Cantera  2.4.0
Public Member Functions | Protected Member Functions | Private Attributes | List of all members

Class SimpleTransport implements mixture-averaged transport properties for liquid phases. More...

#include <SimpleTransport.h>

Inheritance diagram for SimpleTransport:
[legend]
Collaboration diagram for SimpleTransport:
[legend]

Public Member Functions

 SimpleTransport (thermo_t *thermo=0, int ndim=1)
 Default constructor. More...
 
virtual bool initLiquid (LiquidTransportParams &tr)
 Initialize the transport object. More...
 
void setCompositionDependence (LiquidTranMixingModel model)
 
virtual std::string transportType () const
 Identifies the Transport object type. More...
 
virtual doublereal viscosity ()
 Returns the mixture viscosity of the solution. More...
 
virtual void getSpeciesViscosities (doublereal *const visc)
 Returns the pure species viscosities. More...
 
virtual void getBinaryDiffCoeffs (const size_t ld, doublereal *const d)
 Returns the binary diffusion coefficients. More...
 
virtual void getMixDiffCoeffs (doublereal *const d)
 Get the Mixture diffusion coefficients. More...
 
virtual void getThermalDiffCoeffs (doublereal *const dt)
 Return the thermal diffusion coefficients. More...
 
virtual doublereal thermalConductivity ()
 Returns the mixture thermal conductivity of the solution. More...
 
virtual void getMobilities (doublereal *const mobil_e)
 Get the Electrical mobilities (m^2/V/s). More...
 
virtual void getFluidMobilities (doublereal *const mobil_f)
 Get the fluid mobilities (s kmol/kg). More...
 
virtual void set_Grad_V (const doublereal *const grad_V)
 Specify the value of the gradient of the voltage. More...
 
virtual void set_Grad_T (const doublereal *const grad_T)
 Specify the value of the gradient of the temperature. More...
 
virtual void set_Grad_X (const doublereal *const grad_X)
 Specify the value of the gradient of the MoleFractions. More...
 
virtual void getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff)
 Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction and temperature. More...
 
virtual void getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff)
 Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. More...
 
virtual void getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes)
 Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature. More...
 
virtual void getSpeciesFluxesExt (size_t ldf, doublereal *fluxes)
 Return the species diffusive mass fluxes wrt to the mass averaged velocity,. More...
 
- Public Member Functions inherited from Transport
 Transport (thermo_t *thermo=0, size_t ndim=1)
 Constructor. More...
 
 Transport (const Transport &)=delete
 
Transportoperator= (const Transport &)=delete
 
thermo_tthermo ()
 
bool ready ()
 
void setNDim (const int ndim)
 Set the number of dimensions to be expected in flux expressions. More...
 
size_t nDim () const
 Return the number of dimensions in flux expressions. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
virtual doublereal getElectricConduct ()
 Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) More...
 
virtual void getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current)
 Compute the electric current density in A/m^2. More...
 
virtual void getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes)
 Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. More...
 
virtual void getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes)
 Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. More...
 
virtual void getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes)
 Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. More...
 
virtual void getMultiDiffCoeffs (const size_t ld, doublereal *const d)
 Return the Multicomponent diffusion coefficients. Units: [m^2/s]. More...
 
virtual void getMixDiffCoeffsMole (doublereal *const d)
 Returns a vector of mixture averaged diffusion coefficients. More...
 
virtual void getMixDiffCoeffsMass (doublereal *const d)
 Returns a vector of mixture averaged diffusion coefficients. More...
 
virtual void setParameters (const int type, const int k, const doublereal *const p)
 Set model parameters for derived classes. More...
 
void setVelocityBasis (VelocityBasis ivb)
 Sets the velocity basis. More...
 
VelocityBasis getVelocityBasis () const
 Gets the velocity basis. More...
 
virtual doublereal bulkViscosity ()
 The bulk viscosity in Pa-s. More...
 
virtual doublereal ionConductivity ()
 The ionic conductivity in 1/ohm/m. More...
 
virtual void getSpeciesIonConductivity (doublereal *const ionCond)
 Returns the pure species ionic conductivity. More...
 
virtual void mobilityRatio (double *mobRat)
 Returns the pointer to the mobility ratios of the species in the phase. More...
 
virtual void getSpeciesMobilityRatio (double **mobRat)
 Returns the pure species limit of the mobility ratios. More...
 
virtual void selfDiffusion (doublereal *const selfDiff)
 Returns the self diffusion coefficients of the species in the phase. More...
 
virtual void getSpeciesSelfDiffusion (double **selfDiff)
 Returns the pure species self diffusion in solution of each species. More...
 
virtual doublereal electricalConductivity ()
 The electrical conductivity (Siemens/m). More...
 
virtual void init (thermo_t *thermo, int mode=0, int log_level=0)
 Initialize a transport manager. More...
 
virtual bool initSolid (SolidTransportData &tr)
 Called by TransportFactory to set parameters. More...
 
virtual void setThermo (thermo_t &thermo)
 Specifies the ThermoPhase object. More...
 

Protected Member Functions

virtual bool update_T ()
 Handles the effects of changes in the Temperature, internally within the object. More...
 
virtual bool update_C ()
 Handles the effects of changes in the mixture concentration. More...
 
void updateViscosity_T ()
 Update the temperature-dependent viscosity terms. More...
 
void updateCond_T ()
 Update the temperature-dependent parts of the mixture-averaged thermal conductivity. More...
 
void updateDiff_T ()
 Update the binary diffusion coefficients wrt T. More...
 
- Protected Member Functions inherited from Transport
void finalize ()
 Enable the transport object for use. More...
 

Private Attributes

enum LiquidTranMixingModel compositionDepType_
 Composition dependence of the transport properties. More...
 
bool useHydroRadius_
 Boolean indicating whether to use the hydrodynamic radius formulation. More...
 
bool doMigration_
 Boolean indicating whether electro-migration term should be added. More...
 
vector_fp m_mw
 Local Copy of the molecular weights of the species. More...
 
std::vector< LTPspecies * > m_coeffVisc_Ns
 Pure species viscosities in Arrhenius temperature-dependent form. More...
 
std::vector< LTPspecies * > m_coeffLambda_Ns
 Pure species thermal conductivities in Arrhenius temperature-dependent form. More...
 
std::vector< LTPspecies * > m_coeffDiff_Ns
 Pure species viscosities in Arrhenius temperature-dependent form. More...
 
std::vector< LTPspecies * > m_coeffHydroRadius_Ns
 Hydrodynamic radius in LTPspecies form. More...
 
vector_fp m_Grad_X
 Internal value of the gradient of the mole fraction vector. More...
 
vector_fp m_Grad_T
 Internal value of the gradient of the Temperature vector. More...
 
vector_fp m_Grad_P
 Internal value of the gradient of the Pressure vector. More...
 
vector_fp m_Grad_V
 Internal value of the gradient of the Electric Voltage. More...
 
vector_fp m_diffSpecies
 Vector of Species Diffusivities. More...
 
vector_fp m_viscSpecies
 Species viscosities. More...
 
vector_fp m_condSpecies
 Internal value of the species individual thermal conductivities. More...
 
int m_iStateMF
 State of the mole fraction vector. More...
 
vector_fp m_molefracs
 Local copy of the mole fractions of the species in the phase. More...
 
vector_fp m_concentrations
 Local copy of the concentrations of the species in the phase. More...
 
doublereal concTot_
 Local copy of the total concentration. More...
 
doublereal meanMolecularWeight_
 Mean molecular weight. More...
 
doublereal dens_
 Density. More...
 
vector_fp m_chargeSpecies
 Local copy of the charge of each species. More...
 
doublereal m_temp
 Current Temperature -> locally stored. More...
 
doublereal m_press
 Current value of the pressure. More...
 
doublereal m_lambda
 Saved value of the mixture thermal conductivity. More...
 
doublereal m_viscmix
 Saved value of the mixture viscosity. More...
 
vector_fp m_spwork
 work space More...
 
vector_fp m_fluxes
 
bool m_visc_mix_ok
 Boolean indicating that the top-level mixture viscosity is current. More...
 
bool m_visc_temp_ok
 Boolean indicating that weight factors wrt viscosity is current. More...
 
bool m_diff_mix_ok
 Boolean indicating that mixture diffusion coeffs are current. More...
 
bool m_diff_temp_ok
 Boolean indicating that binary diffusion coeffs are current. More...
 
bool m_cond_temp_ok
 Flag to indicate that the pure species conductivities are current wrt the temperature. More...
 
bool m_cond_mix_ok
 Boolean indicating that mixture conductivity is current. More...
 
size_t m_nDim
 Number of dimensions. More...
 
double rhoVc [3]
 Temporary variable that stores the rho Vc value. More...
 

Additional Inherited Members

- Protected Attributes inherited from Transport
thermo_tm_thermo
 pointer to the object representing the phase More...
 
bool m_ready
 true if finalize has been called More...
 
size_t m_nsp
 Number of species. More...
 
size_t m_nDim
 Number of dimensions used in flux expressions. More...
 
int m_velocityBasis
 Velocity basis from which diffusion velocities are computed. More...
 

Detailed Description

Class SimpleTransport implements mixture-averaged transport properties for liquid phases.

Deprecated:
To be removed after Cantera 2.4

The model is based on that described by Newman, Electrochemical Systems

The velocity of species i may be described by the following equation p. 297 (12.1)

\[ c_i \nabla \mu_i = R T \sum_j \frac{c_i c_j}{c_T D_{ij}} (\mathbf{v}_j - \mathbf{v}_i) \]

This as written is degenerate by 1 dof.

To fix this we must add in the definition of the mass averaged velocity of the solution. We will call the simple bold-faced \(\mathbf{v} \) symbol the mass-averaged velocity. Then, the relation between \(\mathbf{v}\) and the individual species velocities is \(\mathbf{v}_i\)

\[ \rho_i \mathbf{v}_i = \rho_i \mathbf{v} + \mathbf{j}_i \]

where \(\mathbf{j}_i\) are the diffusional fluxes of species i with respect to the mass averaged velocity and

\[ \sum_i \mathbf{j}_i = 0 \]

and

\[ \sum_i \rho_i \mathbf{v}_i = \rho \mathbf{v} \]

Using these definitions, we can write

\[ \mathbf{v}_i = \mathbf{v} + \frac{\mathbf{j}_i}{\rho_i} \]

\[ c_i \nabla \mu_i = R T \sum_j \frac{c_i c_j}{c_T D_{ij}} (\frac{\mathbf{j}_j}{\rho_j} - \frac{\mathbf{j}_i}{\rho_i}) = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]

The equations that we actually solve are

\[ c_i \nabla \mu_i = = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]

and we replace the 0th equation with the following:

\[ \sum_i \mathbf{j}_i = 0 \]

When there are charged species, we replace the RHS with the gradient of the electrochemical potential to obtain the modified equation

\[ c_i \nabla \mu_i + c_i F z_i \nabla \Phi = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]

With this formulation we may solve for the diffusion velocities, without having to worry about what the mass averaged velocity is.

Viscosity Calculation

The viscosity calculation may be broken down into two parts. In the first part, the viscosity of the pure species are calculated In the second part, a mixing rule is applied. There are two mixing rules. Solvent-only and mixture- averaged.

For the solvent-only mixing rule, we use the pure species viscosity calculated for the solvent as the viscosity of the entire mixture. For the mixture averaged rule we do a mole fraction based average of the pure species viscosities:

Solvent-only:

\[ \mu = \mu_0 \]

Mixture-average:

\[ \mu = \sum_k {\mu_k X_k} \]

Calculate of the Binary Diffusion Coefficients

The binary diffusion coefficients are obtained from the pure species diffusion coefficients using an additive process

\[ D_{i,j} = \frac{1}{2} \left( D^0_i(T) + D^0_j(T) \right) \]

Electrical Mobilities

The mobility \( \mu^e_k \) is calculated from the diffusion coefficient using the Einstein relation.

\[ \mu^e_k = \frac{F D_k}{R T} \]

The diffusion coefficients, \( D_k \) , is calculated from a call to the mixture diffusion coefficient routine.

Species Diffusive Fluxes

The diffusive mass flux of species k is computed from the following formula

Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.

\[ j_k = - c^T M_k D_k \nabla X_k - \rho Y_k V_c \]

where V_c is the correction velocity

\[ \rho V_c = - \sum_j {c^T M_j D_j \nabla X_j} \]

In the above equation, \( D_k \) is the mixture diffusivity for species k calculated for the current conditions, which may depend on T, P, and X_k. \( C^T \) is the total concentration of the phase.

When this is electrical migration, the formulas above are enhanced to

\[ j_k = - C^T M_k D_k \nabla X_k + F C^T M_k \frac{D_k}{ R T } X_k z_k \nabla V - \rho Y_k V_c \]

where V_c is the correction velocity

\[ \rho V_c = - \sum_j {c^T M_j D_j \nabla X_j} + \sum_j F C^T M_j \frac{D_j}{ R T } X_j z_j \nabla V \]

Species Diffusional Velocities

Species diffusional velocities are calculated from the species diffusional fluxes, within this object, using the following formula for the diffusional velocity of the kth species, \( V_k^d \)

\[ j_k = \rho Y_k V_k^d \]

TODO: This object has to be made compatible with different types of reference velocities. Right now, elements of the formulas are only compatible with the mass-averaged velocity.

Definition at line 186 of file SimpleTransport.h.

Constructor & Destructor Documentation

◆ SimpleTransport()

SimpleTransport ( thermo_t thermo = 0,
int  ndim = 1 
)

Default constructor.

This requires call to initLiquid(LiquidTransportParams& tr) after filling LiquidTransportParams to complete instantiation. The filling of LiquidTransportParams is currently carried out in the TransportFactory class, but might be moved at some point.

Parameters
thermoThermoPhase object holding species information.
ndimNumber of spatial dimensions.

Definition at line 16 of file SimpleTransport.cpp.

Member Function Documentation

◆ initLiquid()

bool initLiquid ( LiquidTransportParams tr)
virtual

Initialize the transport object.

Here we change all of the internal dimensions to be sufficient. We get the object ready to do property evaluations.

Parameters
trTransport parameters for all of the species in the phase.

Reimplemented from Transport.

Definition at line 56 of file SimpleTransport.cpp.

References XML_Node::attrib(), Phase::charge(), XML_Node::child(), SimpleTransport::compositionDepType_, LiquidTransportParams::compositionDepTypeDefault_, XML_Node::hasChild(), LiquidTransportData::hydroRadius, LiquidTransportParams::LTData, SimpleTransport::m_chargeSpecies, SimpleTransport::m_coeffDiff_Ns, SimpleTransport::m_coeffHydroRadius_Ns, SimpleTransport::m_coeffLambda_Ns, SimpleTransport::m_coeffVisc_Ns, SimpleTransport::m_concentrations, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_condSpecies, SimpleTransport::m_diff_mix_ok, SimpleTransport::m_diff_temp_ok, SimpleTransport::m_diffSpecies, SimpleTransport::m_Grad_P, SimpleTransport::m_Grad_T, SimpleTransport::m_Grad_V, SimpleTransport::m_Grad_X, SimpleTransport::m_molefracs, SimpleTransport::m_mw, SimpleTransport::m_nDim, Transport::m_nsp, SimpleTransport::m_spwork, Transport::m_thermo, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, SimpleTransport::m_viscSpecies, Phase::molecularWeights(), Phase::nSpecies(), LiquidTransportData::speciesDiffusivity, Phase::speciesName(), LiquidTransportData::thermalCond, TransportParams::thermo, SimpleTransport::useHydroRadius_, LiquidTransportData::viscosity, and Phase::xml().

◆ transportType()

virtual std::string transportType ( ) const
inlinevirtual

Identifies the Transport object type.

Each derived class should override this method to return a meaningful identifier.

Reimplemented from Transport.

Definition at line 216 of file SimpleTransport.h.

◆ viscosity()

doublereal viscosity ( )
virtual

Returns the mixture viscosity of the solution.

The viscosity is computed using the general mixture rules specified in the variable compositionDepType_.

Solvent-only:

\[ \mu = \mu_0 \]

Mixture-average:

\[ \mu = \sum_k {\mu_k X_k} \]

Here \( \mu_k \) is the viscosity of pure species k.

units are Pa s or kg/m/s

See also
updateViscosity_T();

Reimplemented from Transport.

Definition at line 144 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_molefracs, Transport::m_nsp, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, SimpleTransport::m_viscmix, SimpleTransport::m_viscSpecies, SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateViscosity_T().

Referenced by SimpleTransport::updateDiff_T().

◆ getSpeciesViscosities()

void getSpeciesViscosities ( doublereal *const  visc)
virtual

Returns the pure species viscosities.

The pure species viscosities are to be given in an Arrhenius form in accordance with activated-jump-process dominated transport.

units are Pa s or kg/m/s

Parameters
viscReturn the species viscosities as a vector of length m_nsp

Reimplemented from Transport.

Definition at line 173 of file SimpleTransport.cpp.

References SimpleTransport::m_visc_temp_ok, SimpleTransport::m_viscSpecies, SimpleTransport::update_T(), and SimpleTransport::updateViscosity_T().

◆ getBinaryDiffCoeffs()

void getBinaryDiffCoeffs ( const size_t  ld,
doublereal *const  d 
)
virtual

Returns the binary diffusion coefficients.

Reimplemented from Transport.

Definition at line 182 of file SimpleTransport.cpp.

References SimpleTransport::m_diff_temp_ok, SimpleTransport::m_diffSpecies, Transport::m_nsp, SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

◆ getMixDiffCoeffs()

void getMixDiffCoeffs ( doublereal *const  d)
virtual

Get the Mixture diffusion coefficients.

Parameters
dvector of mixture diffusion coefficients units = m2 s-1. length = number of species

Reimplemented from Transport.

Definition at line 404 of file SimpleTransport.cpp.

References SimpleTransport::m_diff_temp_ok, SimpleTransport::m_diffSpecies, Transport::m_nsp, SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

Referenced by SimpleTransport::getFluidMobilities(), SimpleTransport::getMobilities(), and SimpleTransport::getSpeciesFluxesExt().

◆ getThermalDiffCoeffs()

void getThermalDiffCoeffs ( doublereal *const  dt)
virtual

Return the thermal diffusion coefficients.

These are all zero for this simple implementation

Parameters
dtthermal diffusion coefficients

Reimplemented from Transport.

Definition at line 267 of file SimpleTransport.cpp.

References Transport::m_nsp.

◆ thermalConductivity()

doublereal thermalConductivity ( )
virtual

Returns the mixture thermal conductivity of the solution.

The thermal is computed using the general mixture rules specified in the variable compositionDepType_.

Controlling update boolean = m_condmix_ok

Units are in W/m/K or equivalently kg m / s3 / K

Solvent-only:

\[ \lambda = \lambda_0 \]

Mixture-average:

\[ \lambda = \sum_k {\lambda_k X_k} \]

Here \( \lambda_k \) is the thermal conductivity of pure species k.

See also
updateCond_T();

Reimplemented from Transport.

Definition at line 243 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_condSpecies, SimpleTransport::m_lambda, SimpleTransport::m_molefracs, Transport::m_nsp, SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateCond_T().

◆ getMobilities()

void getMobilities ( doublereal *const  mobil_e)
virtual

Get the Electrical mobilities (m^2/V/s).

This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by Faraday's constant.

Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation

\[ \mu^e_k = \frac{F D_k}{R T} \]

Parameters
mobil_eReturns the mobilities of the species in array mobil_e. The array must be dimensioned at least as large as the number of species.

Reimplemented from Transport.

Definition at line 199 of file SimpleTransport.cpp.

References Cantera::Boltzmann, SimpleTransport::getMixDiffCoeffs(), Transport::m_nsp, SimpleTransport::m_spwork, and SimpleTransport::m_temp.

◆ getFluidMobilities()

void getFluidMobilities ( doublereal *const  mobil_f)
virtual

Get the fluid mobilities (s kmol/kg).

This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.

Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation

\[ \mu^f_k = \frac{D_k}{R T} \]

Parameters
mobil_fReturns the mobilities of the species in array mobil. The array must be dimensioned at least as large as the number of species.

Reimplemented from Transport.

Definition at line 208 of file SimpleTransport.cpp.

References Cantera::GasConstant, SimpleTransport::getMixDiffCoeffs(), Transport::m_nsp, SimpleTransport::m_spwork, and SimpleTransport::m_temp.

◆ set_Grad_V()

void set_Grad_V ( const doublereal *const  grad_V)
virtual

Specify the value of the gradient of the voltage.

Parameters
grad_VGradient of the voltage (length num dimensions);

Definition at line 217 of file SimpleTransport.cpp.

References SimpleTransport::doMigration_, SimpleTransport::m_Grad_V, and SimpleTransport::m_nDim.

Referenced by SimpleTransport::getSpeciesVdiffES().

◆ set_Grad_T()

void set_Grad_T ( const doublereal *const  grad_T)
virtual

Specify the value of the gradient of the temperature.

Parameters
grad_TGradient of the temperature (length num dimensions);

Definition at line 228 of file SimpleTransport.cpp.

References SimpleTransport::m_Grad_T, and SimpleTransport::m_nDim.

Referenced by SimpleTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), and SimpleTransport::getSpeciesVdiffES().

◆ set_Grad_X()

void set_Grad_X ( const doublereal *const  grad_X)
virtual

Specify the value of the gradient of the MoleFractions.

Parameters
grad_XGradient of the mole fractions(length nsp * num dimensions);

Definition at line 235 of file SimpleTransport.cpp.

References SimpleTransport::m_Grad_X, SimpleTransport::m_nDim, and Transport::m_nsp.

Referenced by SimpleTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), and SimpleTransport::getSpeciesVdiffES().

◆ getSpeciesVdiff()

void getSpeciesVdiff ( size_t  ndim,
const doublereal *  grad_T,
int  ldx,
const doublereal *  grad_X,
int  ldf,
doublereal *  Vdiff 
)
virtual

Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction and temperature.

The average velocity can be computed on a mole-weighted or mass-weighted basis, or the diffusion velocities may be specified as relative to a specific species (i.e. a solvent) all according to the velocityBasis input parameter.

Units for the returned velocities are m s-1.

Parameters
ndimNumber of dimensions in the flux expressions
grad_TGradient of the temperature (length = ndim)
ldxLeading dimension of the grad_X array (usually equal to m_nsp but not always)
grad_XGradients of the mole fraction. Flat vector with the m_nsp in the inner loop. length = ldx * ndim
ldfLeading dimension of the fluxes array (usually equal to m_nsp but not always)
VdiffOutput of the diffusive velocities. Flat vector with the m_nsp in the inner loop. length = ldx * ndim

Reimplemented from Transport.

Definition at line 274 of file SimpleTransport.cpp.

References Phase::density(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::m_nDim, Transport::m_nsp, Transport::m_thermo, Phase::massFractions(), SimpleTransport::set_Grad_T(), and SimpleTransport::set_Grad_X().

◆ getSpeciesVdiffES()

void getSpeciesVdiffES ( size_t  ndim,
const doublereal *  grad_T,
int  ldx,
const doublereal *  grad_X,
int  ldf,
const doublereal *  grad_Phi,
doublereal *  Vdiff 
)
virtual

Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.

The average velocity can be computed on a mole-weighted or mass-weighted basis, or the diffusion velocities may be specified as relative to a specific species (i.e. a solvent) all according to the velocityBasis input parameter.

Units for the returned velocities are m s-1.

