Cantera  2.4.0
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
RedlichKwongMFTP Class Reference

Implementation of a multi-species Redlich-Kwong equation of state. More...

#include <RedlichKwongMFTP.h>

Inheritance diagram for RedlichKwongMFTP:
[legend]
Collaboration diagram for RedlichKwongMFTP:
[legend]

Public Member Functions

virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual doublereal liquidVolEst (doublereal TKelvin, doublereal &pres) const
 Estimate for the molar volume of the liquid. More...
 
virtual doublereal densityCalc (doublereal TKelvin, doublereal pressure, int phase, doublereal rhoguess)
 Calculates the density given the temperature and the pressure and a guess at the density. More...
 
virtual doublereal densSpinodalLiquid () const
 Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature. More...
 
virtual doublereal densSpinodalGas () const
 Return the value of the density at the gas spinodal point (on the gas side) for the current temperature. More...
 
virtual doublereal pressureCalc (doublereal TKelvin, doublereal molarVol) const
 Calculate the pressure given the temperature and the molar volume. More...
 
virtual doublereal dpdVCalc (doublereal TKelvin, doublereal molarVol, doublereal &presCalc) const
 Calculate the pressure and the pressure derivative given the temperature and the molar volume. More...
 
void pressureDerivatives () const
 Calculate dpdV and dpdT at the current conditions. More...
 
virtual void updateMixingExpressions ()
 
void updateAB ()
 Update the a and b parameters. More...
 
void calculateAB (doublereal temp, doublereal &aCalc, doublereal &bCalc) const
 Calculate the a and the b parameters given the temperature. More...
 
doublereal da_dt () const
 
void calcCriticalConditions (doublereal a, doublereal b, doublereal a0_coeff, doublereal aT_coeff, doublereal &pc, doublereal &tc, doublereal &vc) const
 
int NicholsSolve (double TKelvin, double pres, doublereal a, doublereal b, doublereal Vroot[3]) const
 Solve the cubic equation of state. More...
 
Constructors and Duplicators
 RedlichKwongMFTP ()
 Base constructor. More...
 
 RedlichKwongMFTP (const std::string &infile, const std::string &id="")
 Construct and initialize a RedlichKwongMFTP object directly from an ASCII input file. More...
 
 RedlichKwongMFTP (XML_Node &phaseRef, const std::string &id="")
 Construct and initialize a RedlichKwongMFTP object directly from an XML database. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
Molar Thermodynamic properties
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Mechanical Properties
virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
Partial Molar Properties of the Solution
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
Critical State Properties.
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
- Public Member Functions inherited from MixtureFugacityTP
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void setState_TP (doublereal T, doublereal pres)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_TR (doublereal T, doublereal rho)
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
 MixtureFugacityTP ()
 Constructor. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void setForcedSolutionBranch (int solnBranch)
 Set the solution branch to force the ThermoPhase to exist on one branch or another. More...
 
virtual int forcedSolutionBranch () const
 Report the solution branch which the solution is restricted to. More...
 
virtual int reportSolnBranchActual () const
 Report the solution branch which the solution is actually on. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the pure Gibbs free energies of each species. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
int phaseState (bool checkState=false) const
 Returns the Phase State flag for the current state of the object. More...
 
doublereal calculatePsat (doublereal TKelvin, doublereal &molarVolGas, doublereal &molarVolLiquid)
 Calculate the saturation pressure at the current mixture content for the given temperature. More...
 
virtual doublereal satPressure (doublereal TKelvin)
 Calculate the saturation pressure at the current mixture content for the given temperature. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
virtual double size (size_t k) const
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Static Public Attributes

static const doublereal omega_a = 4.27480233540E-01
 Omega constant for a -> value of a in terms of critical properties. More...
 
static const doublereal omega_b = 8.66403499650E-02
 Omega constant for b. More...
 
static const doublereal omega_vc = 3.33333333333333E-01
 Omega constant for the critical molar volume. More...
 

Protected Member Functions

virtual void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More...
 
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 
virtual doublereal sresid () const
 Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture. More...
 
virtual doublereal hresid () const
 Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture. More...
 
- Protected Member Functions inherited from MixtureFugacityTP
void setMoleFractions_NoState (const doublereal *const x)
 
virtual void _updateReferenceStateThermo () const
 Updates the reference state thermodynamic functions at the current T of the solution. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
const vector_fpgibbs_RT_ref () const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
doublereal z () const
 Calculate the value of z. More...
 
virtual doublereal psatEst (doublereal TKelvin) const
 Estimate for the saturation pressure. More...
 
int corr0 (doublereal TKelvin, doublereal pres, doublereal &densLiq, doublereal &densGas, doublereal &liqGRT, doublereal &gasGRT)
 Utility routine in the calculation of the saturation pressure. More...
 
- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 

Protected Attributes

int m_formTempParam
 Form of the temperature parameterization. More...
 
doublereal m_b_current
 Value of b in the equation of state. More...
 
doublereal m_a_current
 Value of a in the equation of state. More...
 
vector_fp a_vec_Curr_
 
vector_fp b_vec_Curr_
 
Array2D a_coeff_vec
 
int NSolns_
 
doublereal Vroot_ [3]
 
vector_fp m_pp
 Temporary storage - length = m_kk. More...
 
vector_fp m_tmpV
 Temporary storage - length = m_kk. More...
 
vector_fp m_partialMolarVolumes
 
doublereal dpdV_
 The derivative of the pressure wrt the volume. More...
 
doublereal dpdT_
 The derivative of the pressure wrt the temperature. More...
 
vector_fp dpdni_
 Vector of derivatives of pressure wrt mole number. More...
 
- Protected Attributes inherited from MixtureFugacityTP
vector_fp moleFractions_
 Storage for the current values of the mole fractions of the species. More...
 
int iState_
 Current state of the fluid. More...
 
int forcedState_
 Force the system to be on a particular side of the spinodal curve. More...
 
doublereal m_Tlast_ref
 The last temperature at which the reference state thermodynamic properties were calculated at. More...
 
vector_fp m_h0_RT
 Temporary storage for dimensionless reference state enthalpies. More...
 
vector_fp m_cp0_R
 Temporary storage for dimensionless reference state heat capacities. More...
 
vector_fp m_g0_RT
 Temporary storage for dimensionless reference state Gibbs energies. More...
 
vector_fp m_s0_R
 Temporary storage for dimensionless reference state entropies. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Initialization Methods - For Internal use

virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void setParametersFromXML (const XML_Node &thermoNode)
 Set equation of state parameter values from XML entries. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
void setSpeciesCoeffs (const std::string &species, double a0, double a1, double b)
 Set the pure fluid interaction parameters for a species. More...
 
void setBinaryCoeffs (const std::string &species_i, const std::string &species_j, double a0, double a1)
 Set values for the interaction parameter between two species. More...
 
void readXMLPureFluid (XML_Node &pureFluidParam)
 Read the pure species RedlichKwong input parameters. More...
 
void readXMLCrossFluid (XML_Node &pureFluidParam)
 Read the cross species RedlichKwong input parameters. More...
 

Detailed Description

Implementation of a multi-species Redlich-Kwong equation of state.

Attention
This class currently does not have any test cases or examples. Its implementation may be incomplete, and future changes to Cantera may unexpectedly cause this class to stop working. If you use this class, please consider contributing examples or test cases. In the absence of new tests or examples, this class may be deprecated and removed in a future version of Cantera. See https://github.com/Cantera/cantera/issues/267 for additional information.

Definition at line 27 of file RedlichKwongMFTP.h.

Constructor & Destructor Documentation

◆ RedlichKwongMFTP() [1/3]

Base constructor.

Definition at line 25 of file RedlichKwongMFTP.cpp.

◆ RedlichKwongMFTP() [2/3]

RedlichKwongMFTP ( const std::string &  infile,
const std::string &  id = "" 
)

Construct and initialize a RedlichKwongMFTP object directly from an ASCII input file.

Parameters
infileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.

Definition at line 36 of file RedlichKwongMFTP.cpp.

References ThermoPhase::initThermoFile().

◆ RedlichKwongMFTP() [3/3]

RedlichKwongMFTP ( XML_Node phaseRef,
const std::string &  id = "" 
)

Construct and initialize a RedlichKwongMFTP object directly from an XML database.

Parameters
phaseRefXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)

Definition at line 48 of file RedlichKwongMFTP.cpp.

References Cantera::importPhase().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from MixtureFugacityTP.

Definition at line 55 of file RedlichKwongMFTP.h.

◆ enthalpy_mole()

doublereal enthalpy_mole ( ) const
virtual

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

◆ cv_mole()

doublereal cv_mole ( ) const
virtual

◆ pressure()

doublereal pressure ( ) const
virtual

Return the thermodynamic pressure (Pa).

Since the mass density, temperature, and mass fractions are stored, this method uses these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).

\[ P = \frac{RT}{v-b_{mix}} - \frac{a_{mix}}{T^{0.5} v \left( v + b_{mix} \right) } \]

Reimplemented from ThermoPhase.

Definition at line 168 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo().

Referenced by RedlichKwongMFTP::entropy_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityConcentrations(), RedlichKwongMFTP::getChemPotentials(), and RedlichKwongMFTP::getPartialMolarVolumes().

◆ calcDensity()

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the species standard state molar volumes. The species molar volumes may be functions of temperature and pressure.

Reimplemented from MixtureFugacityTP.

Definition at line 179 of file RedlichKwongMFTP.cpp.

References Cantera::dot(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::m_tmpV, Phase::moleFractdivMMW(), and Phase::setDensity().

◆ setTemperature()

void setTemperature ( const doublereal  temp)
protectedvirtual

Set the temperature of the phase.

Currently this passes down to setState_TP(). It does not make sense to calculate the standard state without first setting T and P.

Parameters
tempTemperature (kelvin)

Reimplemented from MixtureFugacityTP.

Definition at line 191 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::setTemperature(), and RedlichKwongMFTP::updateAB().

Referenced by RedlichKwongMFTP::densityCalc().

◆ compositionChanged()

void compositionChanged ( )
protectedvirtual

Apply changes to the state which are needed after the composition changes.

This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.

Reimplemented from MixtureFugacityTP.

Definition at line 198 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::compositionChanged(), and RedlichKwongMFTP::updateAB().

◆ getActivityConcentrations()

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 204 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::getActivityCoefficients(), Phase::m_kk, Phase::moleFraction(), RedlichKwongMFTP::pressure(), and ThermoPhase::RT().

◆ standardConcentration()

doublereal standardConcentration ( size_t  k = 0) const
virtual

Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.

This is defined as the concentration by which the generalized concentration is normalized to produce the activity. In many cases, this quantity will be the same for all species in a phase. Since the activity for an ideal gas mixture is simply the mole fraction, for an ideal gas \( C^0_k = P/\hat R T \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.

Reimplemented from ThermoPhase.

Definition at line 212 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::getStandardVolumes(), and RedlichKwongMFTP::m_tmpV.

◆ getActivityCoefficients()

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution. The activities are based on this standard state.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 218 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::RT(), and Phase::temperature().

Referenced by RedlichKwongMFTP::getActivityConcentrations().

◆ getChemPotentials_RT()

void getChemPotentials_RT ( doublereal *  mu) const
virtual

Get the array of non-dimensional species chemical potentials.

These are partial molar Gibbs free energies.

\( \mu_k / \hat R T \). Units: unitless

We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.

Parameters
muOutput vector of non-dimensional species chemical potentials Length: m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 250 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::getChemPotentials(), Phase::m_kk, and ThermoPhase::RT().

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 258 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::getGibbs_ref(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), Phase::moleFraction(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::refPressure(), ThermoPhase::RT(), Cantera::SmallNumber, and Phase::temperature().

Referenced by RedlichKwongMFTP::getChemPotentials_RT().

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 292 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::dpdni_, RedlichKwongMFTP::dpdT_, RedlichKwongMFTP::dpdV_, MixtureFugacityTP::getEnthalpy_RT_ref(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressureDerivatives(), ThermoPhase::RT(), Cantera::scale(), and Phase::temperature().

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( doublereal *  ubar) const
virtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 388 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::getIntEnergy_RT(), Phase::m_kk, ThermoPhase::RT(), and Cantera::scale().

◆ getPartialMolarCp()

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 394 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getCp_R(), Phase::m_kk, and Cantera::scale().

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 400 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::RT(), and Phase::temperature().

Referenced by RedlichKwongMFTP::calcDensity(), and RedlichKwongMFTP::getPartialMolarEntropies().

◆ critTemperature()

doublereal critTemperature ( ) const
virtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 433 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::densityCalc().

◆ critPressure()

doublereal critPressure ( ) const
virtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 449 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::liquidVolEst().

◆ critVolume()

doublereal critVolume ( ) const
virtual

Critical volume (m3/kmol).

Reimplemented from ThermoPhase.

Definition at line 465 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

◆ critCompressibility()

doublereal critCompressibility ( ) const
virtual

Critical compressibility (unitless).

Reimplemented from ThermoPhase.

Definition at line 481 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

◆ critDensity()

doublereal critDensity ( ) const
virtual

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from MixtureFugacityTP.

Definition at line 544 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::addSpecies(), RedlichKwongMFTP::dpdni_, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, and Array2D::resize().

◆ setParametersFromXML()

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 663 of file RedlichKwongMFTP.cpp.

References ThermoPhase::setParametersFromXML().

◆ setToEquilState()

void setToEquilState ( const doublereal *  lambda_RT)
virtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented from ThermoPhase.

Definition at line 514 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), MixtureFugacityTP::getGibbs_RT_ref(), Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, ThermoPhase::refPressure(), and ThermoPhase::setState_PX().

◆ initThermoXML()

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from ThermoPhase.

Definition at line 561 of file RedlichKwongMFTP.cpp.

References Cantera::caseInsensitiveEquals(), XML_Node::child(), XML_Node::hasChild(), ThermoPhase::initThermoXML(), XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::readXMLCrossFluid(), and RedlichKwongMFTP::readXMLPureFluid().

◆ setSpeciesCoeffs()

void setSpeciesCoeffs ( const std::string &  species,
double  a0,
double  a1,
double  b 
)

Set the pure fluid interaction parameters for a species.

The "a" parameter for species i in the Redlich-Kwong model is assumed to be a linear function of temperature:

\[ a = a_0 + a_1 T \]

Parameters
speciesName of the species
a0constant term in the expression for the "a" parameter of the specified species [Pa-m^6/kmol^2]
a1temperature-proportional term in the expression for the "a" parameter of the specified species [Pa-m^6/kmol^2/K]
b"b" parameter in the Redlich-Kwong model [m^3/kmol]

Definition at line 60 of file RedlichKwongMFTP.cpp.

References Array2D::getRow(), RedlichKwongMFTP::m_formTempParam, Phase::m_kk, Cantera::npos, Phase::species(), and Phase::speciesIndex().

Referenced by RedlichKwongMFTP::readXMLPureFluid().

◆ setBinaryCoeffs()

void setBinaryCoeffs ( const std::string &  species_i,
const std::string &  species_j,
double  a0,
double  a1 
)

Set values for the interaction parameter between two species.

The "a" parameter for interactions between species i and j is assumed by default to be computed as:

\[ a_{ij} = \sqrt(a_{i,0} a_{j,0}) + \sqrt(a_{i,1} a_{j,1}) T \]

This function overrides the defaults with the specified parameters:

\[ a_{ij} = a_{ij,0} + a_{ij,1} T \]

Parameters
species_iName of one species
species_jName of the other species
a0constant term in the "a" expression [Pa-m^6/kmol^2]
a1temperature-proportional term in the "a" expression [Pa-m^6/kmol^2/K]

Definition at line 95 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_formTempParam, Phase::m_kk, Cantera::npos, and Phase::speciesIndex().

Referenced by RedlichKwongMFTP::readXMLCrossFluid().

◆ readXMLPureFluid()

void readXMLPureFluid ( XML_Node pureFluidParam)
private

Read the pure species RedlichKwong input parameters.

Parameters
pureFluidParamXML_Node for the pure fluid parameters

Definition at line 592 of file RedlichKwongMFTP.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), Cantera::getFloatCurrent(), XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::setSpeciesCoeffs(), and Cantera::toLowerCopy().

Referenced by RedlichKwongMFTP::initThermoXML().

◆ readXMLCrossFluid()

void readXMLCrossFluid ( XML_Node pureFluidParam)
private

Read the cross species RedlichKwong input parameters.

Parameters
pureFluidParamXML_Node for the cross fluid parameters

Definition at line 630 of file RedlichKwongMFTP.cpp.

References XML_Node::attrib(), XML_Node::child(), Cantera::getFloatArray(), XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::setBinaryCoeffs(), and Cantera::toLowerCopy().

Referenced by RedlichKwongMFTP::initThermoXML().

◆ sresid()

doublereal sresid ( ) const
protectedvirtual

Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.

Reimplemented from MixtureFugacityTP.

Definition at line 669 of file RedlichKwongMFTP.cpp.

References Phase::density(), RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), and MixtureFugacityTP::z().

Referenced by RedlichKwongMFTP::entropy_mole().

◆ hresid()

doublereal hresid ( ) const
protectedvirtual

Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.

Reimplemented from MixtureFugacityTP.

Definition at line 685 of file RedlichKwongMFTP.cpp.

References Phase::density(), RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), and MixtureFugacityTP::z().

Referenced by RedlichKwongMFTP::enthalpy_mole().

◆ liquidVolEst()

doublereal liquidVolEst ( doublereal  TKelvin,
doublereal &  pres 
) const
virtual

Estimate for the molar volume of the liquid.

Note: this is only used as a starting guess for later routines that actually calculate an accurate value for the liquid molar volume. This routine doesn't change the state of the system.

Parameters
TKelvintemperature in kelvin
presPressure in Pa. This is used as an initial guess. If the routine needs to change the pressure to find a stable liquid state, the new pressure is returned in this variable.
Returns
the estimate of the liquid volume. If the liquid can't be found, this routine returns -1.

Reimplemented from MixtureFugacityTP.

Definition at line 700 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::NicholsSolve(), and MixtureFugacityTP::psatEst().

◆ densityCalc()

doublereal densityCalc ( doublereal  TKelvin,
doublereal  pressure,
int  phaseRequested,
doublereal  rhoguess 
)
virtual

Calculates the density given the temperature and the pressure and a guess at the density.

Note, below T_c, this is a multivalued function. We do not cross the vapor dome in this. This is protected because it is called during setState_TP() routines. Infinite loops would result if it were not protected.

-> why is this not const?

Parameters
TKelvinTemperature in Kelvin
pressurePressure in Pascals (Newton/m**2)
phaseRequestedint representing the phase whose density we are requesting. If we put a gas or liquid phase here, we will attempt to find a volume in that part of the volume space, only, in this routine. A value of FLUID_UNDEFINED means that we will accept anything.
rhoguessGuessed density of the fluid. A value of -1.0 indicates that there is no guessed density
Returns
We return the density of the fluid at the requested phase. If we have not found any acceptable density we return a -1. If we have found an acceptable density at a different phase, we return a -2.

Reimplemented from MixtureFugacityTP.

Definition at line 732 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critTemperature(), Phase::meanMolecularWeight(), and RedlichKwongMFTP::setTemperature().

◆ densSpinodalLiquid()

doublereal densSpinodalLiquid ( ) const
virtual

Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature.

Returns
the density with units of kg m-3

Reimplemented from MixtureFugacityTP.

Definition at line 794 of file RedlichKwongMFTP.cpp.

◆ densSpinodalGas()

doublereal densSpinodalGas ( ) const
virtual

Return the value of the density at the gas spinodal point (on the gas side) for the current temperature.

Returns
the density with units of kg m-3

Reimplemented from MixtureFugacityTP.

Definition at line 816 of file RedlichKwongMFTP.cpp.

◆ pressureCalc()

doublereal pressureCalc ( doublereal  TKelvin,
doublereal  molarVol 
) const
virtual

Calculate the pressure given the temperature and the molar volume.

Parameters
TKelvintemperature in kelvin
molarVolmolar volume ( m3/kmol)
Returns
the pressure.

Reimplemented from MixtureFugacityTP.

Definition at line 838 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.

◆ dpdVCalc()

doublereal dpdVCalc ( doublereal  TKelvin,
doublereal  molarVol,
doublereal &  presCalc 
) const
virtual

Calculate the pressure and the pressure derivative given the temperature and the molar volume.

Temperature and mole number are held constant

Parameters
TKelvintemperature in kelvin
molarVolmolar volume ( m3/kmol)
presCalcReturns the pressure.
Returns
the derivative of the pressure wrt the molar volume

Reimplemented from MixtureFugacityTP.

Definition at line 846 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.

Referenced by RedlichKwongMFTP::pressureDerivatives().

◆ pressureDerivatives()

void pressureDerivatives ( ) const

◆ updateAB()

void updateAB ( )

Update the a and b parameters.

The a and the b parameters depend on the mole fraction and the temperature. This function updates the internal numbers based on the state of the object.

Definition at line 879 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::m_formTempParam, Phase::m_kk, MixtureFugacityTP::moleFractions_, and Phase::temperature().

Referenced by RedlichKwongMFTP::compositionChanged(), and RedlichKwongMFTP::setTemperature().

◆ calculateAB()

void calculateAB ( doublereal  temp,
doublereal &  aCalc,
doublereal &  bCalc 
) const

Calculate the a and the b parameters given the temperature.

This function doesn't change the internal state of the object, so it is a const function. It does use the stored mole fractions in the object.

Parameters
tempTemperature (TKelvin)
aCalc(output) Returns the a value
bCalc(output) Returns the b value.

Definition at line 901 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_formTempParam, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::liquidVolEst().

◆ NicholsSolve()

int NicholsSolve ( double  TKelvin,
double  pres,
doublereal  a,
doublereal  b,
doublereal  Vroot[3] 
) const

Solve the cubic equation of state.

The R-K equation of state may be solved via the following formula:

V**3 - V**2(RT/P)  - V(RTb/P - a/(P T**.5) + b*b) - (a b / (P T**.5)) = 0

Returns the number of solutions found. If it only finds the liquid branch solution, it will return a -1 or a -2 instead of 1 or 2. If it returns 0, then there is an error.

Definition at line 982 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::omega_a, RedlichKwongMFTP::omega_b, and RedlichKwongMFTP::omega_vc.

Referenced by RedlichKwongMFTP::liquidVolEst().

Member Data Documentation

◆ m_formTempParam

int m_formTempParam
protected

Form of the temperature parameterization.

  • 0 = There is no temperature parameterization of a or b
  • 1 = The a_ij parameter is a linear function of the temperature

Definition at line 305 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::setBinaryCoeffs(), RedlichKwongMFTP::setSpeciesCoeffs(), and RedlichKwongMFTP::updateAB().

◆ m_b_current

doublereal m_b_current
protected

◆ m_a_current

doublereal m_a_current
protected

◆ m_pp

vector_fp m_pp
mutableprotected

◆ m_tmpV

vector_fp m_tmpV
mutableprotected

◆ dpdV_

doublereal dpdV_
mutableprotected

The derivative of the pressure wrt the volume.

Calculated at the current conditions. temperature and mole number kept constant

Definition at line 342 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), and RedlichKwongMFTP::pressureDerivatives().

◆ dpdT_

doublereal dpdT_
mutableprotected

The derivative of the pressure wrt the temperature.

Calculated at the current conditions. Total volume and mole number kept constant

Definition at line 349 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), and RedlichKwongMFTP::pressureDerivatives().

◆ dpdni_

vector_fp dpdni_
mutableprotected

Vector of derivatives of pressure wrt mole number.

Calculated at the current conditions. Total volume, temperature and other mole number kept constant

Definition at line 356 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::addSpecies(), and RedlichKwongMFTP::getPartialMolarEnthalpies().

◆ omega_a

const doublereal omega_a = 4.27480233540E-01
static

Omega constant for a -> value of a in terms of critical properties.

this was calculated from a small nonlinear solve

Definition at line 363 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::NicholsSolve().

◆ omega_b

const doublereal omega_b = 8.66403499650E-02
static

Omega constant for b.

Definition at line 366 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::NicholsSolve().

◆ omega_vc

const doublereal omega_vc = 3.33333333333333E-01
static

Omega constant for the critical molar volume.

Definition at line 369 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::NicholsSolve().


The documentation for this class was generated from the following files: