20ReactorNet::ReactorNet()
25ReactorNet::~ReactorNet()
73 throw CanteraError(
"ReactorNet::time",
"Time is not the independent variable"
74 " for this reactor network.");
82 throw CanteraError(
"ReactorNet::distance",
"Distance is not the independent"
83 " variable for this reactor network.");
90 debuglog(
"Initializing reactor network.\n", m_verbose);
91 if (m_reactors.empty()) {
93 "no reactors in network!");
96 for (
size_t n = 0; n < m_reactors.size(); n++) {
104 writelog(
"Reactor {:d}: {:d} variables.\n", n, nv);
107 if (r.
type() ==
"FlowReactor" && m_reactors.size() > 1) {
109 "FlowReactors must be used alone.");
113 m_ydot.resize(m_nv,0.0);
114 m_yest.resize(m_nv,0.0);
115 m_advancelimits.resize(m_nv,-1.0);
116 m_atol.resize(
neq());
117 fill(m_atol.begin(), m_atol.end(), m_atols);
118 m_integ->setTolerances(m_rtol,
neq(), m_atol.data());
119 m_integ->setSensitivityTolerances(m_rtolsens, m_atolsens);
120 if (!m_linearSolverType.empty()) {
121 m_integ->setLinearSolverType(m_linearSolverType);
124 m_integ->setPreconditioner(m_precon);
126 m_integ->initialize(
m_time, *
this);
131 if (m_integ->preconditionerSide() != PreconditionerSide::NO_PRECONDITION) {
141 debuglog(
"Re-initializing reactor network.\n", m_verbose);
142 m_integ->reinitialize(
m_time, *
this);
143 if (m_integ->preconditionerSide() != PreconditionerSide::NO_PRECONDITION) {
154 m_linearSolverType = linSolverType;
160 m_precon = preconditioner;
181 m_integ->integrate(
time);
214 double t =
time, delta;
215 double* y = m_integ->solution();
219 bool exceeded =
false;
221 for (
size_t j = 0; j < m_nv; j++) {
222 delta = abs(m_yest[j] - y[j]);
223 if ( (m_advancelimits[j] > 0.) && ( delta > m_advancelimits[j]) ) {
226 writelog(
" Limiting global state vector component {:d} (dt = {:9.4g}):"
227 "{:11.6g} > {:9.4g}\n",
228 j, t -
m_time, delta, m_advancelimits[j]);
259 double* cvode_dky = m_integ->solution();
260 for (
size_t j = 0; j < m_nv; j++) {
261 yest[j] = cvode_dky[j];
267 for (
int n = 1; n <= k; n++) {
268 factor *= deltat / n;
269 cvode_dky = m_integ->derivative(
m_time, n);
270 for (
size_t j = 0; j < m_nv; j++) {
271 yest[j] += factor * cvode_dky[j];
279 return m_integ->lastOrder();
287 for (
auto current : m_reactors) {
288 if (current->isOde() != r.
isOde()) {
290 "Cannot mix Reactor types using both ODEs and DAEs ({} and {})",
291 current->type(), r.
type());
295 "Cannot mix Reactor types using time and space as independent variables"
296 "\n({} and {})", current->type(), r.
type());
301 m_reactors.push_back(&r);
307 m_integ->setLinearSolverType(
"DENSE");
317 for (
size_t i=0; i<r.
nWalls(); i++) {
320 if (w.left().type() ==
"Reservoir") {
323 if (w.right().type() ==
"Reservoir") {
328 for (
size_t i=0; i<r.
nInlets(); i++) {
329 auto& in = r.
inlet(i);
331 if (in.in().type() ==
"Reservoir") {
336 for (
size_t i=0; i<r.
nOutlets(); i++) {
339 if (out.out().type() ==
"Reservoir") {
344 for (
size_t i=0; i<r.
nSurfs(); i++) {
350 if (m_integ ==
nullptr) {
352 "Integrator has not been instantiated. Add one or more reactors first.");
361 m_LHS.assign(m_nv, 1);
362 m_RHS.assign(m_nv, 0);
363 for (
size_t n = 0; n < m_reactors.size(); n++) {
364 m_reactors[n]->applySensitivity(p);
367 if (n == m_reactors.size() - 1) {
372 for (
size_t i =
m_start[n]; i < yEnd; i++) {
373 ydot[i] = m_RHS[i] /
m_LHS[i];
375 m_reactors[n]->resetSensitivity(p);
384 for (
size_t n = 0; n < m_reactors.size(); n++) {
385 m_reactors[n]->applySensitivity(p);
386 m_reactors[n]->evalDae(t, y, ydot, residual);
387 m_reactors[n]->resetSensitivity(p);
394 for (
size_t n = 0; n < m_reactors.size(); n++) {
395 m_reactors[n]->getConstraints(constraints +
m_start[n]);
408 double denom = m_integ->solution(k);
412 return m_integ->sensitivity(k, p) / denom;
419 for (
size_t n = 0; n < m_nv; n++) {
422 double dy = m_atol[n] + fabs(ysave)*m_rtol;
427 eval(t, y, m_ydot.data(), p);
430 for (
size_t m = 0; m < m_nv; m++) {
431 j->
value(m,n) = (m_ydot[m] - ydot[m])/dy;
440 for (
size_t n = 0; n < m_reactors.size(); n++) {
441 m_reactors[n]->updateState(y +
m_start[n]);
450 double* cvode_dky = m_integ->derivative(
m_time, k);
451 for (
size_t j = 0; j < m_nv; j++) {
452 dky[j] = cvode_dky[j];
461 for (
size_t n = 0; n < m_reactors.size(); n++) {
462 m_reactors[n]->setAdvanceLimits(limits +
m_start[n]);
468 bool has_limit =
false;
469 for (
size_t n = 0; n < m_reactors.size(); n++) {
470 has_limit |= m_reactors[n]->hasAdvanceLimits();
477 bool has_limit =
false;
478 for (
size_t n = 0; n < m_reactors.size(); n++) {
479 has_limit |= m_reactors[n]->getAdvanceLimits(limits +
m_start[n]);
486 for (
size_t n = 0; n < m_reactors.size(); n++) {
487 m_reactors[n]->getState(y +
m_start[n]);
493 for (
size_t n = 0; n < m_reactors.size(); n++) {
508 for (
auto r : m_reactors) {
510 return r->name() +
": " + r->componentName(i);
515 throw CanteraError(
"ReactorNet::componentName",
"Index out of bounds");
519 const string& name,
double value,
double scale)
522 throw CanteraError(
"ReactorNet::registerSensitivityParameter",
523 "Sensitivity parameters cannot be added after the"
524 "integrator has been initialized.");
535 for (
size_t i = 0; i < m_reactors.size(); i++) {
536 m_reactors[i]->setDerivativeSettings(settings);
543 return m_integ->solverStats();
552 return m_integ->linearSolverType();
562 "Must only be called after ReactorNet is initialized.");
564 m_integ->preconditionerSolve(m_nv, rhs, output);
572 auto precon = m_integ->preconditioner();
576 precon->setGamma(gamma);
578 vector<double> yCopy(m_nv);
582 precon->stateAdjustment(yCopy);
586 for (
size_t i = 0; i < m_reactors.size(); i++) {
587 Eigen::SparseMatrix<double> rJac = m_reactors[i]->jacobian();
588 for (
int k=0; k<rJac.outerSize(); ++k) {
589 for (Eigen::SparseMatrix<double>::InnerIterator it(rJac, k); it; ++it) {
603 "Must only be called after ReactorNet is initialized.");
605 auto precon = m_integ->preconditioner();
606 precon->setGamma(gamma);
607 precon->updatePreconditioner();
612 for (
auto reactor : m_reactors) {
614 throw CanteraError(
"ReactorNet::checkPreconditionerSupported",
615 "Preconditioning is only supported for type *MoleReactor,\n"
616 "Reactor type given: '{}'.",
Header file for class Cantera::Array2D.
Header file for class ReactorSurface.
Header file for base class WallBase.
A map of string keys to values whose type can vary at runtime.
A class for 2D arrays stored in column-major (Fortran-compatible) form.
double & value(size_t i, size_t j)
Returns a changeable reference to position in the matrix.
Base class for exceptions thrown by Cantera classes.
bool setDefaultName(map< string, int > &counts)
Set the default name of a flow device. Returns false if it was previously set.
vector< double > m_paramScales
Scaling factors for each sensitivity parameter.
bool suppressErrors() const
Get current state of error suppression.
vector< double > m_sens_params
Values for the problem parameters for which sensitivities are computed This is the array which is per...
An array index is out of range.
Abstract base class for ODE system integrators.
virtual void setMaxStepSize(double hmax)
Set the maximum step size.
virtual void setMaxSteps(int nmax)
Set the maximum number of time-steps the integrator can take before reaching the next output time.
virtual int maxSteps()
Returns the maximum number of time-steps the integrator can take before reaching the next output time...
virtual void setMaxErrTestFails(int n)
Set the maximum permissible number of error test failures.
FlowDevice & outlet(size_t n=0)
Return a reference to the n-th outlet FlowDevice connected to this reactor.
size_t nWalls()
Return the number of Wall objects connected to this reactor.
WallBase & wall(size_t n)
Return a reference to the n-th Wall connected to this reactor.
void setNetwork(ReactorNet *net)
Set the ReactorNet that this reactor belongs to.
bool setDefaultName(map< string, int > &counts)
Set the default name of a reactor. Returns false if it was previously set.
FlowDevice & inlet(size_t n=0)
Return a reference to the n-th inlet FlowDevice connected to this reactor.
virtual size_t nSurfs()
Return the number of surfaces in a reactor.
size_t nOutlets()
Return the number of outlet FlowDevice objects connected to this reactor.
size_t nInlets()
Return the number of inlet FlowDevice objects connected to this reactor.
ReactorSurface * surface(size_t n)
Return a reference to the n-th ReactorSurface connected to this reactor.
void setPreconditioner(shared_ptr< PreconditionerBase > preconditioner)
Set preconditioner used by the linear solver.
void setLinearSolverType(const string &linSolverType="DENSE")
Set the type of linear solver used in the integration.
void preconditionerSetup(double t, double *y, double gamma) override
Evaluate the setup processes for the Jacobian preconditioner.
double step()
Advance the state of all reactors with respect to the independent variable (time or space).
virtual int lastOrder() const
Returns the order used for last solution step of the ODE integrator The function is intended for inte...
void eval(double t, double *y, double *ydot, double *p) override
Evaluate the right-hand-side ODE function.
void initialize()
Initialize the reactor network.
void advance(double t)
Advance the state of all reactors in the independent variable (time or space).
size_t neq() const override
Number of equations.
vector< size_t > m_start
m_start[n] is the starting point in the state vector for reactor n
vector< double > m_LHS
m_LHS is a vector representing the coefficients on the "left hand side" of each governing equation
double m_initial_time
The initial value of the independent variable in the system.
void evalJacobian(double t, double *y, double *ydot, double *p, Array2D *j)
Evaluate the Jacobian matrix for the reactor network.
double time()
Current value of the simulation time [s], for reactor networks that are solved in the time domain.
void getConstraints(double *constraints) override
Given a vector of length neq(), mark which variables should be considered algebraic constraints.
double m_time
The independent variable in the system.
AnyMap solverStats() const
Get solver stats from integrator.
Reactor & reactor(int n)
Return a reference to the n-th reactor in this network.
map< string, int > m_counts
Map used for default name generation.
virtual void setMaxSteps(int nmax)
Set the maximum number of internal integration steps the integrator will take before reaching the nex...
string componentName(size_t i) const
Return the name of the i-th component of the global state vector.
void addReactor(Reactor &r)
Add the reactor r to this reactor network.
void getStateDae(double *y, double *ydot) override
Fill in the vectors y and ydot with the current state of the system.
void setInitialTime(double time)
Set the initial value of the independent variable (typically time).
virtual void getDerivative(int k, double *dky)
Return k-th derivative at the current state of the system.
void setMaxErrTestFails(int nmax)
Set the maximum number of error test failures permitted by the CVODES integrator in a single step.
size_t registerSensitivityParameter(const string &name, double value, double scale)
Used by Reactor and Wall objects to register the addition of sensitivity parameters so that the React...
double m_maxstep
Maximum integrator internal timestep. Default of 0.0 means infinity.
double distance()
Current position [m] along the length of the reactor network, for reactors that are solved as a funct...
void setSensitivityTolerances(double rtol, double atol)
Set the relative and absolute tolerances for integrating the sensitivity equations.
int maxSteps()
Returns the maximum number of internal integration steps the integrator will take before reaching the...
virtual void setDerivativeSettings(AnyMap &settings)
Set derivative settings of all reactors.
double sensitivity(size_t k, size_t p)
Return the sensitivity of the k-th solution component with respect to the p-th sensitivity parameter.
void updateNames(Reactor &r)
Create reproducible names for reactors and walls/connectors.
void updateState(double *y)
Update the state of all the reactors in the network to correspond to the values in the solution vecto...
void getState(double *y) override
Fill in the vector y with the current state of the system.
void setAdvanceLimits(const double *limits)
Set absolute step size limits during advance.
double rtol()
Relative tolerance.
size_t globalComponentIndex(const string &component, size_t reactor=0)
Return the index corresponding to the component named component in the reactor with index reactor in ...
bool m_timeIsIndependent
Indicates whether time or space is the independent variable.
double atol()
Absolute integration tolerance.
bool hasAdvanceLimits() const
Check whether ReactorNet object uses advance limits.
void setMaxTimeStep(double maxstep)
Set the maximum integrator step.
void evalDae(double t, double *y, double *ydot, double *p, double *residual) override
eval coupling for IDA / DAEs
virtual void checkPreconditionerSupported() const
Check that preconditioning is supported by all reactors in the network.
bool m_integrator_init
True if integrator initialization is current.
void reinitialize()
Reinitialize the integrator.
Integrator & integrator()
Return a reference to the integrator.
bool getAdvanceLimits(double *limits) const
Retrieve absolute step size limits during advance.
string linearSolverType() const
Problem type of integrator.
void updatePreconditioner(double gamma) override
Update the preconditioner based on already computed jacobian values.
void preconditionerSolve(double *rhs, double *output) override
Evaluate the linear system Ax=b where A is the preconditioner.
vector< string > m_paramNames
Names corresponding to each sensitivity parameter.
void setTolerances(double rtol, double atol)
Set the relative and absolute tolerances for the integrator.
virtual void getEstimate(double time, int k, double *yest)
Estimate a future state based on current derivatives.
bool setDefaultName(map< string, int > &counts)
Set the default name of a wall. Returns false if it was previously set.
Class Reactor is a general-purpose class for stirred reactors.
size_t neq()
Number of equations (state variables) for this reactor.
string type() const override
String indicating the reactor model implemented.
virtual size_t nSensParams() const
Number of sensitivity parameters associated with this reactor (including walls)
void initialize(double t0=0.0) override
Initialize the reactor.
virtual bool preconditionerSupported() const
Return a false if preconditioning is not supported or true otherwise.
virtual bool isOde() const
Indicate whether the governing equations for this reactor type are a system of ODEs or DAEs.
virtual bool timeIsIndependent() const
Indicates whether the governing equations for this reactor are functions of time or a spatial variabl...
bool setDefaultName(map< string, int > &counts)
Set the default name of a wall. Returns false if it was previously set.
void debuglog(const string &msg, int loglevel)
Write a message to the log only if loglevel > 0.
void writelog(const string &fmt, const Args &... args)
Write a formatted message to the screen.
void scale(InputIter begin, InputIter end, OutputIter out, S scale_factor)
Multiply elements of an array by a scale factor.
Integrator * newIntegrator(const string &itype)
Create new Integrator object.
Namespace for the Cantera kernel.
void checkFinite(const double tmp)
Check to see that a number is finite (not NaN, +Inf or -Inf)
@ BDF_Method
Backward Differentiation.
const double SmallNumber
smallest number to compare to zero.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...