Cantera
2.4.0
|
Class MaskellSolidSolnPhase represents a condensed phase non-ideal solution with 2 species following the thermodynamic model described in Maskell, Shaw, and Tye, Manganese Dioxide Electrode – IX, Electrochimica Acta 28(2) pp 231-235, 1983. More...
#include <MaskellSolidSolnPhase.h>
Public Member Functions | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
Molar Thermodynamic Properties of the Solution | |
virtual doublereal | enthalpy_mole () const |
Molar enthalpy. Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. More... | |
Mechanical Equation of State Properties | |
In this equation of state implementation, the density is a function only of the mole fractions. Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown. | |
virtual doublereal | pressure () const |
Pressure. More... | |
virtual void | setPressure (doublereal p) |
Set the pressure at constant temperature. More... | |
virtual void | setDensity (const doublereal rho) |
Overridden setDensity() function is necessary because the density is not an independent variable. More... | |
virtual void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More... | |
virtual void | setMolarDensity (const doublereal rho) |
Overridden setMolarDensity() function is necessary because the density is not an independent variable. More... | |
Chemical Potentials and Activities | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials. More... | |
Partial Molar Properties of the Solution | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More... | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More... | |
Utility Functions | |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
void | set_h_mix (const doublereal hmix) |
void | setProductSpecies (const std::string &name) |
Set the product Species. Must be called after species have been added. More... | |
Public Member Functions inherited from VPStandardStateTP | |
VPStandardStateTP () | |
Constructor. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
virtual const vector_fp & | getStandardVolumes () const |
virtual void | setTemperature (const doublereal temp) |
Set the temperature of the phase. More... | |
virtual void | setState_TP (doublereal T, doublereal pres) |
Set the temperature and pressure at the same time. More... | |
virtual void | updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
virtual void | initThermo () |
virtual bool | addSpecies (shared_ptr< Species > spec) |
void | installPDSS (size_t k, std::unique_ptr< PDSS > &&pdss) |
Install a PDSS object for species k More... | |
PDSS * | providePDSS (size_t k) |
const PDSS * | providePDSS (size_t k) const |
virtual bool | addSpecies (shared_ptr< Species > spec) |
Add a Species to this Phase. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. More... | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &)=delete | |
Phase & | operator= (const Phase &)=delete |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
virtual double | size (size_t k) const |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
doublereal | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
doublereal | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. More... | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). More... | |
doublereal | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const doublereal *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual doublereal | density () const |
Density (kg/m^3). More... | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). More... | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Private Member Functions | |
void | _updateThermo () const |
Function to call through to m_spthermo->update and fill m_h0_RT, m_cp0_R, m_g0_RT, m_s0_R. More... | |
doublereal | s () const |
doublereal | fm (const doublereal r) const |
doublereal | p (const doublereal r) const |
Private Attributes | |
doublereal | m_Pcurrent |
m_Pcurrent = The current pressure. More... | |
vector_fp | m_h0_RT |
Vector containing the species reference enthalpies at T = m_tlast. More... | |
vector_fp | m_cp0_R |
Vector containing the species reference constant pressure heat capacities at T = m_tlast. More... | |
vector_fp | m_g0_RT |
Vector containing the species reference Gibbs functions at T = m_tlast. More... | |
vector_fp | m_s0_R |
Vector containing the species reference entropies at T = m_tlast. More... | |
doublereal | h_mixing |
Value of the enthalpy change on mixing due to protons changing from type B to type A configurations. More... | |
int | product_species_index |
Index of the species whose mole fraction defines the extent of reduction r. More... | |
int | reactant_species_index |
Additional Inherited Members | |
Protected Member Functions inherited from VPStandardStateTP | |
virtual void | _updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
const vector_fp & | Gibbs_RT_ref () const |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Protected Attributes inherited from VPStandardStateTP | |
doublereal | m_Pcurrent |
Current value of the pressure - state variable. More... | |
doublereal | m_Tlast_ss |
The last temperature at which the standard statethermodynamic properties were calculated at. More... | |
doublereal | m_Plast_ss |
The last pressure at which the Standard State thermodynamic properties were calculated at. More... | |
std::vector< std::unique_ptr< PDSS > > | m_PDSS_storage |
Storage for the PDSS objects for the species. More... | |
vector_fp | m_h0_RT |
Vector containing the species reference enthalpies at T = m_tlast and P = p_ref. More... | |
vector_fp | m_cp0_R |
Vector containing the species reference constant pressure heat capacities at T = m_tlast and P = p_ref. More... | |
vector_fp | m_g0_RT |
Vector containing the species reference Gibbs functions at T = m_tlast and P = p_ref. More... | |
vector_fp | m_s0_R |
Vector containing the species reference entropies at T = m_tlast and P = p_ref. More... | |
vector_fp | m_V0 |
Vector containing the species reference molar volumes. More... | |
vector_fp | m_hss_RT |
Vector containing the species Standard State enthalpies at T = m_tlast and P = m_plast. More... | |
vector_fp | m_cpss_R |
Vector containing the species Standard State constant pressure heat capacities at T = m_tlast and P = m_plast. More... | |
vector_fp | m_gss_RT |
Vector containing the species Standard State Gibbs functions at T = m_tlast and P = m_plast. More... | |
vector_fp | m_sss_R |
Vector containing the species Standard State entropies at T = m_tlast and P = m_plast. More... | |
vector_fp | m_Vss |
Vector containing the species standard state volumes at T = m_tlast and P = m_plast. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
vector_fp | m_lambdaRRT |
Vector of element potentials. More... | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
Class MaskellSolidSolnPhase represents a condensed phase non-ideal solution with 2 species following the thermodynamic model described in Maskell, Shaw, and Tye, Manganese Dioxide Electrode – IX, Electrochimica Acta 28(2) pp 231-235, 1983.
Definition at line 27 of file MaskellSolidSolnPhase.h.
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from ThermoPhase.
Definition at line 32 of file MaskellSolidSolnPhase.h.
|
virtual |
This method returns an array of generalized concentrations.
\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.
c | Output array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase. |
Reimplemented from ThermoPhase.
Definition at line 32 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::getActivityCoefficients(), Phase::m_kk, and Phase::moleFraction().
|
inlinevirtual |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from ThermoPhase.
Definition at line 37 of file MaskellSolidSolnPhase.h.
|
inlinevirtual |
Natural logarithm of the standard concentration of the kth species.
k | index of the species (defaults to zero) |
Reimplemented from ThermoPhase.
Definition at line 38 of file MaskellSolidSolnPhase.h.
|
virtual |
Molar enthalpy. Units: J/kmol.
Reimplemented from ThermoPhase.
Definition at line 42 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::_updateThermo(), MaskellSolidSolnPhase::h_mixing, MaskellSolidSolnPhase::m_h0_RT, Phase::mean_X(), Phase::moleFraction(), MaskellSolidSolnPhase::product_species_index, and ThermoPhase::RT().
|
virtual |
Molar entropy. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 56 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::_updateThermo().
|
inlinevirtual |
Pressure.
Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.
Reimplemented from VPStandardStateTP.
Definition at line 62 of file MaskellSolidSolnPhase.h.
References MaskellSolidSolnPhase::m_Pcurrent.
Referenced by MaskellSolidSolnPhase::getActivityCoefficients().
|
virtual |
Set the pressure at constant temperature.
Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.
p | Input Pressure (Pa) |
Reimplemented from VPStandardStateTP.
Definition at line 93 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::m_Pcurrent.
|
virtual |
Overridden setDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition
rho | Input density |
Reimplemented from Phase.
Definition at line 68 of file MaskellSolidSolnPhase.cpp.
References Phase::density().
|
virtual |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.
NOTE: This function is not a member of the ThermoPhase base class.
Reimplemented from VPStandardStateTP.
Definition at line 80 of file MaskellSolidSolnPhase.cpp.
References Phase::getMoleFractions(), VPStandardStateTP::getStandardVolumes(), Phase::m_kk, Phase::meanMolecularWeight(), and Phase::setDensity().
|
virtual |
Overridden setMolarDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition.
rho | Input Density |
Reimplemented from Phase.
Definition at line 98 of file MaskellSolidSolnPhase.cpp.
|
virtual |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
ac | Output vector of activity coefficients. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 106 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::_updateThermo(), ValueCache::getArray(), ValueCache::getId(), Phase::m_cache, Phase::moleFraction(), MaskellSolidSolnPhase::pressure(), MaskellSolidSolnPhase::product_species_index, Phase::stateMFNumber(), Phase::temperature(), CachedValue< T >::validate(), and CachedValue< T >::value.
Referenced by MaskellSolidSolnPhase::getActivityConcentrations().
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 126 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::_updateThermo(), MaskellSolidSolnPhase::h_mixing, MaskellSolidSolnPhase::m_g0_RT, Phase::moleFraction(), MaskellSolidSolnPhase::product_species_index, and ThermoPhase::RT().
Referenced by MaskellSolidSolnPhase::getChemPotentials_RT().
|
virtual |
Get the array of non-dimensional species chemical potentials.
These are partial molar Gibbs free energies, \( \mu_k / \hat R T \).
We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.
mu | Output vector of non-dimensional species chemical potentials Length: m_kk. |
Reimplemented from VPStandardStateTP.
Definition at line 140 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::getChemPotentials(), Phase::m_kk, and ThermoPhase::RT().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
hbar | Output vector of species partial molar enthalpies. Length: m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 150 of file MaskellSolidSolnPhase.cpp.
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K.
sbar | Output vector of species partial molar entropies. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 155 of file MaskellSolidSolnPhase.cpp.
|
virtual |
Return an array of partial molar heat capacities for the species in the mixture.
Units: J/kmol/K
cpbar | Output vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 160 of file MaskellSolidSolnPhase.cpp.
|
virtual |
Return an array of partial molar volumes for the species in the mixture.
Units: m^3/kmol.
vbar | Output vector of species partial molar volumes. Length = m_kk. units are m^3/kmol. |
Reimplemented from ThermoPhase.
Definition at line 165 of file MaskellSolidSolnPhase.cpp.
References VPStandardStateTP::getStandardVolumes().
|
virtual |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
Units are Joules/kmol
gpure | Output vector of standard state Gibbs free energies. Length: m_kk. |
Reimplemented from VPStandardStateTP.
Definition at line 170 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::_updateThermo(), MaskellSolidSolnPhase::m_g0_RT, Phase::m_kk, and ThermoPhase::RT().
Referenced by MaskellSolidSolnPhase::getStandardChemPotentials().
|
virtual |
Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution
mu | Output vector of chemical potentials. Length: m_kk. |
Reimplemented from VPStandardStateTP.
Definition at line 178 of file MaskellSolidSolnPhase.cpp.
References MaskellSolidSolnPhase::getPureGibbs().
|
virtual |
Import and initialize a ThermoPhase object using an XML tree.
Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from ThermoPhase.
Definition at line 187 of file MaskellSolidSolnPhase.cpp.
References Cantera::caseInsensitiveEquals(), XML_Node::child(), Cantera::fpValue(), XML_Node::hasChild(), XML_Node::id(), ThermoPhase::initThermoXML(), Phase::m_kk, MaskellSolidSolnPhase::setProductSpecies(), Phase::speciesName(), and XML_Node::value().
void setProductSpecies | ( | const std::string & | name | ) |
Set the product Species. Must be called after species have been added.
Definition at line 231 of file MaskellSolidSolnPhase.cpp.
References Phase::name(), MaskellSolidSolnPhase::product_species_index, and Phase::speciesIndex().
Referenced by MaskellSolidSolnPhase::initThermoXML().
|
private |
Function to call through to m_spthermo->update and fill m_h0_RT, m_cp0_R, m_g0_RT, m_s0_R.
Definition at line 241 of file MaskellSolidSolnPhase.cpp.
References ValueCache::getId(), ValueCache::getScalar(), Phase::m_cache, MaskellSolidSolnPhase::m_cp0_R, MaskellSolidSolnPhase::m_g0_RT, MaskellSolidSolnPhase::m_h0_RT, Phase::m_kk, MaskellSolidSolnPhase::m_s0_R, ThermoPhase::m_spthermo, Phase::temperature(), MultiSpeciesThermo::update(), and CachedValue< T >::validate().
Referenced by MaskellSolidSolnPhase::enthalpy_mole(), MaskellSolidSolnPhase::entropy_mole(), MaskellSolidSolnPhase::getActivityCoefficients(), MaskellSolidSolnPhase::getChemPotentials(), and MaskellSolidSolnPhase::getPureGibbs().
|
private |
m_Pcurrent = The current pressure.
Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.
Definition at line 137 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::pressure(), and MaskellSolidSolnPhase::setPressure().
|
mutableprivate |
Vector containing the species reference enthalpies at T = m_tlast.
Definition at line 146 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::_updateThermo(), and MaskellSolidSolnPhase::enthalpy_mole().
|
mutableprivate |
Vector containing the species reference constant pressure heat capacities at T = m_tlast.
Definition at line 150 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::_updateThermo().
|
mutableprivate |
Vector containing the species reference Gibbs functions at T = m_tlast.
Definition at line 153 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::_updateThermo(), MaskellSolidSolnPhase::getChemPotentials(), and MaskellSolidSolnPhase::getPureGibbs().
|
mutableprivate |
Vector containing the species reference entropies at T = m_tlast.
Definition at line 156 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::_updateThermo().
|
private |
Value of the enthalpy change on mixing due to protons changing from type B to type A configurations.
Definition at line 160 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::enthalpy_mole(), and MaskellSolidSolnPhase::getChemPotentials().
|
private |
Index of the species whose mole fraction defines the extent of reduction r.
Definition at line 163 of file MaskellSolidSolnPhase.h.
Referenced by MaskellSolidSolnPhase::enthalpy_mole(), MaskellSolidSolnPhase::getActivityCoefficients(), MaskellSolidSolnPhase::getChemPotentials(), and MaskellSolidSolnPhase::setProductSpecies().