Cantera  2.4.0
Public Member Functions | Protected Attributes | Private Member Functions | List of all members

Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state. More...

#include <IdealGasPhase.h>

Inheritance diagram for IdealGasPhase:
[legend]
Collaboration diagram for IdealGasPhase:
[legend]

Public Member Functions

 IdealGasPhase ()
 Default empty Constructor. More...
 
 IdealGasPhase (const std::string &inputFile, const std::string &id="")
 Construct and initialize an IdealGasPhase ThermoPhase object directly from an ASCII input file. More...
 
 IdealGasPhase (XML_Node &phaseRef, const std::string &id="")
 Construct and initialize an IdealGasPhase ThermoPhase object directly from an XML database. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Return the Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. More...
 
Mechanical Equation of State
virtual doublereal pressure () const
 Pressure. More...
 
virtual void setPressure (doublereal p)
 Set the pressure at constant temperature and composition. More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density and pressure at constant composition. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
Chemical Potentials and Activities

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard state chemical potential at unit activity.

It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solution.

The activities are related to the generalized concentrations, \(\tilde C_k\), and standard concentrations, \(C^0_k\), by the following formula:

\[ a_k = \frac{\tilde C_k}{C^0_k} \]

The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upon the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations.

virtual void getActivityConcentrations (doublereal *c) const
 This method returns the array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
NonVirtual Internal methods to Return References to Reference State Thermo
const vector_fpenthalpy_RT_ref () const
 Returns a reference to the dimensionless reference state enthalpy vector. More...
 
const vector_fpgibbs_RT_ref () const
 Returns a reference to the dimensionless reference state Gibbs free energy vector. More...
 
const vector_fpentropy_R_ref () const
 Returns a reference to the dimensionless reference state Entropy vector. More...
 
const vector_fpcp_R_ref () const
 Returns a reference to the dimensionless reference state Heat Capacity vector. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
virtual double size (size_t k) const
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Attributes

doublereal m_p0
 Reference state pressure. More...
 
vector_fp m_h0_RT
 Temporary storage for dimensionless reference state enthalpies. More...
 
vector_fp m_cp0_R
 Temporary storage for dimensionless reference state heat capacities. More...
 
vector_fp m_g0_RT
 Temporary storage for dimensionless reference state Gibbs energies. More...
 
vector_fp m_s0_R
 Temporary storage for dimensionless reference state entropies. More...
 
vector_fp m_expg0_RT
 
vector_fp m_pp
 Temporary array containing internally calculated partial pressures. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Private Member Functions

void _updateThermo () const
 Update the species reference state thermodynamic functions. More...
 

Additional Inherited Members

- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Detailed Description

Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state.

IdealGasPhase derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal gas mixtures.

The independent unknowns are density, mass fraction, and temperature. the setPressure() function will calculate the density consistent with the current mass fraction vector and temperature and the desired pressure, and then set the density.

Specification of Species Standard State Properties

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class in the base class, ThermoPhase::m_spthermo (see the base class MultiSpeciesThermo for a description of the specification of reference state species thermodynamics functions). The reference state, where the pressure is fixed at a single pressure, is a key species property calculation for the Ideal Gas Equation of state.

This class is optimized for speed of execution. All calls to thermodynamic functions first call internal routines (aka enthalpy_RT_ref()) which return references the reference state thermodynamics functions. Within these internal reference state functions, the function _updateThermo() is called, that first checks to see whether the temperature has changed. If it has, it updates the internal reference state thermo functions by calling the MultiSpeciesThermo object.

Functions for the calculation of standard state properties for species at arbitrary pressure are provided in IdealGasPhase. However, they are all derived from their reference state counterparts.

The standard state enthalpy is independent of pressure:

\[ h^o_k(T,P) = h^{ref}_k(T) \]

The standard state constant-pressure heat capacity is independent of pressure:

\[ Cp^o_k(T,P) = Cp^{ref}_k(T) \]

The standard state entropy depends in the following fashion on pressure:

\[ S^o_k(T,P) = S^{ref}_k(T) - R \ln(\frac{P}{P_{ref}}) \]

The standard state Gibbs free energy is obtained from the enthalpy and entropy functions:

\[ \mu^o_k(T,P) = h^o_k(T,P) - S^o_k(T,P) T \]

\[ \mu^o_k(T,P) = \mu^{ref}_k(T) + R T \ln( \frac{P}{P_{ref}}) \]

where

\[ \mu^{ref}_k(T) = h^{ref}_k(T) - T S^{ref}_k(T) \]

The standard state internal energy is obtained from the enthalpy function also

\[ u^o_k(T,P) = h^o_k(T) - R T \]

The molar volume of a species is given by the ideal gas law

\[ V^o_k(T,P) = \frac{R T}{P} \]

where R is the molar gas constant. For a complete list of physical constants used within Cantera, see Physical Constants .

Specification of Solution Thermodynamic Properties

The activity of a species defined in the phase is given by the ideal gas law:

\[ a_k = X_k \]

where \( X_k \) is the mole fraction of species k. The chemical potential for species k is equal to

\[ \mu_k(T,P) = \mu^o_k(T, P) + R T \log(X_k) \]

In terms of the reference state, the above can be rewritten

\[ \mu_k(T,P) = \mu^{ref}_k(T, P) + R T \log(\frac{P X_k}{P_{ref}}) \]

The partial molar entropy for species k is given by the following relation,

\[ \tilde{s}_k(T,P) = s^o_k(T,P) - R \log(X_k) = s^{ref}_k(T) - R \log(\frac{P X_k}{P_{ref}}) \]

The partial molar enthalpy for species k is

\[ \tilde{h}_k(T,P) = h^o_k(T,P) = h^{ref}_k(T) \]

The partial molar Internal Energy for species k is

\[ \tilde{u}_k(T,P) = u^o_k(T,P) = u^{ref}_k(T) \]

The partial molar Heat Capacity for species k is

\[ \tilde{Cp}_k(T,P) = Cp^o_k(T,P) = Cp^{ref}_k(T) \]

Application within Kinetics Managers

\( C^a_k\) are defined such that \( a_k = C^a_k / C^s_k, \) where \( C^s_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. The activity concentration, \( C^a_k \),is given by the following expression.

\[ C^a_k = C^s_k X_k = \frac{P}{R T} X_k \]

The standard concentration for species k is independent of k and equal to

\[ C^s_k = C^s = \frac{P}{R T} \]

For example, a bulk-phase binary gas reaction between species j and k, producing a new gas species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 (C^s a_j) (C^s a_k) \]

where

\[ C_j^a = C^s a_j \quad \mbox{and} \quad C_k^a = C^s a_k \]

\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C^s \) is the standard concentration. \( a_j \) is the activity of species j which is equal to the mole fraction of j.

The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.

\[ \frac{a_j a_k}{ a_l} = K_a^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]

\( K_a^{o,1} \) is the dimensionless form of the equilibrium constant, associated with the pressure dependent standard states \( \mu^o_l(T,P) \) and their associated activities, \( a_l \), repeated here:

\[ \mu_l(T,P) = \mu^o_l(T, P) + R T \log(a_l) \]

We can switch over to expressing the equilibrium constant in terms of the reference state chemical potentials

\[ K_a^{o,1} = \exp(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} ) * \frac{P_{ref}}{P} \]

The concentration equilibrium constant, \( K_c \), may be obtained by changing over to activity concentrations. When this is done:

\[ \frac{C^a_j C^a_k}{ C^a_l} = C^o K_a^{o,1} = K_c^1 = \exp(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} ) * \frac{P_{ref}}{RT} \]

Kinetics managers will calculate the concentration equilibrium constant, \( K_c \), using the second and third part of the above expression as a definition for the concentration equilibrium constant.

For completeness, the pressure equilibrium constant may be obtained as well

\[ \frac{P_j P_k}{ P_l P_{ref}} = K_p^1 = \exp\left(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} \right) \]

\( K_p \) is the simplest form of the equilibrium constant for ideal gases. However, it isn't necessarily the simplest form of the equilibrium constant for other types of phases; \( K_c \) is used instead because it is completely general.

The reverse rate of progress may be written down as

\[ R^{-1} = k^{-1} C_l^a = k^{-1} (C^o a_l) \]

where we can use the concept of microscopic reversibility to write the reverse rate constant in terms of the forward rate constant and the concentration equilibrium constant, \( K_c \).

\[ k^{-1} = k^1 K^1_c \]

\(k^{-1} \) has units of s-1.

Instantiation of the Class

The constructor for this phase is located in the default ThermoFactory for Cantera. A new IdealGasPhase may be created by the following code snippet:

XML_Node *xc = get_XML_File("silane.xml");
XML_Node * const xs = xc->findNameID("phase", "silane");
ThermoPhase *silane_tp = newPhase(*xs);
IdealGasPhase *silaneGas = dynamic_cast <IdealGasPhase *>(silane_tp);

or by the following constructor:

XML_Node *xc = get_XML_File("silane.xml");
XML_Node * const xs = xc->findNameID("phase", "silane");
IdealGasPhase *silaneGas = new IdealGasPhase(*xs);

XML Example

An example of an XML Element named phase setting up a IdealGasPhase object named silane is given below.

<!-- phase silane -->
<phase dim="3" id="silane">
<elementArray datasrc="elements.xml"> Si H He </elementArray>
<speciesArray datasrc="#species_data">
H2 H HE SIH4 SI SIH SIH2 SIH3 H3SISIH SI2H6
H2SISIH2 SI3H8 SI2 SI3
</speciesArray>
<reactionArray datasrc="#reaction_data"/>
<thermo model="IdealGas"/>
<kinetics model="GasKinetics"/>
<transport model="None"/>
</phase>

The model attribute "IdealGas" of the thermo XML element identifies the phase as being of the type handled by the IdealGasPhase object.

Definition at line 287 of file IdealGasPhase.h.

Constructor & Destructor Documentation

◆ IdealGasPhase() [1/3]

Default empty Constructor.

Definition at line 20 of file IdealGasPhase.cpp.

◆ IdealGasPhase() [2/3]

IdealGasPhase ( const std::string &  inputFile,
const std::string &  id = "" 
)

Construct and initialize an IdealGasPhase ThermoPhase object directly from an ASCII input file.

Parameters
inputFileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.

Definition at line 25 of file IdealGasPhase.cpp.

References ThermoPhase::initThermoFile().

◆ IdealGasPhase() [3/3]

IdealGasPhase ( XML_Node phaseRef,
const std::string &  id = "" 
)

Construct and initialize an IdealGasPhase ThermoPhase object directly from an XML database.

Parameters
phaseRefXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)

Definition at line 31 of file IdealGasPhase.cpp.

References Cantera::importPhase().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from ThermoPhase.

Definition at line 312 of file IdealGasPhase.h.

◆ enthalpy_mole()

virtual doublereal enthalpy_mole ( ) const
inlinevirtual

Return the Molar enthalpy. Units: J/kmol.

For an ideal gas mixture,

\[ \hat h(T) = \sum_k X_k \hat h^0_k(T), \]

and is a function only of temperature. The standard-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 331 of file IdealGasPhase.h.

References IdealGasPhase::enthalpy_RT_ref(), Phase::mean_X(), and ThermoPhase::RT().

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

Molar entropy.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat s(T, P) = \sum_k X_k \hat s^0_k(T) - \hat R \log (P/P^0). \]

The reference-state pure-species entropies \( \hat s^0_k(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 39 of file IdealGasPhase.cpp.

References IdealGasPhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), IdealGasPhase::pressure(), ThermoPhase::refPressure(), and Phase::sum_xlogx().

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat c_p(t) = \sum_k \hat c^0_{p,k}(T). \]

The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See also
MultiSpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 44 of file IdealGasPhase.cpp.

References IdealGasPhase::cp_R_ref(), Cantera::GasConstant, and Phase::mean_X().

Referenced by IdealGasPhase::cv_mole().

◆ cv_mole()

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume.

Units: J/kmol/K. For an ideal gas mixture,

\[ \hat c_v = \hat c_p - \hat R. \]

Reimplemented from ThermoPhase.

Definition at line 49 of file IdealGasPhase.cpp.

References IdealGasPhase::cp_mole(), and Cantera::GasConstant.

◆ pressure()

virtual doublereal pressure ( ) const
inlinevirtual

◆ setPressure()

virtual void setPressure ( doublereal  p)
inlinevirtual

Set the pressure at constant temperature and composition.

Units: Pa. This method is implemented by setting the mass density to

\[ \rho = \frac{P \overline W}{\hat R T }. \]

Parameters
pPressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 389 of file IdealGasPhase.h.

References Phase::meanMolecularWeight(), ThermoPhase::RT(), and Phase::setDensity().

Referenced by StFlow::setGas(), and StFlow::setGasAtMidpoint().

◆ setState_RP()

virtual void setState_RP ( doublereal  rho,
doublereal  p 
)
inlinevirtual

Set the density and pressure at constant composition.

Units: kg/m^3, Pa. This method is implemented by setting the density to the input value and setting the temperature to

\[ T = \frac{P \overline W}{\hat R \rho}. \]

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 405 of file IdealGasPhase.h.

References Cantera::GasConstant, Phase::meanMolecularWeight(), Phase::setDensity(), and Phase::setTemperature().

◆ isothermalCompressibility()

virtual doublereal isothermalCompressibility ( ) const
inlinevirtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

For ideal gases it's equal to the inverse of the pressure

Reimplemented from ThermoPhase.

Definition at line 423 of file IdealGasPhase.h.

References IdealGasPhase::pressure().

◆ thermalExpansionCoeff()

virtual doublereal thermalExpansionCoeff ( ) const
inlinevirtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

For ideal gases, it's equal to the inverse of the temperature.

Reimplemented from ThermoPhase.

Definition at line 435 of file IdealGasPhase.h.

References Phase::temperature().

◆ getActivityConcentrations()

virtual void getActivityConcentrations ( doublereal *  c) const
inlinevirtual

This method returns the array of generalized concentrations.

For an ideal gas mixture, these are simply the actual concentrations.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 480 of file IdealGasPhase.h.

References Phase::getConcentrations().

◆ standardConcentration()

doublereal standardConcentration ( size_t  k = 0) const
virtual

Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.

This is defined as the concentration by which the generalized concentration is normalized to produce the activity. In many cases, this quantity will be the same for all species in a phase. Since the activity for an ideal gas mixture is simply the mole fraction, for an ideal gas \( C^0_k = P/\hat R T \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.

Reimplemented from ThermoPhase.

Definition at line 54 of file IdealGasPhase.cpp.

References IdealGasPhase::pressure(), and ThermoPhase::RT().

◆ getActivityCoefficients()

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For ideal gases, the activity coefficients are all equal to one.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 59 of file IdealGasPhase.cpp.

References Phase::m_kk.

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 78 of file IdealGasPhase.cpp.

References IdealGasPhase::getStandardChemPotentials(), Phase::m_kk, Phase::moleFraction(), ThermoPhase::RT(), and Cantera::SmallNumber.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 87 of file IdealGasPhase.cpp.

References IdealGasPhase::enthalpy_RT_ref(), ThermoPhase::RT(), and Cantera::scale().

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 93 of file IdealGasPhase.cpp.

References IdealGasPhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, Phase::moleFraction(), IdealGasPhase::pressure(), ThermoPhase::refPressure(), Cantera::scale(), and Cantera::SmallNumber.

◆ getPartialMolarIntEnergies()

void getPartialMolarIntEnergies ( doublereal *  ubar) const
virtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 104 of file IdealGasPhase.cpp.

References IdealGasPhase::enthalpy_RT_ref(), Phase::m_kk, and ThermoPhase::RT().

◆ getPartialMolarCp()

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 112 of file IdealGasPhase.cpp.

References IdealGasPhase::cp_R_ref(), Cantera::GasConstant, and Cantera::scale().

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 118 of file IdealGasPhase.cpp.

References Phase::m_kk, and Phase::molarDensity().

◆ getStandardChemPotentials()

void getStandardChemPotentials ( doublereal *  mu) const
virtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 66 of file IdealGasPhase.cpp.

References IdealGasPhase::gibbs_RT_ref(), Phase::m_kk, IdealGasPhase::pressure(), ThermoPhase::refPressure(), ThermoPhase::RT(), and Cantera::scale().

Referenced by IdealGasPhase::getChemPotentials().

◆ getEnthalpy_RT()

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 128 of file IdealGasPhase.cpp.

References IdealGasPhase::enthalpy_RT_ref().

◆ getEntropy_R()

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 134 of file IdealGasPhase.cpp.

References IdealGasPhase::entropy_R_ref(), Phase::m_kk, IdealGasPhase::pressure(), and ThermoPhase::refPressure().

◆ getGibbs_RT()

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 144 of file IdealGasPhase.cpp.

References IdealGasPhase::gibbs_RT_ref(), Phase::m_kk, IdealGasPhase::pressure(), and ThermoPhase::refPressure().

◆ getPureGibbs()

void getPureGibbs ( doublereal *  gpure) const
virtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 154 of file IdealGasPhase.cpp.

References IdealGasPhase::gibbs_RT_ref(), Phase::m_kk, IdealGasPhase::pressure(), ThermoPhase::refPressure(), ThermoPhase::RT(), and Cantera::scale().

◆ getIntEnergy_RT()

void getIntEnergy_RT ( doublereal *  urt) const
virtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 164 of file IdealGasPhase.cpp.

References IdealGasPhase::enthalpy_RT_ref(), and Phase::m_kk.

◆ getCp_R()

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 172 of file IdealGasPhase.cpp.

References IdealGasPhase::cp_R_ref().

◆ getStandardVolumes()

void getStandardVolumes ( doublereal *  vol) const
virtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 178 of file IdealGasPhase.cpp.

References Phase::m_kk, and Phase::molarDensity().

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 188 of file IdealGasPhase.cpp.

References IdealGasPhase::enthalpy_RT_ref().

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 194 of file IdealGasPhase.cpp.

References IdealGasPhase::gibbs_RT_ref().

◆ getGibbs_ref()

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 200 of file IdealGasPhase.cpp.

References IdealGasPhase::gibbs_RT_ref(), ThermoPhase::RT(), and Cantera::scale().

◆ getEntropy_R_ref()

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 206 of file IdealGasPhase.cpp.

References IdealGasPhase::entropy_R_ref().

◆ getIntEnergy_RT_ref()

void getIntEnergy_RT_ref ( doublereal *  urt) const
virtual

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 212 of file IdealGasPhase.cpp.

References IdealGasPhase::enthalpy_RT_ref(), and Phase::m_kk.

◆ getCp_R_ref()

void getCp_R_ref ( doublereal *  cprt) const
virtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from ThermoPhase.

Definition at line 220 of file IdealGasPhase.cpp.

References IdealGasPhase::cp_R_ref().

◆ getStandardVolumes_ref()

void getStandardVolumes_ref ( doublereal *  vol) const
virtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 226 of file IdealGasPhase.cpp.

References Phase::m_kk, IdealGasPhase::m_p0, and ThermoPhase::RT().

◆ enthalpy_RT_ref()

const vector_fp& enthalpy_RT_ref ( ) const
inline

Returns a reference to the dimensionless reference state enthalpy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 554 of file IdealGasPhase.h.

References IdealGasPhase::_updateThermo(), and IdealGasPhase::m_h0_RT.

Referenced by IdealGasPhase::enthalpy_mole(), StFlow::evalResidual(), IdealGasPhase::getEnthalpy_RT(), IdealGasPhase::getEnthalpy_RT_ref(), IdealGasPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealGasPhase::getPartialMolarEnthalpies(), and IdealGasPhase::getPartialMolarIntEnergies().

◆ gibbs_RT_ref()

const vector_fp& gibbs_RT_ref ( ) const
inline

Returns a reference to the dimensionless reference state Gibbs free energy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 564 of file IdealGasPhase.h.

References IdealGasPhase::_updateThermo(), and IdealGasPhase::m_g0_RT.

Referenced by IdealGasPhase::getGibbs_ref(), IdealGasPhase::getGibbs_RT(), IdealGasPhase::getGibbs_RT_ref(), IdealGasPhase::getPureGibbs(), IdealGasPhase::getStandardChemPotentials(), and IdealGasPhase::setToEquilState().

◆ entropy_R_ref()

const vector_fp& entropy_R_ref ( ) const
inline

Returns a reference to the dimensionless reference state Entropy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 574 of file IdealGasPhase.h.

References IdealGasPhase::_updateThermo(), and IdealGasPhase::m_s0_R.

Referenced by IdealGasPhase::entropy_mole(), IdealGasPhase::getEntropy_R(), IdealGasPhase::getEntropy_R_ref(), and IdealGasPhase::getPartialMolarEntropies().

◆ cp_R_ref()

const vector_fp& cp_R_ref ( ) const
inline

Returns a reference to the dimensionless reference state Heat Capacity vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 584 of file IdealGasPhase.h.

