25ReactorNet::ReactorNet()
30ReactorNet::ReactorNet(shared_ptr<ReactorBase> reactor)
36ReactorNet::ReactorNet(vector<shared_ptr<ReactorBase>>& reactors)
39 for (
auto&
reactor : reactors) {
44ReactorNet::~ReactorNet()
92 throw CanteraError(
"ReactorNet::time",
"Time is not the independent variable"
93 " for this reactor network.");
101 throw CanteraError(
"ReactorNet::distance",
"Distance is not the independent"
102 " variable for this reactor network.");
109 debuglog(
"Initializing reactor network.\n", m_verbose);
110 if (m_reactors.empty()) {
112 "no reactors in network!");
115 map<Solution*, vector<string>> solutions;
117 set<ReactorBase*> surfaces;
119 for (
size_t n = 0; n < m_reactors.size(); n++) {
121 shared_ptr<Solution> bulk = r.
contents4();
128 writelog(
"Reactor {:d}: {:d} variables.\n", n, nv);
131 if (r.
type() ==
"FlowReactor" && m_reactors.size() > 1) {
133 "FlowReactors must be used alone.");
135 solutions[bulk.get()].push_back(r.
name());
136 for (
size_t i = 0; i < r.
nSurfs(); i++) {
139 "Bulk phase '{}' used by interface '{}' must be the same object\n"
140 "as the contents of the adjacent reactor '{}'.",
146 for (
auto surf : surfaces) {
147 solutions[surf->contents4().get()].push_back(surf->name());
149 for (
auto& [soln, reactors] : solutions) {
150 if (reactors.size() > 1) {
152 for (
size_t i = 0; i < reactors.size() - 1; i++) {
153 shared += fmt::format(
"'{}', ", reactors[i]);
155 shared += fmt::format(
"'{}'", reactors.back());
156 warn_user(
"ReactorNet::initialize",
"The following reactors / reactor"
157 " surfaces are using the same Solution object: {}. Use independent"
158 " Solution objects or set the 'clone' argument to 'true' when creating"
159 " the Reactor or ReactorSurface objects. Shared Solution objects within"
160 " a single ReactorNet will be an error after Cantera 3.2.", shared);
164 m_ydot.resize(m_nv,0.0);
165 m_yest.resize(m_nv,0.0);
166 m_advancelimits.resize(m_nv,-1.0);
167 m_atol.resize(
neq());
168 fill(m_atol.begin(), m_atol.end(), m_atols);
169 m_integ->setTolerances(m_rtol,
neq(), m_atol.data());
170 m_integ->setSensitivityTolerances(m_rtolsens, m_atolsens);
171 if (!m_linearSolverType.empty()) {
172 m_integ->setLinearSolverType(m_linearSolverType);
175 m_integ->setPreconditioner(m_precon);
177 m_integ->initialize(
m_time, *
this);
182 if (m_integ->preconditionerSide() != PreconditionerSide::NO_PRECONDITION) {
192 debuglog(
"Re-initializing reactor network.\n", m_verbose);
193 m_integ->reinitialize(
m_time, *
this);
194 if (m_integ->preconditionerSide() != PreconditionerSide::NO_PRECONDITION) {
205 m_linearSolverType = linSolverType;
211 m_precon = preconditioner;
232 m_integ->integrate(
time);
265 double t =
time, delta;
266 double* y = m_integ->solution();
270 bool exceeded =
false;
272 for (
size_t j = 0; j < m_nv; j++) {
273 delta = abs(m_yest[j] - y[j]);
274 if ( (m_advancelimits[j] > 0.) && ( delta > m_advancelimits[j]) ) {
277 writelog(
" Limiting global state vector component {:d} (dt = {:9.4g}):"
278 "{:11.6g} > {:9.4g}\n",
279 j, t -
m_time, delta, m_advancelimits[j]);
311 vector<double> y(
neq());
315 solver.
solve(loglevel);
327 vector<double> y0(
neq());
328 vector<double> y1(
neq());
335 return std::dynamic_pointer_cast<EigenSparseJacobian>(solver.
linearSolver())->jacobian();
344 double* cvode_dky = m_integ->solution();
345 for (
size_t j = 0; j < m_nv; j++) {
346 yest[j] = cvode_dky[j];
352 for (
int n = 1; n <= k; n++) {
353 factor *= deltat / n;
354 cvode_dky = m_integ->derivative(
m_time, n);
355 for (
size_t j = 0; j < m_nv; j++) {
356 yest[j] += factor * cvode_dky[j];
364 return m_integ->lastOrder();
373 "To be removed after Cantera 3.2. Replaceable by reactor net "
374 "instantiation with contents.");
375 for (
auto current : m_reactors) {
376 if (current->isOde() != r.
isOde()) {
378 "Cannot mix Reactor types using both ODEs and DAEs ({} and {})",
379 current->type(), r.
type());
383 "Cannot mix Reactor types using time and space as independent variables"
384 "\n({} and {})", current->type(), r.
type());
389 m_reactors.push_back(&r);
395 m_integ->setLinearSolverType(
"DENSE");
402 auto r = std::dynamic_pointer_cast<Reactor>(
reactor);
405 "Reactor with type '{}' cannot be added to network.",
409 for (
auto current : m_reactors) {
410 if (current->isOde() != r->isOde()) {
412 "Cannot mix Reactor types using both ODEs and DAEs ({} and {})",
413 current->type(), r->type());
415 if (current->timeIsIndependent() != r->timeIsIndependent()) {
417 "Cannot mix Reactor types using time and space as independent variables"
418 "\n({} and {})", current->type(), r->type());
423 m_reactors.push_back(r.get());
429 m_integ->setLinearSolverType(
"DENSE");
439 for (
size_t i=0; i<r.
nWalls(); i++) {
442 if (w.left().type() ==
"Reservoir") {
445 if (w.right().type() ==
"Reservoir") {
450 for (
size_t i=0; i<r.
nInlets(); i++) {
451 auto& in = r.
inlet(i);
453 if (in.in().type() ==
"Reservoir") {
458 for (
size_t i=0; i<r.
nOutlets(); i++) {
461 if (out.out().type() ==
"Reservoir") {
466 for (
size_t i=0; i<r.
nSurfs(); i++) {
472 if (m_integ ==
nullptr) {
474 "Integrator has not been instantiated. Add one or more reactors first.");
483 m_LHS.assign(m_nv, 1);
484 m_RHS.assign(m_nv, 0);
485 for (
size_t n = 0; n < m_reactors.size(); n++) {
486 m_reactors[n]->applySensitivity(p);
489 if (n == m_reactors.size() - 1) {
494 for (
size_t i =
m_start[n]; i < yEnd; i++) {
495 ydot[i] = m_RHS[i] /
m_LHS[i];
497 m_reactors[n]->resetSensitivity(p);
506 for (
size_t n = 0; n < m_reactors.size(); n++) {
507 m_reactors[n]->applySensitivity(p);
508 m_reactors[n]->evalDae(t, y, ydot, residual);
509 m_reactors[n]->resetSensitivity(p);
516 for (
size_t n = 0; n < m_reactors.size(); n++) {
517 m_reactors[n]->getConstraints(constraints +
m_start[n]);
530 double denom = m_integ->solution(k);
534 return m_integ->sensitivity(k, p) / denom;
541 for (
size_t n = 0; n < m_nv; n++) {
544 double dy = m_atol[n] + fabs(ysave)*m_rtol;
549 eval(t, y, m_ydot.data(), p);
552 for (
size_t m = 0; m < m_nv; m++) {
553 j->
value(m,n) = (m_ydot[m] - ydot[m])/dy;
562 for (
size_t n = 0; n < m_reactors.size(); n++) {
563 m_reactors[n]->updateState(y +
m_start[n]);
572 double* cvode_dky = m_integ->derivative(
m_time, k);
573 for (
size_t j = 0; j < m_nv; j++) {
574 dky[j] = cvode_dky[j];
583 for (
size_t n = 0; n < m_reactors.size(); n++) {
584 m_reactors[n]->setAdvanceLimits(limits +
m_start[n]);
590 bool has_limit =
false;
591 for (
size_t n = 0; n < m_reactors.size(); n++) {
592 has_limit |= m_reactors[n]->hasAdvanceLimits();
599 bool has_limit =
false;
600 for (
size_t n = 0; n < m_reactors.size(); n++) {
601 has_limit |= m_reactors[n]->getAdvanceLimits(limits +
m_start[n]);
608 for (
size_t n = 0; n < m_reactors.size(); n++) {
609 m_reactors[n]->getState(y +
m_start[n]);
615 for (
size_t n = 0; n < m_reactors.size(); n++) {
630 for (
auto r : m_reactors) {
632 return r->name() +
": " + r->componentName(i);
637 throw CanteraError(
"ReactorNet::componentName",
"Index out of bounds");
643 for (
auto r : m_reactors) {
645 return r->upperBound(i);
650 throw CanteraError(
"ReactorNet::upperBound",
"Index {} out of bounds", i0);
656 for (
auto r : m_reactors) {
658 return r->lowerBound(i);
663 throw CanteraError(
"ReactorNet::lowerBound",
"Index {} out of bounds", i0);
668 for (
auto r : m_reactors) {
669 r->resetBadValues(y +
m_start[i++]);
674 const string& name,
double value,
double scale)
677 throw CanteraError(
"ReactorNet::registerSensitivityParameter",
678 "Sensitivity parameters cannot be added after the"
679 "integrator has been initialized.");
690 for (
size_t i = 0; i < m_reactors.size(); i++) {
691 m_reactors[i]->setDerivativeSettings(settings);
698 return m_integ->solverStats();
707 return m_integ->linearSolverType();
717 "Must only be called after ReactorNet is initialized.");
719 m_integ->preconditionerSolve(m_nv, rhs, output);
727 auto precon = m_integ->preconditioner();
731 precon->setGamma(gamma);
733 vector<double> yCopy(m_nv);
737 precon->stateAdjustment(yCopy);
741 for (
size_t i = 0; i < m_reactors.size(); i++) {
742 Eigen::SparseMatrix<double> rJac = m_reactors[i]->jacobian();
743 for (
int k=0; k<rJac.outerSize(); ++k) {
744 for (Eigen::SparseMatrix<double>::InnerIterator it(rJac, k); it; ++it) {
751 precon->updatePreconditioner();
758 "Must only be called after ReactorNet is initialized.");
760 auto precon = m_integ->preconditioner();
761 precon->setGamma(gamma);
762 precon->updatePreconditioner();
767 for (
auto reactor : m_reactors) {
769 throw CanteraError(
"ReactorNet::checkPreconditionerSupported",
770 "Preconditioning is only supported for type *MoleReactor,\n"
771 "Reactor type given: '{}'.",
777SteadyReactorSolver::SteadyReactorSolver(
ReactorNet* net,
double* x0)
780 m_size = m_net->neq();
783 m_initialState.assign(x0, x0 + m_size);
785 m_mask.assign(m_size, 1);
787 for (
size_t i = 0; i < net->nReactors(); i++) {
789 for (
auto& m : R.steadyConstraints()) {
790 m_algebraic.push_back(start + m);
794 for (
auto& n : m_algebraic) {
804 vector<double> xv(x, x +
size());
805 m_net->
eval(0.0, x, r,
nullptr);
806 for (
size_t i = 0; i <
size(); i++) {
824 clock_t t0 = clock();
826 m_work2.resize(
size());
828 for (
size_t j = 0; j <
size(); j++) {
830 double xsave = x0[j];
836 double rdx = 1.0 / (x0[j] - xsave);
839 eval(x0, m_work2.data(), 0.0, 0);
842 for (
size_t i = 0; i <
size(); i++) {
843 double delta = m_work2[i] -
m_work1[i];
845 m_jac->setValue(i, j, delta * rdx);
851 m_jac->updateElapsed(
double(clock() - t0) / CLOCKS_PER_SEC);
852 m_jac->incrementEvals();
859 const double* x =
m_state->data();
860 for (
size_t i = 0; i <
size(); i++) {
861 double ewt = m_net->
rtol()*x[i] + m_net->
atol();
862 double f = step[i] / ewt;
865 return sqrt(sum /
size());
889 const string& message,
int loglevel,
int attempt_counter)
891 if (loglevel >= 6 && !
m_state->empty()) {
893 writelog(
"Current state ({}):\n[", header_suffix);
894 for (
size_t i = 0; i < state.size() - 1; i++) {
899 if (loglevel >= 7 && !
m_xnew.empty()) {
900 writelog(
"Current residual ({}):\n[", header_suffix);
901 for (
size_t i = 0; i <
m_xnew.size() - 1; i++) {
908shared_ptr<ReactorNet>
newReactorNet(vector<shared_ptr<ReactorBase>>& reactors)
910 return make_shared<ReactorNet>(reactors);
Header file for class Cantera::Array2D.
Header file for class ReactorSurface.
Header file for base class WallBase.
A map of string keys to values whose type can vary at runtime.
A class for 2D arrays stored in column-major (Fortran-compatible) form.
double & value(size_t i, size_t j)
Returns a changeable reference to position in the matrix.
Base class for exceptions thrown by Cantera classes.
void setDefaultName(map< string, int > &counts)
Set the default name of a connector. Returns false if it was previously set.
vector< double > m_paramScales
Scaling factors for each sensitivity parameter.
bool suppressErrors() const
Get current state of error suppression.
vector< double > m_sens_params
Values for the problem parameters for which sensitivities are computed This is the array which is per...
An array index is out of range.
Abstract base class for ODE system integrators.
virtual void setMaxStepSize(double hmax)
Set the maximum step size.
virtual void setMaxSteps(int nmax)
Set the maximum number of time-steps the integrator can take before reaching the next output time.
virtual int maxSteps()
Returns the maximum number of time-steps the integrator can take before reaching the next output time...
virtual void setMaxErrTestFails(int n)
Set the maximum permissible number of error test failures.
FlowDevice & outlet(size_t n=0)
Return a reference to the n-th outlet FlowDevice connected to this reactor.
size_t nWalls()
Return the number of Wall objects connected to this reactor.
WallBase & wall(size_t n)
Return a reference to the n-th Wall connected to this reactor.
void setNetwork(ReactorNet *net)
Set the ReactorNet that this reactor belongs to.
bool setDefaultName(map< string, int > &counts)
Set the default name of a reactor. Returns false if it was previously set.
virtual size_t nSurfs() const
Return the number of surfaces in a reactor.
FlowDevice & inlet(size_t n=0)
Return a reference to the n-th inlet FlowDevice connected to this reactor.
shared_ptr< Solution > contents4()
Access the Solution object used to represent the contents of this reactor.
size_t nOutlets()
Return the number of outlet FlowDevice objects connected to this reactor.
size_t nInlets()
Return the number of inlet FlowDevice objects connected to this reactor.
ReactorSurface * surface(size_t n)
Return a reference to the n-th ReactorSurface connected to this reactor.
string name() const
Return the name of this reactor.
A class representing a network of connected reactors.
void setLinearSolverType(const string &linSolverType="DENSE")
Set the type of linear solver used in the integration.
void preconditionerSetup(double t, double *y, double gamma) override
Evaluate the setup processes for the Jacobian preconditioner.
double step()
Advance the state of all reactors with respect to the independent variable (time or space).
virtual int lastOrder() const
Returns the order used for last solution step of the ODE integrator The function is intended for inte...
void eval(double t, double *y, double *ydot, double *p) override
Evaluate the right-hand-side ODE function.
void initialize()
Initialize the reactor network.
void advance(double t)
Advance the state of all reactors in the independent variable (time or space).
size_t neq() const override
Number of equations.
vector< size_t > m_start
m_start[n] is the starting point in the state vector for reactor n
vector< double > m_LHS
m_LHS is a vector representing the coefficients on the "left hand side" of each governing equation
double m_initial_time
The initial value of the independent variable in the system.
void evalJacobian(double t, double *y, double *ydot, double *p, Array2D *j)
Evaluate the Jacobian matrix for the reactor network.
double time()
Current value of the simulation time [s], for reactor networks that are solved in the time domain.
void getConstraints(double *constraints) override
Given a vector of length neq(), mark which variables should be considered algebraic constraints.
double m_time
The independent variable in the system.
AnyMap solverStats() const
Get solver stats from integrator.
Reactor & reactor(int n)
Return a reference to the n-th reactor in this network.
map< string, int > m_counts
Map used for default name generation.
double upperBound(size_t i) const
Get the upper bound on the i-th component of the global state vector.
virtual void setMaxSteps(int nmax)
Set the maximum number of internal integration steps the integrator will take before reaching the nex...
string componentName(size_t i) const
Return the name of the i-th component of the global state vector.
void addReactor(Reactor &r)
Add the reactor r to this reactor network.
void getStateDae(double *y, double *ydot) override
Fill in the vectors y and ydot with the current state of the system.
void setInitialTime(double time)
Set the initial value of the independent variable (typically time).
virtual void getDerivative(int k, double *dky)
Return k-th derivative at the current state of the system.
void setMaxErrTestFails(int nmax)
Set the maximum number of error test failures permitted by the CVODES integrator in a single step.
size_t registerSensitivityParameter(const string &name, double value, double scale)
Used by Reactor and Wall objects to register the addition of sensitivity parameters so that the React...
double m_maxstep
Maximum integrator internal timestep. Default of 0.0 means infinity.
double distance()
Current position [m] along the length of the reactor network, for reactors that are solved as a funct...
void setSensitivityTolerances(double rtol, double atol)
Set the relative and absolute tolerances for integrating the sensitivity equations.
int maxSteps()
Returns the maximum number of internal integration steps the integrator will take before reaching the...
virtual void setDerivativeSettings(AnyMap &settings)
Set derivative settings of all reactors.
double sensitivity(size_t k, size_t p)
Return the sensitivity of the k-th solution component with respect to the p-th sensitivity parameter.
void updateNames(Reactor &r)
Create reproducible names for reactors and walls/connectors.
void updateState(double *y)
Update the state of all the reactors in the network to correspond to the values in the solution vecto...
void getState(double *y) override
Fill in the vector y with the current state of the system.
void setAdvanceLimits(const double *limits)
Set absolute step size limits during advance.
double rtol()
Relative tolerance.
size_t globalComponentIndex(const string &component, size_t reactor=0)
Return the index corresponding to the component named component in the reactor with index reactor in ...
void solveSteady(int loglevel=0)
Solve directly for the steady-state solution.
bool m_timeIsIndependent
Indicates whether time or space is the independent variable.
double atol()
Absolute integration tolerance.
bool hasAdvanceLimits() const
Check whether ReactorNet object uses advance limits.
void setMaxTimeStep(double maxstep)
Set the maximum integrator step.
double lowerBound(size_t i) const
Get the lower bound on the i-th component of the global state vector.
void evalDae(double t, double *y, double *ydot, double *p, double *residual) override
eval coupling for IDA / DAEs
virtual void checkPreconditionerSupported() const
Check that preconditioning is supported by all reactors in the network.
bool m_integrator_init
True if integrator initialization is current.
void reinitialize()
Reinitialize the integrator.
Integrator & integrator()
Return a reference to the integrator.
bool getAdvanceLimits(double *limits) const
Retrieve absolute step size limits during advance.
Eigen::SparseMatrix< double > steadyJacobian(double rdt=0.0)
Get the Jacobian used by the steady-state solver.
string linearSolverType() const
Problem type of integrator.
void updatePreconditioner(double gamma) override
Update the preconditioner based on already computed jacobian values.
void setPreconditioner(shared_ptr< SystemJacobian > preconditioner)
Set preconditioner used by the linear solver.
void preconditionerSolve(double *rhs, double *output) override
Evaluate the linear system Ax=b where A is the preconditioner.
vector< string > m_paramNames
Names corresponding to each sensitivity parameter.
void resetBadValues(double *y)
Reset physically or mathematically problematic values, such as negative species concentrations.
void setTolerances(double rtol, double atol)
Set the relative and absolute tolerances for the integrator.
virtual void getEstimate(double time, int k, double *yest)
Estimate a future state based on current derivatives.
Class Reactor is a general-purpose class for stirred reactors.
size_t neq()
Number of equations (state variables) for this reactor.
size_t nSensParams() const override
Number of sensitivity parameters associated with this reactor.
string type() const override
String indicating the reactor model implemented.
void initialize(double t0=0.0) override
Initialize the reactor.
virtual bool preconditionerSupported() const
Return a false if preconditioning is not supported or true otherwise.
virtual bool isOde() const
Indicate whether the governing equations for this reactor type are a system of ODEs or DAEs.
virtual bool timeIsIndependent() const
Indicates whether the governing equations for this reactor are functions of time or a spatial variabl...
Adapter class to enable using the SteadyStateSystem solver with ReactorNet.
double weightedNorm(const double *step) const override
Compute the weighted norm of step.
vector< double > m_initialState
Initial value of each state variable.
string componentName(size_t i) const override
Get the name of the i-th component of the state vector.
double upperBound(size_t i) const override
Get the upper bound for global component i in the state vector.
vector< size_t > m_algebraic
Indices of variables that are held constant in the time-stepping mode of the steady-state solver.
void evalJacobian(double *x0) override
Evaluates the Jacobian at x0 using finite differences.
void resetBadValues(double *x) override
Reset values such as negative species concentrations.
void writeDebugInfo(const string &header_suffix, const string &message, int loglevel, int attempt_counter) override
Write solver debugging based on the specified log level.
void eval(double *x, double *r, double rdt=-1.0, int count=1) override
Evaluate the residual function.
void initTimeInteg(double dt, double *x) override
Prepare for time stepping beginning with solution x and timestep dt.
double lowerBound(size_t i) const override
Get the lower bound for global component i in the state vector.
int solve(double *x0, double *x1, int loglevel)
Solve , where is the residual function.
virtual void resize()
Call to set the size of internal data structures after first defining the system or if the problem si...
shared_ptr< SystemJacobian > linearSolver() const
Get the the linear solver being used to hold the Jacobian matrix and solve linear systems as part of ...
vector< double > m_xnew
Work array used to hold the residual or the new solution.
double m_jacobianAbsPerturb
Absolute perturbation of each component in finite difference Jacobian.
size_t size() const
Total solution vector length;.
vector< int > & transientMask()
Access the vector indicating which equations contain a transient term.
double rdt() const
Reciprocal of the time step.
virtual void initTimeInteg(double dt, double *x)
Prepare for time stepping beginning with solution x and timestep dt.
double m_rdt
Reciprocal of time step.
double m_jacobianThreshold
Threshold for ignoring small elements in Jacobian.
shared_ptr< SystemJacobian > m_jac
Jacobian evaluator.
shared_ptr< vector< double > > m_state
Solution vector.
void setMaxTimeStepCount(int nmax)
Set the maximum number of timeteps allowed before successful steady-state solve.
void getState(double *x) const
Get the converged steady-state solution after calling solve().
double m_jacobianRelPerturb
Relative perturbation of each component in finite difference Jacobian.
vector< double > m_work1
Work arrays used during Jacobian evaluation.
void debuglog(const string &msg, int loglevel)
Write a message to the log only if loglevel > 0.
void writelog(const string &fmt, const Args &... args)
Write a formatted message to the screen.
void scale(InputIter begin, InputIter end, OutputIter out, S scale_factor)
Multiply elements of an array by a scale factor.
Integrator * newIntegrator(const string &itype)
Create new Integrator object.
void warn_user(const string &method, const string &msg, const Args &... args)
Print a user warning raised from method as CanteraWarning.
Namespace for the Cantera kernel.
void checkFinite(const double tmp)
Check to see that a number is finite (not NaN, +Inf or -Inf)
@ BDF_Method
Backward Differentiation.
shared_ptr< SystemJacobian > newSystemJacobian(const string &type)
Create a SystemJacobian object of the specified type.
const double SmallNumber
smallest number to compare to zero.
shared_ptr< ReactorNet > newReactorNet(vector< shared_ptr< ReactorBase > > &reactors)
Create a reactor network containing one or more coupled reactors.
void warn_deprecated(const string &source, const AnyBase &node, const string &message)
A deprecation warning for syntax in an input file.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...