Parameters
ndimNumber of dimensions in the flux expressions
grad_TGradient of the temperature (length = ndim)
ldxLeading dimension of the grad_X array (usually equal to m_nsp but not always)
grad_XGradients of the mole fraction. Flat vector with the m_nsp in the inner loop. length = ldx * ndim
ldfLeading dimension of the fluxes array (usually equal to m_nsp but not always)
grad_PhiGradients of the electrostatic potential (length = ndim)
VdiffOutput of the species diffusion velocities. Flat vector with the m_nsp in the inner loop. length = ldx * ndim

Reimplemented from Transport.

Definition at line 297 of file SimpleTransport.cpp.

References Phase::density(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::m_nDim, Transport::m_nsp, Transport::m_thermo, Phase::massFractions(), SimpleTransport::set_Grad_T(), SimpleTransport::set_Grad_V(), and SimpleTransport::set_Grad_X().

◆ getSpeciesFluxes()

void getSpeciesFluxes ( size_t  ndim,
const doublereal *const  grad_T,
size_t  ldx,
const doublereal *const  grad_X,
size_t  ldf,
doublereal *const  fluxes 
)
virtual

Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.

units = kg/m2/s

The diffusive mass flux of species k is computed from the following formula

Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.

\[ j_k = - \rho M_k D_k \nabla X_k - Y_k V_c \]

where V_c is the correction velocity

\[ V_c = - \sum_j {\rho M_j D_j \nabla X_j} \]

Parameters
ndimThe number of spatial dimensions (1, 2, or 3).
grad_TThe temperature gradient (ignored in this model).
ldxLeading dimension of the grad_X array.
grad_XGradient of the mole fractions(length nsp * num dimensions);
ldfLeading dimension of the fluxes array.
fluxesOutput fluxes of species.

Reimplemented from Transport.

Definition at line 319 of file SimpleTransport.cpp.

References SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::set_Grad_T(), and SimpleTransport::set_Grad_X().

◆ getSpeciesFluxesExt()

void getSpeciesFluxesExt ( size_t  ldf,
doublereal *  fluxes 
)
virtual

Return the species diffusive mass fluxes wrt to the mass averaged velocity,.

units = kg/m2/s

Internally, gradients in the in mole fraction, temperature and electrostatic potential contribute to the diffusive flux

The diffusive mass flux of species k is computed from the following formula

\[ j_k = - \rho M_k D_k \nabla X_k - Y_k V_c \]

where V_c is the correction velocity

\[ V_c = - \sum_j {\rho M_j D_j \nabla X_j} \]

Parameters
ldfstride of the fluxes array. Must be equal to or greater than the number of species.
fluxesVector of calculated fluxes

Definition at line 328 of file SimpleTransport.cpp.

References AssertThrow, Cantera::Boltzmann, SimpleTransport::doMigration_, SimpleTransport::getMixDiffCoeffs(), SimpleTransport::m_chargeSpecies, SimpleTransport::m_Grad_V, SimpleTransport::m_Grad_X, SimpleTransport::m_molefracs, SimpleTransport::m_nDim, Transport::m_nsp, SimpleTransport::m_spwork, SimpleTransport::m_temp, Transport::m_thermo, Transport::m_velocityBasis, Phase::massFractions(), Phase::molarDensity(), Phase::molecularWeights(), SimpleTransport::rhoVc, SimpleTransport::update_C(), SimpleTransport::update_T(), Cantera::VB_MASSAVG, and Cantera::VB_MOLEAVG.

Referenced by SimpleTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), and SimpleTransport::getSpeciesVdiffES().

◆ update_T()

bool update_T ( )
protectedvirtual

Handles the effects of changes in the Temperature, internally within the object.

This is called whenever a transport property is requested. The first task is to check whether the temperature has changed since the last call to update_T(). If it hasn't then an immediate return is carried out.

Returns
true if the temperature has changed, and false otherwise

Definition at line 494 of file SimpleTransport.cpp.

References SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_diff_mix_ok, SimpleTransport::m_diff_temp_ok, SimpleTransport::m_temp, Transport::m_thermo, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, and Phase::temperature().

Referenced by SimpleTransport::getBinaryDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesViscosities(), SimpleTransport::thermalConductivity(), and SimpleTransport::viscosity().

◆ update_C()

bool update_C ( )
protectedvirtual

Handles the effects of changes in the mixture concentration.

This is called for every interface call to check whether the concentrations have changed. Concentrations change whenever the pressure or the mole fraction has changed. If it has changed, the recalculations should be done.

Note this should be a lightweight function since it's part of all of the interfaces.

Definition at line 417 of file SimpleTransport.cpp.

References SimpleTransport::concTot_, SimpleTransport::dens_, Phase::density(), Phase::getConcentrations(), Phase::getMoleFractions(), SimpleTransport::m_concentrations, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_diff_mix_ok, SimpleTransport::m_iStateMF, SimpleTransport::m_molefracs, Transport::m_nsp, SimpleTransport::m_press, Transport::m_thermo, SimpleTransport::m_visc_mix_ok, Phase::meanMolecularWeight(), SimpleTransport::meanMolecularWeight_, ThermoPhase::pressure(), and Phase::stateMFNumber().

Referenced by SimpleTransport::getMixDiffCoeffs(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::thermalConductivity(), and SimpleTransport::viscosity().

◆ updateViscosity_T()

void updateViscosity_T ( )
protected

Update the temperature-dependent viscosity terms.

Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule.

The flag m_visc_temp_ok is set to true.

Definition at line 481 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_coeffVisc_Ns, Transport::m_nsp, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, and SimpleTransport::m_viscSpecies.

Referenced by SimpleTransport::getSpeciesViscosities(), and SimpleTransport::viscosity().

◆ updateCond_T()

void updateCond_T ( )
protected

Update the temperature-dependent parts of the mixture-averaged thermal conductivity.

Definition at line 450 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_coeffLambda_Ns, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_condSpecies, and Transport::m_nsp.

Referenced by SimpleTransport::thermalConductivity().

◆ updateDiff_T()

void updateDiff_T ( )
protected

Member Data Documentation

◆ compositionDepType_

enum LiquidTranMixingModel compositionDepType_
private

Composition dependence of the transport properties.

The following coefficients are allowed to have simple composition dependencies:

  • mixture viscosity
  • mixture thermal conductivity

Permissible types of composition dependencies 0 - Solvent values (i.e., species 0) contributes only 1 - linear combination of mole fractions;

Definition at line 486 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::thermalConductivity(), SimpleTransport::updateCond_T(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

◆ useHydroRadius_

bool useHydroRadius_
private

Boolean indicating whether to use the hydrodynamic radius formulation.

If true, then the diffusion coefficient is calculated from the hydrodynamic radius.

Definition at line 493 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::updateDiff_T().

◆ doMigration_

bool doMigration_
private

Boolean indicating whether electro-migration term should be added.

Definition at line 496 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), and SimpleTransport::set_Grad_V().

◆ m_mw

vector_fp m_mw
private

Local Copy of the molecular weights of the species.

Length is Equal to the number of species in the mechanism.

Definition at line 502 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid().

◆ m_coeffVisc_Ns

std::vector<LTPspecies*> m_coeffVisc_Ns
private

Pure species viscosities in Arrhenius temperature-dependent form.

Definition at line 505 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::updateViscosity_T().

◆ m_coeffLambda_Ns

std::vector<LTPspecies*> m_coeffLambda_Ns
private

Pure species thermal conductivities in Arrhenius temperature-dependent form.

Definition at line 508 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::updateCond_T().

◆ m_coeffDiff_Ns

std::vector<LTPspecies*> m_coeffDiff_Ns
private

Pure species viscosities in Arrhenius temperature-dependent form.

Definition at line 511 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::updateDiff_T().

◆ m_coeffHydroRadius_Ns

std::vector<LTPspecies*> m_coeffHydroRadius_Ns
private

Hydrodynamic radius in LTPspecies form.

Definition at line 514 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::updateDiff_T().

◆ m_Grad_X

vector_fp m_Grad_X
private

Internal value of the gradient of the mole fraction vector.

Note, this is the only gradient value that can and perhaps should reflect the true state of the mole fractions in the application solution vector. In other words no cropping or massaging of the values to make sure they are above zero should occur. - developing ....

m_nsp is the number of species in the fluid k is the species index n is the dimensional index (x, y, or z). It has a length equal to m_nDim

m_Grad_X[n*m_nsp + k]

Definition at line 529 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), and SimpleTransport::set_Grad_X().

◆ m_Grad_T

vector_fp m_Grad_T
private

Internal value of the gradient of the Temperature vector.

Generally, if a transport property needs this in its evaluation it will look to this place to get it.

No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.

Definition at line 539 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::set_Grad_T().

◆ m_Grad_P

vector_fp m_Grad_P
private

Internal value of the gradient of the Pressure vector.

Generally, if a transport property needs this in its evaluation it will look to this place to get it.

No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.

Definition at line 549 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid().

◆ m_Grad_V

vector_fp m_Grad_V
private

Internal value of the gradient of the Electric Voltage.

Generally, if a transport property needs this in its evaluation it will look to this place to get it.

No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.

Definition at line 559 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), and SimpleTransport::set_Grad_V().

◆ m_diffSpecies

vector_fp m_diffSpecies
private

Vector of Species Diffusivities.

Depends on the temperature. We have set the pressure dependence to zero for this liquid phase constituitve model

units m2/s

Definition at line 570 of file SimpleTransport.h.

Referenced by SimpleTransport::getBinaryDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), SimpleTransport::initLiquid(), and SimpleTransport::updateDiff_T().

◆ m_viscSpecies

vector_fp m_viscSpecies
private

Species viscosities.

Viscosity of the species Length = number of species

Depends on the temperature. We have set the pressure dependence to zero for this model

controlling update boolean -> m_visc_temp_ok

Definition at line 582 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesViscosities(), SimpleTransport::initLiquid(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

◆ m_condSpecies

vector_fp m_condSpecies
private

Internal value of the species individual thermal conductivities.

Then a mixture rule is applied to get the solution conductivities

Depends on the temperature and perhaps pressure, but not the species concentrations

controlling update boolean -> m_cond_temp_ok

Definition at line 593 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::thermalConductivity(), and SimpleTransport::updateCond_T().

◆ m_iStateMF

int m_iStateMF
private

State of the mole fraction vector.

Definition at line 596 of file SimpleTransport.h.

Referenced by SimpleTransport::update_C().

◆ m_molefracs

vector_fp m_molefracs
private

Local copy of the mole fractions of the species in the phase.

The mole fractions here are assumed to be bounded by 0.0 and 1.0 and they are assumed to add up to one exactly. This mole fraction vector comes from the ThermoPhase object. Derivative quantities from this are referred to as bounded.

Update info? length = m_nsp

Definition at line 608 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), SimpleTransport::thermalConductivity(), SimpleTransport::update_C(), and SimpleTransport::viscosity().

◆ m_concentrations

vector_fp m_concentrations
private

Local copy of the concentrations of the species in the phase.

The concentrations are consistent with the m_molefracs vector which is bounded and sums to one.

Update info? length = m_nsp

Definition at line 618 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::update_C().

◆ concTot_

doublereal concTot_
private

Local copy of the total concentration.

This is consistent with the m_concentrations[] and m_molefracs[] vector.

Definition at line 624 of file SimpleTransport.h.

Referenced by SimpleTransport::update_C().

◆ meanMolecularWeight_

doublereal meanMolecularWeight_
private

Mean molecular weight.

Definition at line 627 of file SimpleTransport.h.

Referenced by SimpleTransport::update_C().

◆ dens_

doublereal dens_
private

Density.

Definition at line 630 of file SimpleTransport.h.

Referenced by SimpleTransport::update_C().

◆ m_chargeSpecies

vector_fp m_chargeSpecies
private

Local copy of the charge of each species.

Contains the charge of each species (length m_nsp)

Definition at line 636 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), and SimpleTransport::initLiquid().

◆ m_temp

doublereal m_temp
private

Current Temperature -> locally stored.

This is used to test whether new temperature computations should be performed.

Definition at line 643 of file SimpleTransport.h.

Referenced by SimpleTransport::getFluidMobilities(), SimpleTransport::getMobilities(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

◆ m_press

doublereal m_press
private

Current value of the pressure.

Definition at line 646 of file SimpleTransport.h.

Referenced by SimpleTransport::update_C().

◆ m_lambda

doublereal m_lambda
private

Saved value of the mixture thermal conductivity.

Definition at line 649 of file SimpleTransport.h.

Referenced by SimpleTransport::thermalConductivity().

◆ m_viscmix

doublereal m_viscmix
private

Saved value of the mixture viscosity.

Definition at line 652 of file SimpleTransport.h.

Referenced by SimpleTransport::viscosity().

◆ m_spwork

vector_fp m_spwork
private

◆ m_visc_mix_ok

bool m_visc_mix_ok
private

Boolean indicating that the top-level mixture viscosity is current.

This is turned false for every change in T, P, or C.

Definition at line 666 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::update_C(), SimpleTransport::update_T(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

◆ m_visc_temp_ok

bool m_visc_temp_ok
private

Boolean indicating that weight factors wrt viscosity is current.

Definition at line 669 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesViscosities(), SimpleTransport::initLiquid(), SimpleTransport::update_T(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

◆ m_diff_mix_ok

bool m_diff_mix_ok
private

Boolean indicating that mixture diffusion coeffs are current.

Definition at line 672 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

◆ m_diff_temp_ok

bool m_diff_temp_ok
private

Boolean indicating that binary diffusion coeffs are current.

Definition at line 675 of file SimpleTransport.h.

Referenced by SimpleTransport::getBinaryDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), SimpleTransport::initLiquid(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

◆ m_cond_temp_ok

bool m_cond_temp_ok
private

Flag to indicate that the pure species conductivities are current wrt the temperature.

Definition at line 679 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::thermalConductivity(), SimpleTransport::update_T(), and SimpleTransport::updateCond_T().

◆ m_cond_mix_ok

bool m_cond_mix_ok
private

Boolean indicating that mixture conductivity is current.

Definition at line 682 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::thermalConductivity(), SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateCond_T().

◆ m_nDim

size_t m_nDim
private

◆ rhoVc

double rhoVc[3]
private

Temporary variable that stores the rho Vc value.

Definition at line 691 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt().


The documentation for this class was generated from the following files: