that phase is compressible.
void restoreState(const vector< double > &state)
Restore a state saved on a previous call to saveState.
virtual void restorePartialState(size_t lenstate, const double *state)
Set the internal thermodynamic state of the phase, excluding composition.
size_t nSpecies() const
Returns the number of species in the phase.
virtual void setMassFractions_NoNorm(const double *const y)
Set the mass fractions to the specified values without normalizing.
virtual map< string, size_t > nativeState() const
Return a map of properties defining the native state of a substance.
size_t m_kk
Number of species in the phase.
virtual void modifySpecies(size_t k, shared_ptr< Species > spec)
Modify the thermodynamic data associated with a species.
size_t nDim() const
Returns the number of spatial dimensions (1, 2, or 3)
void setState_TD(double t, double rho)
Set the internally stored temperature (K) and density (kg/m^3)
double temperature() const
Temperature (K).
virtual void setPressure(double p)
Set the internally stored pressure (Pa) at constant temperature and composition.
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
void moleFractionsToMassFractions(const double *X, double *Y) const
Converts a mixture composition from mass fractions to mole fractions.
void saveState(vector< double > &state) const
Save the current internal state of the phase.
void setMassFractionsByName(const Composition &yMap)
Set the species mass fractions by name.
string speciesName(size_t k) const
Name of the species with index k.
virtual void setDensity(const double density_)
Set the internally stored density (kg/m^3) of the phase.
vector< double > getCompositionFromMap(const Composition &comp) const
Converts a Composition to a vector with entries for each species Species that are not specified are s...
void getMoleFractions(double *const x) const
Get the species mole fraction vector.
void setMoleFractionsByName(const Composition &xMap)
Set the species mole fractions by name.
const double * massFractions() const
Return a const pointer to the mass fraction array.
const vector< double > & molecularWeights() const
Return a const reference to the internal vector of molecular weights.
double moleFraction(size_t k) const
Return the mole fraction of a single species.
const vector< string > & elementNames() const
Return a read-only reference to the vector of element names.
virtual double density() const
Density (kg/m^3).
double nAtoms(size_t k, size_t m) const
Number of atoms of element m in species k.
virtual void setTemperature(double temp)
Set the internally stored temperature of the phase (K).
size_t nElements() const
Number of elements.
virtual void savePartialState(size_t lenstate, double *state) const
Save the current thermodynamic state of the phase, excluding composition.
virtual void setMassFractions(const double *const y)
Set the mass fractions to the specified values and normalize them.
const vector< string > & speciesNames() const
Return a const reference to the vector of species names.
size_t elementIndex(const string &name, bool raise=true) const
Return the index of element named 'name'.
double molecularWeight(size_t k) const
Molecular weight of species k.
shared_ptr< Species > species(const string &name) const
Return the Species object for the named species.
virtual void invalidateCache()
Invalidate any cached values which are normally updated only when a change in state is detected.
void getMassFractions(double *const y) const
Get the species mass fractions.
virtual size_t partialStateSize() const
Get the size of the partial state vector of the phase.
virtual double pressure() const
Return the thermodynamic pressure (Pa).
string elementName(size_t m) const
Name of the element with index m.
double charge(size_t k) const
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the...
string name() const
Return the name of the phase.
static ThermoFactory * factory()
Static function that creates a static instance of the factory.
Base class for a phase with thermodynamic properties.
int m_ssConvention
Contains the standard state convention.
virtual double critTemperature() const
Critical temperature (K).
virtual void setState_HP(double h, double p, double tol=1e-9)
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
double electricPotential() const
Returns the electric potential of this phase (V).
virtual void setState_UV(double u, double v, double tol=1e-9)
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
virtual double cp_mole() const
Molar heat capacity at constant pressure and composition [J/kmol/K].
double equivalenceRatio() const
Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
virtual void setParameters(const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
Set equation of state parameters from an AnyMap phase description.
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
virtual double enthalpy_mole() const
Molar enthalpy. Units: J/kmol.
virtual void setState_TP(double t, double p)
Set the temperature (K) and pressure (Pa)
virtual double standardConcentration(size_t k=0) const
Return the standard concentration for the kth species.
virtual void setState_TV(double t, double v, double tol=1e-9)
Set the temperature (K) and specific volume (m^3/kg).
virtual double logStandardConc(size_t k=0) const
Natural logarithm of the standard concentration of the kth species.
double o2Present(const double *y) const
Helper function for computing the amount of oxygen available in the current mixture.
virtual void setState_PV(double p, double v, double tol=1e-9)
Set the pressure (Pa) and specific volume (m^3/kg).
virtual void setState(const AnyMap &state)
Set the state using an AnyMap containing any combination of properties supported by the thermodynamic...
virtual double minTemp(size_t k=npos) const
Minimum temperature for which the thermodynamic data for the species or phase are valid.
virtual void setState_TPX(double t, double p, const double *x)
Set the temperature (K), pressure (Pa), and mole fractions.
void setState_SPorSV(double s, double p, double tol=1e-9, bool doSV=false)
Carry out work in SP and SV calculations.
double RT() const
Return the Gas Constant multiplied by the current temperature.
virtual double critPressure() const
Critical pressure (Pa).
virtual void setState_TPY(double t, double p, const double *y)
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
double m_tlast
last value of the temperature processed by reference state
virtual void setState_ST(double s, double t, double tol=1e-9)
Set the specific entropy (J/kg/K) and temperature (K).
void setState_HPorUV(double h, double p, double tol=1e-9, bool doUV=false)
Carry out work in HP and UV calculations.
double gibbs_mass() const
Specific Gibbs function. Units: J/kg.
virtual void getActivityConcentrations(double *c) const
This method returns an array of generalized concentrations.
double stoichAirFuelRatio(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer composit...
string type() const override
String indicating the thermodynamic model implemented.
AnyMap parameters(bool withInput=true) const
Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed usin...
virtual string report(bool show_thermo=true, double threshold=-1e-14) const
returns a summary of the state of the phase as a string
virtual double maxTemp(size_t k=npos) const
Maximum temperature for which the thermodynamic data for the species are valid.
double mixtureFraction(const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel a...
double o2Required(const double *y) const
Helper function for computing the amount of oxygen required for complete oxidation.
void getElectrochemPotentials(double *mu) const
Get the species electrochemical potentials.
virtual void getdlnActCoeffdlnN(const size_t ld, double *const dlnActCoeffdlnN)
Get the array of derivatives of the log activity coefficients with respect to the log of the species ...
virtual void getActivityCoefficients(double *ac) const
Get the array of non-dimensional molar-based activity coefficients at the current solution temperatur...
virtual string phaseOfMatter() const
String indicating the mechanical phase of the matter in this Phase.
virtual void setState_Tsat(double t, double x)
Set the state to a saturated system at a particular temperature.
virtual double entropy_mole() const
Molar entropy. Units: J/kmol/K.
double cv_mass() const
Specific heat at constant volume and composition [J/kg/K].
virtual int activityConvention() const
This method returns the convention used in specification of the activities, of which there are curren...
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
double entropy_mass() const
Specific entropy. Units: J/kg/K.
virtual MultiSpeciesThermo & speciesThermo(int k=-1)
Return a changeable reference to the calculation manager for species reference-state thermodynamic pr...
virtual void setState_UP(double u, double p, double tol=1e-9)
Set the specific internal energy (J/kg) and pressure (Pa).
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
shared_ptr< Solution > root() const
Get the Solution object containing this ThermoPhase object and linked Kinetics and Transport objects.
virtual void setState_SP(double s, double p, double tol=1e-9)
Set the specific entropy (J/kg/K) and pressure (Pa).
virtual int standardStateConvention() const
This method returns the convention used in specification of the standard state, of which there are cu...
void modifySpecies(size_t k, shared_ptr< Species > spec) override
Modify the thermodynamic data associated with a species.
virtual void setState_SH(double s, double h, double tol=1e-9)
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
void invalidateCache() override
Invalidate any cached values which are normally updated only when a change in state is detected.
virtual void getActivities(double *a) const
Get the array of non-dimensional activities at the current solution temperature, pressure,...
void setMixtureFraction(double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
virtual void resetHf298(const size_t k=npos)
Restore the original heat of formation of one or more species.
virtual void getChemPotentials(double *mu) const
Get the species chemical potentials. Units: J/kmol.
double cp_mass() const
Specific heat at constant pressure and composition [J/kg/K].
virtual void setState_TH(double t, double h, double tol=1e-9)
Set the temperature (K) and the specific enthalpy (J/kg)
virtual void getLnActivityCoefficients(double *lnac) const
Get the array of non-dimensional molar-based ln activity coefficients at the current solution tempera...
double intEnergy_mass() const
Specific internal energy. Units: J/kg.
virtual Units standardConcentrationUnits() const
Returns the units of the "standard concentration" for this phase.
virtual double cv_mole() const
Molar heat capacity at constant volume and composition [J/kmol/K].
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double satPressure(double t)
Return the saturation pressure given the temperature.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
AnyMap m_input
Data supplied via setParameters.
virtual double intEnergy_mole() const
Molar internal energy. Units: J/kmol.
virtual void setState_DP(double rho, double p)
Set the density (kg/m**3) and pressure (Pa) at constant composition.
void setEquivalenceRatio(double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
Set the mixture composition according to the equivalence ratio.
void setState_TPQ(double T, double P, double Q)
Set the temperature, pressure, and vapor fraction (quality).
virtual void setState_VH(double v, double h, double tol=1e-9)
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
virtual double gibbs_mole() const
Molar Gibbs function. Units: J/kmol.
virtual void setState_SV(double s, double v, double tol=1e-9)
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
const AnyMap & input() const
Access input data associated with the phase description.
virtual void setState_Psat(double p, double x)
Set the state to a saturated system at a particular pressure.
void setState_conditional_TP(double t, double p, bool set_p)
Helper function used by setState_HPorUV and setState_SPorSV.
shared_ptr< ThermoPhase > clone() const
Create a new ThermoPhase object using the same species definitions, thermodynamic parameters,...
double enthalpy_mass() const
Specific enthalpy. Units: J/kg.
A representation of the units associated with a dimensional quantity.
Composition parseCompString(const string &ss, const vector< string > &names)
Parse a composition string into a map consisting of individual key:composition pairs.
void equilibrate(const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
Equilibrate a ThermoPhase object.
void debuglog(const string &msg, int loglevel)
Write a message to the log only if loglevel > 0.
double dot(InputIter x_begin, InputIter x_end, InputIter2 y_begin)
Function that calculates a templated inner product.
T clip(const T &value, const T &lower, const T &upper)
Clip value such that lower <= value <= upper.
const double Faraday
Faraday constant [C/kmol].
const double OneAtm
One atmosphere [Pa].
shared_ptr< ThermoPhase > newThermo(const AnyMap &phaseNode, const AnyMap &rootNode)
Create a new ThermoPhase object and initialize it.
void setupPhase(ThermoPhase &thermo, const AnyMap &phaseNode, const AnyMap &rootNode)
Initialize a ThermoPhase object.
Namespace for the Cantera kernel.
const size_t npos
index returned by functions to indicate "no position"
const int cAC_CONVENTION_MOLAR
Standard state uses the molar convention.
const double SmallNumber
smallest number to compare to zero.
ThermoBasis
Differentiate between mole fractions and mass fractions for input mixture composition.
map< string, double > Composition
Map from string names to doubles.
Contains declarations for string manipulation functions within Cantera.