Loading [MathJax]/extensions/tex2jax.js
Cantera  3.2.0a1
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
MultiPhase.h
Go to the documentation of this file.
1/**
2 * @file MultiPhase.h
3 * Headers for the @link Cantera::MultiPhase MultiPhase@endlink
4 * object that is used to set up multiphase equilibrium problems (see @ref equilGroup).
5 */
6
7// This file is part of Cantera. See License.txt in the top-level directory or
8// at https://cantera.org/license.txt for license and copyright information.
9
10#ifndef CT_MULTIPHASE_H
11#define CT_MULTIPHASE_H
12
14
15namespace Cantera
16{
17
18class ThermoPhase;
19
20//! A class for multiphase mixtures. The mixture can contain any
21//! number of phases of any type.
22/*!
23 * This object is the basic tool used by %Cantera for use in Multiphase
24 * equilibrium calculations.
25 *
26 * It is a container for a set of phases. Each phase has a given number of
27 * kmoles. Therefore, MultiPhase may be considered an "extrinsic"
28 * thermodynamic object, in contrast to the ThermoPhase object, which is an
29 * "intrinsic" thermodynamic object.
30 *
31 * @warning The multiphase equilibrium solvers currently have a number of problems that
32 * lead to solver failures or incorrect results for some inputs. See the
33 * [list of issues on GitHub](https://github.com/Cantera/cantera/issues?q=is%3Aopen+is%3Aissue+label%3AEquilibrium)
34 * for more information.
35 *
36 * MultiPhase may be considered to be "upstream" of the ThermoPhase objects in
37 * the sense that setting a property within MultiPhase, such as temperature,
38 * pressure, or species mole number, affects the underlying ThermoPhase
39 * object, but not the other way around.
40 *
41 * All phases have the same temperature and pressure, and a specified number
42 * of moles for each phase. The phases do not need to have the same elements.
43 * For example, a mixture might consist of a gaseous phase with elements (H,
44 * C, O, N), a solid carbon phase containing only element C, etc. A master
45 * element set will be constructed for the mixture that is the intersection of
46 * the elements of each phase.
47 *
48 * Below, reference is made to global species and global elements. These refer
49 * to the collective species and elements encompassing all of the phases
50 * tracked by the object.
51 *
52 * The global element list kept by this object is an intersection of the
53 * element lists of all the phases that comprise the MultiPhase.
54 *
55 * The global species list kept by this object is a concatenated list of all
56 * of the species in all the phases that comprise the MultiPhase. The ordering
57 * of species is contiguous with respect to the phase id.
58 *
59 * @ingroup equilGroup
60 */
62{
63public:
64 //! Constructor.
65 /*!
66 * The constructor takes no arguments, since phases are added using
67 * method addPhase().
68 */
69 MultiPhase() = default;
70
71 //! Destructor. Does nothing. Class MultiPhase does not take "ownership"
72 //! (that is, responsibility for destroying) the phase objects.
73 virtual ~MultiPhase();
74
75 //! Add a vector of phases to the mixture
76 /*!
77 * See the single addPhases command. This just does a bunch of phases
78 * at one time
79 * @param phases Vector of pointers to phases
80 * @param phaseMoles Vector of mole numbers in each phase (kmol)
81 */
82 void addPhases(vector<ThermoPhase*>& phases, const vector<double>& phaseMoles);
83
84 //! Add all phases present in 'mix' to this mixture.
85 /*!
86 * @param mix Add all of the phases in another MultiPhase
87 * object to the current object.
88 */
89 void addPhases(MultiPhase& mix);
90
91 //! Add a phase to the mixture.
92 /*!
93 * This function must be called before the init() function is called,
94 * which serves to freeze the MultiPhase.
95 *
96 * @param p pointer to the phase object
97 * @param moles total number of moles of all species in this phase
98 * @since New in %Cantera 3.2.
99 */
100 void addPhase(shared_ptr<ThermoPhase> p, double moles);
101
102 //! Add a phase to the mixture.
103 /*!
104 * This function must be called before the init() function is called,
105 * which serves to freeze the MultiPhase.
106 *
107 * @param p pointer to the phase object
108 * @param moles total number of moles of all species in this phase
109 */
110 void addPhase(ThermoPhase* p, double moles);
111
112 //! Number of elements.
113 size_t nElements() const {
114 return m_nel;
115 }
116
117 //! Check that the specified element index is in range.
118 //! Throws an exception if m is greater than nElements()-1
119 void checkElementIndex(size_t m) const;
120
121 //! Check that an array size is at least nElements().
122 //! Throws an exception if mm is less than nElements(). Used before calls
123 //! which take an array pointer.
124 void checkElementArraySize(size_t mm) const;
125
126 //! Returns the name of the global element *m*.
127 /*!
128 * @param m index of the global element
129 */
130 string elementName(size_t m) const;
131
132 //! Returns the index of the element with name @e name.
133 /*!
134 * @param name String name of the global element
135 */
136 size_t elementIndex(const string& name) const;
137
138 //! Number of species, summed over all phases.
139 size_t nSpecies() const {
140 return m_nsp;
141 }
142
143 //! Check that the specified species index is in range.
144 //! Throws an exception if k is greater than nSpecies()-1
145 void checkSpeciesIndex(size_t k) const;
146
147 //! Check that an array size is at least nSpecies().
148 //! Throws an exception if kk is less than nSpecies(). Used before calls
149 //! which take an array pointer.
150 void checkSpeciesArraySize(size_t kk) const;
151
152 //! Name of species with global index @e kGlob
153 /*!
154 * @param kGlob global species index
155 */
156 string speciesName(const size_t kGlob) const;
157
158 //! Returns the Number of atoms of global element @e mGlob in
159 //! global species @e kGlob.
160 /*!
161 * @param kGlob global species index
162 * @param mGlob global element index
163 * @returns the number of atoms.
164 */
165 double nAtoms(const size_t kGlob, const size_t mGlob) const;
166
167 //! Returns the global Species mole fractions.
168 /*!
169 * Write the array of species mole
170 * fractions into array @c x. The mole fractions are
171 * normalized to sum to one in each phase.
172 *
173 * @param x vector of mole fractions. Length = number of global species.
174 */
175 void getMoleFractions(double* const x) const;
176
177 //! Process phases and build atomic composition array.
178 /*!
179 * This method must be called after all phases are added, before doing
180 * anything else with the mixture. After init() has been called, no more
181 * phases may be added.
182 */
183 void init();
184
185 //! Returns the name of the n'th phase
186 /*!
187 * @param iph phase Index
188 */
189 string phaseName(const size_t iph) const;
190
191 //! Returns the index, given the phase name
192 /*!
193 * @param pName Name of the phase
194 * @returns the index. A value of -1 means the phase isn't in the object.
195 */
196 int phaseIndex(const string& pName) const;
197
198 //! Return the number of moles in phase n.
199 /*!
200 * @param n Index of the phase.
201 */
202 double phaseMoles(const size_t n) const;
203
204 //! Set the number of moles of phase with index n.
205 /*!
206 * @param n Index of the phase
207 * @param moles Number of moles in the phase (kmol)
208 */
209 void setPhaseMoles(const size_t n, const double moles);
210
211 //! Return a reference to phase n.
212 /*!
213 * The state of phase n is also updated to match the state stored locally
214 * in the mixture object.
215 *
216 * @param n Phase Index
217 * @return Reference to the ThermoPhase object for the phase
218 */
219 ThermoPhase& phase(size_t n);
220
221 //! Check that the specified phase index is in range
222 //! Throws an exception if m is greater than nPhases()
223 void checkPhaseIndex(size_t m) const;
224
225 //! Check that an array size is at least nPhases()
226 //! Throws an exception if mm is less than nPhases(). Used before calls
227 //! which take an array pointer.
228 void checkPhaseArraySize(size_t mm) const;
229
230 //! Returns the moles of global species @c k. units = kmol
231 /*!
232 * @param kGlob Global species index k
233 */
234 double speciesMoles(size_t kGlob) const;
235
236 //! Return the global index of the species belonging to phase number @c p
237 //! with local index @c k within the phase.
238 /*!
239 * @param k local index of the species within the phase
240 * @param p index of the phase
241 */
242 size_t speciesIndex(size_t k, size_t p) const {
243 return m_spstart[p] + k;
244 }
245
246 //! Return the global index of the species belonging to phase name @c phaseName
247 //! with species name @c speciesName
248 /*!
249 * @param speciesName Species Name
250 * @param phaseName Phase Name
251 *
252 * @returns the global index
253 *
254 * If the species or phase name is not recognized, this routine throws a
255 * CanteraError.
256 */
257 size_t speciesIndex(const string& speciesName, const string& phaseName);
258
259 //! Minimum temperature for which all solution phases have valid thermo
260 //! data. Stoichiometric phases are not considered, since they may have
261 //! thermo data only valid for conditions for which they are stable.
262 double minTemp() const {
263 return m_Tmin;
264 }
265
266 //! Maximum temperature for which all solution phases have valid thermo
267 //! data. Stoichiometric phases are not considered, since they may have
268 //! thermo data only valid for conditions for which they are stable.
269 double maxTemp() const {
270 return m_Tmax;
271 }
272
273 //! Total charge summed over all phases (Coulombs).
274 double charge() const;
275
276 //! Charge (Coulombs) of phase with index @e p.
277 /*!
278 * The net charge is computed as @f[ Q_p = N_p \sum_k F z_k X_k @f]
279 * where the sum runs only over species in phase @e p.
280 * @param p index of the phase for which the charge is desired.
281 */
282 double phaseCharge(size_t p) const;
283
284 //! Total moles of global element @e m, summed over all phases.
285 /*!
286 * @param m Index of the global element
287 */
288 double elementMoles(size_t m) const;
289
290 //! Returns a vector of Chemical potentials.
291 /*!
292 * Write into array @e mu the chemical potentials of all species
293 * [J/kmol]. The chemical potentials are related to the activities by
294 *
295 * @f$
296 * \mu_k = \mu_k^0(T, P) + RT \ln a_k.
297 * @f$.
298 *
299 * @param mu Chemical potential vector. Length = num global species. Units
300 * = J/kmol.
301 */
302 void getChemPotentials(double* mu) const;
303
304 //! Returns a vector of Valid chemical potentials.
305 /*!
306 * Write into array @e mu the chemical potentials of all species with
307 * thermo data valid for the current temperature [J/kmol]. For other
308 * species, set the chemical potential to the value @e not_mu. If @e
309 * standard is set to true, then the values returned are standard chemical
310 * potentials.
311 *
312 * This method is designed for use in computing chemical equilibrium by
313 * Gibbs minimization. For solution phases (more than one species), this
314 * does the same thing as getChemPotentials. But for stoichiometric
315 * phases, this writes into array @e mu the user-specified value @e not_mu
316 * instead of the chemical potential if the temperature is outside the
317 * range for which the thermo data for the one species in the phase are
318 * valid. The need for this arises since many condensed phases have thermo
319 * data fit only for the temperature range for which they are stable. For
320 * example, in the NASA database, the fits for H2O(s) are only done up to
321 * 0 C, the fits for H2O(L) are only done from 0 C to 100 C, etc. Using
322 * the polynomial fits outside the range for which the fits were done can
323 * result in spurious chemical potentials, and can lead to condensed
324 * phases appearing when in fact they should be absent.
325 *
326 * By setting @e not_mu to a large positive value, it is possible to force
327 * routines which seek to minimize the Gibbs free energy of the mixture to
328 * zero out any phases outside the temperature range for which their
329 * thermo data are valid.
330 *
331 * @param not_mu Value of the chemical potential to set species in phases,
332 * for which the thermo data is not valid
333 * @param mu Vector of chemical potentials. length = Global species,
334 * units = J kmol-1
335 * @param standard If this method is called with @e standard set to true,
336 * then the composition-independent standard chemical
337 * potentials are returned instead of the composition-
338 * dependent chemical potentials.
339 */
340 void getValidChemPotentials(double not_mu, double* mu,
341 bool standard = false) const;
342
343 //! Temperature [K].
344 double temperature() const {
345 return m_temp;
346 }
347
348 //! Equilibrate a MultiPhase object
349 /*!
350 * Set this mixture to chemical equilibrium by calling one of Cantera's
351 * equilibrium solvers. The XY parameter indicates what two thermodynamic
352 * quantities are to be held constant during the equilibration process.
353 *
354 * @param XY String representation of what two properties are being
355 * held constant
356 * @param solver Name of the solver to be used to equilibrate the phase.
357 * If solver = 'vcs', the vcs_MultiPhaseEquil solver will be used. If
358 * solver = 'gibbs', the MultiPhaseEquil solver will be used. If solver
359 * = 'auto', the 'vcs' solver will be tried first, followed by the
360 * 'gibbs' solver if the first one fails.
361 * @param rtol Relative tolerance
362 * @param max_steps Maximum number of steps to take to find the solution
363 * @param max_iter The maximum number of outer temperature or pressure
364 * iterations to take when T and/or P is not held fixed.
365 * @param estimate_equil integer indicating whether the solver should
366 * estimate its own initial condition. If 0, the initial mole fraction
367 * vector in the ThermoPhase object is used as the initial condition.
368 * If 1, the initial mole fraction vector is used if the element
369 * abundances are satisfied. If -1, the initial mole fraction vector is
370 * thrown out, and an estimate is formulated.
371 * @param log_level loglevel Controls amount of diagnostic output.
372 * log_level=0 suppresses diagnostics, and increasingly-verbose
373 * messages are written as loglevel increases.
374 *
375 * @ingroup equilGroup
376 */
377 void equilibrate(const string& XY, const string& solver="auto",
378 double rtol=1e-9, int max_steps=50000, int max_iter=100,
379 int estimate_equil=0, int log_level=0);
380
381 //! Set the temperature [K].
382 /*!
383 * @param T value of the temperature (Kelvin)
384 */
385 void setTemperature(const double T);
386
387 //! Set the state of the underlying ThermoPhase objects in one call
388 /*!
389 * @param T Temperature of the system (kelvin)
390 * @param Pres pressure of the system (pascal)
391 */
392 void setState_TP(const double T, const double Pres);
393
394 //! Set the state of the underlying ThermoPhase objects in one call
395 /*!
396 * @param T Temperature of the system (kelvin)
397 * @param Pres pressure of the system (pascal)
398 * @param Moles Vector of mole numbers of all the species in all the phases
399 * (kmol)
400 */
401 void setState_TPMoles(const double T, const double Pres, const double* Moles);
402
403 //! Pressure [Pa].
404 double pressure() const {
405 return m_press;
406 }
407
408 //! The total mixture volume [m^3].
409 /*!
410 * Returns the cumulative sum of the volumes of all the phases in the
411 * mixture.
412 */
413 double volume() const;
414
415 //! Set the pressure [Pa].
416 /*!
417 * @param P Set the pressure in the MultiPhase object (Pa)
418 */
419 void setPressure(double P) {
420 m_press = P;
421 updatePhases();
422 }
423
424 //! The enthalpy of the mixture [J].
425 double enthalpy() const;
426
427 //! The internal energy of the mixture [J].
428 double IntEnergy() const;
429
430 //! The entropy of the mixture [J/K].
431 double entropy() const;
432
433 //! The Gibbs function of the mixture [J].
434 double gibbs() const;
435
436 //! Heat capacity at constant pressure [J/K]. Note that this does not
437 //! account for changes in composition of the mixture with temperature.
438 double cp() const;
439
440 //! Number of phases.
441 size_t nPhases() const {
442 return m_phase.size();
443 }
444
445 //! Return true is species @e kGlob is a species in a multicomponent
446 //! solution phase.
447 /*!
448 * @param kGlob index of the global species
449 */
450 bool solutionSpecies(size_t kGlob) const;
451
452 //! Returns the phase index of the Kth "global" species
453 /*!
454 * @param kGlob Global species index.
455 * @returns the index of the owning phase.
456 */
457 size_t speciesPhaseIndex(const size_t kGlob) const;
458
459 //! Returns the mole fraction of global species k
460 /*!
461 * @param kGlob Index of the global species.
462 */
463 double moleFraction(const size_t kGlob) const;
464
465 //! Set the Mole fractions of the nth phase
466 /*!
467 * This function sets the mole fractions of the nth phase. Note, the mole
468 * number of the phase stays constant
469 *
470 * @param n index of the phase
471 * @param x Vector of input mole fractions.
472 */
473 void setPhaseMoleFractions(const size_t n, const double* const x);
474
475 //! Set the number of moles of species in the mixture
476 /*!
477 * @param xMap Composition of the species with nonzero mole numbers.
478 * Mole numbers that are less than or equal to zero will be
479 * set to zero. units = kmol.
480 */
481 void setMolesByName(const Composition& xMap);
482
483 //! Set the moles via a string containing their names.
484 /*!
485 * The string x is in the form of a composition map. Species which are not
486 * listed are set to zero.
487 *
488 * @param x string x in the form of a composition map
489 * where values are the moles of the species.
490 */
491 void setMolesByName(const string& x);
492
493 //! Get the mole numbers of all species in the multiphase object
494 /*!
495 * @param[out] molNum Vector of doubles of length nSpecies() containing the
496 * global mole numbers (kmol).
497 */
498 void getMoles(double* molNum) const;
499
500 //! Sets all of the global species mole numbers
501 /*!
502 * The state of each phase object is also updated to have the specified
503 * composition and the mixture temperature and pressure.
504 *
505 * @param n Vector of doubles of length nSpecies() containing the global
506 * mole numbers (kmol).
507 */
508 void setMoles(const double* n);
509
510 //! Adds moles of a certain species to the mixture
511 /*!
512 * @param indexS Index of the species in the MultiPhase object
513 * @param addedMoles Value of the moles that are added to the species.
514 */
515 void addSpeciesMoles(const int indexS, const double addedMoles);
516
517 //! Retrieves a vector of element abundances
518 /*!
519 * @param elemAbundances Vector of element abundances
520 * Length = number of elements in the MultiPhase object.
521 * Index is the global element index. Units is in kmol.
522 */
523 void getElemAbundances(double* elemAbundances) const;
524
525 //! Return true if the phase @e p has valid thermo data for the current
526 //! temperature.
527 /*!
528 * @param p Index of the phase.
529 */
530 bool tempOK(size_t p) const;
531
532 // These methods are meant for internal use.
533
534 //! Update the locally-stored composition within this object to match the
535 //! current compositions of the phase objects.
536 /*!
537 * Query the underlying ThermoPhase objects for their mole fractions and
538 * fill in the mole fraction vector of this current object. Adjust element
539 * compositions within this object to match.
540 *
541 * This is an upload operation in the sense that we are taking downstream
542 * information (ThermoPhase object info) and applying it to an upstream
543 * object (MultiPhase object).
544 */
546
547 //! Set the states of the phase objects to the locally-stored
548 //! state within this MultiPhase object.
549 /*!
550 * This method sets each phase to the mixture temperature and pressure,
551 * and sets the phase mole fractions based on the mixture mole numbers.
552 *
553 * This is an download operation in the sense that we are taking upstream
554 * object information (MultiPhase object) and applying it to downstream
555 * objects (ThermoPhase object information)
556 *
557 * Therefore, the term, "update", is appropriate for a downstream operation.
558 */
559 void updatePhases() const;
560
561private:
562 //! Calculate the element abundance vector
563 void calcElemAbundances() const;
564
565 //! Set the mixture to a state of chemical equilibrium using the
566 //! MultiPhaseEquil solver.
567 /*!
568 * @param XY Integer flag specifying properties to hold fixed.
569 * @param err Error tolerance for @f$ \Delta \mu/RT @f$ for all reactions.
570 * Also used as the relative error tolerance for the outer loop.
571 * @param maxsteps Maximum number of steps to take in solving the fixed TP
572 * problem.
573 * @param maxiter Maximum number of "outer" iterations for problems holding
574 * fixed something other than (T,P).
575 * @param loglevel Level of diagnostic output
576 */
577 double equilibrate_MultiPhaseEquil(int XY, double err, int maxsteps,
578 int maxiter, int loglevel);
579
580 //! Vector of the number of moles in each phase.
581 /*!
582 * Length = m_np, number of phases.
583 */
584 vector<double> m_moles;
585
586 //! Vector of the ThermoPhase pointers.
587 vector<ThermoPhase*> m_phase;
588
589 //! Vector of shared ThermoPhase pointers.
590 //! Contains valid phase entries if added by addPhase(shared_ptr<ThermoPhase>) and
591 //! null pointers if a phase is added via addPhase(ThermoPhase*).
592 vector<shared_ptr<ThermoPhase>> m_sharedPhase;
593
594 //! Global Stoichiometric Coefficient array
595 /*!
596 * This is a two dimensional array m_atoms(m, k). The first index is the
597 * global element index. The second index, k, is the global species index.
598 * The value is the number of atoms of type m in species k.
599 */
601
602 //! Locally stored vector of mole fractions of all species comprising the
603 //! MultiPhase object.
604 vector<double> m_moleFractions;
605
606 //! Mapping between the global species number and the phase ID
607 /*!
608 * m_spphase[kGlobal] = iPhase
609 * Length = number of global species
610 */
611 vector<size_t> m_spphase;
612
613 //! Vector of ints containing of first species index in the global list of
614 //! species for each phase
615 /*!
616 * kfirst = m_spstart[ip], kfirst is the index of the first species in
617 * the ip'th phase.
618 */
619 vector<size_t> m_spstart;
620
621 //! String names of the global elements. This has a length equal to the
622 //! number of global elements.
623 vector<string> m_enames;
624
625 //! Atomic number of each global element.
626 vector<int> m_atomicNumber;
627
628 //! Vector of species names in the problem. Vector is over all species
629 //! defined in the object, the global species index.
630 vector<string> m_snames;
631
632 //! Returns the global element index, given the element string name
633 /*!
634 * -> used in the construction. However, wonder if it needs to be global.
635 */
636 map<string, size_t> m_enamemap;
637
638 //! Current value of the temperature (kelvin)
639 double m_temp = 298.15;
640
641 //! Current value of the pressure (Pa)
642 double m_press = OneBar;
643
644 //! Number of distinct elements in all of the phases
645 size_t m_nel = 0;
646
647 //! Number of distinct species in all of the phases
648 size_t m_nsp = 0;
649
650 //! True if the init() routine has been called, and the MultiPhase frozen
651 bool m_init = false;
652
653 //! Global ID of the element corresponding to the electronic charge. If
654 //! there is none, then this is equal to -1
655 size_t m_eloc = npos;
656
657 //! Vector of bools indicating whether temperatures are ok for phases.
658 /*!
659 * If the current temperature is outside the range of valid temperatures
660 * for the phase thermodynamics, the phase flag is set to false.
661 */
662 mutable vector<bool> m_temp_OK;
663
664 //! Minimum temperature for which thermo parameterizations are valid.
665 //! Stoichiometric phases are ignored in this determination. units Kelvin
666 double m_Tmin = 1.0;
667
668 //! Minimum temperature for which thermo parameterizations are valid.
669 //! Stoichiometric phases are ignored in this determination. units Kelvin
670 double m_Tmax = 100000.0;
671
672 //! Vector of element abundances
673 /*!
674 * m_elemAbundances[mGlobal] = kmol of element mGlobal summed over all
675 * species in all phases.
676 */
677 mutable vector<double> m_elemAbundances;
678};
679
680//! Function to output a MultiPhase description to a stream
681/*!
682 * Writes out a description of the contents of each phase of the
683 * MultiPhase using the report function.
684 *
685 * @param s ostream
686 * @param x Reference to a MultiPhase
687 * @returns a reference to the ostream
688 */
689std::ostream& operator<<(std::ostream& s, MultiPhase& x);
690
691//! Choose the optimum basis of species for the equilibrium calculations.
692/*!
693 * This is done by choosing the species with the largest mole fraction not
694 * currently a linear combination of the previous components. Then, calculate
695 * the stoichiometric coefficient matrix for that basis.
696 *
697 * Calculates the identity of the component species in the mechanism. Rearranges
698 * the solution data to put the component data at the front of the species list.
699 *
700 * Then, calculates SC(J,I) the formation reactions for all noncomponent
701 * species in the mechanism.
702 *
703 * @param[in] mphase Pointer to the multiphase object. Contains the species
704 * mole fractions, which are used to pick the current optimal species
705 * component basis.
706 * @param[in] orderVectorElements Order vector for the elements. The element
707 * rows in the formula matrix are rearranged according to this vector.
708 * @param[in] orderVectorSpecies Order vector for the species. The species are
709 * rearranged according to this formula. The first nComponents of this
710 * vector contain the calculated species components on exit.
711 * @param[in] doFormRxn If true, the routine calculates the formation
712 * reaction matrix based on the calculated component species. If
713 * false, this step is skipped.
714 * @param[out] usedZeroedSpecies = If true, then a species with a zero
715 * concentration was used as a component. The problem may be converged.
716 * @param[out] formRxnMatrix
717 * @return The number of components.
718 *
719 * @ingroup equilGroup
720 */
721size_t BasisOptimize(int* usedZeroedSpecies, bool doFormRxn,
722 MultiPhase* mphase, vector<size_t>& orderVectorSpecies,
723 vector<size_t>& orderVectorElements,
724 vector<double>& formRxnMatrix);
725
726//! Handles the potential rearrangement of the constraint equations
727//! represented by the Formula Matrix.
728/*!
729 * Rearrangement is only necessary when the number of components is less
730 * than the number of elements. For this case, some constraints can never
731 * be satisfied exactly, because the range space represented by the Formula
732 * Matrix of the components can't span the extra space. These constraints,
733 * which are out of the range space of the component Formula matrix
734 * entries, are migrated to the back of the Formula matrix.
735 *
736 * A prototypical example is an extra element column in FormulaMatrix[], which
737 * is identically zero. For example, let's say that argon is has an element
738 * column in FormulaMatrix[], but no species in the mechanism actually
739 * contains argon. Then, nc < ne. Unless the entry for desired element
740 * abundance vector for Ar is zero, then this element abundance constraint can
741 * never be satisfied. The constraint vector is not in the range space of the
742 * formula matrix.
743 *
744 * Also, without perturbation of FormulaMatrix[], BasisOptimize[] would
745 * produce a zero pivot because the matrix would be singular (unless the argon
746 * element column was already the last column of FormulaMatrix[].
747 *
748 * This routine borrows heavily from BasisOptimize algorithm. It finds nc
749 * constraints which span the range space of the Component Formula matrix, and
750 * assigns them as the first nc components in the formula matrix. This
751 * guarantees that BasisOptimize has a nonsingular matrix to invert.
752 *
753 * @param[in] nComponents Number of components calculated previously.
754 * @param[in] elementAbundances Current value of the element abundances
755 * @param[in] mphase Input pointer to a MultiPhase object
756 * @param[in] orderVectorSpecies input vector containing the ordering of the
757 * global species in mphase. This is used to extract the component
758 * basis of the mphase object.
759 * @param[out] orderVectorElements Output vector containing the order of the
760 * elements that is necessary for calculation of the formula matrix.
761 *
762 * @ingroup equilGroup
763 */
764void ElemRearrange(size_t nComponents, const vector<double>& elementAbundances,
765 MultiPhase* mphase,
766 vector<size_t>& orderVectorSpecies,
767 vector<size_t>& orderVectorElements);
768
769//! External int that is used to turn on debug printing for the
770//! BasisOptimize program.
771/*!
772 * Set this to 1 if you want debug printing from BasisOptimize.
773 */
774extern int BasisOptimize_print_lvl;
775}
776
777#endif
Headers for the DenseMatrix object, which deals with dense rectangular matrices and description of th...
A class for full (non-sparse) matrices with Fortran-compatible data storage, which adds matrix operat...
Definition DenseMatrix.h:55
A class for multiphase mixtures.
Definition MultiPhase.h:62
void init()
Process phases and build atomic composition array.
void checkPhaseIndex(size_t m) const
Check that the specified phase index is in range Throws an exception if m is greater than nPhases()
size_t speciesIndex(size_t k, size_t p) const
Return the global index of the species belonging to phase number p with local index k within the phas...
Definition MultiPhase.h:242
bool solutionSpecies(size_t kGlob) const
Return true is species kGlob is a species in a multicomponent solution phase.
vector< ThermoPhase * > m_phase
Vector of the ThermoPhase pointers.
Definition MultiPhase.h:587
double nAtoms(const size_t kGlob, const size_t mGlob) const
Returns the Number of atoms of global element mGlob in global species kGlob.
void setMolesByName(const Composition &xMap)
Set the number of moles of species in the mixture.
void setMoles(const double *n)
Sets all of the global species mole numbers.
DenseMatrix m_atoms
Global Stoichiometric Coefficient array.
Definition MultiPhase.h:600
double gibbs() const
The Gibbs function of the mixture [J].
void checkSpeciesIndex(size_t k) const
Check that the specified species index is in range.
size_t m_nel
Number of distinct elements in all of the phases.
Definition MultiPhase.h:645
double speciesMoles(size_t kGlob) const
Returns the moles of global species k. units = kmol.
void getValidChemPotentials(double not_mu, double *mu, bool standard=false) const
Returns a vector of Valid chemical potentials.
double m_temp
Current value of the temperature (kelvin)
Definition MultiPhase.h:639
void calcElemAbundances() const
Calculate the element abundance vector.
size_t nSpecies() const
Number of species, summed over all phases.
Definition MultiPhase.h:139
double enthalpy() const
The enthalpy of the mixture [J].
double pressure() const
Pressure [Pa].
Definition MultiPhase.h:404
vector< size_t > m_spstart
Vector of ints containing of first species index in the global list of species for each phase.
Definition MultiPhase.h:619
vector< size_t > m_spphase
Mapping between the global species number and the phase ID.
Definition MultiPhase.h:611
void getMoles(double *molNum) const
Get the mole numbers of all species in the multiphase object.
double minTemp() const
Minimum temperature for which all solution phases have valid thermo data.
Definition MultiPhase.h:262
vector< double > m_moleFractions
Locally stored vector of mole fractions of all species comprising the MultiPhase object.
Definition MultiPhase.h:604
vector< double > m_elemAbundances
Vector of element abundances.
Definition MultiPhase.h:677
double equilibrate_MultiPhaseEquil(int XY, double err, int maxsteps, int maxiter, int loglevel)
Set the mixture to a state of chemical equilibrium using the MultiPhaseEquil solver.
void checkPhaseArraySize(size_t mm) const
Check that an array size is at least nPhases() Throws an exception if mm is less than nPhases().
vector< bool > m_temp_OK
Vector of bools indicating whether temperatures are ok for phases.
Definition MultiPhase.h:662
double phaseCharge(size_t p) const
Charge (Coulombs) of phase with index p.
int phaseIndex(const string &pName) const
Returns the index, given the phase name.
size_t nPhases() const
Number of phases.
Definition MultiPhase.h:441
size_t m_eloc
Global ID of the element corresponding to the electronic charge.
Definition MultiPhase.h:655
double entropy() const
The entropy of the mixture [J/K].
double temperature() const
Temperature [K].
Definition MultiPhase.h:344
void getChemPotentials(double *mu) const
Returns a vector of Chemical potentials.
double moleFraction(const size_t kGlob) const
Returns the mole fraction of global species k.
double m_press
Current value of the pressure (Pa)
Definition MultiPhase.h:642
bool tempOK(size_t p) const
Return true if the phase p has valid thermo data for the current temperature.
void addPhases(vector< ThermoPhase * > &phases, const vector< double > &phaseMoles)
Add a vector of phases to the mixture.
map< string, size_t > m_enamemap
Returns the global element index, given the element string name.
Definition MultiPhase.h:636
vector< shared_ptr< ThermoPhase > > m_sharedPhase
Vector of shared ThermoPhase pointers.
Definition MultiPhase.h:592
void addSpeciesMoles(const int indexS, const double addedMoles)
Adds moles of a certain species to the mixture.
size_t elementIndex(const string &name) const
Returns the index of the element with name name.
void checkElementArraySize(size_t mm) const
Check that an array size is at least nElements().
size_t speciesPhaseIndex(const size_t kGlob) const
Returns the phase index of the Kth "global" species.
void setPressure(double P)
Set the pressure [Pa].
Definition MultiPhase.h:419
void setState_TPMoles(const double T, const double Pres, const double *Moles)
Set the state of the underlying ThermoPhase objects in one call.
vector< string > m_enames
String names of the global elements.
Definition MultiPhase.h:623
string speciesName(const size_t kGlob) const
Name of species with global index kGlob.
void addPhase(shared_ptr< ThermoPhase > p, double moles)
Add a phase to the mixture.
double phaseMoles(const size_t n) const
Return the number of moles in phase n.
MultiPhase()=default
Constructor.
void getMoleFractions(double *const x) const
Returns the global Species mole fractions.
size_t m_nsp
Number of distinct species in all of the phases.
Definition MultiPhase.h:648
void setPhaseMoleFractions(const size_t n, const double *const x)
Set the Mole fractions of the nth phase.
vector< int > m_atomicNumber
Atomic number of each global element.
Definition MultiPhase.h:626
double volume() const
The total mixture volume [m^3].
void uploadMoleFractionsFromPhases()
Update the locally-stored composition within this object to match the current compositions of the pha...
bool m_init
True if the init() routine has been called, and the MultiPhase frozen.
Definition MultiPhase.h:651
vector< string > m_snames
Vector of species names in the problem.
Definition MultiPhase.h:630
double m_Tmin
Minimum temperature for which thermo parameterizations are valid.
Definition MultiPhase.h:666
void updatePhases() const
Set the states of the phase objects to the locally-stored state within this MultiPhase object.
void getElemAbundances(double *elemAbundances) const
Retrieves a vector of element abundances.
void checkSpeciesArraySize(size_t kk) const
Check that an array size is at least nSpecies().
size_t nElements() const
Number of elements.
Definition MultiPhase.h:113
double charge() const
Total charge summed over all phases (Coulombs).
string phaseName(const size_t iph) const
Returns the name of the n'th phase.
double cp() const
Heat capacity at constant pressure [J/K].
void setTemperature(const double T)
Set the temperature [K].
void setState_TP(const double T, const double Pres)
Set the state of the underlying ThermoPhase objects in one call.
void checkElementIndex(size_t m) const
Check that the specified element index is in range.
ThermoPhase & phase(size_t n)
Return a reference to phase n.
double maxTemp() const
Maximum temperature for which all solution phases have valid thermo data.
Definition MultiPhase.h:269
double IntEnergy() const
The internal energy of the mixture [J].
string elementName(size_t m) const
Returns the name of the global element m.
vector< double > m_moles
Vector of the number of moles in each phase.
Definition MultiPhase.h:584
void setPhaseMoles(const size_t n, const double moles)
Set the number of moles of phase with index n.
double elementMoles(size_t m) const
Total moles of global element m, summed over all phases.
double m_Tmax
Minimum temperature for which thermo parameterizations are valid.
Definition MultiPhase.h:670
virtual ~MultiPhase()
Destructor.
Base class for a phase with thermodynamic properties.
void equilibrate(const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
Equilibrate a MultiPhase object.
void ElemRearrange(size_t nComponents, const vector< double > &elementAbundances, MultiPhase *mphase, vector< size_t > &orderVectorSpecies, vector< size_t > &orderVectorElements)
Handles the potential rearrangement of the constraint equations represented by the Formula Matrix.
size_t BasisOptimize(int *usedZeroedSpecies, bool doFormRxn, MultiPhase *mphase, vector< size_t > &orderVectorSpecies, vector< size_t > &orderVectorElements, vector< double > &formRxnMatrix)
Choose the optimum basis of species for the equilibrium calculations.
const double OneBar
One bar [Pa].
Definition ct_defs.h:99
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
int BasisOptimize_print_lvl
External int that is used to turn on debug printing for the BasisOptimize program.
std::ostream & operator<<(std::ostream &s, const Array2D &m)
Output the current contents of the Array2D object.
Definition Array.cpp:100
map< string, double > Composition
Map from string names to doubles.
Definition ct_defs.h:177