References IdealGasPhase::_updateThermo(), and IdealGasPhase::m_cp0_R.

Referenced by IdealGasPhase::cp_mole(), StFlow::evalResidual(), IdealGasPhase::getCp_R(), IdealGasPhase::getCp_R_ref(), and IdealGasPhase::getPartialMolarCp().

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from ThermoPhase.

Definition at line 234 of file IdealGasPhase.cpp.

References ThermoPhase::addSpecies(), IdealGasPhase::m_cp0_R, IdealGasPhase::m_g0_RT, IdealGasPhase::m_h0_RT, Phase::m_kk, IdealGasPhase::m_p0, IdealGasPhase::m_pp, IdealGasPhase::m_s0_R, and ThermoPhase::refPressure().

◆ setToEquilState()

void setToEquilState ( const doublereal *  lambda_RT)
virtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented from ThermoPhase.

Definition at line 251 of file IdealGasPhase.cpp.

References IdealGasPhase::gibbs_RT_ref(), Phase::m_kk, IdealGasPhase::m_p0, IdealGasPhase::m_pp, and ThermoPhase::setState_PX().

◆ _updateThermo()

void _updateThermo ( ) const
private

Update the species reference state thermodynamic functions.

This method is called each time a thermodynamic property is requested, to check whether the internal species properties within the object need to be updated. Currently, this updates the species thermo polynomial values for the current value of the temperature. A check is made to see if the temperature has changed since the last evaluation. This object does not contain any persistent data that depends on the concentration, that needs to be updated. The state object modifies its concentration dependent information at the time the setMoleFractions() (or equivalent) call is made.

Definition at line 278 of file IdealGasPhase.cpp.

References ValueCache::getId(), ValueCache::getScalar(), Phase::m_cache, IdealGasPhase::m_cp0_R, IdealGasPhase::m_g0_RT, IdealGasPhase::m_h0_RT, Phase::m_kk, IdealGasPhase::m_s0_R, ThermoPhase::m_spthermo, CachedValue< T >::state1, Phase::temperature(), and MultiSpeciesThermo::update().

Referenced by IdealGasPhase::cp_R_ref(), IdealGasPhase::enthalpy_RT_ref(), IdealGasPhase::entropy_R_ref(), and IdealGasPhase::gibbs_RT_ref().

Member Data Documentation

◆ m_p0

doublereal m_p0
protected

Reference state pressure.

Value of the reference state pressure in Pascals. All species must have the same reference state pressure.

Definition at line 600 of file IdealGasPhase.h.

Referenced by IdealGasPhase::addSpecies(), IdealGasPhase::getStandardVolumes_ref(), and IdealGasPhase::setToEquilState().

◆ m_h0_RT

vector_fp m_h0_RT
mutableprotected

Temporary storage for dimensionless reference state enthalpies.

Definition at line 603 of file IdealGasPhase.h.

Referenced by IdealGasPhase::_updateThermo(), IdealGasPhase::addSpecies(), and IdealGasPhase::enthalpy_RT_ref().

◆ m_cp0_R

vector_fp m_cp0_R
mutableprotected

Temporary storage for dimensionless reference state heat capacities.

Definition at line 606 of file IdealGasPhase.h.

Referenced by IdealGasPhase::_updateThermo(), IdealGasPhase::addSpecies(), and IdealGasPhase::cp_R_ref().

◆ m_g0_RT

vector_fp m_g0_RT
mutableprotected

Temporary storage for dimensionless reference state Gibbs energies.

Definition at line 609 of file IdealGasPhase.h.

Referenced by IdealGasPhase::_updateThermo(), IdealGasPhase::addSpecies(), and IdealGasPhase::gibbs_RT_ref().

◆ m_s0_R

vector_fp m_s0_R
mutableprotected

Temporary storage for dimensionless reference state entropies.

Definition at line 612 of file IdealGasPhase.h.

Referenced by IdealGasPhase::_updateThermo(), IdealGasPhase::addSpecies(), and IdealGasPhase::entropy_R_ref().

◆ m_pp

vector_fp m_pp
mutableprotected

Temporary array containing internally calculated partial pressures.

Definition at line 617 of file IdealGasPhase.h.

Referenced by IdealGasPhase::addSpecies(), and IdealGasPhase::setToEquilState().


The documentation for this class was generated from the following files: