Cantera  2.4.0
Classes | Typedefs | Enumerations | Functions | Variables
Cantera Namespace Reference

Namespace for the Cantera kernel. More...

Classes

class  Adsorbate
 An adsorbed surface species. More...
 
class  AnyMap
 A map of string keys to values whose type can vary at runtime. More...
 
class  AnyValue
 A wrapper for a variable whose type is determined at runtime. More...
 
class  Application
 Class to hold global data. More...
 
class  AqueousKinetics
 Kinetics manager for elementary aqueous-phase chemistry. More...
 
class  Array2D
 A class for 2D arrays stored in column-major (Fortran-compatible) form. More...
 
class  ArraySizeError
 Array size error. More...
 
class  Arrhenius
 Arrhenius reaction rate type depends only on temperature. More...
 
class  Arrhenius1
 Sum of Arrhenius terms. More...
 
struct  atomicWeightData
 
class  AxiStagnFlow
 A class for axisymmetric stagnation flows. More...
 
class  BandMatrix
 A class for banded matrices, involving matrix inversion processes. More...
 
class  Bdry1D
 The base class for boundaries between one-dimensional spatial domains. More...
 
class  BulkKinetics
 Partial specialization of Kinetics for chemistry in a single bulk phase. More...
 
class  C1
 Handles one species in a reaction. More...
 
class  C2
 Handles two species in a single reaction. More...
 
class  C3
 Handles three species in a reaction. More...
 
class  C_AnyN
 Handles any number of species in a reaction, including fractional stoichiometric coefficients, and arbitrary reaction orders. More...
 
struct  CachedValue
 
class  CanteraError
 Base class for exceptions thrown by Cantera classes. More...
 
class  ChebyshevRate
 Pressure-dependent rate expression where the rate coefficient is expressed as a bivariate Chebyshev polynomial in temperature and pressure. More...
 
class  ChebyshevReaction
 A pressure-dependent reaction parameterized by a bi-variate Chebyshev polynomial in temperature and pressure. More...
 
class  ChemEquil
 Class ChemEquil implements a chemical equilibrium solver for single-phase solutions. More...
 
class  ChemicallyActivatedReaction
 A reaction where the rate decreases as pressure increases due to collisional stabilization of a reaction intermediate. More...
 
class  clockWC
 The class provides the wall clock timer in seconds. More...
 
class  Composite1
 Composite function. More...
 
class  Const1
 Constant. More...
 
class  ConstCpPoly
 A constant-heat capacity species thermodynamic property manager class. More...
 
class  ConstDensityThermo
 Overloads the virtual methods of class ThermoPhase to implement the incompressible equation of state. More...
 
class  ConstPressureReactor
 Class ConstPressureReactor is a class for constant-pressure reactors. More...
 
class  Cos1
 cos More...
 
struct  CoverageDependency
 Modifications to an InterfaceReaction rate based on a surface species coverage. More...
 
class  CVodesIntegrator
 Wrapper class for 'cvodes' integrator from LLNL. More...
 
class  DAE_Solver
 Wrapper for DAE solvers. More...
 
class  DebyeHuckel
 Class DebyeHuckel represents a dilute liquid electrolyte phase which obeys the Debye Huckel formulation for nonideality. More...
 
class  DenseMatrix
 A class for full (non-sparse) matrices with Fortran-compatible data storage, which adds matrix operations to class Array2D. More...
 
class  Diff1
 Difference of two functions. More...
 
class  Domain1D
 Base class for one-dimensional domains. More...
 
class  DustyGasTransport
 Class DustyGasTransport implements the Dusty Gas model for transport in porous media. More...
 
class  Edge
 Convenience class which inherits from both EdgePhase and EdgeKinetics. More...
 
class  EdgeKinetics
 Heterogeneous reactions at one-dimensional interfaces between multiple adjacent two-dimensional surfaces. More...
 
class  EdgePhase
 A thermodynamic phase representing a one dimensional edge between two surfaces. More...
 
class  ElectrochemicalReaction
 An interface reaction which involves charged species. More...
 
class  ElementaryReaction
 A reaction which follows mass-action kinetics with a modified Arrhenius reaction rate. More...
 
class  Empty1D
 A terminator that does nothing. More...
 
class  EquilOpt
 Chemical equilibrium options. More...
 
class  Exp1
 exp More...
 
class  Factory
 Factory class that supports registering functions to create objects. More...
 
class  FactoryBase
 Base class for factories. More...
 
class  Falloff
 Base class for falloff function calculators. More...
 
class  FalloffFactory
 Factory class to construct falloff function calculators. More...
 
class  FalloffMgr
 A falloff manager that implements any set of falloff functions. More...
 
class  FalloffReaction
 A reaction that is first-order in [M] at low pressure, like a third-body reaction, but zeroth-order in [M] as pressure increases. More...
 
class  FixedChemPotSSTP
 Class FixedChemPotSSTP represents a stoichiometric (fixed composition) incompressible substance. More...
 
class  FlowDevice
 Base class for 'flow devices' (valves, pressure regulators, etc.) connecting reactors. More...
 
class  FlowReactor
 Adiabatic flow in a constant-area duct. More...
 
class  Fourier1
 Fourier cosine/sine series. More...
 
class  FreeFlame
 A class for freely-propagating premixed flames. More...
 
class  Func1
 Base class for 'functor' classes that evaluate a function of one variable. More...
 
class  FuncEval
 Virtual base class for ODE right-hand-side function evaluators. More...
 
class  GasKinetics
 Kinetics manager for elementary gas-phase chemistry. More...
 
class  GasTransport
 Class GasTransport implements some functions and properties that are shared by the MixTransport and MultiTransport classes. More...
 
class  GasTransportData
 Transport data for a single gas-phase species which can be used in mixture-averaged or multicomponent transport models. More...
 
class  Gaussian
 A Gaussian. More...
 
class  GeneralMatrix
 Generic matrix. More...
 
class  GibbsExcessVPSSTP
 
class  Group
 Class Group is an internal class used by class ReactionPath. More...
 
class  HighPressureGasTransport
 Class MultiTransport implements transport properties for high pressure gas mixtures. More...
 
class  HMWSoln
 Class HMWSoln represents a dilute or concentrated liquid electrolyte phase which obeys the Pitzer formulation for nonideality. More...
 
class  IDA_Solver
 Wrapper for Sundials IDA solver. More...
 
class  IdealGasConstPressureReactor
 Class ConstPressureReactor is a class for constant-pressure reactors. More...
 
class  IdealGasMix
 Convenience class which inherits from both IdealGasPhase and GasKinetics. More...
 
class  IdealGasPhase
 Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state. More...
 
class  IdealGasReactor
 Class IdealGasReactor is a class for stirred reactors that is specifically optimized for ideal gases. More...
 
class  IdealMolalSoln
 This phase is based upon the mixing-rule assumption that all molality-based activity coefficients are equal to one. More...
 
class  IdealSolidSolnPhase
 Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...
 
class  IdealSolnGasVPSS
 An ideal solution or an ideal gas approximation of a phase. More...
 
class  ImplicitSurfChem
 Advances the surface coverages of the associated set of SurfacePhase objects in time. More...
 
class  IncompressibleSolid
 Wrapper for ConstDensityThermo with constructor from file. More...
 
class  IndexError
 An array index is out of range. More...
 
class  Inlet1D
 An inlet. More...
 
class  Integrator
 Abstract base class for ODE system integrators. More...
 
class  Interface
 An interface between multiple bulk phases. More...
 
class  InterfaceKinetics
 A kinetics manager for heterogeneous reaction mechanisms. More...
 
class  InterfaceReaction
 A reaction occurring on an interface (i.e. a SurfPhase or an EdgePhase) More...
 
class  IonFlow
 This class models the ion transportation in a flame. More...
 
class  IonGasTransport
 Class IonGasTransport implements Stockmayer-(n,6,4) model for transport of ions. More...
 
class  IonsFromNeutralVPSSTP
 
struct  isotopeWeightData
 
class  Kinetics
 Public interface for kinetics managers. More...
 
class  KineticsFactory
 Factory for kinetics managers. More...
 
class  LatticePhase
 A simple thermodynamic model for a bulk phase, assuming a lattice of solid atoms. More...
 
class  LatticeSolidPhase
 A phase that is comprised of a fixed additive combination of other lattice phases. More...
 
class  LiquidTranInteraction
 Base class to handle transport property evaluation in a mixture. More...
 
class  LiquidTransport
 Class LiquidTransport implements models for transport properties for liquid phases. More...
 
class  LiquidTransportData
 Class LiquidTransportData holds transport parameters for a specific liquid-phase species. More...
 
class  LiquidTransportParams
 Class LiquidTransportParams holds transport model parameters relevant to transport in mixtures. More...
 
class  Logger
 Base class for 'loggers' that write text messages to log files. More...
 
class  LTI_Log_MoleFracs
 Mixing rule using logarithms of the mole fractions. More...
 
class  LTI_MassFracs
 Simple mass fraction weighting of transport properties. More...
 
class  LTI_MoleFracs
 Simple mole fraction weighting of transport properties. More...
 
class  LTI_MoleFracs_ExpT
 Simple mole fraction weighting of transport properties. More...
 
class  LTI_Pairwise_Interaction
 Transport properties that act like pairwise interactions as in binary diffusion coefficients. More...
 
class  LTI_StefanMaxwell_PPN
 Stefan Maxwell Diffusion Coefficients can be solved for given ion conductivity, mobility ratios, and self diffusion coeffs. More...
 
class  LTPError
 Exception thrown if an error is encountered while reading the transport database. More...
 
class  LTPmodelError
 Exception thrown if an error is encountered while reading the transport database. More...
 
class  LTPspecies
 Class LTPspecies holds transport parameterizations for a specific liquid- phase species. More...
 
class  LTPspecies_Arrhenius
 Class LTPspecies_Arrhenius holds transport parameters for a specific liquid- phase species (LTPspecies) when the transport property is expressed in Arrhenius form. More...
 
class  LTPspecies_Const
 Class LTPspecies_Const holds transport parameters for a specific liquid- phase species (LTPspecies) when the transport property is just a constant value. More...
 
class  LTPspecies_ExpT
 Class LTPspecies_ExpT holds transport parameters for a specific liquid- phase species (LTPspecies) when the transport property is expressed as an exponential in temperature. More...
 
class  LTPspecies_Poly
 Class LTPspecies_Poly holds transport parameters for a specific liquid-phase species (LTPspecies) when the transport property is expressed as a polynomial in temperature. More...
 
class  MargulesVPSSTP
 MargulesVPSSTP is a derived class of GibbsExcessVPSSTP that employs the Margules approximation for the excess Gibbs free energy. More...
 
class  MaskellSolidSolnPhase
 Class MaskellSolidSolnPhase represents a condensed phase non-ideal solution with 2 species following the thermodynamic model described in Maskell, Shaw, and Tye, Manganese Dioxide Electrode – IX, Electrochimica Acta 28(2) pp 231-235, 1983. More...
 
class  MassFlowController
 A class for mass flow controllers. More...
 
class  Metal
 Wrapper for MetalPhase with constructor from file. More...
 
class  MetalPhase
 Class MetalPhase represents electrons in a metal. More...
 
class  MetalSHEelectrons
 Class MetalSHEelectrons represents electrons within a metal, adjacent to an aqueous electrolyte, that are consistent with the SHE reference electrode. More...
 
class  MineralEQ3
 Class MineralEQ3 represents a stoichiometric (fixed composition) incompressible substance based on EQ3's parameterization. More...
 
class  MixedSolventElectrolyte
 MixedSolventElectrolyte is a derived class of GibbsExcessVPSSTP that employs the DH and local Margules approximations for the excess Gibbs free energy. More...
 
class  MixTransport
 Class MixTransport implements mixture-averaged transport properties for ideal gas mixtures. More...
 
class  MixtureFugacityTP
 This is a filter class for ThermoPhase that implements some preparatory steps for efficiently handling mixture of gases that whose standard states are defined as ideal gases, but which describe also non-ideal solutions. More...
 
class  MMCollisionInt
 Calculation of Collision integrals. More...
 
class  MolalityVPSSTP
 
class  MolarityIonicVPSSTP
 
class  Mu0Poly
 The Mu0Poly class implements an interpolation of the Gibbs free energy based on a piecewise constant heat capacity approximation. More...
 
class  MultiJac
 Class MultiJac evaluates the Jacobian of a system of equations defined by a residual function supplied by an instance of class OneDim. More...
 
class  MultiNewton
 Newton iterator for multi-domain, one-dimensional problems. More...
 
class  MultiPhase
 A class for multiphase mixtures. More...
 
class  MultiPhaseEquil
 
class  MultiSpeciesThermo
 A species thermodynamic property manager for a phase. More...
 
class  MultiTransport
 Class MultiTransport implements multicomponent transport properties for ideal gas mixtures. More...
 
class  Nasa9Poly1
 The NASA 9 polynomial parameterization for one temperature range. More...
 
class  Nasa9PolyMultiTempRegion
 The NASA 9 polynomial parameterization for a single species encompassing multiple temperature regions. More...
 
class  NasaPoly1
 The NASA polynomial parameterization for one temperature range. More...
 
class  NasaPoly2
 The NASA polynomial parameterization for two temperature ranges. More...
 
class  NotImplementedError
 An error indicating that an unimplemented function has been called. More...
 
class  OneDim
 Container class for multiple-domain 1D problems. More...
 
class  Outlet1D
 An outlet. More...
 
class  OutletRes1D
 An outlet with specified composition. More...
 
class  PDSS
 Virtual base class for a species with a pressure dependent standard state. More...
 
class  PDSS_ConstVol
 Class for pressure dependent standard states that use a constant volume model. More...
 
class  PDSS_HKFT
 Class for pressure dependent standard states corresponding to ionic solutes in electrolyte water. More...
 
class  PDSS_IdealGas
 Derived class for pressure dependent standard states of an ideal gas species. More...
 
class  PDSS_IonsFromNeutral
 Derived class for pressure dependent standard states of an ideal gas species. More...
 
class  PDSS_Molar
 Base class for PDSS classes which compute molar properties directly. More...
 
class  PDSS_Nondimensional
 Base class for PDSS classes which compute nondimensional properties directly. More...
 
class  PDSS_SSVol
 Class for pressure dependent standard states that uses a standard state volume model of some sort. More...
 
class  PDSS_Water
 Class for the liquid water pressure dependent standard state. More...
 
class  Periodic1
 Periodic function. More...
 
class  Phase
 Class Phase is the base class for phases of matter, managing the species and elements in a phase, as well as the independent variables of temperature, mass density, species mass/mole fraction, and other generalized forces and intrinsic properties (such as electric potential) that define the thermodynamic state. More...
 
class  PhaseCombo_Interaction
 PhaseCombo_Interaction is a derived class of GibbsExcessVPSSTP that employs the Margules approximation for the excess Gibbs free energy while eliminating the entropy of mixing term. More...
 
class  Plog
 Pressure-dependent reaction rate expressed by logarithmically interpolating between Arrhenius rate expressions at various pressures. More...
 
class  PlogReaction
 A pressure-dependent reaction parameterized by logarithmically interpolating between Arrhenius rate expressions at various pressures. More...
 
class  PlusConstant1
 A function plus a constant. More...
 
class  Poly1
 Polynomial of degree n. More...
 
class  Pow1
 pow More...
 
class  PressureController
 A class for flow controllers where the flow rate is equal to the flow rate of a "master" mass flow controller plus a correction proportional to the pressure difference between the inlet and outlet. More...
 
class  Product1
 Product of two functions. More...
 
class  PureFluid
 Wrapper for PureFluidPhase with constructor from file. More...
 
class  PureFluidPhase
 This phase object consists of a single component that can be a gas, a liquid, a mixed gas-liquid fluid, or a fluid beyond its critical point. More...
 
class  Rate1
 This rate coefficient manager supports one parameterization of the rate constant of any type. More...
 
class  Ratio1
 Ratio of two functions. More...
 
class  ReactingSurf1D
 A reacting surface. More...
 
class  Reaction
 Intermediate class which stores data about a reaction and its rate parameterization so that it can be added to a Kinetics object. More...
 
class  ReactionPathDiagram
 Reaction path diagrams (graphs). More...
 
class  Reactor
 Class Reactor is a general-purpose class for stirred reactors. More...
 
class  ReactorBase
 Base class for stirred reactors. More...
 
class  ReactorNet
 A class representing a network of connected reactors. More...
 
class  RedlichKisterVPSSTP
 RedlichKisterVPSSTP is a derived class of GibbsExcessVPSSTP that employs the Redlich-Kister approximation for the excess Gibbs free energy. More...
 
class  RedlichKwongMFTP
 Implementation of a multi-species Redlich-Kwong equation of state. More...
 
class  Refiner
 Refine Domain1D grids so that profiles satisfy adaptation tolerances. More...
 
class  ResidData
 A simple class to hold an array of parameter values and a pointer to an instance of a subclass of ResidEval. More...
 
class  ResidEval
 Virtual base class for DAE residual function evaluators. More...
 
class  ResidJacEval
 Wrappers for the function evaluators for Nonlinear solvers and Time steppers. More...
 
class  ShomatePoly
 The Shomate polynomial parameterization for one temperature range for one species. More...
 
class  ShomatePoly2
 The Shomate polynomial parameterization for two temperature ranges for one species. More...
 
class  Sim1D
 One-dimensional simulations. More...
 
class  SimpleTransport
 Class SimpleTransport implements mixture-averaged transport properties for liquid phases. More...
 
class  Sin1
 implements the sin() function More...
 
class  SingleSpeciesTP
 The SingleSpeciesTP class is a filter class for ThermoPhase. More...
 
class  SolidTransport
 Class SolidTransport implements transport properties for solids. More...
 
class  SolidTransportData
 Class SolidTransportData holds transport parameters for a specific solid- phase species. More...
 
class  solveSP
 Method to solve a pseudo steady state surface problem. More...
 
class  Species
 Contains data about a single chemical species. More...
 
class  SpeciesNode
 Nodes in reaction path graphs. More...
 
class  SpeciesThermoInterpType
 Abstract Base class for the thermodynamic manager for an individual species' reference state. More...
 
class  SRI
 The SRI falloff function. More...
 
class  StFlow
 This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemically-reacting, axisymmetric flows. More...
 
class  STITbyPDSS
 Class for the thermodynamic manager for an individual species' reference state which uses the PDSS base class to satisfy the requests. More...
 
class  StoichSubstance
 Class StoichSubstance represents a stoichiometric (fixed composition) incompressible substance. More...
 
class  Sum1
 Sum of two functions. More...
 
class  Surf1D
 A non-reacting surface. More...
 
class  SurfaceArrhenius
 An Arrhenius rate with coverage-dependent terms. More...
 
class  SurfPhase
 A simple thermodynamic model for a surface phase, assuming an ideal solution model. More...
 
class  Symm1D
 A symmetry plane. More...
 
class  ThermoFactory
 Factory class for thermodynamic property managers. More...
 
class  ThermoPhase
 Base class for a phase with thermodynamic properties. More...
 
class  ThirdBody
 A class for managing third-body efficiencies, including default values. More...
 
class  ThirdBodyCalc
 Calculate and apply third-body effects on reaction rates, including non- unity third-body efficiencies. More...
 
class  ThreeBodyReaction
 A reaction with a non-reacting third body "M" that acts to add or remove energy from the reacting species. More...
 
struct  timesConstant
 Unary operator to multiply the argument by a constant. More...
 
class  TimesConstant1
 Product of two functions. More...
 
class  Tortuosity
 Specific Class to handle tortuosity corrections for diffusive transport in porous media using the Bruggeman exponent. More...
 
class  TortuosityMaxwell
 This class implements transport coefficient corrections appropriate for porous media with a dispersed phase. More...
 
class  TortuosityPercolation
 This class implements transport coefficient corrections appropriate for porous media where percolation theory applies. More...
 
class  Transport
 Base class for transport property managers. More...
 
class  TransportData
 Base class for transport data for a single species. More...
 
class  TransportDBError
 Exception thrown if an error is encountered while reading the transport database. More...
 
class  TransportFactory
 Factory class for creating new instances of classes derived from Transport. More...
 
class  TransportParams
 Base structure to hold transport model parameters. More...
 
class  Troe
 The 3- or 4-parameter Troe falloff parameterization. More...
 
class  Unit
 Unit conversion utility. More...
 
class  UnityLewisTransport
 Class UnityLewisTransport implements the unity Lewis number approximation for the mixture-averaged species diffusion coefficients. More...
 
class  UnknownThermoPhaseModel
 Specific error to be thrown if the type of Thermo manager is unrecognized. More...
 
class  ValueCache
 
class  Valve
 Supply a mass flow rate that is a function of the pressure drop across the valve. More...
 
class  VCS_COUNTERS
 Class to keep track of time and iterations. More...
 
class  vcs_MultiPhaseEquil
 Cantera's Interface to the Multiphase chemical equilibrium solver. More...
 
class  VCS_SOLVE
 This is the main structure used to hold the internal data used in vcs_solve_TP(), and to solve TP systems. More...
 
class  VCS_SPECIES_THERMO
 
class  vcs_SpeciesProperties
 Properties of a single species. More...
 
class  vcs_VolPhase
 Phase information and Phase calculations for vcs. More...
 
class  VPStandardStateTP
 This is a filter class for ThermoPhase that implements some prepatory steps for efficiently handling a variable pressure standard state for species. More...
 
class  Wall
 Represents a wall between between two ReactorBase objects. More...
 
class  WaterProps
 The WaterProps class is used to house several approximation routines for properties of water. More...
 
class  WaterPropsIAPWS
 Class for calculating the equation of state of water. More...
 
class  WaterPropsIAPWSphi
 Low level class for the real description of water. More...
 
class  WaterSSTP
 Class for single-component water. More...
 
class  WaterTransport
 Transport Parameters for pure water. More...
 
class  XML_Error
 Classs representing a generic XML error condition. More...
 
class  XML_NoChild
 Class representing a specific type of XML file formatting error. More...
 
class  XML_Node
 Class XML_Node is a tree-based representation of the contents of an XML file. More...
 
class  XML_Reader
 Class XML_Reader reads an XML file into an XML_Node object. More...
 
class  XML_TagMismatch
 Class representing a specific type of XML file formatting error. More...
 

Typedefs

typedef std::map< std::string, doublereal > compositionMap
 Map connecting a string name with a double. More...
 
typedef std::map< std::string, doublereal > Composition
 Map from string names to doubles. More...
 
typedef std::vector< double > vector_fp
 Turn on the use of stl vectors for the basic array type within cantera Vector of doubles. More...
 
typedef std::vector< int > vector_int
 Vector of ints. More...
 
typedef std::vector< std::vector< size_t > > grouplist_t
 A grouplist is a vector of groups of species. More...
 
typedef CachedValue< double > & CachedScalar
 
typedef CachedValue< vector_fp > & CachedArray
 
typedef double(* VCS_FUNC_PTR) (double xval, double Vtarget, int varID, void *fptrPassthrough, int *err)
 Definition of the function pointer for the root finder. More...
 
typedef Eigen::Map< Eigen::MatrixXd > MappedMatrix
 
typedef Eigen::Map< Eigen::VectorXd > MappedVector
 
typedef Eigen::Map< const Eigen::VectorXd > ConstMappedVector
 
typedef ThermoPhase thermo_t
 typedef for the ThermoPhase class More...
 
typedef int VelocityBasis
 The diffusion fluxes must be referenced to a particular reference fluid velocity. More...
 

Enumerations

enum  flow_t { NetFlow, OneWayFlow }
 
enum  MethodType { BDF_Method, Adams_Method }
 Specifies the method used to integrate the system of equations. More...
 
enum  IterType { Newton_Iter, Functional_Iter }
 Specifies the method used for iteration. More...
 
enum  ResidEval_Type_Enum {
  Base_ResidEval = 0, JacBase_ResidEval, JacDelta_ResidEval, Base_ShowSolution,
  Base_LaggedSolutionComponents
}
 Differentiates the type of residual evaluations according to functionality. More...
 
enum  IonSolnType_enumType { cIonSolnType_PASSTHROUGH = 2000, cIonSolnType_SINGLEANION, cIonSolnType_SINGLECATION, cIonSolnType_MULTICATIONANION }
 enums for molten salt ion solution types More...
 
enum  LiquidTranMixingModel {
  LTI_MODEL_NOTSET =-1, LTI_MODEL_SOLVENT, LTI_MODEL_MOLEFRACS, LTI_MODEL_MASSFRACS,
  LTI_MODEL_LOG_MOLEFRACS, LTI_MODEL_PAIRWISE_INTERACTION, LTI_MODEL_STEFANMAXWELL_PPN, LTI_MODEL_STOKES_EINSTEIN,
  LTI_MODEL_MOLEFRACS_EXPT, LTI_MODEL_NONE, LTI_MODEL_MULTIPLE
}
 Composition dependence type for liquid mixture transport properties. More...
 
enum  TransportPropertyType {
  TP_UNKNOWN = -1, TP_VISCOSITY = 0, TP_IONCONDUCTIVITY, TP_MOBILITYRATIO,
  TP_SELFDIFFUSION, TP_THERMALCOND, TP_DIFFUSIVITY, TP_HYDRORADIUS,
  TP_ELECTCOND, TP_DEFECTCONC, TP_DEFECTDIFF
}
 Enumeration of the types of transport properties that can be handled by the variables in the various Transport classes. More...
 
enum  LTPTemperatureDependenceType {
  LTP_TD_NOTSET =-1, LTP_TD_CONSTANT, LTP_TD_ARRHENIUS, LTP_TD_POLY,
  LTP_TD_EXPT
}
 Temperature dependence type for standard state species properties. More...
 
enum  SensParameterType { reaction, enthalpy }
 

Functions

static int get_modified_time (const std::string &path)
 
void checkFinite (const double tmp)
 Check to see that a number is finite (not NaN, +Inf or -Inf) More...
 
void checkFinite (const std::string &name, double *values, size_t N)
 Check to see that all elements in an array are finite. More...
 
static string pypath ()
 return the full path to the Python interpreter. More...
 
void ct2ctml (const char *file, const int debug=0)
 Convert a cti file into a ctml file. More...
 
static std::string call_ctml_writer (const std::string &text, bool isfile)
 
std::string ct2ctml_string (const std::string &file)
 Get a string with the ctml representation of a cti file. More...
 
std::string ct_string2ctml_string (const std::string &cti)
 Get a string with the ctml representation of a cti input string. More...
 
void ck2cti (const std::string &in_file, const std::string &thermo_file="", const std::string &transport_file="", const std::string &id_tag="gas")
 Convert a Chemkin-format mechanism into a CTI file. More...
 
void addFloat (XML_Node &node, const std::string &titleString, const doublereal value, const std::string &unitsString="", const std::string &typeString="", const doublereal minval=Undef, const doublereal maxval=Undef)
 This function adds a child node with the name, "float", with a value consisting of a single floating point number. More...
 
void addFloatArray (XML_Node &node, const std::string &titleString, const size_t n, const doublereal *const values, const std::string &unitsString="", const std::string &typeString="", const doublereal minval=Undef, const doublereal maxval=Undef)
 This function adds a child node with the name, "floatArray", with a value consisting of a comma separated list of floats. More...
 
void addNamedFloatArray (XML_Node &parentNode, const std::string &name, const size_t n, const doublereal *const vals, const std::string units="", const std::string type="", const doublereal minval=Undef, const doublereal maxval=Undef)
 This function adds a child node with the name given by the first parameter with a value consisting of a comma separated list of floats. More...
 
void addString (XML_Node &node, const std::string &titleString, const std::string &valueString, const std::string &typeString="")
 This function adds a child node with the name string with a string value to the current node. More...
 
XML_NodegetByTitle (const XML_Node &node, const std::string &title)
 Search the child nodes of the current node for an XML Node with a Title attribute of a given name. More...
 
std::string getChildValue (const XML_Node &parent, const std::string &nameString)
 This function reads a child node with the name, nameString, and returns its XML value as the return string. More...
 
void getString (const XML_Node &node, const std::string &titleString, std::string &valueString, std::string &typeString)
 This function reads a child node with the name string with a specific title attribute named titleString. More...
 
void getIntegers (const XML_Node &node, std::map< std::string, int > &v)
 Get a vector of integer values from a child element. More...
 
doublereal getFloat (const XML_Node &parent, const std::string &name, const std::string &type="")
 Get a floating-point value from a child element. More...
 
doublereal getFloatCurrent (const XML_Node &currXML, const std::string &type="")
 Get a floating-point value from the current XML element. More...
 
bool getOptionalFloat (const XML_Node &parent, const std::string &name, doublereal &fltRtn, const std::string &type="")
 Get an optional floating-point value from a child element. More...
 
bool getOptionalModel (const XML_Node &parent, const std::string &nodeName, std::string &modelName)
 Get an optional model name from a named child node. More...
 
int getInteger (const XML_Node &parent, const std::string &name)
 Get an integer value from a child element. More...
 
size_t getFloatArray (const XML_Node &node, vector_fp &v, const bool convert=true, const std::string &unitsString="", const std::string &nodeName="floatArray")
 This function reads the current node or a child node of the current node with the default name, "floatArray", with a value field consisting of a comma separated list of floats. More...
 
void getMap (const XML_Node &node, std::map< std::string, std::string > &m)
 This routine is used to interpret the value portions of XML elements that contain colon separated pairs. More...
 
int getPairs (const XML_Node &node, std::vector< std::string > &key, std::vector< std::string > &val)
 This function interprets the value portion of an XML element as a series of "Pairs" separated by white space. More...
 
void getMatrixValues (const XML_Node &node, const std::vector< std::string > &keyStringRow, const std::vector< std::string > &keyStringCol, Array2D &returnValues, const bool convert=true, const bool matrixSymmetric=false)
 This function interprets the value portion of an XML element as a series of "Matrix ids and entries" separated by white space. More...
 
void getStringArray (const XML_Node &node, std::vector< std::string > &v)
 This function interprets the value portion of an XML element as a string. More...
 
static Applicationapp ()
 Return a pointer to the application object. More...
 
void setLogger (Logger *logwriter)
 Install a logger. More...
 
void writelog_direct (const std::string &msg)
 Write a message to the screen. More...
 
void writelogendl ()
 Write an end of line character to the screen and flush output. More...
 
void writeline (char repeat, size_t count, bool endl_after, bool endl_before)
 
void warn_deprecated (const std::string &method, const std::string &extra="")
 Print a warning indicating that method is deprecated. More...
 
void suppress_deprecation_warnings ()
 Globally disable printing of deprecation warnings. More...
 
void make_deprecation_warnings_fatal ()
 Turns deprecation warnings into exceptions. More...
 
void suppress_thermo_warnings (bool suppress=true)
 Globally disable printing of warnings about problematic thermo data, e.g. More...
 
bool thermo_warnings_suppressed ()
 Returns true if thermo warnings should be suppressed. More...
 
void appdelete ()
 Delete and free all memory associated with the application. More...
 
void thread_complete ()
 Delete and free memory allocated per thread in multithreaded applications. More...
 
std::string gitCommit ()
 Returns the hash of the git commit from which Cantera was compiled, if known. More...
 
XML_Nodeget_XML_File (const std::string &file, int debug=0)
 Return a pointer to the XML tree for a Cantera input file. More...
 
XML_Nodeget_XML_from_string (const std::string &text)
 Read a CTI or CTML string and fill up an XML tree. More...
 
void close_XML_File (const std::string &file)
 Close an XML File. More...
 
void addDirectory (const std::string &dir)
 Add a directory to the data file search path. More...
 
std::string getDataDirectories (const std::string &sep)
 Get the Cantera data directories. More...
 
std::string findInputFile (const std::string &name)
 Find an input file. More...
 
doublereal toSI (const std::string &unit)
 Return the conversion factor to convert unit std::string 'unit' to SI units. More...
 
doublereal actEnergyToSI (const std::string &unit)
 Return the conversion factor to convert activation energy unit std::string 'unit' to Kelvin. More...
 
string canteraRoot ()
 Returns root directory where Cantera is installed. More...
 
static void split_at_pound (const std::string &src, std::string &file, std::string &id)
 split a string at a '#' sign. Used to separate a file name from an id string. More...
 
XML_Nodeget_XML_Node (const std::string &file_ID, XML_Node *root)
 This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string. More...
 
XML_Nodeget_XML_NameID (const std::string &nameTarget, const std::string &file_ID, XML_Node *root)
 This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string. More...
 
void writePlotFile (const std::string &fname, const std::string &fmt, const std::string &plotTitle, const std::vector< std::string > &names, const Array2D &data)
 Write a Plotting file. More...
 
void outputTEC (std::ostream &s, const std::string &title, const std::vector< std::string > &names, const Array2D &data)
 Write a Tecplot data file. More...
 
void outputExcel (std::ostream &s, const std::string &title, const std::vector< std::string > &names, const Array2D &data)
 Write an Excel spreadsheet in 'csv' form. More...
 
std::string vec2str (const vector_fp &v, const std::string &fmt="%g", const std::string &sep=", ")
 Convert a vector to a string (separated by commas) More...
 
std::string stripnonprint (const std::string &s)
 Strip non-printing characters wherever they are. More...
 
compositionMap parseCompString (const std::string &ss, const std::vector< std::string > &names=std::vector< std::string >())
 Parse a composition string into a map consisting of individual key:composition pairs. More...
 
int intValue (const std::string &val)
 Translate a string into one integer value. More...
 
doublereal fpValue (const std::string &val)
 Translate a string into one doublereal value. More...
 
doublereal fpValueCheck (const std::string &val)
 Translate a string into one doublereal value, with error checking. More...
 
std::string parseSpeciesName (const std::string &nameStr, std::string &phaseName)
 Parse a name string, separating out the phase name from the species name. More...
 
doublereal strSItoDbl (const std::string &strSI)
 Interpret one or two token string as a single double. More...
 
void tokenizeString (const std::string &oval, std::vector< std::string > &v)
 This function separates a string up into tokens according to the location of white space. More...
 
size_t copyString (const std::string &source, char *dest, size_t length)
 Copy the contents of a std::string into a char array of a given length. More...
 
std::string trimCopy (const std::string &input)
 Trim. More...
 
std::string toLowerCopy (const std::string &input)
 Convert to lower case. More...
 
bool caseInsensitiveEquals (const std::string &input, const std::string &test)
 Case insensitive equality predicate. More...
 
static string::size_type findUnbackslashed (const std::string &s, const char q, std::string::size_type istart=0)
 Find the first position of a character, q, in string, s, which is not immediately preceded by the backslash character. More...
 
XML_NodefindXMLPhase (XML_Node *root, const std::string &phaseName)
 Search an XML_Node tree for a named phase XML_Node. More...
 
size_t BasisOptimize (int *usedZeroedSpecies, bool doFormRxn, MultiPhase *mphase, std::vector< size_t > &orderVectorSpecies, std::vector< size_t > &orderVectorElements, vector_fp &formRxnMatrix)
 Choose the optimum basis of species for the equilibrium calculations. More...
 
void ElemRearrange (size_t nComponents, const vector_fp &elementAbundances, MultiPhase *mphase, std::vector< size_t > &orderVectorSpecies, std::vector< size_t > &orderVectorElements)
 Handles the potential rearrangement of the constraint equations represented by the Formula Matrix. More...
 
int _equilflag (const char *xy)
 map property strings to integers More...
 
static void printProgress (const vector< string > &spName, const vector_fp &soln, const vector_fp &ff)
 
double vcs_l2norm (const vector_fp &vec)
 determine the l2 norm of a vector of doubles More...
 
const char * vcs_speciesType_string (int speciesStatus, int length=100)
 Returns a const char string representing the type of the species given by the first argument. More...
 
bool vcs_doubleEqual (double d1, double d2)
 Simple routine to check whether two doubles are equal up to roundoff error. More...
 
static bool hasChargedSpecies (const ThermoPhase *const tPhase)
 This function decides whether a phase has charged species or not. More...
 
static bool chargeNeutralityElement (const ThermoPhase *const tPhase)
 This utility routine decides whether a Cantera ThermoPhase needs a constraint equation representing the charge neutrality of the phase. More...
 
shared_ptr< FalloffnewFalloff (int type, const vector_fp &c)
 Return a pointer to a new falloff function calculator. More...
 
std::ostream & operator<< (std::ostream &s, const Group &g)
 
bool installReactionArrays (const XML_Node &p, Kinetics &kin, std::string default_phase, bool check_for_duplicates=false)
 Install information about reactions into the kinetics object, kin. More...
 
bool importKinetics (const XML_Node &phase, std::vector< ThermoPhase * > th, Kinetics *kin)
 Import a reaction mechanism for a phase or an interface. More...
 
bool buildSolutionFromXML (XML_Node &root, const std::string &id, const std::string &nm, ThermoPhase *th, Kinetics *kin)
 Build a single-phase ThermoPhase object with associated kinetics mechanism. More...
 
bool checkElectrochemReaction (const XML_Node &p, Kinetics &kin, const XML_Node &r)
 Check to ensure that all electrochemical reactions are specified correctly. More...
 
Arrhenius readArrhenius (const XML_Node &arrhenius_node)
 
void readFalloff (FalloffReaction &R, const XML_Node &rc_node)
 Parse falloff parameters, given a rateCoeff node. More...
 
void readEfficiencies (ThirdBody &tbody, const XML_Node &rc_node)
 
void setupReaction (Reaction &R, const XML_Node &rxn_node)
 
void setupElementaryReaction (ElementaryReaction &R, const XML_Node &rxn_node)
 
void setupThreeBodyReaction (ThreeBodyReaction &R, const XML_Node &rxn_node)
 
void setupFalloffReaction (FalloffReaction &R, const XML_Node &rxn_node)
 
void setupChemicallyActivatedReaction (ChemicallyActivatedReaction &R, const XML_Node &rxn_node)
 
void setupPlogReaction (PlogReaction &R, const XML_Node &rxn_node)
 
void setupChebyshevReaction (ChebyshevReaction &R, const XML_Node &rxn_node)
 
void setupInterfaceReaction (InterfaceReaction &R, const XML_Node &rxn_node)
 
void setupElectrochemicalReaction (ElectrochemicalReaction &R, const XML_Node &rxn_node)
 
shared_ptr< ReactionnewReaction (const XML_Node &rxn_node)
 Create a new Reaction object for the reaction defined in rxn_node More...
 
std::vector< shared_ptr< Reaction > > getReactions (const XML_Node &node)
 Create Reaction objects for all <reaction> nodes in an XML document. More...
 
string reactionLabel (size_t i, size_t kr, size_t nr, const std::vector< size_t > &slist, const Kinetics &s)
 
static doublereal calc_damping (doublereal *x, doublereal *dx, size_t dim, int *)
 
static doublereal calcWeightedNorm (const doublereal [], const doublereal dx[], size_t)
 
static doublereal calc_damping (doublereal x[], doublereal dxneg[], size_t dim, int *label)
 
ostream & operator<< (std::ostream &s, const BandMatrix &m)
 Utility routine to print out the matrix. More...
 
static int cvodes_rhs (realtype t, N_Vector y, N_Vector ydot, void *f_data)
 Function called by cvodes to evaluate ydot given y. More...
 
static void cvodes_err (int error_code, const char *module, const char *function, char *msg, void *eh_data)
 Function called by CVodes when an error is encountered instead of writing to stdout. More...
 
DAE_SolvernewDAE_Solver (const std::string &itype, ResidJacEval &f)
 Factor method for choosing a DAE solver. More...
 
int solve (DenseMatrix &A, double *b, size_t nrhs=1, size_t ldb=0)
 Solve Ax = b. Array b is overwritten on exit with x. More...
 
int solve (DenseMatrix &A, DenseMatrix &b)
 Solve Ax = b for multiple right-hand-side vectors. More...
 
void multiply (const DenseMatrix &A, const double *const b, double *const prod)
 Multiply A*b and return the result in prod. Uses BLAS routine DGEMV. More...
 
void increment (const DenseMatrix &A, const double *const b, double *const prod)
 Multiply A*b and add it to the result in prod. Uses BLAS routine DGEMV. More...
 
int invert (DenseMatrix &A, size_t nn=npos)
 invert A. A is overwritten with A^-1. More...
 
static bool isConstant (Func1 &f)
 
static bool isZero (Func1 &f)
 
static bool isOne (Func1 &f)
 
static bool isTimesConst (Func1 &f)
 
static bool isExp (Func1 &f)
 
static bool isPow (Func1 &f)
 
Func1newSumFunction (Func1 &f1, Func1 &f2)
 
Func1newDiffFunction (Func1 &f1, Func1 &f2)
 
Func1newProdFunction (Func1 &f1, Func1 &f2)
 
Func1newRatioFunction (Func1 &f1, Func1 &f2)
 
Func1newCompositeFunction (Func1 &f1, Func1 &f2)
 
Func1newTimesConstFunction (Func1 &f, doublereal c)
 
Func1newPlusConstFunction (Func1 &f, doublereal c)
 
doublereal linearInterp (doublereal x, const vector_fp &xpts, const vector_fp &fpts)
 Linearly interpolate a function defined on a discrete grid. More...
 
IntegratornewIntegrator (const std::string &itype)
 
double polyfit (size_t n, size_t deg, const double *x, const double *y, const double *w, double *p)
 Fits a polynomial function to a set of data points. More...
 
static int interp_est (const std::string &estString)
 Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field. More...
 
double getElementWeight (const std::string &ename)
 Get the atomic weight of an element. More...
 
double getElementWeight (int atomicNumber)
 Get the atomic weight of an element. More...
 
string getElementSymbol (const std::string &ename)
 Get the symbol for an element. More...
 
string getElementSymbol (int atomicNumber)
 Get the symbol for an element. More...
 
string getElementName (const std::string &ename)
 Get the name of an element. More...
 
string getElementName (int atomicNumber)
 Get the name of an element. More...
 
int getAtomicNumber (const std::string &ename)
 Get the atomic number for an element. More...
 
int numElementsDefined ()
 Get the number of named elements defined in Cantera. More...
 
int numIsotopesDefined ()
 Get the number of named isotopes defined in Cantera. More...
 
static void check_nParams (const std::string &method, size_t nParams, size_t m_formPitzerTemp)
 
static double factorOverlap (const std::vector< std::string > &elnamesVN, const vector_fp &elemVectorN, const size_t nElementsN, const std::vector< std::string > &elnamesVI, const vector_fp &elemVectorI, const size_t nElementsI)
 Return the factor overlap. More...
 
doublereal xlogx (doublereal x)
 
Mu0PolynewMu0ThermoFromXML (const XML_Node &Mu0Node)
 Install a Mu0 polynomial thermodynamic reference state. More...
 
PDSSnewPDSS (const std::string &model)
 
shared_ptr< SpeciesnewSpecies (const XML_Node &species_node)
 Create a new Species object from a 'species' XML_Node. More...
 
std::vector< shared_ptr< Species > > getSpecies (const XML_Node &node)
 Generate Species objects for all <species> nodes in an XML document. More...
 
SpeciesThermoInterpTypenewSpeciesThermoInterpType (int type, double tlow, double thigh, double pref, const double *coeffs)
 Create a new SpeciesThermoInterpType object given a corresponding constant. More...
 
SpeciesThermoInterpTypenewSpeciesThermoInterpType (const std::string &type, double tlow, double thigh, double pref, const double *coeffs)
 Create a new SpeciesThermoInterpType object given a string. More...
 
static SpeciesThermoInterpTypenewNasaThermoFromXML (vector< XML_Node *> nodes)
 Create a NASA polynomial thermodynamic property parameterization for a species from a set ! of XML nodes. More...
 
SpeciesThermoInterpTypenewShomateForMineralEQ3 (const XML_Node &MinEQ3node)
 Create a Shomate polynomial from an XML node giving the 'EQ3' coefficients. More...
 
static SpeciesThermoInterpTypenewShomateThermoFromXML (vector< XML_Node *> &nodes)
 Create a Shomate polynomial thermodynamic property parameterization for a species. More...
 
static SpeciesThermoInterpTypenewConstCpThermoFromXML (XML_Node &f)
 Create a "simple" constant heat capacity thermodynamic property parameterization for a ! species. More...
 
static SpeciesThermoInterpTypenewNasa9ThermoFromXML (const std::vector< XML_Node *> &tp)
 Create a NASA9 polynomial thermodynamic property parameterization for a species. More...
 
static SpeciesThermoInterpTypenewAdsorbateThermoFromXML (const XML_Node &f)
 Create an Adsorbate polynomial thermodynamic property parameterization for a species. More...
 
SpeciesThermoInterpTypenewSpeciesThermoInterpType (const XML_Node &thermoNode)
 Create a new SpeciesThermoInterpType object from XML_Node. More...
 
ThermoPhasenewPhase (XML_Node &phase)
 Create a new ThermoPhase object and initializes it according to the XML tree. More...
 
ThermoPhasenewPhase (const std::string &infile, std::string id="")
 Create and Initialize a ThermoPhase object from an XML input file. More...
 
static void formSpeciesXMLNodeList (std::vector< XML_Node *> &spDataNodeList, std::vector< std::string > &spNamesList, vector_int &spRuleList, const std::vector< XML_Node *> spArray_names, const std::vector< XML_Node *> spArray_dbases, const vector_int sprule)
 Gather a vector of pointers to XML_Nodes for a phase. More...
 
void importPhase (XML_Node &phase, ThermoPhase *th)
 Import a phase information into an empty ThermoPhase object. More...
 
void installElements (Phase &th, const XML_Node &phaseNode)
 Add the elements given in an XML_Node tree to the specified phase. More...
 
const XML_NodespeciesXML_Node (const std::string &kname, const XML_Node *phaseSpeciesData)
 Search an XML tree for species data. More...
 
static void getArrhenius (const XML_Node &node, doublereal &A, doublereal &b, doublereal &E)
 Parses the XML element called Arrhenius. More...
 
doublereal quadInterp (doublereal x0, doublereal *x, doublereal *y)
 
doublereal Frot (doublereal tr, doublereal sqtr)
 The Parker temperature correction to the rotational collision number. More...
 
void setupGasTransportData (GasTransportData &tr, const XML_Node &tr_node)
 
shared_ptr< TransportDatanewTransportData (const XML_Node &transport_node)
 Create a new TransportData object from a 'transport' XML_Node. More...
 
TransportnewTransportMgr (const std::string &transportModel, thermo_t *thermo, int loglevel, int ndim)
 
TransportnewDefaultTransportMgr (thermo_t *thermo, int loglevel=0)
 Create a new transport manager instance. More...
 
std::ostream & operator<< (std::ostream &s, const Array2D &m)
 Output the current contents of the Array2D object. More...
 
void operator*= (Array2D &m, doublereal a)
 Overload the times equals operator for multiplication of a matrix and a scalar. More...
 
void operator+= (Array2D &x, const Array2D &y)
 Overload the plus equals operator for addition of one matrix with another. More...
 
void debuglog (const std::string &msg, int loglevel)
 Write a message to the log only if loglevel > 0. More...
 
template<typename... Args>
void writelog (const std::string &fmt, const Args &... args)
 Write a formatted message to the screen. More...
 
template<typename... Args>
void writelogf (const char *fmt, const Args &... args)
 Write a formatted message to the screen. More...
 
template<class T >
clip (const T &value, const T &lower, const T &upper)
 Clip value such that lower <= value <= upper. More...
 
template<typename T >
int sign (T x)
 Sign of a number. Returns -1 if x < 0, 1 if x > 0 and 0 if x == 0. More...
 
template<class V >
doublereal dot4 (const V &x, const V &y)
 Templated Inner product of two vectors of length 4. More...
 
template<class V >
doublereal dot5 (const V &x, const V &y)
 Templated Inner product of two vectors of length 5. More...
 
template<class InputIter , class InputIter2 >
doublereal dot (InputIter x_begin, InputIter x_end, InputIter2 y_begin)
 Function that calculates a templated inner product. More...
 
template<class InputIter , class OutputIter , class S >
void scale (InputIter begin, InputIter end, OutputIter out, S scale_factor)
 Multiply elements of an array by a scale factor. More...
 
template<class InputIter , class OutputIter >
void multiply_each (OutputIter x_begin, OutputIter x_end, InputIter y_begin)
 Multiply each entry in x by the corresponding entry in y. More...
 
template<class InputIter >
doublereal absmax (InputIter begin, InputIter end)
 The maximum absolute value (templated version) More...
 
template<class InputIter , class OutputIter >
void normalize (InputIter begin, InputIter end, OutputIter out)
 Normalize the values in a sequence, such that they sum to 1.0 (templated version) More...
 
template<class InputIter , class OutputIter >
void divide_each (OutputIter x_begin, OutputIter x_end, InputIter y_begin)
 Templated divide of each element of x by the corresponding element of y. More...
 
template<class InputIter , class OutputIter >
void sum_each (OutputIter x_begin, OutputIter x_end, InputIter y_begin)
 Increment each entry in x by the corresponding entry in y. More...
 
template<class InputIter , class OutputIter , class IndexIter >
void scatter_copy (InputIter begin, InputIter end, OutputIter result, IndexIter index)
 Copies a contiguous range in a sequence to indexed positions in another sequence. More...
 
template<class InputIter , class RandAccessIter , class IndexIter >
void scatter_mult (InputIter mult_begin, InputIter mult_end, RandAccessIter data, IndexIter index)
 Multiply selected elements in an array by a contiguous sequence of multipliers. More...
 
template<class InputIter >
doublereal sum_xlogx (InputIter begin, InputIter end)
 Compute

\[ \sum_k x_k \log x_k. \]

. More...

 
template<class InputIter1 , class InputIter2 >
doublereal sum_xlogQ (InputIter1 begin, InputIter1 end, InputIter2 Q_begin)
 Compute

\[ \sum_k x_k \log Q_k. \]

. More...

 
template<class D , class R >
poly6 (D x, R *c)
 Templated evaluation of a polynomial of order 6. More...
 
template<class D , class R >
poly8 (D x, R *c)
 Templated evaluation of a polynomial of order 8. More...
 
template<class D , class R >
poly5 (D x, R *c)
 Templated evaluation of a polynomial of order 5. More...
 
template<class D , class R >
poly4 (D x, R *c)
 Evaluates a polynomial of order 4. More...
 
template<class D , class R >
poly3 (D x, R *c)
 Templated evaluation of a polynomial of order 3. More...
 
template<class T , class U >
const U & getValue (const std::map< T, U > &m, const T &key, const U &default_val)
 Const accessor for a value in a std::map. More...
 
std::ostream & operator<< (std::ostream &s, MultiPhase &x)
 Function to output a MultiPhase description to a stream. More...
 
InterfaceimportInterface (const std::string &infile, const std::string &id, std::vector< ThermoPhase *> phases)
 Import an instance of class Interface from a specification in an input file. More...
 
KineticsnewKineticsMgr (XML_Node &phase, std::vector< ThermoPhase *> th)
 Create a new kinetics manager. More...
 
KineticsnewKineticsMgr (const std::string &model)
 Create a new kinetics manager. More...
 
template<class InputIter , class Vec1 , class Vec2 >
static void _multiply (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _incrementSpecies (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _decrementSpecies (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _incrementReactions (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
template<class InputIter , class Vec1 , class Vec2 >
static void _decrementReactions (InputIter begin, InputIter end, const Vec1 &input, Vec2 &output)
 
void ct_dgemv (ctlapack::storage_t storage, ctlapack::transpose_t trans, int m, int n, doublereal alpha, const doublereal *a, int lda, const doublereal *x, int incX, doublereal beta, doublereal *y, int incY)
 
void ct_dgbsv (int n, int kl, int ku, int nrhs, doublereal *a, int lda, integer *ipiv, doublereal *b, int ldb, int &info)
 
void ct_dgelss (size_t m, size_t n, size_t nrhs, doublereal *a, size_t lda, doublereal *b, size_t ldb, doublereal *s, doublereal rcond, size_t &rank, doublereal *work, int &lwork, int &info)
 
void ct_dgbtrf (size_t m, size_t n, size_t kl, size_t ku, doublereal *a, size_t lda, integer *ipiv, int &info)
 
void ct_dgbtrs (ctlapack::transpose_t trans, size_t n, size_t kl, size_t ku, size_t nrhs, doublereal *a, size_t lda, integer *ipiv, doublereal *b, size_t ldb, int &info)
 
void ct_dgetrf (size_t m, size_t n, doublereal *a, size_t lda, integer *ipiv, int &info)
 
void ct_dgetrs (ctlapack::transpose_t trans, size_t n, size_t nrhs, doublereal *a, size_t lda, integer *ipiv, doublereal *b, size_t ldb, int &info)
 
void ct_dgetri (int n, doublereal *a, int lda, integer *ipiv, doublereal *work, int lwork, int &info)
 
void ct_dscal (int n, doublereal da, doublereal *dx, int incx)
 
void ct_dgeqrf (size_t m, size_t n, doublereal *a, size_t lda, doublereal *tau, doublereal *work, size_t lwork, int &info)
 
void ct_dormqr (ctlapack::side_t rlside, ctlapack::transpose_t trans, size_t m, size_t n, size_t k, doublereal *a, size_t lda, doublereal *tau, doublereal *c, size_t ldc, doublereal *work, size_t lwork, int &info)
 
void ct_dtrtrs (ctlapack::upperlower_t uplot, ctlapack::transpose_t trans, const char *diag, size_t n, size_t nrhs, doublereal *a, size_t lda, doublereal *b, size_t ldb, int &info)
 
doublereal ct_dtrcon (const char *norm, ctlapack::upperlower_t uplot, const char *diag, size_t n, doublereal *a, size_t lda, doublereal *work, int *iwork, int &info)
 
void ct_dpotrf (ctlapack::upperlower_t uplot, size_t n, doublereal *a, size_t lda, int &info)
 
void ct_dpotrs (ctlapack::upperlower_t uplot, size_t n, size_t nrhs, doublereal *a, size_t lda, doublereal *b, size_t ldb, int &info)
 
doublereal ct_dgecon (const char norm, size_t n, doublereal *a, size_t lda, doublereal anorm, doublereal *work, int *iwork, int &info)
 
doublereal ct_dgbcon (const char norm, size_t n, size_t kl, size_t ku, doublereal *a, size_t ldab, int *ipiv, doublereal anorm, doublereal *work, int *iwork, int &info)
 
doublereal ct_dlange (const char norm, size_t m, size_t n, doublereal *a, size_t lda, doublereal *work)
 
ThermoPhasenewThermoPhase (const std::string &model)
 Create a new thermo manager instance. More...
 
ReactorBasenewReactor (const std::string &model)
 Create a Reactor object of the specified type. More...
 

Variables

static std::mutex dir_mutex
 Mutex for input directory access. More...
 
static std::mutex app_mutex
 Mutex for creating singletons within the application object. More...
 
static std::mutex xml_mutex
 Mutex for controlling access to XML file storage. More...
 
static std::mutex msg_mutex
 Mutex for access to string messages. More...
 
static const char * stars = "***********************************************************************\n"
 
std::string FP_Format = "%23.15E"
 
int BasisOptimize_print_lvl = 0
 External int that is used to turn on debug printing for the BasisOptimze program. More...
 
static const double USEDBEFORE = -1
 
static char pprefix [20] = " --- vcs_inest: "
 
int vcs_timing_print_lvl = 1
 Global hook for turning on and off time printing. More...
 
const doublereal DampFactor = sqrt(2.0)
 
const size_t NDAMP = 7
 
static struct atomicWeightData atomicWeightTable []
 atomicWeightTable is a vector containing the atomic weights database. More...
 
static struct isotopeWeightData isotopeWeightTable []
 isotopeWeightTable is a vector containing the atomic weights database. More...
 
static const doublereal H [4] = {1., 0.978197, 0.579829, -0.202354}
 
static const doublereal Hij [6][7]
 
static const doublereal rhoStar = 317.763
 
static const doublereal presStar = 22.115E6
 
const doublereal T_c = 647.096
 Critical Temperature value (kelvin) More...
 
static const doublereal P_c = 22.064E6
 Critical Pressure (Pascals) More...
 
const doublereal Rho_c = 322.
 Value of the Density at the critical point (kg m-3) More...
 
static const doublereal M_water = 18.015268
 Molecular Weight of water that is consistent with the paper (kg kmol-1) More...
 
static const doublereal Rgas = 8.314371E3
 Gas constant that is quoted in the paper. More...
 
const int DeltaDegree = 6
 
static const doublereal Min_C_Internal = 0.001
 Constant to compare dimensionless heat capacities against zero. More...
 
const doublereal Pi = 3.14159265358979323846
 Pi. More...
 
const doublereal SmallNumber = 1.e-300
 smallest number to compare to zero. More...
 
const doublereal BigNumber = 1.e300
 largest number to compare to inf. More...
 
const doublereal MaxExp = 690.775527898
 largest x such that exp(x) is valid More...
 
const doublereal Undef = -999.1234
 Fairly random number to be used to initialize variables against to see if they are subsequently defined. More...
 
const doublereal Tiny = 1.e-20
 Small number to compare differences of mole fractions against. More...
 
const size_t npos = static_cast<size_t>(-1)
 index returned by functions to indicate "no position" More...
 
const int NONE = 0
 
const int cDirect = 0
 
const int cKrylov = 1
 
const int FourierFuncType = 1
 
const int PolyFuncType = 2
 
const int ArrheniusFuncType = 3
 
const int GaussianFuncType = 4
 
const int SumFuncType = 20
 
const int DiffFuncType = 25
 
const int ProdFuncType = 30
 
const int RatioFuncType = 40
 
const int PeriodicFuncType = 50
 
const int CompositeFuncType = 60
 
const int TimesConstantFuncType = 70
 
const int PlusConstantFuncType = 80
 
const int SinFuncType = 100
 
const int CosFuncType = 102
 
const int ExpFuncType = 104
 
const int PowFuncType = 106
 
const int ConstFuncType = 110
 
const int DIAG = 1
 
const int DENSE = 2
 
const int NOJAC = 4
 
const int JAC = 8
 
const int GMRES = 16
 
const int BAND = 32
 
const int c_NONE = 0
 
const int c_GE_ZERO = 1
 
const int c_GT_ZERO = 2
 
const int c_LE_ZERO = -1
 
const int c_LT_ZERO = -2
 
const int cFlowType = 50
 
const int cFreeFlow = 51
 
const int cAxisymmetricStagnationFlow = 52
 
const int cConnectorType = 100
 
const int cSurfType = 102
 
const int cInletType = 104
 
const int cSymmType = 105
 
const int cOutletType = 106
 
const int cEmptyType = 107
 
const int cOutletResType = 108
 
const int cPorousType = 109
 
const int LeftInlet = 1
 
const int RightInlet = -1
 
const size_t c_offset_U = 0
 
const size_t c_offset_V = 1
 
const size_t c_offset_T = 2
 
const size_t c_offset_L = 3
 
const size_t c_offset_E = 4
 
const size_t c_offset_Y = 5
 
const int cEST_solvent = 0
 Electrolyte species type. More...
 
const int cEST_chargedSpecies = 1
 
const int cEST_weakAcidAssociated = 2
 
const int cEST_strongAcidAssociated = 3
 
const int cEST_polarNeutral = 4
 
const int cEST_nonpolarNeutral = 5
 
const int PHSCALE_PITZER = 0
 Scale to be used for the output of single-ion activity coefficients is that used by Pitzer. More...
 
const int PHSCALE_NBS = 1
 Scale to be used for evaluation of single-ion activity coefficients is that used by the NBS standard for evaluation of the pH variable. More...
 
const VelocityBasis VB_MASSAVG = -1
 Diffusion velocities are based on the mass averaged velocity. More...
 
const VelocityBasis VB_MOLEAVG = -2
 Diffusion velocities are based on the mole averaged velocities. More...
 
const VelocityBasis VB_SPECIES_0 = 0
 Diffusion velocities are based on the relative motion wrt species 0. More...
 
const VelocityBasis VB_SPECIES_1 = 1
 Diffusion velocities are based on the relative motion wrt species 1. More...
 
const VelocityBasis VB_SPECIES_2 = 2
 Diffusion velocities are based on the relative motion wrt species 2. More...
 
const VelocityBasis VB_SPECIES_3 = 3
 Diffusion velocities are based on the relative motion wrt species 3. More...
 
const int MFC_Type = 1
 
const int PressureController_Type = 2
 
const int Valve_Type = 3
 
const int ReservoirType = 1
 
const int ReactorType = 2
 
const int FlowReactorType = 3
 
const int ConstPressureReactorType = 4
 
const int IdealGasReactorType = 5
 
const int IdealGasConstPressureReactorType = 6
 
Variations of the Gas Constant

Cantera uses the MKS system of units. The unit for moles is defined to be the kmol.

const doublereal Avogadro = 6.02214129e26
 Avogadro's Number [number/kmol]. More...
 
const doublereal GasConstant = 8314.4621
 Universal Gas Constant. [J/kmol/K]. More...
 
const doublereal logGasConstant = std::log(GasConstant)
 
const doublereal OneAtm = 1.01325e5
 One atmosphere [Pa]. More...
 
const doublereal OneBar = 1.0E5
 
const doublereal GasConst_cal_mol_K = GasConstant / 4184.0
 Universal gas constant in cal/mol/K. More...
 
const doublereal Boltzmann = GasConstant / Avogadro
 Boltzmann's constant [J/K]. More...
 
const doublereal Planck = 6.62607009e-34
 Planck's constant. [J-s]. More...
 
const doublereal Planck_bar = Planck / (2 * Pi)
 
const doublereal logBoltz_Planck = std::log(Boltzmann / Planck)
 log(k/h) More...
 
const doublereal StefanBoltz = 5.670373e-8
 Stefan-Boltzmann constant. More...
 
Electron Properties
const doublereal ElectronCharge = 1.602176565e-19
 
const doublereal ElectronMass = 9.10938291e-31
 
const doublereal Faraday = ElectronCharge * Avogadro
 
Electromagnetism

Cantera uses the MKS unit system.

const doublereal lightSpeed = 299792458.0
 Speed of Light (m/s). More...
 
const doublereal permeability_0 = 4.0e-7*Pi
 Permeability of free space \( \mu_0 \) in N/A^2. More...
 
const doublereal epsilon_0 = 1.0 / (lightSpeed*lightSpeed*permeability_0)
 Permittivity of free space \( \epsilon_0 \) in F/m. More...
 
Thermodynamic Equilibrium Constraints

Integer numbers representing pairs of thermodynamic variables which are held constant during equilibration.

const int TV = 100
 
const int HP = 101
 
const int SP = 102
 
const int PV = 103
 
const int TP = 104
 
const int UV = 105
 
const int ST = 106
 
const int SV = 107
 
const int UP = 108
 
const int VH = 109
 
const int TH = 110
 
const int SH = 111
 
const int PX = 112
 
const int TX = 113
 
const int VT = -100
 
const int PH = -101
 
const int PS = -102
 
const int VP = -103
 
const int PT = -104
 
const int VU = -105
 
const int TS = -106
 
const int VS = -107
 
const int PU = -108
 
const int HV = -109
 
const int HT = -110
 
const int HS = -111
 
const int XP = -112
 
const int XT = -113
 
Reaction Types
const int ELEMENTARY_RXN = 1
 A reaction with a rate coefficient that depends only on temperature and voltage that also obeys mass-action kinetics. More...
 
const int THREE_BODY_RXN = 2
 A gas-phase reaction that requires a third-body collision partner. More...
 
const int FALLOFF_RXN = 4
 The general form for a gas-phase association or dissociation reaction, with a pressure-dependent rate. More...
 
const int PLOG_RXN = 5
 A pressure-dependent rate expression consisting of several Arrhenius rate expressions evaluated at different pressures. More...
 
const int CHEBYSHEV_RXN = 6
 A general gas-phase pressure-dependent reaction where k(T,P) is defined in terms of a bivariate Chebyshev polynomial. More...
 
const int CHEMACT_RXN = 8
 A chemical activation reaction. More...
 
const int SURFACE_RXN = 20
 A reaction occurring on a surface. More...
 
const int INTERFACE_RXN = 20
 A reaction occurring on an interface, e.g a surface or edge. More...
 
const int BUTLERVOLMER_NOACTIVITYCOEFFS_RXN = 25
 This is a surface reaction that is formulated using the Butler-Volmer formulation and using concentrations instead of activity concentrations for its exchange current density formula. More...
 
const int BUTLERVOLMER_RXN = 26
 This is a surface reaction that is formulated using the Butler-Volmer formulation. More...
 
const int SURFACEAFFINITY_RXN = 27
 This is a surface reaction that is formulated using the affinity representation, common in the geochemistry community. More...
 
const int EDGE_RXN = 22
 A reaction occurring at a one-dimensional interface between two surface phases. More...
 
const int GLOBAL_RXN = 30
 A global reaction. More...
 
Rate Coefficient Types

These types define the supported rate coefficient types for elementary reactions.

Any of these may also be used as the high and low-pressure limits of falloff and chemical activation reactions.

Note that not all of these are currently implemented!

Todo:
Finish implementing reaction rate types.
const int ARRHENIUS_REACTION_RATECOEFF_TYPE = 1
 
const int LANDAUTELLER_REACTION_RATECOEFF_TYPE = 2
 
const int TSTRATE_REACTION_RATECOEFF_TYPE = 3
 
const int SURF_ARRHENIUS_REACTION_RATECOEFF_TYPE = 4
 
const int ARRHENIUS_SUM_REACTION_RATECOEFF_TYPE = 5
 
const int EXCHANGE_CURRENT_REACTION_RATECOEFF_TYPE = 6
 
const int PLOG_REACTION_RATECOEFF_TYPE = 7
 
const int CHEBYSHEV_REACTION_RATECOEFF_TYPE = 8
 
Falloff Function Types
const int SIMPLE_FALLOFF = 100
 
const int TROE_FALLOFF = 110
 
const int SRI_FALLOFF = 112
 
CONSTANTS - Specification of the Molality convention
const int cAC_CONVENTION_MOLAR = 0
 Standard state uses the molar convention. More...
 
const int cAC_CONVENTION_MOLALITY = 1
 Standard state uses the molality convention. More...
 
CONSTANTS - Specification of the SS convention
const int cSS_CONVENTION_TEMPERATURE = 0
 Standard state uses the molar convention. More...
 
const int cSS_CONVENTION_VPSS = 1
 Standard state uses the molality convention. More...
 
const int cSS_CONVENTION_SLAVE = 2
 Standard state thermodynamics is obtained from slave ThermoPhase objects. More...
 
const int LVISC_CONSTANT = 0
 
const int LVISC_WILKES = 1
 
const int LVISC_MIXTUREAVG = 2
 
const int LDIFF_MIXDIFF_UNCORRECTED = 0
 
const int LDIFF_MIXDIFF_FLUXCORRECTED = 1
 
const int LDIFF_MULTICOMP_STEFANMAXWELL = 2
 

Detailed Description

Namespace for the Cantera kernel.

Namespace for classes implementing zero-dimensional reactor networks.

Typedef Documentation

◆ compositionMap

typedef std::map<std::string, doublereal> compositionMap

Map connecting a string name with a double.

This is used mostly to assign concentrations and mole fractions to species.

Definition at line 149 of file ct_defs.h.

◆ Composition

typedef std::map<std::string, doublereal> Composition

Map from string names to doubles.

Used for defining species mole/mass fractions, elemental compositions, and reaction stoichiometries.

Definition at line 153 of file ct_defs.h.

◆ vector_fp

typedef std::vector<double> vector_fp

Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.

Definition at line 157 of file ct_defs.h.

◆ vector_int

typedef std::vector<int> vector_int

Vector of ints.

Definition at line 159 of file ct_defs.h.

◆ grouplist_t

typedef std::vector<std::vector<size_t> > grouplist_t

A grouplist is a vector of groups of species.

Definition at line 162 of file ct_defs.h.

◆ VCS_FUNC_PTR

typedef double(* VCS_FUNC_PTR) (double xval, double Vtarget, int varID, void *fptrPassthrough, int *err)

Definition of the function pointer for the root finder.

see vcsUtil_root1d for a definition of how to use this.

Definition at line 82 of file vcs_internal.h.

◆ thermo_t

typedef for the ThermoPhase class

Definition at line 1647 of file ThermoPhase.h.

Enumeration Type Documentation

◆ MethodType

enum MethodType

Specifies the method used to integrate the system of equations.

Not all methods are supported by all integrators.

Enumerator
BDF_Method 

Backward Differentiation.

Adams_Method 

Adams.

Definition at line 32 of file Integrator.h.

◆ IterType

enum IterType

Specifies the method used for iteration.

Not all methods are supported by all integrators.

Enumerator
Newton_Iter 

Newton Iteration.

Functional_Iter 

Functional Iteration.

Definition at line 41 of file Integrator.h.

◆ ResidEval_Type_Enum

Differentiates the type of residual evaluations according to functionality.

Enumerator
Base_ResidEval 

Base residual calculation for the time-stepping function.

JacBase_ResidEval 

Base residual calculation for the Jacobian calculation.

JacDelta_ResidEval 

Delta residual calculation for the Jacbobian calculation.

Base_ShowSolution 

Base residual calculation for the showSolution routine.

We calculate this when we want to display a solution

Base_LaggedSolutionComponents 

Base residual calculation containing any lagged components.

We use this to calculate residuals when doing line searches along irections determined by Jacobians that are missing contributions from lagged entries.

Definition at line 20 of file ResidJacEval.h.

◆ IonSolnType_enumType

enums for molten salt ion solution types

Types identify how complicated the solution is. If there is just mixing on one of the sublattices but not the other, then the math is considerably simpler.

Definition at line 25 of file IonsFromNeutralVPSSTP.h.

◆ LiquidTranMixingModel

Composition dependence type for liquid mixture transport properties.

Deprecated:
To be removed after Cantera 2.4

Types of temperature dependencies:

  • 0 - Mixture calculations with this property are not allowed
  • 1 - Use solvent (species 0) properties
  • 2 - Properties weighted linearly by mole fractions
  • 3 - Properties weighted linearly by mass fractions
  • 4 - Properties weighted logarithmically by mole fractions (interaction energy weighting)
  • 5 - Interactions given pairwise between each possible species (i.e. D_ij)
*    <transport model="Liquid">
*       <viscosity>
*          <compositionDependence model="logMoleFractions">
*             <interaction>
*                <speciesA> LiCl(L) </speciesA>
*                <speciesB> KCl(L)  </speciesB>
*                <Eij units="J/kmol"> -1.0 </Eij>
*                <Sij units="J/kmol/K"> 1.0E-1 </Sij>
*     -or-       <Sij>
*                  <floatArray units="J/kmol/K"> 1.0E-1, 0.001 0.01 </floatArray>
*                </Sij>
*     -same form for Hij,Aij,Bij-
*             </interaction>
*          </compositionDependence>
*       </viscosity>
*       <speciesDiffusivity>
*          <compositionDependence model="pairwiseInteraction">
*             <interaction>
*                <speciesA> Li+ </speciesA>
*                <speciesB> K+  </speciesB>
*                <Dij units="m2/s"> 1.5 </Dij>
*             </interaction>
*             <interaction>
*                <speciesA> K+  </speciesA>
*                <speciesB> Cl- </speciesB>
*                <Dij units="m2/s"> 1.0 </Dij>
*             </interaction>
*             <interaction>
*                <speciesA> Li+  </speciesA>
*                <speciesB> Cl-  </speciesB>
*                <Dij units="m2/s"> 1.2 </Dij>
*             </interaction>
*          </compositionDependence>
*       </speciesDiffusivity>
*       <thermalConductivity>
*          <compositionDependence model="massFractions"/>
*       </thermalConductivity>
*       <hydrodynamicRadius>
*          <compositionDependence model="none"/>
*       </hydrodynamicRadius>
*    </transport>
*   

Definition at line 75 of file LiquidTranInteraction.h.

◆ TransportPropertyType

Enumeration of the types of transport properties that can be handled by the variables in the various Transport classes.

Not all of these are handled by each class and each class should handle exceptions where the transport property is not handled.

Transport properties currently on the list

0 - viscosity 1 - Ionic conductivity 2 - Mobility Ratio 3 - Self Diffusion coefficient 4 - Thermal conductivity 5 - species diffusivity 6 - hydrodynamic radius 7 - electrical conductivity

Definition at line 34 of file LTPspecies.h.

◆ LTPTemperatureDependenceType

Temperature dependence type for standard state species properties.

Types of temperature dependencies: 0 - Independent of temperature 1 - extended arrhenius form 2 - polynomial in temperature form 3 - exponential temperature polynomial

Definition at line 56 of file LTPspecies.h.

Function Documentation

◆ checkFinite() [1/2]

void checkFinite ( const double  tmp)

Check to see that a number is finite (not NaN, +Inf or -Inf)

Definition at line 15 of file checkFinite.cpp.

Referenced by ReactorNet::eval(), and ReactorNet::updateState().

◆ checkFinite() [2/2]

void checkFinite ( const std::string &  name,
double *  values,
size_t  N 
)

Check to see that all elements in an array are finite.

Throws an exception if any element is NaN, +Inf, or -Inf

Parameters
nameName to be used in the exception message if the check fails
valuesArray of N values to be checked
NNumber of elements in values

Definition at line 28 of file checkFinite.cpp.

◆ pypath()

static string Cantera::pypath ( )
static

return the full path to the Python interpreter.

Use the environment variable PYTHON_CMD if it is set. If not, return the string 'python'.

Note, there are hidden problems here that really direct us to use a full pathname for the location of python. Basically the system call will use the shell /bin/sh, in order to launch python. This default shell may not be the shell that the user is employing. Therefore, the default path to python may be different during a system call than during the default user shell environment. This is quite a headache. The answer is to always set the PYTHON_CMD environmental variable in the user environment to an absolute path to locate the python executable. Then this issue goes away.

Definition at line 42 of file ct2ctml.cpp.

References trimCopy().

Referenced by ck2cti().

◆ ck2cti()

void ck2cti ( const std::string &  in_file,
const std::string &  thermo_file = "",
const std::string &  transport_file = "",
const std::string &  id_tag = "gas" 
)

Convert a Chemkin-format mechanism into a CTI file.

Parameters
in_fileinput file containing species and reactions
thermo_fileoptional input file containing thermo data
transport_fileoptional input file containing transport parameters
id_tagid of the phase

Definition at line 183 of file ct2ctml.cpp.

References pypath(), trimCopy(), and writelog().

◆ addFloat()

void addFloat ( XML_Node node,
const std::string &  titleString,
const doublereal  value,
const std::string &  unitsString = "",
const std::string &  typeString = "",
const doublereal  minval = Undef,
const doublereal  maxval = Undef 
)

This function adds a child node with the name, "float", with a value consisting of a single floating point number.

This function will add a child node to the current XML node, with the name "float". It will have a title attribute, and the body of the XML node will be filled out with a single float

Example:

const XML_Node &node;
std::string titleString = "activationEnergy";
doublereal value = 50.3;
doublereal maxval = 1.0E3;
doublereal minval = 0.0;
std::string typeString = "optional";
std::string unitsString = "kcal/gmol";
addFloat(node, titleString, value, unitsString, typeString, minval, maxval);

Creates the following the snippet in the XML file:

<parentNode>
  <float title="activationEnergy" type="optional" units="kcal/gmol" min="0.0" max="1.0E3">
     50.3
  <\float>
<\parentNode>
Parameters
nodereference to the XML_Node object of the parent XML element
titleStringString name of the title attribute
valueValue - single integer
unitsStringString name of the Units attribute. The default is to have an empty string.
typeStringString type. This is an optional parameter. The default is to have an empty string.
minvalMinimum allowed value of the float. The default is the special double, Undef, which means to ignore the entry.
maxvalMaximum allowed value of the float. The default is the special double, Undef, which means to ignore the entry.

Definition at line 19 of file ctml.cpp.

Referenced by Inlet1D::save(), StFlow::save(), OutletRes1D::save(), Surf1D::save(), and ReactingSurf1D::save().

◆ addFloatArray()

void addFloatArray ( XML_Node node,
const std::string &  titleString,
const size_t  n,
const doublereal *const  values,
const std::string &  unitsString = "",
const std::string &  typeString = "",
const doublereal  minval = Undef,
const doublereal  maxval = Undef 
)

This function adds a child node with the name, "floatArray", with a value consisting of a comma separated list of floats.

This function will add a child node to the current XML node, with the name "floatArray". It will have a title attribute, and the body of the XML node will be filled out with a comma separated list of doublereals.

Example:

const XML_Node &node;
std::string titleString = "additionalTemperatures";
int n = 3;
int Tcases[3] = [273.15, 298.15, 373.15];
std::string typeString = "optional";
std::string units = "Kelvin";
addFloatArray(node, titleString, n, &cases[0], typeString, units);

Creates the following the snippet in the XML file:

<parentNode>
  <floatArray title="additionalTemperatures" type="optional" units="Kelvin">
     273.15, 298.15, 373.15
  <\floatArray>
<\parentNode>
Parameters
nodereference to the XML_Node object of the parent XML element
titleStringString name of the title attribute
nLength of the doubles vector.
valuesPointer to a vector of doubles
unitsStringString name of the Units attribute. This is an optional parameter. The default is to have an empty string.
typeStringString type. This is an optional parameter. The default is to have an empty string.
minvalMinimum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.
maxvalMaximum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.

Definition at line 40 of file ctml.cpp.

Referenced by StFlow::save(), and Domain1D::save().

◆ addNamedFloatArray()

void addNamedFloatArray ( XML_Node parentNode,
const std::string &  name,
const size_t  n,
const doublereal *const  vals,
const std::string  units = "",
const std::string  type = "",
const doublereal  minval = Undef,
const doublereal  maxval = Undef 
)

This function adds a child node with the name given by the first parameter with a value consisting of a comma separated list of floats.

This function will add a child node to the current XML node, with the name given in the list. It will have a title attribute, and the body of the XML node will be filled out with a comma separated list of integers

Example:

const XML_Node &node;
std::string titleString = "additionalTemperatures";
int n = 3;
int Tcases[3] = [273.15, 298.15, 373.15];
std::string typeString = "optional";
std::string units = "Kelvin";
addNamedFloatArray(node, titleString, n, &cases[0], typeString, units);

Creates the following the snippet in the XML file:

<parentNode>
  <additionalTemperatures type="optional" vtype="floatArray" size = "3" units="Kelvin">
     273.15, 298.15, 373.15
  <\additionalTemperatures>
<\parentNode>
Parameters
parentNodereference to the XML_Node object of the parent XML element
nameName of the XML node
nLength of the doubles vector.
valsPointer to a vector of doubles
unitsString name of the Units attribute. This is an optional parameter. The default is to have an empty string.
typeString type. This is an optional parameter. The default is to have an empty string.
minvalMinimum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.
maxvalMaximum allowed value of the int. This is an optional parameter. The default is the special double, Undef, which means to ignore the entry.

Definition at line 73 of file ctml.cpp.

Referenced by StFlow::save().

◆ addString()

void addString ( XML_Node node,
const std::string &  titleString,
const std::string &  valueString,
const std::string &  typeString = "" 
)

This function adds a child node with the name string with a string value to the current node.

This function will add a child node to the current XML node, with the name "string". It will have a title attribute, and the body of the XML node will be filled out with the valueString argument verbatim.

Example:

const XML_Node &node;
addString(node, "titleString", "valueString", "typeString");

Creates the following the snippet in the XML file:

<string title="titleString" type="typeString">
  valueString
<\string>
Parameters
nodereference to the XML_Node object of the parent XML element
valueStringValue string to be used in the new XML node.
titleStringString name of the title attribute
typeStringString type. This is an optional parameter.

Definition at line 111 of file ctml.cpp.

References XML_Node::addAttribute().

Referenced by StFlow::save().

◆ getByTitle()

XML_Node * getByTitle ( const XML_Node node,
const std::string &  title 
)

Search the child nodes of the current node for an XML Node with a Title attribute of a given name.

Parameters
nodeCurrent node from which to conduct the search
titleName of the title attribute
Returns
a pointer to the matched child node. Returns 0 if no node is found.

Definition at line 122 of file ctml.cpp.

References XML_Node::findByAttr(), and XML_Node::parent().

Referenced by getString(), and newMu0ThermoFromXML().

◆ getChildValue()

std::string getChildValue ( const XML_Node parent,
const std::string &  nameString 
)

This function reads a child node with the name, nameString, and returns its XML value as the return string.

If the child XML_node named "name" doesn't exist, the empty string is returned.

Example:

const XML_Node &parent;
string nameString = "vacancy_species";
string valueString = getChildValue(parent, nameString
std::string typeString);

returns valueString = "O(V)" from the following the snippet in the XML file:

<vacancySpecies>
  O(V)
<\vacancySpecies>
Parameters
parentparent reference to the XML_Node object of the parent XML element
nameStringName of the child XML_Node to read the value from.
Returns
String value of the child XML_Node

Definition at line 131 of file ctml.cpp.

References XML_Node::hasChild().

Referenced by SurfPhase::setStateFromXML(), MixtureFugacityTP::setStateFromXML(), MolalityVPSSTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

◆ getString()

void getString ( const XML_Node node,
const std::string &  titleString,
std::string &  valueString,
std::string &  typeString 
)

This function reads a child node with the name string with a specific title attribute named titleString.

This function will read a child node to the current XML node with the name "string". It must have a title attribute, named titleString, and the body of the XML node will be read into the valueString output argument.

If the child node is not found then the empty string is returned.

Example:

const XML_Node &node;
getString(XML_Node& node, std::string titleString, std::string valueString,
std::string typeString);

Reads the following the snippet in the XML file:

<string title="titleString" type="typeString">
  valueString
<\string>
Parameters
nodeReference to the XML_Node object of the parent XML element
titleStringString name of the title attribute of the child node
valueStringValue string that is found in the child node. output variable
typeStringString type. This is an optional output variable. It is filled with the attribute "type" of the XML entry.

Definition at line 139 of file ctml.cpp.

References XML_Node::attrib(), getByTitle(), XML_Node::name(), and XML_Node::value().

◆ getIntegers()

void getIntegers ( const XML_Node node,
std::map< std::string, int > &  v 
)

Get a vector of integer values from a child element.

Returns a std::map containing a keyed values for child XML_Nodes of the current node with the name, "integer". In the keyed mapping there will be a list of titles vs. values for all of the XML nodes. The integer XML_nodes are expected to be in a particular form, with one value per XML_node.

Example:

const XML_Node &State_XMLNode;
std::map<std::string, integer> v;
getInteger(State_XMLNode, v);

reads the corresponding XML file:

<state>
  <integer title="i1">   1  <\integer>
  <integer title="i2">   2  <\integer>
  <integer title="i3">   3  <\integer>
<\state>

Will produce the mapping:

v["i1"] = 1
v["i2"] = 2
v["i3"] = 3
Parameters
nodeCurrent XML node to get the values from
vOutput map of the results.

Definition at line 152 of file ctml.cpp.

References XML_Node::getChildren().

◆ getFloat()

doublereal getFloat ( const XML_Node parent,
const std::string &  name,
const std::string &  type = "" 
)

Get a floating-point value from a child element.

Returns a doublereal value for the child named 'name' of element 'parent'. If 'type' is supplied and matches a known unit type, unit conversion to SI will be done if the child element has an attribute 'units'.

Note, it's an error for the child element not to exist.

Example:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
if (state_XMLNode.hasChild("pressure")) {
pres = getFloat(State_XMLNode, "pressure", "toSI");
}

reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.

Definition at line 164 of file ctml.cpp.

Referenced by LiquidTranInteraction::init(), MineralEQ3::initThermoXML(), StoichSubstance::initThermoXML(), FixedChemPotSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), HMWSoln::initThermoXML(), newAdsorbateThermoFromXML(), newConstCpThermoFromXML(), newMu0ThermoFromXML(), newShomateForMineralEQ3(), newSpecies(), Inlet1D::restore(), StFlow::restore(), OutletRes1D::restore(), Surf1D::restore(), ReactingSurf1D::restore(), PDSS_ConstVol::setParametersFromXML(), EdgePhase::setParametersFromXML(), MetalPhase::setParametersFromXML(), PDSS_HKFT::setParametersFromXML(), ConstDensityThermo::setParametersFromXML(), SurfPhase::setParametersFromXML(), StoichSubstance::setParametersFromXML(), FixedChemPotSSTP::setParametersFromXML(), MetalSHEelectrons::setParametersFromXML(), LatticePhase::setParametersFromXML(), MixtureFugacityTP::setStateFromXML(), MolalityVPSSTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

◆ getFloatCurrent()

doublereal getFloatCurrent ( const XML_Node currXML,
const std::string &  type = "" 
)

Get a floating-point value from the current XML element.

Returns a doublereal value from the current element. If 'type' is supplied and matches a known unit type, unit conversion to SI will be done if the child element has an attribute 'units'.

Note, it's an error for the child element not to exist.

Example:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
if (state_XMLNode.hasChild("pressure")) {
XML_Node *pres_XMLNode = State_XMLNode.getChild("pressure");
pres = getFloatCurrent(pres_XMLNode, "toSI");
}

Reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
currXMLreference to the current XML_Node object
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.

Definition at line 177 of file ctml.cpp.

Referenced by RedlichKwongMFTP::readXMLPureFluid(), and LTPspecies_Const::setupFromXML().

◆ getOptionalFloat()

bool getOptionalFloat ( const XML_Node parent,
const std::string &  name,
doublereal &  fltRtn,
const std::string &  type = "" 
)

Get an optional floating-point value from a child element.

Returns a doublereal value for the child named 'name' of element 'parent'. If 'type' is supplied and matches a known unit type, unit conversion to SI will be done if the child element has an attribute 'units'.

Example:

const XML_Node &State_XMLNode;
doublereal pres = OneAtm;
bool exists = getOptionalFloat(State_XMLNode, "pressure", pres, "toSI");

reads the corresponding XML file:

<state>
  <pressure units="Pa"> 101325.0 </pressure>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element
fltRtnFloat Return. It will be overridden if the XML element exists.
typeString type. Currently known types are "toSI" and "actEnergy", and "" , for no conversion. The default value is "", which implies that no conversion is allowed.
Returns
true if the child element named "name" exists

Definition at line 212 of file ctml.cpp.

Referenced by StFlow::restore(), and SurfPhase::setStateFromXML().

◆ getOptionalModel()

bool getOptionalModel ( const XML_Node parent,
const std::string &  nodeName,
std::string &  modelName 
)

Get an optional model name from a named child node.

Returns the model name attribute for the child named 'nodeName' of element 'parent'. Note, it's optional for the child node to exist

Example:

std::string modelName = "";
bool exists = getOptionalModel(transportNode, "compositionDependence",
modelName);

reads the corresponding XML file:

<transport model="Simple">
  <compositionDependence model="Solvent_Only"/>
</transport>

On return modelName is set to "Solvent_Only".

Parameters
parentreference to the XML_Node object of the parent XML element
nodeNameName of the XML child element
modelNameOn return this contains the contents of the model attribute
Returns
True if the nodeName XML node exists. False otherwise.

Definition at line 224 of file ctml.cpp.

References XML_Node::child(), and XML_Node::hasChild().

◆ getInteger()

int getInteger ( const XML_Node parent,
const std::string &  name 
)

Get an integer value from a child element.

Returns an integer value for the child named 'name' of element 'parent'. Note, it's an error for the child element not to exist.

Example:

const XML_Node &State_XMLNode;
int number = 1;
if (state_XMLNode.hasChild("NumProcs")) {
number = getInteger(State_XMLNode, "numProcs");
}

reads the corresponding XML file:

<state>
  <numProcs> 10 <numProcs/>
<\state>
Parameters
parentreference to the XML_Node object of the parent XML element
nameName of the XML child element

Definition at line 234 of file ctml.cpp.

References XML_Node::child(), XML_Node::hasChild(), XML_Node::int_value(), intValue(), XML_Node::name(), XML_Node::value(), and writelog().

Referenced by newMu0ThermoFromXML().

◆ getFloatArray()

size_t Cantera::getFloatArray ( const XML_Node node,
vector_fp v,
const bool  convert = true,
const std::string &  unitsString = "",
const std::string &  nodeName = "floatArray" 
)

This function reads the current node or a child node of the current node with the default name, "floatArray", with a value field consisting of a comma separated list of floats.

This function will read either the current XML node or a child node to the current XML node, with the name "floatArray". It will have a title attribute, and the body of the XML node will be filled out with a comma separated list of doublereals. Get an array of floats from the XML Node. The argument field is assumed to consist of an arbitrary number of comma separated floats, with an arbitrary amount of white space separating each field. If the node array has an units attribute field, then the units are used to convert the floats, iff convert is true.

Example:

const XML_Node &State_XMLNode;
bool convert = true;
unitsString = "";
nodeName="floatArray";
getFloatArray(State_XMLNode, v, convert, unitsString, nodeName);

reads the corresponding XML file:

<state>
  <floatArray  units="m3">   32.4, 1, 100. <\floatArray>
<\state>

and will produce the vector:

v[0] = 32.4
v[1] = 1.0
v[2] = 100.
Parameters
nodeXML parent node of the floatArray
vOutput vector of floats containing the floatArray information.
convertConversion to SI is carried out if this boolean is True. The default is true.
unitsStringString name of the type attribute. This is an optional parameter. The default is to have an empty string. The only string that is recognized is actEnergy. Anything else has no effect. This affects what units converter is used.
nodeNameXML Name of the XML node to read. The default value for the node name is floatArray
Returns
the number of floats read into v.

Definition at line 256 of file ctml.cpp.

References actEnergyToSI(), XML_Node::attrib(), fpValueCheck(), XML_Node::getChildren(), XML_Node::name(), npos, Tiny, toSI(), Undef, XML_Node::value(), and writelog().

Referenced by LiquidTranInteraction::init(), newAdsorbateThermoFromXML(), newMu0ThermoFromXML(), newNasa9ThermoFromXML(), newNasaThermoFromXML(), newShomateThermoFromXML(), HMWSoln::readXMLBinarySalt(), MixedSolventElectrolyte::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), HMWSoln::readXMLLambdaNeutral(), HMWSoln::readXMLMunnnNeutral(), HMWSoln::readXMLPsi(), RedlichKwongMFTP::readXMLPureFluid(), HMWSoln::readXMLTheta(), HMWSoln::readXMLZetaCation(), StFlow::restore(), Domain1D::restore(), PDSS_SSVol::setParametersFromXML(), LTPspecies_Poly::setupFromXML(), and LTPspecies_ExpT::setupFromXML().

◆ getMap()

void getMap ( const XML_Node node,
std::map< std::string, std::string > &  m 
)

This routine is used to interpret the value portions of XML elements that contain colon separated pairs.

These are used, for example, in describing the element composition of species.

 <atomArray> H:4 C:1 <atomArray\>

The string is first separated into a string vector according to the location of white space. Then each string is again separated into two parts according to the location of a colon in the string. The first part of the string is used as the key, while the second part of the string is used as the value, in the return map. It is an error to not find a colon in each string pair.

Parameters
nodeCurrent node
mOutput Map containing the pairs of values found in the XML Node

Definition at line 330 of file ctml.cpp.

References getStringArray(), and npos.

◆ getPairs()

int getPairs ( const XML_Node node,
std::vector< std::string > &  key,
std::vector< std::string > &  val 
)

This function interprets the value portion of an XML element as a series of "Pairs" separated by white space.

Each pair consists of non-whitespace characters. The first ":" found in the pair string is used to separate the string into two parts. The first part is called the "key" The second part is called the "val". String vectors of key[i] and val[i] are returned in the argument list. Warning: No spaces are allowed in each pair. Quotes get included as part of the string. Example:

<xmlNode>
   red:112    blue:34
   green:banana
</xmlNode>

Returns:

index key val —
0 "red" "112"
1 "blue" "34"
2 "green" "banana"
Parameters
nodeXML Node
keyVector of keys for each entry
valVector of values for each entry
Returns
the number of pairs found

Definition at line 344 of file ctml.cpp.

References getStringArray(), and npos.

◆ getMatrixValues()

void getMatrixValues ( const XML_Node node,
const std::vector< std::string > &  keyStringRow,
const std::vector< std::string > &  keyStringCol,
Array2D returnValues,
const bool  convert = true,
const bool  matrixSymmetric = false 
)

This function interprets the value portion of an XML element as a series of "Matrix ids and entries" separated by white space.

Each pair consists of non-whitespace characters. The first two ":" found in the pair string is used to separate the string into three parts. The first part is called the first key. The second part is the second key. Both parts must match an entry in the keyString1 and keyString2, respectively, in order to provide a location to place the object in the matrix. The third part is called the value. It is expected to be a double. It is translated into a double and placed into the correct location in the matrix.

Warning: No spaces are allowed in each triplet. Quotes are part of the string.

Example: keyString = red, blue, black, green

<xmlNode>
    red:green:112
    blue:black:3.3E-23
</xmlNode>

Returns:

retnValues(0, 3) = 112
retnValues(1, 2) = 3.3E-23
Parameters
nodeXML Node containing the information for the matrix
keyStringRowKey string for the row
keyStringColKey string for the column entries
returnValuesReturn Matrix.
convertIf this is true, and if the node has a units attribute, then conversion to SI units is carried out. Default is true.
matrixSymmetricIf true entries are made so that the matrix is always symmetric. Default is false.

Definition at line 362 of file ctml.cpp.

References fpValueCheck(), getStringArray(), Array2D::nColumns(), npos, Array2D::nRows(), and toSI().

◆ getStringArray()

void getStringArray ( const XML_Node node,
std::vector< std::string > &  v 
)

This function interprets the value portion of an XML element as a string.

It then separates the string up into tokens according to the location of white space.

The separate tokens are returned in the string vector

Parameters
nodeNode to get the value from
vOutput vector containing the string tokens

Definition at line 427 of file ctml.cpp.

References tokenizeString(), and XML_Node::value().

Referenced by checkElectrochemReaction(), formSpeciesXMLNodeList(), getMap(), getMatrixValues(), getPairs(), importKinetics(), and installElements().

◆ app()

static Application* Cantera::app ( )
static

◆ setLogger()

void setLogger ( Logger logwriter)

Install a logger.

Called by the language interfaces to install an appropriate logger. The logger is used for the writelog() function

Parameters
logwriterPointer to a logger object
See also
Logger.

Definition at line 24 of file global.cpp.

References app(), Logger::error(), and Application::setLogger().

◆ writelog_direct()

void writelog_direct ( const std::string &  msg)

Write a message to the screen.

The string may be of any length, and may contain end-of-line characters. This method is used throughout Cantera to write log messages. It can also be called by user programs. The advantage of using writelog over writing directly to the standard output is that messages written with writelog will display correctly even when Cantera is used from MATLAB or other application that do not have a standard output stream.

Parameters
msgc++ string to be written to the screen

Definition at line 33 of file global.cpp.

References app(), and Application::writelog().

Referenced by debuglog(), writelog(), and writelogf().

◆ writelogendl()

void writelogendl ( )

Write an end of line character to the screen and flush output.

Definition at line 38 of file global.cpp.

References app(), and Application::writelogendl().

Referenced by FuncEval::eval_nothrow(), VCS_SOLVE::vcs_basopt(), VCS_SOLVE::vcs_dfe(), and VCS_SOLVE::vcs_inest().

◆ warn_deprecated()

void warn_deprecated ( const std::string &  method,
const std::string &  extra = "" 
)

◆ suppress_deprecation_warnings()

void suppress_deprecation_warnings ( )

Globally disable printing of deprecation warnings.

Used primarily to prevent certain tests from failing.

Definition at line 59 of file global.cpp.

References app(), and Application::suppress_deprecation_warnings().

◆ make_deprecation_warnings_fatal()

void make_deprecation_warnings_fatal ( )

Turns deprecation warnings into exceptions.

Activated within the test suite to make sure that no deprecated methods are being used.

Definition at line 64 of file global.cpp.

References app(), and Application::make_deprecation_warnings_fatal().

◆ suppress_thermo_warnings()

void suppress_thermo_warnings ( bool  suppress = true)

Globally disable printing of warnings about problematic thermo data, e.g.

NASA polynomials with discontinuities at the midpoint temperature.

Definition at line 69 of file global.cpp.

References app(), and Application::suppress_thermo_warnings().

◆ thermo_warnings_suppressed()

bool thermo_warnings_suppressed ( )

Returns true if thermo warnings should be suppressed.

Definition at line 74 of file global.cpp.

References app(), and Application::thermo_warnings_suppressed().

Referenced by NasaPoly2::validate().

◆ appdelete()

void appdelete ( )

Delete and free all memory associated with the application.

Delete all global data. It should be called at the end of the application if leak checking is to be done.

Definition at line 84 of file global.cpp.

◆ thread_complete()

void thread_complete ( )

Delete and free memory allocated per thread in multithreaded applications.

Delete the memory allocated per thread by Cantera. It should be called from within the thread just before the thread terminates. If your version of Cantera has not been specifically compiled for thread safety this function does nothing.

Definition at line 91 of file global.cpp.

References app(), and Application::thread_complete().

◆ gitCommit()

std::string gitCommit ( )

Returns the hash of the git commit from which Cantera was compiled, if known.

Definition at line 96 of file global.cpp.

◆ get_XML_File()

XML_Node * get_XML_File ( const std::string &  file,
int  debug = 0 
)

Return a pointer to the XML tree for a Cantera input file.

This routine will find the file and read the XML file into an XML tree structure. Then, a pointer will be returned. If the file has already been processed, then just the pointer will be returned.

Parameters
fileString containing the relative or absolute file name
debugDebug flag

Definition at line 105 of file global.cpp.

References app(), and Application::get_XML_File().

Referenced by Phase::addElement(), get_XML_NameID(), get_XML_Node(), IdealSolnGasVPSS::IdealSolnGasVPSS(), ThermoPhase::initThermoFile(), installElements(), Interface::Interface(), and newPhase().

◆ get_XML_from_string()

XML_Node * get_XML_from_string ( const std::string &  text)

Read a CTI or CTML string and fill up an XML tree.

Return a pointer to the XML tree corresponding to the specified CTI or XML string. If the given string has been processed before, the cached XML tree will be returned. Otherwise, the XML tree will be generated and stored in the cache.

Parameters
textCTI or CTML string
Returns
Root of the corresponding XML tree

Definition at line 110 of file global.cpp.

References app(), and Application::get_XML_from_string().

◆ close_XML_File()

void close_XML_File ( const std::string &  file)

Close an XML File.

Close a file that is opened by this application object

Parameters
fileString containing the relative or absolute file name

Definition at line 115 of file global.cpp.

References app(), and Application::close_XML_File().

◆ toSI()

doublereal toSI ( const std::string &  unit)

◆ actEnergyToSI()

doublereal actEnergyToSI ( const std::string &  unit)

Return the conversion factor to convert activation energy unit std::string 'unit' to Kelvin.

Parameters
unitString containing the activation energy units

Definition at line 146 of file global.cpp.

Referenced by getFloatArray(), MineralEQ3::initThermoXML(), and newShomateForMineralEQ3().

◆ split_at_pound()

static void Cantera::split_at_pound ( const std::string &  src,
std::string &  file,
std::string &  id 
)
static

split a string at a '#' sign. Used to separate a file name from an id string.

Parameters
srcOriginal string to be split up. This is unchanged.
fileOutput string representing the first part of the string, which is the filename.
idOutput string representing the last part of the string, which is the id.

Definition at line 177 of file global.cpp.

References npos.

Referenced by get_XML_NameID(), and get_XML_Node().

◆ get_XML_Node()

XML_Node * get_XML_Node ( const std::string &  file_ID,
XML_Node root 
)

This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string.

Searches are based on the ID attribute of the XML element only.

Parameters
file_IDThis is a concatenation of two strings separated by the "#" character. The string before the pound character is the file name of an XML file to carry out the search. The string after the # character is the ID attribute of the XML element to search for. The string is interpreted as a file string if no # character is in the string.
rootIf the file string is empty, searches for the XML element with matching ID attribute are carried out from this XML node.
Returns
the XML_Node, if found. Returns null if not found.

Definition at line 189 of file global.cpp.

References XML_Node::findID(), findInputFile(), get_XML_File(), and split_at_pound().

Referenced by importPhase(), installReactionArrays(), Interface::Interface(), and IonsFromNeutralVPSSTP::setParametersFromXML().

◆ get_XML_NameID()

XML_Node * get_XML_NameID ( const std::string &  nameTarget,
const std::string &  file_ID,
XML_Node root 
)

This routine will locate an XML node in either the input XML tree or in another input file specified by the file part of the file_ID string.

Searches are based on the XML element name and the ID attribute of the XML element. An exact match of both is usually required. However, the ID attribute may be set to "", in which case the first XML element with the correct element name will be returned.

Parameters
nameTargetThis is the XML element name to look for.
file_IDThis is a concatenation of two strings separated by the "#" character. The string before the pound character is the file name of an XML file to carry out the search. The string after the # character is the ID attribute of the XML element to search for. The string is interpreted as a file string if no # character is in the string.
rootIf the file string is empty, searches for the XML element with matching ID attribute are carried out from this XML node.
Returns
the XML_Node, if found. Returns null if not found.

Definition at line 227 of file global.cpp.

References XML_Node::findNameID(), get_XML_File(), and split_at_pound().

Referenced by buildSolutionFromXML(), IdealSolnGasVPSS::IdealSolnGasVPSS(), and newPhase().

◆ writePlotFile()

void writePlotFile ( const std::string &  fname,
const std::string &  fmt,
const std::string &  plotTitle,
const std::vector< std::string > &  names,
const Array2D data 
)

Write a Plotting file.

Parameters
fnameOutput file name
fmtEither TEC or XL or CSV
plotTitleTitle of the plot
namesvector of variable names
dataN x M data array. data(n,m) is the m^th value of the n^th variable.

Definition at line 15 of file plots.cpp.

References outputExcel(), and outputTEC().

◆ outputTEC()

void outputTEC ( std::ostream &  s,
const std::string &  title,
const std::vector< std::string > &  names,
const Array2D data 
)

Write a Tecplot data file.

Parameters
soutput stream
titleplot title
namesvector of variable names
dataN x M data array. data(n,m) is the m^th value of the n^th variable.

Definition at line 35 of file plots.cpp.

References Array2D::nColumns(), and Array2D::nRows().

Referenced by writePlotFile().

◆ outputExcel()

void outputExcel ( std::ostream &  s,
const std::string &  title,
const std::vector< std::string > &  names,
const Array2D data 
)

Write an Excel spreadsheet in 'csv' form.

Parameters
soutput stream
titleplot title
namesvector of variable names
dataN x M data array. data(n,m) is the m^th value of the n^th variable.

Definition at line 59 of file plots.cpp.

References Array2D::nColumns(), and Array2D::nRows().

Referenced by writePlotFile().

◆ vec2str()

std::string vec2str ( const vector_fp v,
const std::string &  fmt = "%g",
const std::string &  sep = ", " 
)

Convert a vector to a string (separated by commas)

Parameters
vvector to be converted
fmtFormat to be used (printf style) for each element
sepSeparator

Definition at line 34 of file stringUtils.cpp.

Referenced by IonGasTransport::fitDiffCoeffs(), GasTransport::fitDiffCoeffs(), and GasTransport::fitProperties().

◆ stripnonprint()

std::string stripnonprint ( const std::string &  s)

Strip non-printing characters wherever they are.

Parameters
sInput string
Returns
a copy of the string, stripped of all non- printing characters.

Definition at line 49 of file stringUtils.cpp.

Referenced by Application::addDataDirectory().

◆ parseCompString()

compositionMap parseCompString ( const std::string &  ss,
const std::vector< std::string > &  names = std::vector< std::string >() 
)

Parse a composition string into a map consisting of individual key:composition pairs.

Elements present in names but not in the composition string will have a value of 0. Elements present in the composition string but not in names will generate an exception. The composition is a double. Example:

Input is

"ice:1 snow:2" names = ["fire", "ice", "snow"]

Output is x["fire"] = 0 x["ice"] = 1 x["snow"] = 2

Parameters
ssoriginal string consisting of multiple key:composition pairs on multiple lines
names(optional) valid names for elements in the composition map. If empty or unspecified, all values are allowed.
Returns
map of names to values

Definition at line 60 of file stringUtils.cpp.

References fpValueCheck(), getValue(), and npos.

Referenced by checkElectrochemReaction(), FixedChemPotSSTP::FixedChemPotSSTP(), newSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMolesByName(), PDSS_IonsFromNeutral::setParametersFromXML(), and LatticeSolidPhase::setParametersFromXML().

◆ intValue()

int intValue ( const std::string &  val)

Translate a string into one integer value.

No error checking is done on the conversion. The c stdlib function atoi() is used.

Parameters
valString value of the integer
Returns
an integer

Definition at line 124 of file stringUtils.cpp.

Referenced by getInteger(), importPhase(), installElements(), and Sim1D::restore().

◆ fpValue()

doublereal fpValue ( const std::string &  val)

Translate a string into one doublereal value.

No error checking is done on the conversion.

Parameters
valString value of the double
Returns
a double

Definition at line 129 of file stringUtils.cpp.

Referenced by fpValueCheck(), MaskellSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), installElements(), newAdsorbateThermoFromXML(), newConstCpThermoFromXML(), newMu0ThermoFromXML(), newNasa9ThermoFromXML(), newNasaThermoFromXML(), and newShomateThermoFromXML().

◆ fpValueCheck()

doublereal fpValueCheck ( const std::string &  val)

Translate a string into one doublereal value, with error checking.

fpValueCheck is a wrapper around the C++ stringstream double parser. It does quite a bit more error checking than atof() or strtod(), and is quite a bit more restrictive.

First it interprets both E, e, d, and D as exponents. stringstreams only interpret e or E as an exponent character.

It only accepts a string as well formed if it consists as a single token. Multiple words will raise an exception. It will raise a CanteraError for NAN and inf entries as well, in contrast to atof() or strtod(). The user needs to know that a serious numerical issue has occurred.

It does not accept hexadecimal numbers.

It always use the C locale, regardless of any locale settings.

Parameters
valString representation of the number
Returns
a double

Definition at line 138 of file stringUtils.cpp.

References fpValue().

Referenced by Phase::addElement(), XML_Node::fp_value(), getFloatArray(), getMatrixValues(), HMWSoln::initThermoXML(), installElements(), parseCompString(), PDSS_HKFT::setParametersFromXML(), and strSItoDbl().

◆ parseSpeciesName()

std::string parseSpeciesName ( const std::string &  nameStr,
std::string &  phaseName 
)

Parse a name string, separating out the phase name from the species name.

Name strings must not contain these internal characters "; \n \t ," Only one colon is allowed, the one separating the phase name from the species name. Therefore, names may not include a colon.

Parameters
[in]nameStrName string containing the phase name and the species name separated by a colon. The phase name is optional. example: "silane:SiH4"
[out]phaseNameName of the phase, if specified. If not specified, a blank string is returned.
Returns
species name. If nameStr is blank an empty string is returned.

Definition at line 184 of file stringUtils.cpp.

References npos.

Referenced by Phase::speciesIndex().

◆ strSItoDbl()

doublereal strSItoDbl ( const std::string &  strSI)

Interpret one or two token string as a single double.

This is similar to atof(). However, the second token is interpreted as an MKS units string and a conversion factor to MKS is applied.

Example: "1.0 atm" results in the number 1.01325e5.

Parameters
strSIstring to be converted. One or two tokens
Returns
a converted double

Definition at line 209 of file stringUtils.cpp.

References fpValueCheck(), tokenizeString(), and toSI().

Referenced by newShomateForMineralEQ3(), and PDSS_HKFT::setParametersFromXML().

◆ tokenizeString()

void tokenizeString ( const std::string &  oval,
std::vector< std::string > &  v 
)

This function separates a string up into tokens according to the location of white space.

White space includes the new line character. tokens are stripped of leading and trailing white space.

The separate tokens are returned in a string vector, v.

Parameters
ovalString to be broken up
vOutput vector of tokens.

Definition at line 225 of file stringUtils.cpp.

Referenced by getStringArray(), and strSItoDbl().

◆ copyString()

size_t copyString ( const std::string &  source,
char *  dest,
size_t  length 
)

Copy the contents of a std::string into a char array of a given length.

If length is less than the size of source, the string will be truncated and the function will return the length of the buffer required to hold source. Otherwise, returns 0.

Definition at line 237 of file stringUtils.cpp.

◆ trimCopy()

std::string trimCopy ( const std::string &  input)

Trim.

Remove all leading and trailing spaces (with default locale).

Definition at line 249 of file stringUtils.cpp.

Referenced by XML_Node::addValue(), ck2cti(), getAtomicNumber(), getElementName(), getElementSymbol(), getElementWeight(), XML_Reader::parseTag(), pypath(), and XML_Reader::readValue().

◆ toLowerCopy()

std::string toLowerCopy ( const std::string &  input)

◆ caseInsensitiveEquals()

bool caseInsensitiveEquals ( const std::string &  input,
const std::string &  test 
)

◆ findUnbackslashed()

static string::size_type Cantera::findUnbackslashed ( const std::string &  s,
const char  q,
std::string::size_type  istart = 0 
)
static

Find the first position of a character, q, in string, s, which is not immediately preceded by the backslash character.

Parameters
sInput string
qSearch for this character
istartDefaults to 0

Definition at line 136 of file xml.cpp.

References npos.

Referenced by XML_Reader::findQuotedString().

◆ findXMLPhase()

XML_Node * findXMLPhase ( XML_Node root,
const std::string &  phaseName 
)

Search an XML_Node tree for a named phase XML_Node.

Search for a phase Node matching a name.

Parameters
rootStarting XML_Node* pointer for the search
phaseNameName of the phase to search for
Returns
the XML_Node pointer if the phase is found. If the phase is not found, it returns 0

Definition at line 1038 of file xml.cpp.

References XML_Node::children(), XML_Node::id(), XML_Node::name(), and XML_Node::nChildren().

Referenced by ThermoPhase::initThermoFile(), and Phase::setXMLdata().

◆ _equilflag()

int _equilflag ( const char *  xy)

map property strings to integers

Definition at line 21 of file ChemEquil.cpp.

Referenced by ChemEquil::equilibrate(), and MultiPhase::equilibrate().

◆ vcs_l2norm()

double Cantera::vcs_l2norm ( const vector_fp vec)

determine the l2 norm of a vector of doubles

Parameters
vecvector of doubles
Returns
the l2 norm of the vector

Definition at line 21 of file vcs_util.cpp.

Referenced by VCS_SOLVE::vcs_phaseStabilityTest().

◆ vcs_speciesType_string()

const char * vcs_speciesType_string ( int  speciesStatus,
int  length = 100 
)

Returns a const char string representing the type of the species given by the first argument.

Parameters
speciesStatusSpecies status integer representing the type of the species.
lengthMaximum length of the string to be returned. Shorter values will yield abbreviated strings. Defaults to a value of 100.

Definition at line 33 of file vcs_util.cpp.

References VCS_SPECIES_ACTIVEBUTZERO, VCS_SPECIES_COMPONENT, VCS_SPECIES_DELETED, VCS_SPECIES_INTERFACIALVOLTAGE, VCS_SPECIES_MAJOR, VCS_SPECIES_MINOR, VCS_SPECIES_STOICHZERO, VCS_SPECIES_ZEROEDMS, VCS_SPECIES_ZEROEDPHASE, and VCS_SPECIES_ZEROEDSS.

Referenced by VCS_SOLVE::vcs_evaluate_speciesType(), and VCS_SOLVE::vcs_RxnStepSizes().

◆ vcs_doubleEqual()

bool vcs_doubleEqual ( double  d1,
double  d2 
)

Simple routine to check whether two doubles are equal up to roundoff error.

Currently it's set to check for 10 digits of relative accuracy.

Parameters
d1first double
d2second double
Returns
true if the doubles are "equal" and false otherwise

Definition at line 91 of file vcs_util.cpp.

Referenced by vcs_VolPhase::setMolesFromVCSCheck(), VCS_SOLVE::vcs_dfe(), and VCS_SOLVE::vcs_report().

◆ hasChargedSpecies()

static bool Cantera::hasChargedSpecies ( const ThermoPhase *const  tPhase)
static

This function decides whether a phase has charged species or not.

Definition at line 797 of file vcs_VolPhase.cpp.

References Phase::charge(), and Phase::nSpecies().

Referenced by chargeNeutralityElement(), and vcs_VolPhase::transferElementsFM().

◆ chargeNeutralityElement()

static bool Cantera::chargeNeutralityElement ( const ThermoPhase *const  tPhase)
static

This utility routine decides whether a Cantera ThermoPhase needs a constraint equation representing the charge neutrality of the phase.

It does this by searching for charged species. If it finds one, and if the phase needs one, then it returns true.

Definition at line 811 of file vcs_VolPhase.cpp.

References ThermoPhase::chargeNeutralityNecessary(), and hasChargedSpecies().

Referenced by vcs_VolPhase::transferElementsFM().

◆ newFalloff()

shared_ptr< Falloff > newFalloff ( int  type,
const vector_fp c 
)

Return a pointer to a new falloff function calculator.

Parameters
typeInteger flag specifying the type of falloff function. The standard types are defined in file reaction_defs.h. A factory class derived from FalloffFactory may define other types as well.
cinput vector of doubles which populates the falloff parameterization.
Returns
a pointer to a new Falloff class.

Definition at line 37 of file FalloffFactory.cpp.

◆ checkElectrochemReaction()

bool checkElectrochemReaction ( const XML_Node p,
Kinetics kin,
const XML_Node r 
)

Check to ensure that all electrochemical reactions are specified correctly.

This function ensures the user has correctly specified all electrochemical reactions. The routine counts the amount of charge (i.e. number of electron elements specified for each species in each phase) for both reactants and products. If net charge transfer phases during a reaction, the reaction is electrochemical. If not already specified as such, the function defines the reaction as electrochemical, corrects the reaction attributes, and sets beta = 0.5.

Parameters
pThis is an XML node containing a description of the owning phase for the kinetics object.
kinThis is a pointer to a kinetics manager class.
rThis is the reaction node that is being evaluated
Returns
The function always returns true.

Definition at line 217 of file importKinetics.cpp.

References Phase::charge(), XML_Node::child(), getStringArray(), XML_Node::hasChild(), Phase::id(), Kinetics::kineticsSpeciesIndex(), npos, parseCompString(), Phase::speciesIndex(), Kinetics::speciesPhase(), and XML_Node::value().

Referenced by installReactionArrays().

◆ readFalloff()

void Cantera::readFalloff ( FalloffReaction R,
const XML_Node rc_node 
)

Parse falloff parameters, given a rateCoeff node.

<falloff type="Troe"> 0.5 73.2 5000. 9999. </falloff>

Definition at line 286 of file Reaction.cpp.

◆ newReaction()

shared_ptr< Reaction > newReaction ( const XML_Node rxn_node)

Create a new Reaction object for the reaction defined in rxn_node

Definition at line 603 of file Reaction.cpp.

Referenced by getReactions(), and installReactionArrays().

◆ getReactions()

std::vector< shared_ptr< Reaction > > getReactions ( const XML_Node node)

Create Reaction objects for all <reaction> nodes in an XML document.

The <reaction> nodes are assumed to be children of the <reactionData> node in an XML document with a <ctml> root node, as in the case of XML files produced by conversion from CTI files.

This function can be used in combination with get_XML_File() and get_XML_from_string() to get Reaction objects from either a file or a string, respectively, where the string or file is formatted as either CTI or XML.

If Reaction objects are being created from a CTI definition that does not contain corresponding phase definitions, then one of the following must be true, or the resulting rate constants will be incorrect:

  • The rate constants are expressed in (kmol, meter, second) units
  • A units directive is included and all reactions take place in bulk (e.g. gas) phases

Definition at line 657 of file Reaction.cpp.

References XML_Node::child(), XML_Node::getChildren(), and newReaction().

◆ calc_damping()

static doublereal Cantera::calc_damping ( doublereal  x[],
doublereal  dxneg[],
size_t  dim,
int *  label 
)
static

This function calculates a damping factor for the Newton iteration update vector, dxneg, to insure that all site and bulk fractions, x, remain bounded between zero and one.

 dxneg[] = negative of the update vector.

The constant "APPROACH" sets the fraction of the distance to the boundary that the step can take. If the full step would not force any fraction outside of 0-1, then Newton's method is allowed to operate normally.

Definition at line 500 of file solveSP.cpp.

◆ operator<<() [1/3]

std::ostream & operator<< ( std::ostream &  s,
const BandMatrix m 
)

Utility routine to print out the matrix.

Parameters
sostream to print the matrix out to
mMatrix to be printed
Returns
a reference to the ostream

Definition at line 329 of file BandMatrix.cpp.

References BandMatrix::nRows().

◆ cvodes_err()

static void Cantera::cvodes_err ( int  error_code,
const char *  module,
const char *  function,
char *  msg,
void *  eh_data 
)
static

Function called by CVodes when an error is encountered instead of writing to stdout.

Here, save the error message provided by CVodes so that it can be included in the subsequently raised CanteraError.

Definition at line 70 of file CVodesIntegrator.cpp.

References CVodesIntegrator::m_error_message.

◆ newDAE_Solver()

DAE_Solver * newDAE_Solver ( const std::string &  itype,
ResidJacEval f 
)

Factor method for choosing a DAE solver.

Parameters
itypeString identifying the type (IDA is the only option)
fResidual function to be solved by the DAE algorithm
Returns
a point to the instantiated DAE_Solver object

Definition at line 16 of file DAE_solvers.cpp.

◆ solve() [1/2]

int solve ( DenseMatrix A,
double *  b,
size_t  nrhs = 1,
size_t  ldb = 0 
)

Solve Ax = b. Array b is overwritten on exit with x.

The solve function uses the LAPACK routine dgetrf to invert the m xy n matrix.

The factorization has the form

A = P * L * U

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

The system is then solved using the LAPACK routine dgetrs

Parameters
ADense matrix to be factored
bRHS(s) to be solved.
nrhsNumber of right hand sides to solve
ldbLeading dimension of b, if nrhs > 1

Definition at line 142 of file DenseMatrix.cpp.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), MultiTransport::getMassFluxes(), MultiTransport::getSpeciesFluxes(), and solveSP::solveSurfProb().

◆ solve() [2/2]

int solve ( DenseMatrix A,
DenseMatrix b 
)

Solve Ax = b for multiple right-hand-side vectors.

Parameters
ADense matrix to be factored
bDense matrix of RHS's. Each column is a RHS

Definition at line 210 of file DenseMatrix.cpp.

◆ multiply()

void multiply ( const DenseMatrix A,
const double *const  b,
double *const  prod 
)

Multiply A*b and return the result in prod. Uses BLAS routine DGEMV.

\[ prod_i = sum^N_{j = 1}{A_{ij} b_j} \]

Parameters
[in]ADense Matrix A with M rows and N columns
[in]bvector b with length N
[out]prodvector prod length = M

Definition at line 215 of file DenseMatrix.cpp.

Referenced by DustyGasTransport::getMolarFluxes(), MultiPhaseEquil::MultiPhaseEquil(), MultiPhaseEquil::stepComposition(), IonGasTransport::viscosity(), and GasTransport::viscosity().

◆ increment()

void increment ( const DenseMatrix A,
const double *const  b,
double *const  prod 
)

Multiply A*b and add it to the result in prod. Uses BLAS routine DGEMV.

\[ prod_i += sum^N_{j = 1}{A_{ij} b_j} \]

Parameters
[in]ADense Matrix A with M rows and N columns
[in]bvector b with length N
[out]prodvector prod length = M

Definition at line 220 of file DenseMatrix.cpp.

Referenced by DustyGasTransport::getMolarFluxes().

◆ invert()

int invert ( DenseMatrix A,
size_t  nn = npos 
)

invert A. A is overwritten with A^-1.

Parameters
AInvert the matrix A and store it back in place
nnSize of A. This defaults to -1, which means that the number of rows is used as the default size of n

Definition at line 234 of file DenseMatrix.cpp.

Referenced by MultiTransport::getMultiDiffCoeffs(), HighPressureGasTransport::getMultiDiffCoeffs(), and DustyGasTransport::updateMultiDiffCoeffs().

◆ linearInterp()

doublereal Cantera::linearInterp ( doublereal  x,
const vector_fp xpts,
const vector_fp fpts 
)

Linearly interpolate a function defined on a discrete grid.

Vector xpts contains a monotonic sequence of grid points, and vector fpts contains function values defined at these points. The value returned is the linear interpolate at point x. If x is outside the range of xpts, the value of fpts at the nearest end is returned.

Parameters
xvalue of the x coordinate
xptsvalue of the grid points
fptsvalue of the interpolant at the grid points
Returns
the value of of the interpolated function at x.

Definition at line 13 of file funcs.cpp.

Referenced by StFlow::_finalize(), and Sim1D::setProfile().

◆ polyfit()

double polyfit ( size_t  n,
size_t  deg,
const double *  x,
const double *  y,
const double *  w,
double *  p 
)

Fits a polynomial function to a set of data points.

Given a collection of n points x and a set of values y of some function evaluated at those points, this function computes the weighted least-squares polynomial fit of degree deg:

\[ f(x) = p[0] + p[1]*x + p[2]*x^2 + \cdots + p[deg]*x^deg \]

Parameters
nThe number of points at which the function is evaluated
degThe degree of the polynomial fit to be computed. deg <= n - 1.
xArray of points at which the function is evaluated. Length n.
yArray of function values at the points in x. Length n.
wArray of weights. If w == nullptr or w[0] < 0, then all the weights will be set to 1.0.
[out]pArray of polynomial coefficients, starting with the constant term. Length deg+1.
Returns
the root mean squared error of the fit at the input points.

Definition at line 14 of file polyfit.cpp.

Referenced by IonGasTransport::fitDiffCoeffs(), GasTransport::fitDiffCoeffs(), GasTransport::fitProperties(), and IonFlow::setElectronTransport().

◆ interp_est()

static int Cantera::interp_est ( const std::string &  estString)
static

Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field.

Parameters
estStringinput string that will be interpreted

Definition at line 306 of file DebyeHuckel.cpp.

References caseInsensitiveEquals(), and cEST_solvent.

Referenced by DebyeHuckel::addSpecies().

◆ getElementWeight() [1/2]

double getElementWeight ( const std::string &  ename)

Get the atomic weight of an element.

Get the atomic weight of an element defined in Cantera by its symbol or by its name. This includes the named isotopes defined in Cantera.

Parameters
enameString, name or symbol of the element
Returns
The atomic weight of the element
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 166 of file Elements.cpp.

References atomicWeightData::atomicWeight, isotopeWeightData::atomicWeight, atomicWeightTable, isotopeWeightTable, numElementsDefined(), numIsotopesDefined(), toLowerCopy(), and trimCopy().

Referenced by Phase::addElement().

◆ getElementWeight() [2/2]

double getElementWeight ( int  atomicNumber)

Get the atomic weight of an element.

Get the atomic weight of an element defined in Cantera by its atomic number. The named isotopes cannot be accessed from this function, since the atomic number of the isotopes is the same as the regular element from which they are derived.

Parameters
atomicNumberInteger, atomic number of the element
Returns
The atomic weight of the element
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 189 of file Elements.cpp.

References atomicWeightData::atomicWeight, atomicWeightTable, and numElementsDefined().

◆ getElementSymbol() [1/2]

std::string getElementSymbol ( const std::string &  ename)

Get the symbol for an element.

Get the symbol for an element defined in Cantera by its name. This includes the named isotopes defined in Cantera.

Parameters
enameString, name of the element
Returns
The symbol of the element in a string
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 198 of file Elements.cpp.

References atomicWeightTable, isotopeWeightTable, numElementsDefined(), numIsotopesDefined(), atomicWeightData::symbol, isotopeWeightData::symbol, toLowerCopy(), and trimCopy().

◆ getElementSymbol() [2/2]

std::string getElementSymbol ( int  atomicNumber)

Get the symbol for an element.

Get the symbol for an element defined in Cantera by its atomic number. The named isotopes cannot be accessed from this function, since the atomic number of the isotopes is the same as the regular element from which they are derived.

Parameters
atomicNumberInteger, atomic number of the element
Returns
The symbol of the element in a string
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 216 of file Elements.cpp.

References atomicWeightTable, numElementsDefined(), and atomicWeightData::symbol.

◆ getElementName() [1/2]

std::string getElementName ( const std::string &  ename)

Get the name of an element.

Get the name of an element defined in Cantera by its symbol. This includes the named isotopes defined in Cantera.

Parameters
enameString, symbol for the element
Returns
The name of the element, in a string
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 226 of file Elements.cpp.

References atomicWeightTable, atomicWeightData::fullName, isotopeWeightData::fullName, isotopeWeightTable, numElementsDefined(), numIsotopesDefined(), and trimCopy().

◆ getElementName() [2/2]

std::string getElementName ( int  atomicNumber)

Get the name of an element.

Get the name of an element defined in Cantera by its atomic number. The named isotopes cannot be accessed from this function, since the atomic number of the isotopes is the same as the regular element from which they are derived.

Parameters
atomicNumberInteger, atomic number of the element
Returns
The name of the element, in a string
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 244 of file Elements.cpp.

References atomicWeightTable, atomicWeightData::fullName, and numElementsDefined().

◆ getAtomicNumber()

int getAtomicNumber ( const std::string &  ename)

Get the atomic number for an element.

Get the atomic number of an element defined in Cantera by its symbol or name. This includes the named isotopes included in Cantera.

Parameters
enameString, name or symbol of the element
Returns
The integer atomic number of the element
Exceptions
CanteraErrorIf a match is not found, throws a CanteraError

Definition at line 254 of file Elements.cpp.

References isotopeWeightData::atomicNumber, atomicWeightTable, isotopeWeightTable, numElementsDefined(), numIsotopesDefined(), toLowerCopy(), and trimCopy().

◆ numElementsDefined()

int numElementsDefined ( )

Get the number of named elements defined in Cantera.

This array excludes named isotopes

Definition at line 277 of file Elements.cpp.

References atomicWeightTable.

Referenced by getAtomicNumber(), getElementName(), getElementSymbol(), and getElementWeight().

◆ numIsotopesDefined()

int numIsotopesDefined ( )

Get the number of named isotopes defined in Cantera.

This array excludes the named elements

Definition at line 282 of file Elements.cpp.

References isotopeWeightTable.

Referenced by getAtomicNumber(), getElementName(), getElementSymbol(), and getElementWeight().

◆ factorOverlap()

static double Cantera::factorOverlap ( const std::vector< std::string > &  elnamesVN,
const vector_fp elemVectorN,
const size_t  nElementsN,
const std::vector< std::string > &  elnamesVI,
const vector_fp elemVectorI,
const size_t  nElementsI 
)
static

Return the factor overlap.

Parameters
elnamesVN
elemVectorN
nElementsN
elnamesVI
elemVectorI
nElementsI

Definition at line 459 of file IonsFromNeutralVPSSTP.cpp.

Referenced by IonsFromNeutralVPSSTP::initThermo().

◆ newSpecies()

shared_ptr< Species > newSpecies ( const XML_Node species_node)

◆ getSpecies()

std::vector< shared_ptr< Species > > getSpecies ( const XML_Node node)

Generate Species objects for all <species> nodes in an XML document.

The <species> nodes are assumed to be children of the <speciesData> node in an XML document with a <ctml> root node, as in the case of XML files produced by conversion from CTI files.

This function can be used in combination with get_XML_File and get_XML_from_string to get Species objects from either a file or a string, respectively, where the string or file is formatted as either CTI or XML.

Definition at line 80 of file Species.cpp.

References XML_Node::child(), XML_Node::getChildren(), and newSpecies().

◆ newSpeciesThermoInterpType() [1/3]

SpeciesThermoInterpType * newSpeciesThermoInterpType ( int  type,
double  tlow,
double  thigh,
double  pref,
const double *  coeffs 
)

Create a new SpeciesThermoInterpType object given a corresponding constant.

Parameters
typeA constant specifying the type to be created
tlowThe lowest temperature at which the parameterization is valid
thighThe highest temperature at which the parameterization is valid
prefThe reference pressure for the parameterization
coeffsThe array of coefficients for the parameterization
Returns
The pointer to the newly allocated SpeciesThermoInterpType object

Definition at line 30 of file SpeciesThermoFactory.cpp.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and newSpecies().

◆ newSpeciesThermoInterpType() [2/3]

SpeciesThermoInterpType * newSpeciesThermoInterpType ( const std::string &  type,
double  tlow,
double  thigh,
double  pref,
const double *  coeffs 
)

Create a new SpeciesThermoInterpType object given a string.

Parameters
typeString name for the species thermo type
tlowThe lowest temperature at which the parameterization is valid
thighThe highest temperature at which the parameterization is valid
prefThe reference pressure for the parameterization
coeffsThe array of coefficients for the parameterization
Returns
the pointer to the newly allocated SpeciesThermoInterpType object

Definition at line 55 of file SpeciesThermoFactory.cpp.

◆ newNasaThermoFromXML()

static SpeciesThermoInterpType* Cantera::newNasaThermoFromXML ( vector< XML_Node *>  nodes)
static

Create a NASA polynomial thermodynamic property parameterization for a species from a set ! of XML nodes.

This is called if a 'NASA' node is found in the XML input.

Parameters
nodesvector of 1 or 2 'NASA' XML_Nodes, each defining the coefficients for a temperature range

Definition at line 93 of file SpeciesThermoFactory.cpp.

References XML_Node::child(), fpValue(), getFloatArray(), XML_Node::hasAttrib(), NASA, newSpeciesThermoInterpType(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

◆ newShomateForMineralEQ3()

SpeciesThermoInterpType* Cantera::newShomateForMineralEQ3 ( const XML_Node MinEQ3node)

Create a Shomate polynomial from an XML node giving the 'EQ3' coefficients.

This is called if a 'MinEQ3' node is found in the XML input.

Parameters
MinEQ3nodeThe XML_Node containing the MinEQ3 parameterization

Definition at line 154 of file SpeciesThermoFactory.cpp.

References actEnergyToSI(), getFloat(), newSpeciesThermoInterpType(), SHOMATE1, strSItoDbl(), and toSI().

Referenced by newSpeciesThermoInterpType().

◆ newShomateThermoFromXML()

static SpeciesThermoInterpType* Cantera::newShomateThermoFromXML ( vector< XML_Node *> &  nodes)
static

Create a Shomate polynomial thermodynamic property parameterization for a species.

This is called if a 'Shomate' node is found in the XML input.

Parameters
nodesvector of 1 or 2 'Shomate' XML_Nodes, each defining the coefficients for a temperature range

Definition at line 209 of file SpeciesThermoFactory.cpp.

References fpValue(), getFloatArray(), newSpeciesThermoInterpType(), OneAtm, and SHOMATE.

Referenced by newSpeciesThermoInterpType().

◆ newConstCpThermoFromXML()

static SpeciesThermoInterpType* Cantera::newConstCpThermoFromXML ( XML_Node f)
static

Create a "simple" constant heat capacity thermodynamic property parameterization for a ! species.

This is called if a 'const_cp' XML node is found

Parameters
f'const_cp' XML node

Definition at line 282 of file SpeciesThermoFactory.cpp.

References CONSTANT_CP, fpValue(), getFloat(), newSpeciesThermoInterpType(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

◆ newNasa9ThermoFromXML()

static SpeciesThermoInterpType* Cantera::newNasa9ThermoFromXML ( const std::vector< XML_Node *> &  tp)
static

Create a NASA9 polynomial thermodynamic property parameterization for a species.

This is called if a 'NASA9' Node is found in the XML input.

Parameters
tpVector of XML Nodes that make up the parameterization

Definition at line 306 of file SpeciesThermoFactory.cpp.

References XML_Node::child(), fpValue(), getFloatArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), XML_Node::name(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

◆ newAdsorbateThermoFromXML()

static SpeciesThermoInterpType* Cantera::newAdsorbateThermoFromXML ( const XML_Node f)
static

Create an Adsorbate polynomial thermodynamic property parameterization for a species.

This is called if a 'Adsorbate' node is found in the XML input.

Parameters
fXML Node that contains the parameterization

Definition at line 351 of file SpeciesThermoFactory.cpp.

References XML_Node::child(), fpValue(), getFloat(), getFloatArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and OneAtm.

Referenced by newSpeciesThermoInterpType().

◆ newSpeciesThermoInterpType() [3/3]

SpeciesThermoInterpType * newSpeciesThermoInterpType ( const XML_Node thermoNode)

Create a new SpeciesThermoInterpType object from XML_Node.

Parameters
thermoNode'thermo' XML_Node (child of the 'species' node) with child nodes representing parameterizations for one or more temperature ranges
Returns
the pointer to the newly allocated SpeciesThermoInterpType object

Definition at line 380 of file SpeciesThermoFactory.cpp.

References caseInsensitiveEquals(), XML_Node::children(), newAdsorbateThermoFromXML(), newConstCpThermoFromXML(), newMu0ThermoFromXML(), newNasa9ThermoFromXML(), newNasaThermoFromXML(), newShomateForMineralEQ3(), newShomateThermoFromXML(), and toLowerCopy().

Referenced by newConstCpThermoFromXML(), newNasaThermoFromXML(), newShomateForMineralEQ3(), and newShomateThermoFromXML().

◆ formSpeciesXMLNodeList()

static void Cantera::formSpeciesXMLNodeList ( std::vector< XML_Node *> &  spDataNodeList,
std::vector< std::string > &  spNamesList,
vector_int spRuleList,
const std::vector< XML_Node *>  spArray_names,
const std::vector< XML_Node *>  spArray_dbases,
const vector_int  sprule 
)
static

Gather a vector of pointers to XML_Nodes for a phase.

Parameters
spDataNodeListOutput vector of pointer to XML_Nodes which contain the species XML_Nodes for the species in the current phase.
spNamesListOutput Vector of strings, which contain the names of the species in the phase
spRuleListOutput Vector of ints, which contain the value of sprule for each species in the phase
spArray_namesVector of pointers to the XML_Nodes which contains the names of the species in the phase
spArray_dbasesInput vector of pointers to species data bases. We search each data base for the required species names
spruleInput vector of sprule values

Definition at line 124 of file ThermoFactory.cpp.

References XML_Node::child(), XML_Node::getChildren(), getStringArray(), and XML_Node::nChildren().

Referenced by importPhase().

◆ getArrhenius()

static void Cantera::getArrhenius ( const XML_Node node,
doublereal &  A,
doublereal &  b,
doublereal &  E 
)
static

Parses the XML element called Arrhenius.

The Arrhenius expression is

\[ k = A T^(b) exp (-E_a / RT) \]

Parameters
nodeXML_Node to be read
AOutput pre-exponential factor. The units are variable.
boutput temperature power
EOutput activation energy in units of Kelvin

Definition at line 43 of file LTPspecies.cpp.

Referenced by LTPspecies_Arrhenius::setupFromXML().

◆ Frot()

doublereal Cantera::Frot ( doublereal  tr,
doublereal  sqtr 
)

The Parker temperature correction to the rotational collision number.

Parameters
trReduced temperature \( \epsilon/kT \)
sqtrsquare root of tr.

Definition at line 26 of file MultiTransport.cpp.

References Pi.

Referenced by MultiTransport::init(), and MultiTransport::updateThermal_T().

◆ newTransportData()

shared_ptr< TransportData > newTransportData ( const XML_Node transport_node)

Create a new TransportData object from a 'transport' XML_Node.

Definition at line 157 of file TransportData.cpp.

Referenced by newSpecies().

◆ operator<<() [2/3]

std::ostream& Cantera::operator<< ( std::ostream &  s,
const Array2D m 
)
inline

Output the current contents of the Array2D object.

Example of usage: s << m << endl;

Parameters
sReference to the ostream to write to
mObject of type Array2D that you are querying
Returns
a reference to the ostream.

Definition at line 326 of file Array.h.

References Array2D::nColumns(), and Array2D::nRows().

◆ operator*=()

void Cantera::operator*= ( Array2D m,
doublereal  a 
)
inline

Overload the times equals operator for multiplication of a matrix and a scalar.

Scaled every element of the matrix by the scalar input

Parameters
mMatrix
ascalar

Definition at line 348 of file Array.h.

References Array2D::begin(), Array2D::end(), and scale().

◆ operator+=()

void Cantera::operator+= ( Array2D x,
const Array2D y 
)
inline

Overload the plus equals operator for addition of one matrix with another.

Adds each element of the second matrix into the first matrix

Parameters
xFirst matrix
ySecond matrix, which is a const

Definition at line 360 of file Array.h.

References Array2D::begin(), Array2D::end(), and sum_each().

◆ debuglog()

void Cantera::debuglog ( const std::string &  msg,
int  loglevel 
)
inline

◆ clip()

T Cantera::clip ( const T &  value,
const T &  lower,
const T &  upper 
)
inline

◆ sign()

int Cantera::sign ( x)

Sign of a number. Returns -1 if x < 0, 1 if x > 0 and 0 if x == 0.

Definition at line 275 of file global.h.

◆ dot4()

doublereal Cantera::dot4 ( const V &  x,
const V &  y 
)
inline

Templated Inner product of two vectors of length 4.

If either x or y has length greater than 4, only the first 4 elements will be used.

Parameters
xfirst reference to the templated class V
ysecond reference to the templated class V
Returns
This class returns a hard-coded type, doublereal.

Definition at line 65 of file utilities.h.

Referenced by MixTransport::updateCond_T(), GasTransport::updateDiff_T(), and GasTransport::updateSpeciesViscosities().

◆ dot5()

doublereal Cantera::dot5 ( const V &  x,
const V &  y 
)
inline

Templated Inner product of two vectors of length 5.

If either x or y has length greater than 4, only the first 4 elements will be used.

Parameters
xfirst reference to the templated class V
ysecond reference to the templated class V
Returns
This class returns a hard-coded type, doublereal.

Definition at line 80 of file utilities.h.

Referenced by MixTransport::updateCond_T(), GasTransport::updateDiff_T(), and GasTransport::updateSpeciesViscosities().

◆ dot()

doublereal Cantera::dot ( InputIter  x_begin,
InputIter  x_end,
InputIter2  y_begin 
)
inline

Function that calculates a templated inner product.

This inner product is templated twice. The output variable is hard coded to return a doublereal.

template<class InputIter, class InputIter2>

double x[8], y[8];
doublereal dsum = dot<double *,double *>(x, &x+7, y);
Parameters
x_beginIterator pointing to the beginning, belonging to the iterator class InputIter.
x_endIterator pointing to the end, belonging to the iterator class InputIter.
y_beginIterator pointing to the beginning of y, belonging to the iterator class InputIter2.
Returns
The return is hard-coded to return a double.

Definition at line 107 of file utilities.h.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), ChemEquil::equilibrate(), and Phase::setMoleFractions_NoNorm().

◆ scale()

void Cantera::scale ( InputIter  begin,
InputIter  end,
OutputIter  out,
scale_factor 
)
inline

Multiply elements of an array by a scale factor.

vector_fp in(8, 1.0), out(8);
scale(in.begin(), in.end(), out.begin(), factor);
Parameters
beginIterator pointing to the beginning, belonging to the iterator class InputIter.
endIterator pointing to the end, belonging to the iterator class InputIter.
outIterator pointing to the beginning of out, belonging to the iterator class OutputIter. This is the output variable for this routine.
scale_factorinput scale factor belonging to the class S.

Definition at line 130 of file utilities.h.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), Phase::getConcentrations(), SurfPhase::getCp_R(), ThermoPhase::getElementPotentials(), SurfPhase::getEnthalpy_RT(), SurfPhase::getEntropy_R(), VPStandardStateTP::getGibbs_ref(), MixtureFugacityTP::getGibbs_ref(), IdealGasPhase::getGibbs_ref(), SurfPhase::getGibbs_RT(), DustyGasTransport::getMolarFluxes(), Phase::getMoleFractions(), IdealSolnGasVPSS::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), IdealGasPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), ConstDensityThermo::getPureGibbs(), VPStandardStateTP::getPureGibbs(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), operator*=(), ReactorNet::registerSensitivityParameter(), ThermoPhase::setElementPotentials(), Phase::setMassFractions(), and VCS_SOLVE::vcs_elabcheck().

◆ multiply_each()

void Cantera::multiply_each ( OutputIter  x_begin,
OutputIter  x_end,
InputIter  y_begin 
)
inline

Multiply each entry in x by the corresponding entry in y.

The template arguments are: template<class InputIter, class OutputIter>

Simple code Equivalent:

double x[10], y[10]
for (n = 0; n < 10; n++) {
x[n] *= y[n];
}

Example of function call usage to implement the simple code example:

double x[10], y[10]
multiply_each(x, x+10, y);
Parameters
x_beginIterator pointing to the beginning of the vector x, belonging to the iterator class InputIter.
x_endIterator pointing to the end of the vector x, belonging to the iterator class InputIter. The difference between end and begin determines the loop length
y_beginIterator pointing to the beginning of the vector y, belonging to the iterator class outputIter.

Definition at line 162 of file utilities.h.

Referenced by AqueousKinetics::getFwdRateConstants(), GasKinetics::getFwdRateConstants(), InterfaceKinetics::getFwdRateConstants(), InterfaceKinetics::getRevRateConstants(), and InterfaceKinetics::updateROP().

◆ absmax()

doublereal Cantera::absmax ( InputIter  begin,
InputIter  end 
)
inline

The maximum absolute value (templated version)

The template arguments are: template<class InputIter>

Simple code Equivalent:

double x[10] amax = 0.0;
for (int n = 0; n < 10; n++) {
if (fabs(x[n]) > amax) amax = fabs(x[10]);
}
return amax;

Example of function call usage to implement the simple code example:

double x[10]
double amax = absmax(x, x+10);
Parameters
beginIterator pointing to the beginning of the x vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the x vector, belonging to the iterator class InputIter. The difference between end and begin determines the loop length

Definition at line 195 of file utilities.h.

◆ normalize()

void Cantera::normalize ( InputIter  begin,
InputIter  end,
OutputIter  out 
)
inline

Normalize the values in a sequence, such that they sum to 1.0 (templated version)

The template arguments are: template<class InputIter, class OutputIter>

Simple Equivalent:

double x[10], y[10], sum = 0.0;
for (int n = 0; n < 10; n++) {
sum += x[10];
}
for (int n = 0; n < 10; n++) {
y[n] = x[n]/sum;
}

Example of function call usage:

double x[10], y[10];
normalize(x, x+10, y);
Parameters
beginIterator pointing to the beginning of the x vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the x vector, belonging to the iterator class InputIter. The difference between end and begin determines the loop length
outIterator pointing to the beginning of the output vector, belonging to the iterator class OutputIter.

Definition at line 234 of file utilities.h.

◆ divide_each()

void Cantera::divide_each ( OutputIter  x_begin,
OutputIter  x_end,
InputIter  y_begin 
)
inline

Templated divide of each element of x by the corresponding element of y.

The template arguments are: template<class InputIter, class OutputIter>

Simple Equivalent:

double x[10], y[10];
for (n = 0; n < 10; n++) {
x[n] /= y[n];
}

Example of code usage:

double x[10], y[10];
divide_each(x, x+10, y);
Parameters
x_beginIterator pointing to the beginning of the x vector, belonging to the iterator class OutputIter.
x_endIterator pointing to the end of the x vector, belonging to the iterator class OutputIter. The difference between end and begin determines the number of inner iterations.
y_beginIterator pointing to the beginning of the yvector, belonging to the iterator class InputIter.

Definition at line 269 of file utilities.h.

Referenced by DustyGasTransport::getMolarFluxes().

◆ sum_each()

void Cantera::sum_each ( OutputIter  x_begin,
OutputIter  x_end,
InputIter  y_begin 
)
inline

Increment each entry in x by the corresponding entry in y.

The template arguments are: template<class InputIter, class OutputIter>

Parameters
x_beginIterator pointing to the beginning of the x vector, belonging to the iterator class OutputIter.
x_endIterator pointing to the end of the x vector, belonging to the iterator class OutputIter. The difference between end and begin determines the number of inner iterations.
y_beginIterator pointing to the beginning of the yvector, belonging to the iterator class InputIter.

Definition at line 290 of file utilities.h.

Referenced by operator+=().

◆ scatter_copy()

void Cantera::scatter_copy ( InputIter  begin,
InputIter  end,
OutputIter  result,
IndexIter  index 
)
inline

Copies a contiguous range in a sequence to indexed positions in another sequence.

The template arguments are: template<class InputIter, class OutputIter, class IndexIter>

Example:

vector_fp x(3), y(20);
vector_int index(3);
index[0] = 9;
index[1] = 2;
index[3] = 16;
scatter_copy(x.begin(), x.end(), y.begin(), index.begin());

This routine is templated 3 times. InputIter is an iterator for the source vector OutputIter is an iterator for the destination vector IndexIter is an iterator for the index into the destination vector.

Parameters
beginIterator pointing to the beginning of the source vector, belonging to the iterator class InputIter.
endIterator pointing to the end of the source vector, belonging to the iterator class InputIter. The difference between end and begin determines the number of inner iterations.
resultIterator pointing to the beginning of the output vector, belonging to the iterator class outputIter.
indexIterator pointing to the beginning of the index vector, belonging to the iterator class IndexIter.

Definition at line 330 of file utilities.h.

◆ scatter_mult()

void Cantera::scatter_mult ( InputIter  mult_begin,
InputIter  mult_end,
RandAccessIter  data,
IndexIter  index 
)
inline

Multiply selected elements in an array by a contiguous sequence of multipliers.

The template arguments are: template<class InputIter, class RandAccessIter, class IndexIter>

Example:

double multipliers[] = {8.9, -2.0, 5.6};
int index[] = {7, 4, 13};
vector_fp data(20);
...
// Multiply elements 7, 4, and 13 in data by multipliers[0], multipliers[1],and multipliers[2],
// respectively
scatter_mult(multipliers, multipliers + 3, data.begin(), index);
Parameters
mult_beginIterator pointing to the beginning of the multiplier vector, belonging to the iterator class InputIter.
mult_endIterator pointing to the end of the multiplier vector, belonging to the iterator class InputIter. The difference between end and begin determines the number of inner iterations.
dataIterator pointing to the beginning of the output vector, belonging to the iterator class RandAccessIter, that will be selectively multiplied.
indexIterator pointing to the beginning of the index vector, belonging to the iterator class IndexIter.

Definition at line 367 of file utilities.h.

◆ sum_xlogx()

doublereal Cantera::sum_xlogx ( InputIter  begin,
InputIter  end 
)
inline

Compute

\[ \sum_k x_k \log x_k. \]

.

The template arguments are: template<class InputIter>

A small number (1.0E-20) is added before taking the log. This templated class does the indicated sun. The template must be an iterator.

Parameters
beginIterator pointing to the beginning, belonging to the iterator class InputIter.
endIterator pointing to the end, belonging to the iterator class InputIter.
Returns
The return from this class is a double.

Definition at line 389 of file utilities.h.

References Tiny.

Referenced by Phase::sum_xlogx().

◆ sum_xlogQ()

doublereal Cantera::sum_xlogQ ( InputIter1  begin,
InputIter1  end,
InputIter2  Q_begin 
)
inline

Compute

\[ \sum_k x_k \log Q_k. \]

.

The template arguments are: template<class InputIter1, class InputIter2>

This class is templated twice. The first template, InputIter1 is the iterator that points to $x_k$. The second iterator InputIter2, point to $Q_k$. A small number (1.0E-20) is added before taking the log.

Parameters
beginIterator pointing to the beginning, belonging to the iterator class InputIter1.
endIterator pointing to the end, belonging to the iterator class InputIter1.
Q_beginIterator pointing to the beginning of Q_k, belonging to the iterator class InputIter2.
Returns
The return from this class is hard coded to a doublereal.

Definition at line 415 of file utilities.h.

References Tiny.

◆ poly6()

R Cantera::poly6 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 6.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 431 of file utilities.h.

Referenced by MultiTransport::updateThermal_T().

◆ poly8()

R Cantera::poly8 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 8.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 443 of file utilities.h.

Referenced by MultiTransport::updateThermal_T().

◆ poly5()

R Cantera::poly5 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 5.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 455 of file utilities.h.

Referenced by IonFlow::updateTransport().

◆ poly4()

R Cantera::poly4 ( x,
R *  c 
)

Evaluates a polynomial of order 4.

Parameters
xValue of the independent variable.
cPointer to the polynomial coefficient array.

Definition at line 467 of file utilities.h.

Referenced by IonGasTransport::fitDiffCoeffs(), GasTransport::fitDiffCoeffs(), and GasTransport::fitProperties().

◆ poly3()

R Cantera::poly3 ( x,
R *  c 
)

Templated evaluation of a polynomial of order 3.

Parameters
xValue of the independent variable - First template parameter
cPointer to the polynomial - Second template parameter

Definition at line 479 of file utilities.h.

Referenced by GasTransport::fitDiffCoeffs(), and GasTransport::fitProperties().

◆ getValue()

const U& Cantera::getValue ( const std::map< T, U > &  m,
const T &  key,
const U &  default_val 
)

◆ operator<<() [3/3]

std::ostream& Cantera::operator<< ( std::ostream &  s,
MultiPhase x 
)
inline

Function to output a MultiPhase description to a stream.

Writes out a description of the contents of each phase of the MultiPhase using the report function.

Parameters
sostream
xReference to a MultiPhase
Returns
a reference to the ostream

Definition at line 669 of file MultiPhase.h.

References Phase::name(), MultiPhase::nPhases(), MultiPhase::phase(), MultiPhase::phaseMoles(), ThermoPhase::report(), and MultiPhase::updatePhases().

◆ importInterface()

Interface* Cantera::importInterface ( const std::string &  infile,
const std::string &  id,
std::vector< ThermoPhase *>  phases 
)
inline

Import an instance of class Interface from a specification in an input file.

This is the preferred method to create an Interface instance.

Definition at line 83 of file Interface.h.

◆ newKineticsMgr() [1/2]

Kinetics* Cantera::newKineticsMgr ( XML_Node phase,
std::vector< ThermoPhase *>  th 
)
inline

Create a new kinetics manager.

Definition at line 81 of file KineticsFactory.h.

◆ newKineticsMgr() [2/2]

Kinetics* Cantera::newKineticsMgr ( const std::string &  model)
inline

Create a new kinetics manager.

Definition at line 89 of file KineticsFactory.h.

◆ ct_dtrcon()

doublereal Cantera::ct_dtrcon ( const char *  norm,
ctlapack::upperlower_t  uplot,
const char *  diag,
size_t  n,
doublereal *  a,
size_t  lda,
doublereal *  work,
int *  iwork,
int &  info 
)
inline
Parameters
workMust be dimensioned equal to greater than 3N
iworkMust be dimensioned equal to or greater than N

Definition at line 407 of file ctlapack.h.

◆ newReactor()

ReactorBase* Cantera::newReactor ( const std::string &  model)
inline

Create a Reactor object of the specified type.

Definition at line 46 of file ReactorFactory.h.

Variable Documentation

◆ dir_mutex

std::mutex dir_mutex
static

Mutex for input directory access.

Definition at line 33 of file application.cpp.

Referenced by Application::addDataDirectory(), and Application::findInputFile().

◆ app_mutex

std::mutex app_mutex
static

Mutex for creating singletons within the application object.

Definition at line 36 of file application.cpp.

Referenced by Application::ApplicationDestroy(), and Application::Instance().

◆ xml_mutex

std::mutex xml_mutex
static

Mutex for controlling access to XML file storage.

Definition at line 39 of file application.cpp.

Referenced by Application::close_XML_File(), Application::get_XML_File(), and Application::get_XML_from_string().

◆ msg_mutex

std::mutex msg_mutex
static

Mutex for access to string messages.

Definition at line 101 of file application.cpp.

Referenced by Application::ThreadMessages::operator->(), and Application::ThreadMessages::removeThreadMessages().

◆ BasisOptimize_print_lvl

int BasisOptimize_print_lvl = 0

External int that is used to turn on debug printing for the BasisOptimze program.

Set this to 1 if you want debug printing from BasisOptimize.

Definition at line 15 of file BasisOptimize.cpp.

Referenced by BasisOptimize(), and ElemRearrange().

◆ vcs_timing_print_lvl

int vcs_timing_print_lvl = 1

Global hook for turning on and off time printing.

Default is to allow printing. But, you can assign this to zero globally to turn off all time printing. This is helpful for test suite purposes where you are interested in differences in text files.

Definition at line 22 of file vcs_solve.cpp.

Referenced by VCS_SOLVE::disableTiming().

◆ atomicWeightTable

static struct atomicWeightData atomicWeightTable[]
static

atomicWeightTable is a vector containing the atomic weights database.

atomicWeightTable[] is a static function with scope limited to this file. It can only be referenced via the functions in this file.

The size of the table is given by the initial instantiation.

Definition at line 54 of file Elements.cpp.

Referenced by getAtomicNumber(), getElementName(), getElementSymbol(), getElementWeight(), and numElementsDefined().

◆ isotopeWeightTable

static struct isotopeWeightData isotopeWeightTable[]
static
Initial value:
= {
{"D", "deuterium", 2.0, 1},
{"Tr", "tritium", 3.0, 1},
{"E", "electron", 0.000545, 0},
}

isotopeWeightTable is a vector containing the atomic weights database.

isotopeWeightTable[] is a static function with scope limited to this file. It can only be referenced via the functions in this file.

The size of the table is given by the initial instantiation.

Definition at line 160 of file Elements.cpp.

Referenced by getAtomicNumber(), getElementName(), getElementSymbol(), getElementWeight(), and numIsotopesDefined().

◆ Hij

const doublereal Hij[6][7]
static
Initial value:
= {
{ 0.5132047, 0.2151778, -0.2818107, 0.1778064, -0.04176610, 0., 0.},
{ 0.3205656, 0.7317883, -1.070786 , 0.4605040, 0., -0.01578386, 0.},
{ 0., 1.241044 , -1.263184 , 0.2340379, 0., 0., 0.},
{ 0., 1.476783 , 0., -0.4924179, 0.1600435, 0., -0.003629481},
{-0.7782567, 0.0 , 0., 0. , 0., 0., 0.},
{ 0.1885447, 0.0 , 0., 0. , 0., 0., 0.},
}

Definition at line 268 of file WaterProps.cpp.

◆ T_c

const doublereal T_c = 647.096

◆ P_c

const doublereal P_c = 22.064E6
static

Critical Pressure (Pascals)

Definition at line 22 of file WaterPropsIAPWS.cpp.

Referenced by WaterPropsIAPWS::psat().

◆ Rho_c

const doublereal Rho_c = 322.

◆ M_water

const doublereal M_water = 18.015268
static

Molecular Weight of water that is consistent with the paper (kg kmol-1)

Definition at line 26 of file WaterPropsIAPWS.cpp.

Referenced by WaterPropsIAPWS::density(), WaterPropsIAPWS::density_const(), WaterPropsIAPWS::dpdrho(), WaterPropsIAPWS::molarVolume(), and WaterPropsIAPWS::pressure().

◆ Rgas

const doublereal Rgas = 8.314371E3
static

◆ Min_C_Internal

const doublereal Min_C_Internal = 0.001
static

Constant to compare dimensionless heat capacities against zero.

Definition at line 481 of file MultiTransport.cpp.

◆ SmallNumber

const doublereal SmallNumber = 1.e-300

◆ BigNumber

const doublereal BigNumber = 1.e300

largest number to compare to inf.

Definition at line 128 of file ct_defs.h.

Referenced by HighPressureGasTransport::thermalConductivity(), and GasKinetics::updateKc().

◆ MaxExp

const doublereal MaxExp = 690.775527898

largest x such that exp(x) is valid

Definition at line 130 of file ct_defs.h.

◆ Undef

const doublereal Undef = -999.1234

Fairly random number to be used to initialize variables against to see if they are subsequently defined.

Definition at line 134 of file ct_defs.h.

Referenced by StFlow::_finalize(), vcs_MultiPhaseEquil::equilibrate_HP(), MultiPhase::equilibrate_MultiPhaseEquil(), vcs_MultiPhaseEquil::equilibrate_SP(), getFloatArray(), and StFlow::save().

◆ Tiny

const doublereal Tiny = 1.e-20

Small number to compare differences of mole fractions against.

This number is used for the interconversion of mole fraction and mass fraction quantities when the molecular weight of a species is zero. It's also used for the matrix inversion of transport properties when mole fractions must be positive.

Definition at line 143 of file ct_defs.h.

Referenced by Phase::addSpecies(), MultiPhaseEquil::computeReactionSteps(), HighPressureGasTransport::getBinaryDiffCoeffs(), MultiPhaseEquil::getComponents(), getFloatArray(), HighPressureGasTransport::getMultiDiffCoeffs(), OneDim::initTimeInteg(), MultiPhaseEquil::stepComposition(), sum_xlogQ(), sum_xlogx(), HighPressureGasTransport::thermalConductivity(), MultiTransport::update_C(), MixTransport::update_C(), LiquidTransport::update_C(), and DustyGasTransport::updateTransport_C().

◆ npos

const size_t npos = static_cast<size_t>(-1)

index returned by functions to indicate "no position"

Definition at line 165 of file ct_defs.h.

Referenced by RedlichKisterVPSSTP::addBinaryInteraction(), VCS_SOLVE::addOnePhaseSpecies(), VCS_SOLVE::addPhaseElements(), InterfaceKinetics::addReaction(), Kinetics::addReaction(), IonsFromNeutralVPSSTP::addSpecies(), Phase::addSpecies(), InterfaceKinetics::buildSurfaceArrhenius(), HMWSoln::calcMolalitiesCropped(), BandMatrix::checkColumns(), checkElectrochemReaction(), BandMatrix::checkRows(), XML_Node::child(), OneDim::component(), ConstPressureReactor::componentIndex(), IdealGasReactor::componentIndex(), IdealGasConstPressureReactor::componentIndex(), FlowReactor::componentIndex(), Reactor::componentIndex(), ct2ctml(), MultiPhase::elementIndex(), Phase::elementIndex(), ChemEquil::equilibrate(), MultiJac::eval(), Inlet1D::eval(), OneDim::eval(), Symm1D::eval(), Outlet1D::eval(), OutletRes1D::eval(), StFlow::eval(), Surf1D::eval(), ReactingSurf1D::eval(), StFlow::evalResidual(), ReactionPathDiagram::exportToDot(), MolalityVPSSTP::findCLMIndex(), Application::findInputFile(), XML_Reader::findQuotedString(), findUnbackslashed(), IonFlow::fixElectricField(), MultiPhaseEquil::getComponents(), getFloatArray(), getMap(), getMatrixValues(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), getPairs(), importKinetics(), IonGasTransport::init(), LiquidTranInteraction::init(), MultiPhase::init(), InterfaceKinetics::init(), ChemEquil::initialize(), WaterSSTP::initThermo(), HMWSoln::initThermo(), installReactionArrays(), Kinetics::kineticsSpeciesIndex(), Kinetics::kineticsSpeciesName(), PDSS_HKFT::LookupGe(), Phase::massFraction(), LatticeSolidPhase::maxTemp(), MultiSpeciesThermo::maxTemp(), LatticeSolidPhase::minTemp(), MultiSpeciesThermo::minTemp(), Phase::moleFraction(), FlowDevice::outletSpeciesMassFlowRate(), parseCompString(), parseSpeciesName(), XML_Reader::parseTag(), Kinetics::phaseIndex(), HMWSoln::readXMLBinarySalt(), MixedSolventElectrolyte::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), PhaseCombo_Interaction::readXMLBinarySpecies(), HMWSoln::readXMLLambdaNeutral(), HMWSoln::readXMLMunnnNeutral(), HMWSoln::readXMLPsi(), HMWSoln::readXMLTheta(), HMWSoln::readXMLZetaCation(), MultiSpeciesThermo::refPressure(), HMWSoln::relative_molal_enthalpy(), ThermoPhase::resetHf298(), LatticeSolidPhase::resetHf298(), vcs_VolPhase::resize(), OneDim::resize(), MixedSolventElectrolyte::resizeNumInteractions(), PhaseCombo_Interaction::resizeNumInteractions(), Inlet1D::restore(), StFlow::restore(), OutletRes1D::restore(), ReactingSurf1D::restore(), DebyeHuckel::setBeta(), RedlichKwongMFTP::setBinaryCoeffs(), Application::setDefaultDirectories(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::setMolesFromVCS(), RedlichKwongMFTP::setSpeciesCoeffs(), Domain1D::setSteadyTolerances(), Domain1D::setTransientTolerances(), OneDim::solve(), MultiNewton::solve(), IonFlow::solveElectricField(), Reactor::speciesIndex(), MultiPhase::speciesIndex(), Phase::speciesIndex(), Kinetics::speciesPhase(), Kinetics::speciesPhaseIndex(), split_at_pound(), OneDim::ssnorm(), MultiNewton::step(), Unit::toSI(), vcs_VolPhase::transferElementsFM(), InterfaceKinetics::updateKc(), StFlow::updateProperties(), VCS_SOLVE::vcs_basopt(), VCS_SOLVE::vcs_elcorr(), VCS_SOLVE::vcs_phaseStabilityTest(), VCS_SOLVE::vcs_popPhaseID(), VCS_SOLVE::vcs_RxnStepSizes(), and XML_Node::write_int().

◆ ELEMENTARY_RXN

const int ELEMENTARY_RXN = 1

A reaction with a rate coefficient that depends only on temperature and voltage that also obeys mass-action kinetics.

Here mass-action kinetics is defined as the reaction orders being equal to the reaction's stoichiometry.

temperature. Example: O + OH <-> O2 + H

Definition at line 31 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), AqueousKinetics::addReaction(), and GasKinetics::modifyReaction().

◆ THREE_BODY_RXN

const int THREE_BODY_RXN = 2

A gas-phase reaction that requires a third-body collision partner.

Example: O2 + M <-> O + O + M

Definition at line 37 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), and GasKinetics::modifyReaction().

◆ FALLOFF_RXN

const int FALLOFF_RXN = 4

The general form for a gas-phase association or dissociation reaction, with a pressure-dependent rate.

Example: CH3 + H (+M) <-> CH4 (+M)

Definition at line 43 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), GasKinetics::modifyReaction(), and FalloffMgr::pr_to_falloff().

◆ PLOG_RXN

const int PLOG_RXN = 5

A pressure-dependent rate expression consisting of several Arrhenius rate expressions evaluated at different pressures.

The final rate is calculated by logarithmically interpolating between the two rates that bracket the current pressure.

Definition at line 51 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), and GasKinetics::modifyReaction().

◆ CHEBYSHEV_RXN

const int CHEBYSHEV_RXN = 6

A general gas-phase pressure-dependent reaction where k(T,P) is defined in terms of a bivariate Chebyshev polynomial.

Definition at line 57 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), and GasKinetics::modifyReaction().

◆ CHEMACT_RXN

const int CHEMACT_RXN = 8

A chemical activation reaction.

For these reactions, the rate falls off as the pressure increases, due to collisional stabilization of a reaction intermediate. Example: Si + SiH4 (+M) <-> Si2H2 + H2 (+M), which competes with Si + SiH4 (+M) <-> Si2H4 (+M).

Definition at line 65 of file reaction_defs.h.

Referenced by GasKinetics::addReaction(), and GasKinetics::modifyReaction().

◆ SURFACE_RXN

const int SURFACE_RXN = 20

A reaction occurring on a surface.

NOTE: This is a bit ambiguous, and will be taken out in the future The dimensionality of the interface is a separate concept from the type of the reaction.

Definition at line 73 of file reaction_defs.h.

◆ INTERFACE_RXN

const int INTERFACE_RXN = 20

A reaction occurring on an interface, e.g a surface or edge.

Definition at line 76 of file reaction_defs.h.

◆ BUTLERVOLMER_NOACTIVITYCOEFFS_RXN

const int BUTLERVOLMER_NOACTIVITYCOEFFS_RXN = 25

This is a surface reaction that is formulated using the Butler-Volmer formulation and using concentrations instead of activity concentrations for its exchange current density formula.

Definition at line 81 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction().

◆ BUTLERVOLMER_RXN

const int BUTLERVOLMER_RXN = 26

This is a surface reaction that is formulated using the Butler-Volmer formulation.

Note the B-V equations can be derived from the forward and reverse rate constants for a single step reaction. However, there are some advantages to using the formulation directly.

Definition at line 87 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction().

◆ SURFACEAFFINITY_RXN

const int SURFACEAFFINITY_RXN = 27

This is a surface reaction that is formulated using the affinity representation, common in the geochemistry community.

This is generally a global non-mass action reaction with an additional functional form dependence on delta G of reaction.

Definition at line 93 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction().

◆ EDGE_RXN

const int EDGE_RXN = 22

A reaction occurring at a one-dimensional interface between two surface phases.

NOTE: This is a bit ambiguous, and will be taken out in the future The dimensionality of the interface is a separate concept from the type of the reaction.

Definition at line 101 of file reaction_defs.h.

◆ GLOBAL_RXN

const int GLOBAL_RXN = 30

A global reaction.

These may have non-mass action reaction orders, and are not allowed to be reversible.

Definition at line 107 of file reaction_defs.h.

Referenced by InterfaceKinetics::addReaction().

◆ cEST_solvent

const int cEST_solvent = 0

Electrolyte species type.

Definition at line 18 of file electrolytes.h.

Referenced by DebyeHuckel::addSpecies(), and interp_est().

◆ PHSCALE_PITZER

const int PHSCALE_PITZER = 0

Scale to be used for the output of single-ion activity coefficients is that used by Pitzer.

This is the internal scale used within the code. One property is that the activity coefficients for the cation and anion of a single salt will be equal. This scale is the one presumed by the formulation of the single-ion activity coefficients described in this report.

Activity coefficients for species k may be altered between scales s1 to s2 using the following formula

\[ ln(\gamma_k^{s2}) = ln(\gamma_k^{s1}) + \frac{z_k}{z_j} \left( ln(\gamma_j^{s2}) - ln(\gamma_j^{s1}) \right) \]

where j is any one species.

Definition at line 627 of file MolalityVPSSTP.h.

Referenced by HMWSoln::applyphScale(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), and MolalityVPSSTP::setpHScale().

◆ PHSCALE_NBS

const int PHSCALE_NBS = 1

Scale to be used for evaluation of single-ion activity coefficients is that used by the NBS standard for evaluation of the pH variable.

This is not the internal scale used within the code.

Activity coefficients for species k may be altered between scales s1 to s2 using the following formula

\[ ln(\gamma_k^{s2}) = ln(\gamma_k^{s1}) + \frac{z_k}{z_j} \left( ln(\gamma_j^{s2}) - ln(\gamma_j^{s1}) \right) \]

where j is any one species. For the NBS scale, j is equal to the Cl- species and

\[ ln(\gamma_{Cl-}^{s2}) = \frac{-A_{\phi} \sqrt{I}}{1.0 + 1.5 \sqrt{I}} \]

This is the NBS pH scale, which is used in all conventional pH measurements. and is based on the Bates-Guggenheim equations.

Definition at line 652 of file MolalityVPSSTP.h.

Referenced by HMWSoln::applyphScale(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), and MolalityVPSSTP::setpHScale().

◆ cAC_CONVENTION_MOLAR

const int cAC_CONVENTION_MOLAR = 0

Standard state uses the molar convention.

Definition at line 26 of file ThermoPhase.h.

Referenced by ThermoPhase::activityConvention().

◆ cAC_CONVENTION_MOLALITY

const int cAC_CONVENTION_MOLALITY = 1

Standard state uses the molality convention.

Definition at line 28 of file ThermoPhase.h.

Referenced by MolalityVPSSTP::activityConvention().

◆ cSS_CONVENTION_TEMPERATURE

const int cSS_CONVENTION_TEMPERATURE = 0

Standard state uses the molar convention.

Definition at line 36 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::standardStateConvention().

◆ cSS_CONVENTION_VPSS

const int cSS_CONVENTION_VPSS = 1

Standard state uses the molality convention.

Definition at line 38 of file ThermoPhase.h.

Referenced by importPhase(), and VPStandardStateTP::standardStateConvention().

◆ cSS_CONVENTION_SLAVE

const int cSS_CONVENTION_SLAVE = 2

Standard state thermodynamics is obtained from slave ThermoPhase objects.

Definition at line 40 of file ThermoPhase.h.

Referenced by importPhase(), and LatticeSolidPhase::standardStateConvention().