Cantera  3.1.0b1
Loading...
Searching...
No Matches

This class models the ion transportation in a flame. More...

#include <IonFlow.h>

Inheritance diagram for IonFlow:
[legend]

Detailed Description

This class models the ion transportation in a flame.

There are three stages of the simulation.

The first stage turns off the diffusion of ions due to the fast diffusion rate of electron without internal electric forces (ambi- polar diffusion effect).

The second stage evaluates drift flux from electric field calculated from Poisson's equation, which is solved together with other equations. Poisson's equation is coupled because the total charge densities depends on the species' concentration. See Pedersen and Brown [33] for details.

Definition at line 28 of file IonFlow.h.

Public Member Functions

 IonFlow (ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
 Create a new IonFlow domain.
 
 IonFlow (shared_ptr< Solution > sol, const string &id="", size_t points=1)
 Create a new IonFlow domain.
 
string domainType () const override
 Domain type flag.
 
size_t getSolvingStage () const override
 Get the solving stage (used by IonFlow specialization)
 
void setSolvingStage (const size_t stage) override
 Solving stage mode for handling ionized species (used by IonFlow specialization)
 
void resize (size_t components, size_t points) override
 Change the grid size. Called after grid refinement.
 
bool componentActive (size_t n) const override
 Returns true if the specified component is an active part of the solver state.
 
void _finalize (const double *x) override
 In some cases, a domain may need to set parameters that depend on the initial solution estimate.
 
void solveElectricField (size_t j=npos) override
 Set to solve electric field in a point (used by IonFlow specialization)
 
void fixElectricField (size_t j=npos) override
 Set to fix voltage in a point (used by IonFlow specialization)
 
bool doElectricField (size_t j) const override
 Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)
 
void setElectronTransport (vector< double > &tfix, vector< double > &diff_e, vector< double > &mobi_e)
 Sometimes it is desired to carry out the simulation using a specified electron transport profile, rather than assuming it as a constant (0.4).
 
- Public Member Functions inherited from Flow1D
 Flow1D (ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
 Create a new flow domain.
 
 Flow1D (shared_ptr< ThermoPhase > th, size_t nsp=1, size_t points=1)
 Delegating constructor.
 
 Flow1D (shared_ptr< Solution > sol, const string &id="", size_t points=1)
 Create a new flow domain.
 
string domainType () const override
 Domain type flag.
 
string componentName (size_t n) const override
 Name of component n. May be overloaded.
 
size_t componentIndex (const string &name) const override
 index of component with name name.
 
virtual bool componentActive (size_t n) const
 Returns true if the specified component is an active part of the solver state.
 
void show (const double *x) override
 Print the solution.
 
shared_ptr< SolutionArrayasArray (const double *soln) const override
 Save the state of this domain as a SolutionArray.
 
void fromArray (SolutionArray &arr, double *soln) override
 Restore the solution for this domain from a SolutionArray.
 
void setFreeFlow ()
 Set flow configuration for freely-propagating flames, using an internal point with a fixed temperature as the condition to determine the inlet mass flux.
 
void setAxisymmetricFlow ()
 Set flow configuration for axisymmetric counterflow flames, using specified inlet mass fluxes.
 
void setUnstrainedFlow ()
 Set flow configuration for burner-stabilized flames, using specified inlet mass fluxes.
 
void solveEnergyEqn (size_t j=npos)
 Specify that the energy equation should be solved at point j.
 
virtual size_t getSolvingStage () const
 Get the solving stage (used by IonFlow specialization)
 
virtual void setSolvingStage (const size_t stage)
 Solving stage mode for handling ionized species (used by IonFlow specialization)
 
virtual void solveElectricField (size_t j=npos)
 Set to solve electric field in a point (used by IonFlow specialization)
 
virtual void fixElectricField (size_t j=npos)
 Set to fix voltage in a point (used by IonFlow specialization)
 
virtual bool doElectricField (size_t j) const
 Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)
 
void enableRadiation (bool doRadiation)
 Turn radiation on / off.
 
bool radiationEnabled () const
 Returns true if the radiation term in the energy equation is enabled.
 
double radiativeHeatLoss (size_t j) const
 Return radiative heat loss at grid point j.
 
void setBoundaryEmissivities (double e_left, double e_right)
 Set the emissivities for the boundary values.
 
double leftEmissivity () const
 Return emissivity at left boundary.
 
double rightEmissivity () const
 Return emissivity at right boundary.
 
void fixTemperature (size_t j=npos)
 Specify that the the temperature should be held fixed at point j.
 
bool doEnergy (size_t j)
 true if the energy equation is solved at point j or false if a fixed temperature condition is imposed.
 
void resize (size_t components, size_t points) override
 Change the grid size. Called after grid refinement.
 
void setGas (const double *x, size_t j)
 Set the gas object state to be consistent with the solution at point j.
 
void setGasAtMidpoint (const double *x, size_t j)
 Set the gas state to be consistent with the solution at the midpoint between j and j + 1.
 
double density (size_t j) const
 Get the density [kg/m³] at point j
 
bool isFree () const
 Retrieve flag indicating whether flow is freely propagating.
 
bool isStrained () const
 Retrieve flag indicating whether flow uses radial momentum.
 
void setViscosityFlag (bool dovisc)
 Specify if the viscosity term should be included in the momentum equation.
 
void eval (size_t jGlobal, double *xGlobal, double *rsdGlobal, integer *diagGlobal, double rdt) override
 Evaluate the residual functions for axisymmetric stagnation flow.
 
size_t leftExcessSpecies () const
 Index of the species on the left boundary with the largest mass fraction.
 
size_t rightExcessSpecies () const
 Index of the species on the right boundary with the largest mass fraction.
 
void setupGrid (size_t n, const double *z) override
 called to set up initial grid, and after grid refinement
 
void resetBadValues (double *xg) override
 When called, this function should reset "bad" values in the state vector such as negative species concentrations.
 
ThermoPhasephase ()
 Access the phase object used to compute thermodynamic properties for points in this domain.
 
Kineticskinetics ()
 Access the Kinetics object used to compute reaction rates for points in this domain.
 
void setKinetics (shared_ptr< Kinetics > kin) override
 Set the Kinetics object used for reaction rate calculations.
 
void setTransport (shared_ptr< Transport > trans) override
 Set the transport manager used for transport property calculations.
 
void setTransportModel (const string &trans)
 Set the transport model.
 
string transportModel () const
 Retrieve transport model.
 
void enableSoret (bool withSoret)
 Enable thermal diffusion, also known as Soret diffusion.
 
bool withSoret () const
 Indicates if thermal diffusion (Soret effect) term is being calculated.
 
void setFluxGradientBasis (ThermoBasis fluxGradientBasis)
 Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.
 
ThermoBasis fluxGradientBasis () const
 Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.
 
void setPressure (double p)
 Set the pressure.
 
double pressure () const
 The current pressure [Pa].
 
void _getInitialSoln (double *x) override
 Write the initial solution estimate into array x.
 
void setFixedTempProfile (vector< double > &zfixed, vector< double > &tfixed)
 Sometimes it is desired to carry out the simulation using a specified temperature profile, rather than computing it by solving the energy equation.
 
void setTemperature (size_t j, double t)
 Set the temperature fixed point at grid point j, and disable the energy equation so that the solution will be held to this value.
 
double T_fixed (size_t j) const
 The fixed temperature value at point j.
 
double leftControlPointTemperature () const
 Returns the temperature at the left control point.
 
double leftControlPointCoordinate () const
 Returns the z-coordinate of the left control point.
 
void setLeftControlPointTemperature (double temperature)
 Sets the temperature of the left control point.
 
void setLeftControlPointCoordinate (double z_left)
 Sets the coordinate of the left control point.
 
double rightControlPointTemperature () const
 Returns the temperature at the right control point.
 
double rightControlPointCoordinate () const
 Returns the z-coordinate of the right control point.
 
void setRightControlPointTemperature (double temperature)
 Sets the temperature of the right control point.
 
void setRightControlPointCoordinate (double z_right)
 Sets the coordinate of the right control point.
 
void enableTwoPointControl (bool twoPointControl)
 Sets the status of the two-point control.
 
bool twoPointControlEnabled () const
 Returns the status of the two-point control.
 
- Public Member Functions inherited from Domain1D
 Domain1D (size_t nv=1, size_t points=1, double time=0.0)
 Constructor.
 
 Domain1D (const Domain1D &)=delete
 
Domain1Doperator= (const Domain1D &)=delete
 
virtual string domainType () const
 Domain type flag.
 
string type () const
 String indicating the domain implemented.
 
size_t domainIndex ()
 The left-to-right location of this domain.
 
virtual bool isConnector ()
 True if the domain is a connector domain.
 
void setSolution (shared_ptr< Solution > sol)
 Set the solution manager.
 
virtual void setKinetics (shared_ptr< Kinetics > kin)
 Set the kinetics manager.
 
virtual void setTransport (shared_ptr< Transport > trans)
 Set transport model to existing instance.
 
const OneDimcontainer () const
 The container holding this domain.
 
void setContainer (OneDim *c, size_t index)
 Specify the container object for this domain, and the position of this domain in the list.
 
void setBandwidth (int bw=-1)
 Set the Jacobian bandwidth. See the discussion of method bandwidth().
 
size_t bandwidth ()
 Set the Jacobian bandwidth for this domain.
 
virtual void init ()
 Initialize.
 
virtual void setInitialState (double *xlocal=0)
 
virtual void setState (size_t point, const double *state, double *x)
 
virtual void resetBadValues (double *xg)
 When called, this function should reset "bad" values in the state vector such as negative species concentrations.
 
virtual void resize (size_t nv, size_t np)
 Resize the domain to have nv components and np grid points.
 
Refinerrefiner ()
 Return a reference to the grid refiner.
 
size_t nComponents () const
 Number of components at each grid point.
 
void checkComponentIndex (size_t n) const
 Check that the specified component index is in range.
 
void checkComponentArraySize (size_t nn) const
 Check that an array size is at least nComponents().
 
size_t nPoints () const
 Number of grid points in this domain.
 
void checkPointIndex (size_t n) const
 Check that the specified point index is in range.
 
void checkPointArraySize (size_t nn) const
 Check that an array size is at least nPoints().
 
virtual string componentName (size_t n) const
 Name of component n. May be overloaded.
 
void setComponentName (size_t n, const string &name)
 Set the name of the component n to name.
 
virtual size_t componentIndex (const string &name) const
 index of component with name name.
 
void setBounds (size_t n, double lower, double upper)
 Set the upper and lower bounds for a solution component, n.
 
void setTransientTolerances (double rtol, double atol, size_t n=npos)
 Set tolerances for time-stepping mode.
 
void setSteadyTolerances (double rtol, double atol, size_t n=npos)
 Set tolerances for steady-state mode.
 
double rtol (size_t n)
 Relative tolerance of the nth component.
 
double atol (size_t n)
 Absolute tolerance of the nth component.
 
double steady_rtol (size_t n)
 Steady relative tolerance of the nth component.
 
double steady_atol (size_t n)
 Steady absolute tolerance of the nth component.
 
double transient_rtol (size_t n)
 Transient relative tolerance of the nth component.
 
double transient_atol (size_t n)
 Transient absolute tolerance of the nth component.
 
double upperBound (size_t n) const
 Upper bound on the nth component.
 
double lowerBound (size_t n) const
 Lower bound on the nth component.
 
void initTimeInteg (double dt, const double *x0)
 Performs the setup required before starting a time-stepping solution.
 
void setSteadyMode ()
 Set the internally-stored reciprocal of the time step to 0.0, which is used to indicate that the problem is in steady-state mode.
 
bool steady ()
 True if in steady-state mode.
 
bool transient ()
 True if not in steady-state mode.
 
void needJacUpdate ()
 Set this if something has changed in the governing equations (for example, the value of a constant has been changed, so that the last-computed Jacobian is no longer valid.
 
virtual void eval (size_t j, double *x, double *r, integer *mask, double rdt=0.0)
 Evaluate the residual function at point j.
 
size_t index (size_t n, size_t j) const
 Returns the index of the solution vector, which corresponds to component n at grid point j.
 
double value (const double *x, size_t n, size_t j) const
 Returns the value of solution component n at grid point j of the solution vector x.
 
virtual void setJac (MultiJac *jac)
 
virtual shared_ptr< SolutionArrayasArray (const double *soln) const
 Save the state of this domain as a SolutionArray.
 
shared_ptr< SolutionArraytoArray (bool normalize=false) const
 Save the state of this domain to a SolutionArray.
 
virtual void fromArray (SolutionArray &arr, double *soln)
 Restore the solution for this domain from a SolutionArray.
 
void fromArray (const shared_ptr< SolutionArray > &arr)
 Restore the solution for this domain from a SolutionArray.
 
shared_ptr< Solutionsolution () const
 Return thermo/kinetics/transport manager used in the domain.
 
size_t size () const
 Return the size of the solution vector (the product of m_nv and m_points).
 
void locate ()
 Find the index of the first grid point in this domain, and the start of its variables in the global solution vector.
 
virtual size_t loc (size_t j=0) const
 Location of the start of the local solution vector in the global solution vector.
 
size_t firstPoint () const
 The index of the first (that is, left-most) grid point belonging to this domain.
 
size_t lastPoint () const
 The index of the last (that is, right-most) grid point belonging to this domain.
 
void linkLeft (Domain1D *left)
 Set the left neighbor to domain 'left.
 
void linkRight (Domain1D *right)
 Set the right neighbor to domain 'right.'.
 
void append (Domain1D *right)
 Append domain 'right' to this one, and update all links.
 
Domain1Dleft () const
 Return a pointer to the left neighbor.
 
Domain1Dright () const
 Return a pointer to the right neighbor.
 
double prevSoln (size_t n, size_t j) const
 Value of component n at point j in the previous solution.
 
void setID (const string &s)
 Specify an identifying tag for this domain.
 
string id () const
 Returns the identifying tag for this domain.
 
virtual void show (std::ostream &s, const double *x)
 Print the solution.
 
virtual void show (const double *x)
 Print the solution.
 
double z (size_t jlocal) const
 Get the coordinate [m] of the point with local index jlocal
 
double zmin () const
 Get the coordinate [m] of the first (leftmost) grid point in this domain.
 
double zmax () const
 Get the coordinate [m] of the last (rightmost) grid point in this domain.
 
void setProfile (const string &name, double *values, double *soln)
 Set initial values for a component at each grid point.
 
vector< double > & grid ()
 Access the array of grid coordinates [m].
 
const vector< double > & grid () const
 Access the array of grid coordinates [m].
 
double grid (size_t point) const
 
virtual void setupGrid (size_t n, const double *z)
 called to set up initial grid, and after grid refinement
 
virtual void _getInitialSoln (double *x)
 Writes some or all initial solution values into the global solution array, beginning at the location pointed to by x.
 
virtual double initialValue (size_t n, size_t j)
 Initial value of solution component n at grid point j.
 
virtual void _finalize (const double *x)
 In some cases, a domain may need to set parameters that depend on the initial solution estimate.
 
void forceFullUpdate (bool update)
 In some cases, for computational efficiency some properties (such as transport coefficients) may not be updated during Jacobian evaluations.
 
void setData (shared_ptr< vector< double > > &data)
 Set shared data pointer.
 

Protected Member Functions

void evalElectricField (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
 Evaluate the electric field equation residual by Gauss's law.
 
void evalSpecies (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
 Evaluate the species equations' residual.
 
void updateTransport (double *x, size_t j0, size_t j1) override
 Update the transport properties at grid points in the range from j0 to j1, based on solution x.
 
void updateDiffFluxes (const double *x, size_t j0, size_t j1) override
 Update the diffusive mass fluxes.
 
void frozenIonMethod (const double *x, size_t j0, size_t j1)
 Solving phase one: the fluxes of charged species are turned off.
 
void electricFieldMethod (const double *x, size_t j0, size_t j1)
 Solving phase two: the electric field equation is added coupled by the electrical drift.
 
double E (const double *x, size_t j) const
 electric field [V/m]
 
double dEdz (const double *x, size_t j) const
 Axial gradient of the electric field [V/m²].
 
double ND (const double *x, size_t k, size_t j) const
 number density [molecules/m³]
 
double rho_e (double *x, size_t j) const
 total charge density
 
- Protected Member Functions inherited from Flow1D
AnyMap getMeta () const override
 Retrieve meta data.
 
void setMeta (const AnyMap &state) override
 Retrieve meta data.
 
virtual void evalContinuity (size_t j, double *x, double *r, int *diag, double rdt)
 Alternate version of evalContinuity with legacy signature.
 
virtual void evalUo (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the oxidizer axial velocity equation residual.
 
double shear (const double *x, size_t j) const
 Compute the shear term from the momentum equation using a central three-point differencing scheme.
 
double conduction (const double *x, size_t j) const
 Compute the conduction term from the energy equation using a central three-point differencing scheme.
 
size_t mindex (size_t k, size_t j, size_t m)
 Array access mapping for a 3D array stored in a 1D vector.
 
virtual void grad_hk (const double *x, size_t j)
 Compute the spatial derivative of species specific molar enthalpies using upwind differencing.
 
void updateThermo (const double *x, size_t j0, size_t j1)
 Update the thermodynamic properties from point j0 to point j1 (inclusive), based on solution x.
 
virtual void updateProperties (size_t jg, double *x, size_t jmin, size_t jmax)
 Update the properties (thermo, transport, and diffusion flux).
 
void computeRadiation (double *x, size_t jmin, size_t jmax)
 Computes the radiative heat loss vector over points jmin to jmax and stores the data in the qdotRadiation variable.
 
virtual void evalContinuity (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the continuity equation residual.
 
virtual void evalMomentum (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the momentum equation residual.
 
virtual void evalLambda (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the lambda equation residual.
 
virtual void evalEnergy (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the energy equation residual.
 
double T (const double *x, size_t j) const
 Get the temperature at point j from the local state vector x.
 
double & T (double *x, size_t j)
 Get the temperature at point j from the local state vector x.
 
double T_prev (size_t j) const
 Get the temperature at point j from the previous time step.
 
double rho_u (const double *x, size_t j) const
 Get the axial mass flux [kg/m²/s] at point j from the local state vector x.
 
double u (const double *x, size_t j) const
 Get the axial velocity [m/s] at point j from the local state vector x.
 
double V (const double *x, size_t j) const
 Get the spread rate (tangential velocity gradient) [1/s] at point j from the local state vector x.
 
double V_prev (size_t j) const
 Get the spread rate [1/s] at point j from the previous time step.
 
double lambda (const double *x, size_t j) const
 Get the radial pressure gradient [N/m⁴] at point j from the local state vector x
 
double Uo (const double *x, size_t j) const
 Get the oxidizer inlet velocity [m/s] linked to point j from the local state vector x.
 
double Y (const double *x, size_t k, size_t j) const
 Get the mass fraction of species k at point j from the local state vector x.
 
double & Y (double *x, size_t k, size_t j)
 Get the mass fraction of species k at point j from the local state vector x.
 
double Y_prev (size_t k, size_t j) const
 Get the mass fraction of species k at point j from the previous time step.
 
double X (const double *x, size_t k, size_t j) const
 Get the mole fraction of species k at point j from the local state vector x.
 
double flux (size_t k, size_t j) const
 Get the diffusive mass flux [kg/m²/s] of species k at point j
 
double dVdz (const double *x, size_t j) const
 Calculates the spatial derivative of velocity V with respect to z at point j using upwind differencing.
 
double dYdz (const double *x, size_t k, size_t j) const
 Calculates the spatial derivative of the species mass fraction \( Y_k \) with respect to z for species k at point j using upwind differencing.
 
double dTdz (const double *x, size_t j) const
 Calculates the spatial derivative of temperature T with respect to z at point j using upwind differencing.
 
virtual AnyMap getMeta () const
 Retrieve meta data.
 
virtual void setMeta (const AnyMap &meta)
 Retrieve meta data.
 

Protected Attributes

vector< bool > m_do_electric_field
 flag for solving electric field or not
 
bool m_import_electron_transport = false
 flag for importing transport of electron
 
vector< double > m_speciesCharge
 electrical properties
 
vector< size_t > m_kCharge
 index of species with charges
 
vector< size_t > m_kNeutral
 index of neutral species
 
vector< double > m_mobi_e_fix
 Coefficients of polynomial fit for electron mobility as a function of temperature.
 
vector< double > m_diff_e_fix
 Coefficients of polynomial fit for electron diffusivity as a function of temperature.
 
vector< double > m_mobility
 mobility
 
size_t m_stage = 1
 solving stage
 
size_t m_kElectron = npos
 index of electron
 
- Protected Attributes inherited from Flow1D
double m_press = -1.0
 pressure [Pa]
 
vector< double > m_dz
 Grid spacing. Element j holds the value of z(j+1) - z(j).
 
vector< double > m_rho
 Density at each grid point.
 
vector< double > m_wtm
 Mean molecular weight at each grid point.
 
vector< double > m_wt
 Molecular weight of each species.
 
vector< double > m_cp
 Specific heat capacity at each grid point.
 
vector< double > m_visc
 Dynamic viscosity at each grid point [Pa∙s].
 
vector< double > m_tcon
 Thermal conductivity at each grid point [W/m/K].
 
vector< double > m_diff
 Coefficient used in diffusion calculations for each species at each grid point.
 
vector< double > m_multidiff
 Vector of size m_nsp × m_nsp × m_points for saving multicomponent diffusion coefficients.
 
Array2D m_dthermal
 Array of size m_nsp by m_points for saving thermal diffusion coefficients.
 
Array2D m_flux
 Array of size m_nsp by m_points for saving diffusive mass fluxes.
 
Array2D m_hk
 Array of size m_nsp by m_points for saving molar enthalpies.
 
Array2D m_dhk_dz
 Array of size m_nsp by m_points-1 for saving enthalpy fluxes.
 
Array2D m_wdot
 Array of size m_nsp by m_points for saving species production rates.
 
size_t m_nsp
 Number of species in the mechanism.
 
ThermoPhasem_thermo = nullptr
 Phase object used for calculating thermodynamic properties.
 
Kineticsm_kin = nullptr
 Kinetics object used for calculating species production rates.
 
Transportm_trans = nullptr
 Transport object used for calculating transport properties.
 
double m_epsilon_left = 0.0
 Emissivity of the surface to the left of the domain.
 
double m_epsilon_right = 0.0
 Emissivity of the surface to the right of the domain.
 
vector< size_t > m_kRadiating
 Indices within the ThermoPhase of the radiating species.
 
vector< double > m_qdotRadiation
 radiative heat loss vector
 
vector< double > m_fixedtemp
 Fixed values of the temperature at each grid point that are used when solving with the energy equation disabled.
 
vector< double > m_zfix
 Relative coordinates used to specify a fixed temperature profile.
 
vector< double > m_tfix
 Fixed temperature values at the relative coordinates specified in m_zfix.
 
size_t m_kExcessLeft = 0
 Index of species with a large mass fraction at the left boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.
 
size_t m_kExcessRight = 0
 Index of species with a large mass fraction at the right boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.
 
double m_zLeft = Undef
 Location of the left control point when two-point control is enabled.
 
double m_tLeft = Undef
 Temperature of the left control point when two-point control is enabled.
 
double m_zRight = Undef
 Location of the right control point when two-point control is enabled.
 
double m_tRight = Undef
 Temperature of the right control point when two-point control is enabled.
 
vector< bool > m_do_energy
 For each point in the domain, true if energy equation is solved or false if temperature is held constant.
 
bool m_do_soret = false
 true if the Soret diffusion term should be calculated.
 
ThermoBasis m_fluxGradientBasis = ThermoBasis::molar
 Determines whether diffusive fluxes are computed using gradients of mass fraction or mole fraction.
 
bool m_do_multicomponent = false
 true if transport fluxes are computed using the multicomponent diffusion coefficients, or false if mixture-averaged diffusion coefficients are used.
 
bool m_do_radiation = false
 Determines whether radiative heat loss is calculated.
 
bool m_dovisc
 Determines whether the viscosity term in the momentum equation is calculated.
 
bool m_isFree
 Flag that is true for freely propagating flames anchored by a temperature fixed point.
 
bool m_usesLambda
 Flag that is true for counterflow configurations that use the pressure eigenvalue \( \Lambda \) in the radial momentum equation.
 
bool m_twoPointControl = false
 Flag for activating two-point flame control.
 
- Protected Attributes inherited from Domain1D
shared_ptr< vector< double > > m_state
 data pointer shared from OneDim
 
double m_rdt = 0.0
 Reciprocal of the time step.
 
size_t m_nv = 0
 Number of solution components.
 
size_t m_points
 Number of grid points.
 
vector< double > m_slast
 Solution vector at the last time step.
 
vector< double > m_max
 Upper bounds on solution components.
 
vector< double > m_min
 Lower bounds on solution components.
 
vector< double > m_rtol_ss
 Relative tolerances for steady mode.
 
vector< double > m_rtol_ts
 Relative tolerances for transient mode.
 
vector< double > m_atol_ss
 Absolute tolerances for steady mode.
 
vector< double > m_atol_ts
 Absolute tolerances for transient mode.
 
vector< double > m_z
 1D spatial grid coordinates
 
OneDimm_container = nullptr
 Parent OneDim simulation containing this and adjacent domains.
 
size_t m_index
 Left-to-right location of this domain.
 
size_t m_iloc = 0
 Starting location within the solution vector for unknowns that correspond to this domain.
 
size_t m_jstart = 0
 Index of the first point in this domain in the global point list.
 
Domain1Dm_left = nullptr
 Pointer to the domain to the left.
 
Domain1Dm_right = nullptr
 Pointer to the domain to the right.
 
string m_id
 Identity tag for the domain.
 
unique_ptr< Refinerm_refiner
 Refiner object used for placing grid points.
 
vector< string > m_name
 Names of solution components.
 
int m_bw = -1
 See bandwidth()
 
bool m_force_full_update = false
 see forceFullUpdate()
 
shared_ptr< Solutionm_solution
 Composite thermo/kinetics/transport handler.
 

Additional Inherited Members

- Public Attributes inherited from Flow1D
double m_zfixed = Undef
 Location of the point where temperature is fixed.
 
double m_tfixed = -1.0
 Temperature at the point used to fix the flame location.
 

Constructor & Destructor Documentation

◆ IonFlow() [1/2]

IonFlow ( ThermoPhase ph = 0,
size_t  nsp = 1,
size_t  points = 1 
)

Create a new IonFlow domain.

Parameters
phObject representing the gas phase. This object will be used to evaluate all thermodynamic, kinetic, and transport properties.
nspNumber of species.
pointsInitial number of grid points

Definition at line 18 of file IonFlow.cpp.

◆ IonFlow() [2/2]

IonFlow ( shared_ptr< Solution sol,
const string &  id = "",
size_t  points = 1 
)

Create a new IonFlow domain.

Parameters
solSolution object used to evaluate all thermodynamic, kinetic, and transport properties
idname of flow domain
pointsinitial number of grid points

Definition at line 56 of file IonFlow.cpp.

Member Function Documentation

◆ domainType()

string domainType ( ) const
overridevirtual

Domain type flag.

Since
Starting in Cantera 3.1, the return type is a string.

Reimplemented from Flow1D.

Definition at line 74 of file IonFlow.cpp.

◆ getSolvingStage()

size_t getSolvingStage ( ) const
inlineoverridevirtual

Get the solving stage (used by IonFlow specialization)

Since
New in Cantera 3.0

Reimplemented from Flow1D.

Definition at line 47 of file IonFlow.h.

◆ setSolvingStage()

void setSolvingStage ( const size_t  stage)
overridevirtual

Solving stage mode for handling ionized species (used by IonFlow specialization)

  • stage=1: the fluxes of charged species are set to zero
  • stage=2: the electric field equation is solved, and the drift flux for ionized species is evaluated

Reimplemented from Flow1D.

Definition at line 188 of file IonFlow.cpp.

◆ resize()

void resize ( size_t  components,
size_t  points 
)
overridevirtual

Change the grid size. Called after grid refinement.

Reimplemented from Flow1D.

Definition at line 84 of file IonFlow.cpp.

◆ componentActive()

bool componentActive ( size_t  n) const
overridevirtual

Returns true if the specified component is an active part of the solver state.

Reimplemented from Flow1D.

Definition at line 90 of file IonFlow.cpp.

◆ _finalize()

void _finalize ( const double *  x)
overridevirtual

In some cases, a domain may need to set parameters that depend on the initial solution estimate.

In such cases, the parameters may be set in method _finalize. This method is called just before the Newton solver is called, and the x array is guaranteed to be the local solution vector for this domain that will be used as the initial guess. If no such parameters need to be set, then method _finalize does not need to be overloaded.

Reimplemented from Flow1D.

Definition at line 311 of file IonFlow.cpp.

◆ solveElectricField()

void solveElectricField ( size_t  j = npos)
overridevirtual

Set to solve electric field in a point (used by IonFlow specialization)

Reimplemented from Flow1D.

Definition at line 244 of file IonFlow.cpp.

◆ fixElectricField()

void fixElectricField ( size_t  j = npos)
overridevirtual

Set to fix voltage in a point (used by IonFlow specialization)

Reimplemented from Flow1D.

Definition at line 269 of file IonFlow.cpp.

◆ doElectricField()

bool doElectricField ( size_t  j) const
inlineoverridevirtual

Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)

Reimplemented from Flow1D.

Definition at line 59 of file IonFlow.h.

◆ setElectronTransport()

void setElectronTransport ( vector< double > &  tfix,
vector< double > &  diff_e,
vector< double > &  mobi_e 
)

Sometimes it is desired to carry out the simulation using a specified electron transport profile, rather than assuming it as a constant (0.4).

See Bisetti and El Morsli [2]. If in the future the class GasTransport is improved, this method may be discarded. This method specifies this profile.

Definition at line 294 of file IonFlow.cpp.

◆ evalElectricField()

void evalElectricField ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
overrideprotectedvirtual

Evaluate the electric field equation residual by Gauss's law.

Evaluate the electric field equation residual.

The function calculates the electric field equation as:

\[ \frac{dE}{dz} = \frac{e}{\varepsilon_0} \sum (q_k \cdot n_k) \]

and

\[ E = -\frac{dV}{dz} \]

The electric field equation is based on Gauss's law, accounting for charge density and permittivity of free space ( \( \varepsilon_0 \)). The zero electric field is first evaluated and if the solution state is 2, then the alternative form the electric field equation is evaluated.

For argument explanation, see evalContinuity() base class.

Reimplemented from Flow1D.

Definition at line 201 of file IonFlow.cpp.

◆ evalSpecies()

void evalSpecies ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
overrideprotectedvirtual

Evaluate the species equations' residual.

This function overloads the original species function.

A Neumann boundary for the charged species at the left boundary is added, and the default boundary condition from the overloaded method is left the same for the right boundary.

For argument explanation, see evalContinuity() base class.

Reimplemented from Flow1D.

Definition at line 226 of file IonFlow.cpp.

◆ updateTransport()

void updateTransport ( double *  x,
size_t  j0,
size_t  j1 
)
overrideprotectedvirtual

Update the transport properties at grid points in the range from j0 to j1, based on solution x.

Evaluates the solution at the midpoint between j and j + 1 to compute the transport properties. For example, the viscosity at element j is the viscosity evaluated at the midpoint between j and j + 1.

Reimplemented from Flow1D.

Definition at line 99 of file IonFlow.cpp.

◆ updateDiffFluxes()

void updateDiffFluxes ( const double *  x,
size_t  j0,
size_t  j1 
)
overrideprotectedvirtual

Update the diffusive mass fluxes.

Reimplemented from Flow1D.

Definition at line 116 of file IonFlow.cpp.

◆ frozenIonMethod()

void frozenIonMethod ( const double *  x,
size_t  j0,
size_t  j1 
)
protected

Solving phase one: the fluxes of charged species are turned off.

Definition at line 126 of file IonFlow.cpp.

◆ electricFieldMethod()

void electricFieldMethod ( const double *  x,
size_t  j0,
size_t  j1 
)
protected

Solving phase two: the electric field equation is added coupled by the electrical drift.

Definition at line 151 of file IonFlow.cpp.

◆ E()

double E ( const double *  x,
size_t  j 
) const
inlineprotected

electric field [V/m]

Definition at line 155 of file IonFlow.h.

◆ dEdz()

double dEdz ( const double *  x,
size_t  j 
) const
inlineprotected

Axial gradient of the electric field [V/m²].

Definition at line 160 of file IonFlow.h.

◆ ND()

double ND ( const double *  x,
size_t  k,
size_t  j 
) const
inlineprotected

number density [molecules/m³]

Definition at line 165 of file IonFlow.h.

◆ rho_e()

double rho_e ( double *  x,
size_t  j 
) const
inlineprotected

total charge density

Definition at line 170 of file IonFlow.h.

Member Data Documentation

◆ m_do_electric_field

vector<bool> m_do_electric_field
protected

flag for solving electric field or not

Definition at line 121 of file IonFlow.h.

◆ m_import_electron_transport

bool m_import_electron_transport = false
protected

flag for importing transport of electron

Definition at line 124 of file IonFlow.h.

◆ m_speciesCharge

vector<double> m_speciesCharge
protected

electrical properties

Definition at line 127 of file IonFlow.h.

◆ m_kCharge

vector<size_t> m_kCharge
protected

index of species with charges

Definition at line 130 of file IonFlow.h.

◆ m_kNeutral

vector<size_t> m_kNeutral
protected

index of neutral species

Definition at line 133 of file IonFlow.h.

◆ m_mobi_e_fix

vector<double> m_mobi_e_fix
protected

Coefficients of polynomial fit for electron mobility as a function of temperature.

See also
setElectronTransport

Definition at line 138 of file IonFlow.h.

◆ m_diff_e_fix

vector<double> m_diff_e_fix
protected

Coefficients of polynomial fit for electron diffusivity as a function of temperature.

See also
setElectronTransport

Definition at line 143 of file IonFlow.h.

◆ m_mobility

vector<double> m_mobility
protected

mobility

Definition at line 146 of file IonFlow.h.

◆ m_stage

size_t m_stage = 1
protected

solving stage

Definition at line 149 of file IonFlow.h.

◆ m_kElectron

size_t m_kElectron = npos
protected

index of electron

Definition at line 152 of file IonFlow.h.


The documentation for this class was generated from the following files: