Cantera  3.2.0a1
Loading...
Searching...
No Matches

This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemically-reacting, axisymmetric flows. More...

#include <Flow1D.h>

Inheritance diagram for Flow1D:
[legend]

Detailed Description

This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemically-reacting, axisymmetric flows.

Definition at line 45 of file Flow1D.h.

Public Member Functions

 Flow1D (ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
 Create a new flow domain.
 
 Flow1D (shared_ptr< ThermoPhase > th, size_t nsp=1, size_t points=1)
 Delegating constructor.
 
 Flow1D (shared_ptr< Solution > sol, const string &id="", size_t points=1)
 Create a new flow domain.
 
string domainType () const override
 Domain type flag.
 
string componentName (size_t n) const override
 Name of component n. May be overloaded.
 
size_t componentIndex (const string &name) const override
 index of component with name name.
 
virtual bool componentActive (size_t n) const
 Returns true if the specified component is an active part of the solver state.
 
void show (const double *x) override
 Print the solution.
 
shared_ptr< SolutionArrayasArray (const double *soln) const override
 Save the state of this domain as a SolutionArray.
 
void fromArray (SolutionArray &arr, double *soln) override
 Restore the solution for this domain from a SolutionArray.
 
void setFreeFlow ()
 Set flow configuration for freely-propagating flames, using an internal point with a fixed temperature as the condition to determine the inlet mass flux.
 
void setAxisymmetricFlow ()
 Set flow configuration for axisymmetric counterflow flames, using specified inlet mass fluxes.
 
void setUnstrainedFlow ()
 Set flow configuration for burner-stabilized flames, using specified inlet mass fluxes.
 
void solveEnergyEqn (size_t j=npos)
 Specify that the energy equation should be solved at point j.
 
virtual size_t getSolvingStage () const
 Get the solving stage (used by IonFlow specialization)
 
virtual void setSolvingStage (const size_t stage)
 Solving stage mode for handling ionized species (used by IonFlow specialization)
 
virtual void solveElectricField (size_t j=npos)
 Set to solve electric field in a point (used by IonFlow specialization)
 
virtual void fixElectricField (size_t j=npos)
 Set to fix voltage in a point (used by IonFlow specialization)
 
virtual bool doElectricField (size_t j) const
 Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)
 
void enableRadiation (bool doRadiation)
 Turn radiation on / off.
 
bool radiationEnabled () const
 Returns true if the radiation term in the energy equation is enabled.
 
double radiativeHeatLoss (size_t j) const
 Return radiative heat loss at grid point j.
 
void setBoundaryEmissivities (double e_left, double e_right)
 Set the emissivities for the boundary values.
 
double leftEmissivity () const
 Return emissivity at left boundary.
 
double rightEmissivity () const
 Return emissivity at right boundary.
 
void fixTemperature (size_t j=npos)
 Specify that the the temperature should be held fixed at point j.
 
bool doEnergy (size_t j)
 true if the energy equation is solved at point j or false if a fixed temperature condition is imposed.
 
void resize (size_t components, size_t points) override
 Change the grid size. Called after grid refinement.
 
void setGas (const double *x, size_t j)
 Set the gas object state to be consistent with the solution at point j.
 
void setGasAtMidpoint (const double *x, size_t j)
 Set the gas state to be consistent with the solution at the midpoint between j and j + 1.
 
double density (size_t j) const
 Get the density [kg/m³] at point j
 
bool isFree () const
 Retrieve flag indicating whether flow is freely propagating.
 
bool isStrained () const
 Retrieve flag indicating whether flow uses radial momentum.
 
void setViscosityFlag (bool dovisc)
 Specify if the viscosity term should be included in the momentum equation.
 
void eval (size_t jGlobal, double *xGlobal, double *rsdGlobal, integer *diagGlobal, double rdt) override
 Evaluate the residual functions for axisymmetric stagnation flow.
 
size_t leftExcessSpecies () const
 Index of the species on the left boundary with the largest mass fraction.
 
size_t rightExcessSpecies () const
 Index of the species on the right boundary with the largest mass fraction.
 
Problem Specification
void setupGrid (size_t n, const double *z) override
 called to set up initial grid, and after grid refinement
 
void resetBadValues (double *xg) override
 When called, this function should reset "bad" values in the state vector such as negative species concentrations.
 
ThermoPhasephase ()
 Access the phase object used to compute thermodynamic properties for points in this domain.
 
Kineticskinetics ()
 Access the Kinetics object used to compute reaction rates for points in this domain.
 
void setKinetics (shared_ptr< Kinetics > kin) override
 Set the Kinetics object used for reaction rate calculations.
 
void setTransport (shared_ptr< Transport > trans) override
 Set the transport manager used for transport property calculations.
 
void setTransportModel (const string &trans)
 Set the transport model.
 
string transportModel () const
 Retrieve transport model.
 
void enableSoret (bool withSoret)
 Enable thermal diffusion, also known as Soret diffusion.
 
bool withSoret () const
 Indicates if thermal diffusion (Soret effect) term is being calculated.
 
void setFluxGradientBasis (ThermoBasis fluxGradientBasis)
 Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.
 
ThermoBasis fluxGradientBasis () const
 Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.
 
void setPressure (double p)
 Set the pressure.
 
double pressure () const
 The current pressure [Pa].
 
void _getInitialSoln (double *x) override
 Write the initial solution estimate into array x.
 
void _finalize (const double *x) override
 In some cases, a domain may need to set parameters that depend on the initial solution estimate.
 
void setFixedTempProfile (vector< double > &zfixed, vector< double > &tfixed)
 Sometimes it is desired to carry out the simulation using a specified temperature profile, rather than computing it by solving the energy equation.
 
void setTemperature (size_t j, double t)
 Set the temperature fixed point at grid point j, and disable the energy equation so that the solution will be held to this value.
 
double T_fixed (size_t j) const
 The fixed temperature value at point j.
 
Two-Point control method

In this method two control points are designated in the 1D domain, and the value of the temperature at these points is fixed.

The values of the control points are imposed and thus serve as a boundary condition that affects the solution of the governing equations in the 1D domain. The imposition of fixed points in the domain means that the original set of governing equations' boundary conditions would over-determine the problem. Thus, the boundary conditions are changed to reflect the fact that the control points are serving as internal boundary conditions.

The imposition of the two internal boundary conditions requires that two other boundary conditions be changed. The first is the boundary condition for the continuity equation at the left boundary, which is changed to be a value that is derived from the solution at the left boundary. The second is the continuity boundary condition at the right boundary, which is also determined from the flow solution by using the oxidizer axial velocity equation variable to compute the mass flux at the right boundary.

This method is based on the work of Nishioka et al. [32] .

double leftControlPointTemperature () const
 Returns the temperature at the left control point.
 
double leftControlPointCoordinate () const
 Returns the z-coordinate of the left control point.
 
void setLeftControlPointTemperature (double temperature)
 Sets the temperature of the left control point.
 
void setLeftControlPointCoordinate (double z_left)
 Sets the coordinate of the left control point.
 
double rightControlPointTemperature () const
 Returns the temperature at the right control point.
 
double rightControlPointCoordinate () const
 Returns the z-coordinate of the right control point.
 
void setRightControlPointTemperature (double temperature)
 Sets the temperature of the right control point.
 
void setRightControlPointCoordinate (double z_right)
 Sets the coordinate of the right control point.
 
void enableTwoPointControl (bool twoPointControl)
 Sets the status of the two-point control.
 
bool twoPointControlEnabled () const
 Returns the status of the two-point control.
 
- Public Member Functions inherited from Domain1D
 Domain1D (size_t nv=1, size_t points=1, double time=0.0)
 Constructor.
 
 Domain1D (const Domain1D &)=delete
 
Domain1Doperator= (const Domain1D &)=delete
 
virtual string domainType () const
 Domain type flag.
 
string type () const
 String indicating the domain implemented.
 
size_t domainIndex ()
 The left-to-right location of this domain.
 
virtual bool isConnector ()
 True if the domain is a connector domain.
 
void setSolution (shared_ptr< Solution > sol)
 Set the solution manager.
 
virtual void setKinetics (shared_ptr< Kinetics > kin)
 Set the kinetics manager.
 
virtual void setTransport (shared_ptr< Transport > trans)
 Set transport model to existing instance.
 
const OneDimcontainer () const
 The container holding this domain.
 
void setContainer (OneDim *c, size_t index)
 Specify the container object for this domain, and the position of this domain in the list.
 
void setBandwidth (int bw=-1)
 Set the Jacobian bandwidth. See the discussion of method bandwidth().
 
size_t bandwidth ()
 Set the Jacobian bandwidth for this domain.
 
virtual void init ()
 Initialize.
 
virtual void resetBadValues (double *xg)
 When called, this function should reset "bad" values in the state vector such as negative species concentrations.
 
virtual void resize (size_t nv, size_t np)
 Resize the domain to have nv components and np grid points.
 
Refinerrefiner ()
 Return a reference to the grid refiner.
 
size_t nComponents () const
 Number of components at each grid point.
 
void checkComponentIndex (size_t n) const
 Check that the specified component index is in range.
 
void checkComponentArraySize (size_t nn) const
 Check that an array size is at least nComponents().
 
size_t nPoints () const
 Number of grid points in this domain.
 
void checkPointIndex (size_t n) const
 Check that the specified point index is in range.
 
void checkPointArraySize (size_t nn) const
 Check that an array size is at least nPoints().
 
virtual string componentName (size_t n) const
 Name of component n. May be overloaded.
 
void setComponentName (size_t n, const string &name)
 Set the name of the component n to name.
 
virtual size_t componentIndex (const string &name) const
 index of component with name name.
 
void setBounds (size_t n, double lower, double upper)
 Set the upper and lower bounds for a solution component, n.
 
void setTransientTolerances (double rtol, double atol, size_t n=npos)
 Set tolerances for time-stepping mode.
 
void setSteadyTolerances (double rtol, double atol, size_t n=npos)
 Set tolerances for steady-state mode.
 
double rtol (size_t n)
 Relative tolerance of the nth component.
 
double atol (size_t n)
 Absolute tolerance of the nth component.
 
double steady_rtol (size_t n)
 Steady relative tolerance of the nth component.
 
double steady_atol (size_t n)
 Steady absolute tolerance of the nth component.
 
double transient_rtol (size_t n)
 Transient relative tolerance of the nth component.
 
double transient_atol (size_t n)
 Transient absolute tolerance of the nth component.
 
double upperBound (size_t n) const
 Upper bound on the nth component.
 
double lowerBound (size_t n) const
 Lower bound on the nth component.
 
void initTimeInteg (double dt, const double *x0)
 Performs the setup required before starting a time-stepping solution.
 
void setSteadyMode ()
 Set the internally-stored reciprocal of the time step to 0.0, which is used to indicate that the problem is in steady-state mode.
 
bool steady ()
 True if in steady-state mode.
 
bool transient ()
 True if not in steady-state mode.
 
void needJacUpdate ()
 Set this if something has changed in the governing equations (for example, the value of a constant has been changed, so that the last-computed Jacobian is no longer valid.
 
virtual void eval (size_t j, double *x, double *r, integer *mask, double rdt=0.0)
 Evaluate the residual function at point j.
 
size_t index (size_t n, size_t j) const
 Returns the index of the solution vector, which corresponds to component n at grid point j.
 
double value (const double *x, size_t n, size_t j) const
 Returns the value of solution component n at grid point j of the solution vector x.
 
virtual shared_ptr< SolutionArrayasArray (const double *soln) const
 Save the state of this domain as a SolutionArray.
 
shared_ptr< SolutionArraytoArray (bool normalize=false) const
 Save the state of this domain to a SolutionArray.
 
virtual void fromArray (SolutionArray &arr, double *soln)
 Restore the solution for this domain from a SolutionArray.
 
void fromArray (const shared_ptr< SolutionArray > &arr)
 Restore the solution for this domain from a SolutionArray.
 
shared_ptr< Solutionsolution () const
 Return thermo/kinetics/transport manager used in the domain.
 
size_t size () const
 Return the size of the solution vector (the product of m_nv and m_points).
 
void locate ()
 Find the index of the first grid point in this domain, and the start of its variables in the global solution vector.
 
virtual size_t loc (size_t j=0) const
 Location of the start of the local solution vector in the global solution vector.
 
size_t firstPoint () const
 The index of the first (that is, left-most) grid point belonging to this domain.
 
size_t lastPoint () const
 The index of the last (that is, right-most) grid point belonging to this domain.
 
void linkLeft (Domain1D *left)
 Set the left neighbor to domain 'left.
 
void linkRight (Domain1D *right)
 Set the right neighbor to domain 'right.'.
 
void append (Domain1D *right)
 Append domain 'right' to this one, and update all links.
 
Domain1Dleft () const
 Return a pointer to the left neighbor.
 
Domain1Dright () const
 Return a pointer to the right neighbor.
 
double prevSoln (size_t n, size_t j) const
 Value of component n at point j in the previous solution.
 
void setID (const string &s)
 Specify an identifying tag for this domain.
 
string id () const
 Returns the identifying tag for this domain.
 
virtual void show (const double *x)
 Print the solution.
 
double z (size_t jlocal) const
 Get the coordinate [m] of the point with local index jlocal
 
double zmin () const
 Get the coordinate [m] of the first (leftmost) grid point in this domain.
 
double zmax () const
 Get the coordinate [m] of the last (rightmost) grid point in this domain.
 
void setProfile (const string &name, double *values, double *soln)
 Set initial values for a component at each grid point.
 
vector< double > & grid ()
 Access the array of grid coordinates [m].
 
const vector< double > & grid () const
 Access the array of grid coordinates [m].
 
virtual void setupGrid (size_t n, const double *z)
 called to set up initial grid, and after grid refinement
 
virtual void _getInitialSoln (double *x)
 Writes some or all initial solution values into the global solution array, beginning at the location pointed to by x.
 
virtual double initialValue (size_t n, size_t j)
 Initial value of solution component n at grid point j.
 
virtual void _finalize (const double *x)
 In some cases, a domain may need to set parameters that depend on the initial solution estimate.
 
void forceFullUpdate (bool update)
 In some cases, for computational efficiency some properties (such as transport coefficients) may not be updated during Jacobian evaluations.
 
void setData (shared_ptr< vector< double > > &data)
 Set shared data pointer.
 

Public Attributes

double m_zfixed = Undef
 Location of the point where temperature is fixed.
 
double m_tfixed = -1.0
 Temperature at the point used to fix the flame location.
 

Protected Member Functions

AnyMap getMeta () const override
 Retrieve meta data.
 
void setMeta (const AnyMap &state) override
 Retrieve meta data.
 
virtual void evalUo (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the oxidizer axial velocity equation residual.
 
double shear (const double *x, size_t j) const
 Compute the shear term from the momentum equation using a central three-point differencing scheme.
 
double conduction (const double *x, size_t j) const
 Compute the conduction term from the energy equation using a central three-point differencing scheme.
 
size_t mindex (size_t k, size_t j, size_t m)
 Array access mapping for a 3D array stored in a 1D vector.
 
virtual void grad_hk (const double *x, size_t j)
 Compute the spatial derivative of species specific molar enthalpies using upwind differencing.
 
Updates of cached properties

These methods are called by eval() to update cached properties and data that are used for the evaluation of the governing equations.

void updateThermo (const double *x, size_t j0, size_t j1)
 Update the thermodynamic properties from point j0 to point j1 (inclusive), based on solution x.
 
virtual void updateTransport (double *x, size_t j0, size_t j1)
 Update the transport properties at grid points in the range from j0 to j1, based on solution x.
 
virtual void updateDiffFluxes (const double *x, size_t j0, size_t j1)
 Update the diffusive mass fluxes.
 
virtual void updateProperties (size_t jg, double *x, size_t jmin, size_t jmax)
 Update the properties (thermo, transport, and diffusion flux).
 
void computeRadiation (double *x, size_t jmin, size_t jmax)
 Computes the radiative heat loss vector over points jmin to jmax and stores the data in the qdotRadiation variable.
 
Governing Equations

Methods called by eval() to calculate residuals for individual governing equations.

virtual void evalContinuity (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the continuity equation residual.
 
virtual void evalMomentum (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the momentum equation residual.
 
virtual void evalLambda (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the lambda equation residual.
 
virtual void evalEnergy (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the energy equation residual.
 
virtual void evalSpecies (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the species equations' residuals.
 
virtual void evalElectricField (double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
 Evaluate the electric field equation residual to be zero everywhere.
 
Solution components
double T (const double *x, size_t j) const
 Get the temperature at point j from the local state vector x.
 
double & T (double *x, size_t j)
 Get the temperature at point j from the local state vector x.
 
double T_prev (size_t j) const
 Get the temperature at point j from the previous time step.
 
double rho_u (const double *x, size_t j) const
 Get the axial mass flux [kg/m²/s] at point j from the local state vector x.
 
double u (const double *x, size_t j) const
 Get the axial velocity [m/s] at point j from the local state vector x.
 
double V (const double *x, size_t j) const
 Get the spread rate (tangential velocity gradient) [1/s] at point j from the local state vector x.
 
double V_prev (size_t j) const
 Get the spread rate [1/s] at point j from the previous time step.
 
double lambda (const double *x, size_t j) const
 Get the radial pressure gradient [N/m⁴] at point j from the local state vector x
 
double Uo (const double *x, size_t j) const
 Get the oxidizer inlet velocity [m/s] linked to point j from the local state vector x.
 
double Y (const double *x, size_t k, size_t j) const
 Get the mass fraction of species k at point j from the local state vector x.
 
double & Y (double *x, size_t k, size_t j)
 Get the mass fraction of species k at point j from the local state vector x.
 
double Y_prev (size_t k, size_t j) const
 Get the mass fraction of species k at point j from the previous time step.
 
double X (const double *x, size_t k, size_t j) const
 Get the mole fraction of species k at point j from the local state vector x.
 
double flux (size_t k, size_t j) const
 Get the diffusive mass flux [kg/m²/s] of species k at point j
 
Convective spatial derivatives

These methods use upwind differencing to calculate spatial derivatives for velocity, species mass fractions, and temperature.

Upwind differencing is a numerical discretization method that considers the direction of the flow to improve stability.

double dVdz (const double *x, size_t j) const
 Calculates the spatial derivative of velocity V with respect to z at point j using upwind differencing.
 
double dYdz (const double *x, size_t k, size_t j) const
 Calculates the spatial derivative of the species mass fraction \( Y_k \) with respect to z for species k at point j using upwind differencing.
 
double dTdz (const double *x, size_t j) const
 Calculates the spatial derivative of temperature T with respect to z at point j using upwind differencing.
 
virtual AnyMap getMeta () const
 Retrieve meta data.
 
virtual void setMeta (const AnyMap &meta)
 Retrieve meta data.
 

Protected Attributes

double m_press = -1.0
 pressure [Pa]
 
vector< double > m_dz
 Grid spacing. Element j holds the value of z(j+1) - z(j).
 
vector< double > m_rho
 Density at each grid point.
 
vector< double > m_wtm
 Mean molecular weight at each grid point.
 
vector< double > m_wt
 Molecular weight of each species.
 
vector< double > m_cp
 Specific heat capacity at each grid point.
 
vector< double > m_visc
 Dynamic viscosity at each grid point [Pa∙s].
 
vector< double > m_tcon
 Thermal conductivity at each grid point [W/m/K].
 
vector< double > m_diff
 Coefficient used in diffusion calculations for each species at each grid point.
 
vector< double > m_multidiff
 Vector of size m_nsp × m_nsp × m_points for saving multicomponent diffusion coefficients.
 
Array2D m_dthermal
 Array of size m_nsp by m_points for saving thermal diffusion coefficients.
 
Array2D m_flux
 Array of size m_nsp by m_points for saving diffusive mass fluxes.
 
Array2D m_hk
 Array of size m_nsp by m_points for saving molar enthalpies.
 
Array2D m_dhk_dz
 Array of size m_nsp by m_points-1 for saving enthalpy fluxes.
 
Array2D m_wdot
 Array of size m_nsp by m_points for saving species production rates.
 
size_t m_nsp
 Number of species in the mechanism.
 
ThermoPhasem_thermo = nullptr
 Phase object used for calculating thermodynamic properties.
 
Kineticsm_kin = nullptr
 Kinetics object used for calculating species production rates.
 
Transportm_trans = nullptr
 Transport object used for calculating transport properties.
 
double m_epsilon_left = 0.0
 Emissivity of the surface to the left of the domain.
 
double m_epsilon_right = 0.0
 Emissivity of the surface to the right of the domain.
 
vector< size_t > m_kRadiating
 Indices within the ThermoPhase of the radiating species.
 
vector< double > m_qdotRadiation
 radiative heat loss vector
 
vector< double > m_fixedtemp
 Fixed values of the temperature at each grid point that are used when solving with the energy equation disabled.
 
vector< double > m_zfix
 Relative coordinates used to specify a fixed temperature profile.
 
vector< double > m_tfix
 Fixed temperature values at the relative coordinates specified in m_zfix.
 
size_t m_kExcessLeft = 0
 Index of species with a large mass fraction at the left boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.
 
size_t m_kExcessRight = 0
 Index of species with a large mass fraction at the right boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.
 
double m_zLeft = Undef
 Location of the left control point when two-point control is enabled.
 
double m_tLeft = Undef
 Temperature of the left control point when two-point control is enabled.
 
double m_zRight = Undef
 Location of the right control point when two-point control is enabled.
 
double m_tRight = Undef
 Temperature of the right control point when two-point control is enabled.
 
flags
vector< bool > m_do_energy
 For each point in the domain, true if energy equation is solved or false if temperature is held constant.
 
bool m_do_soret = false
 true if the Soret diffusion term should be calculated.
 
ThermoBasis m_fluxGradientBasis = ThermoBasis::molar
 Determines whether diffusive fluxes are computed using gradients of mass fraction or mole fraction.
 
bool m_do_multicomponent = false
 true if transport fluxes are computed using the multicomponent diffusion coefficients, or false if mixture-averaged diffusion coefficients are used.
 
bool m_do_radiation = false
 Determines whether radiative heat loss is calculated.
 
bool m_dovisc
 Determines whether the viscosity term in the momentum equation is calculated.
 
bool m_isFree
 Flag that is true for freely propagating flames anchored by a temperature fixed point.
 
bool m_usesLambda
 Flag that is true for counterflow configurations that use the pressure eigenvalue \( \Lambda \) in the radial momentum equation.
 
bool m_twoPointControl = false
 Flag for activating two-point flame control.
 
- Protected Attributes inherited from Domain1D
shared_ptr< vector< double > > m_state
 data pointer shared from OneDim
 
double m_rdt = 0.0
 Reciprocal of the time step.
 
size_t m_nv = 0
 Number of solution components.
 
size_t m_points
 Number of grid points.
 
vector< double > m_slast
 Solution vector at the last time step.
 
vector< double > m_max
 Upper bounds on solution components.
 
vector< double > m_min
 Lower bounds on solution components.
 
vector< double > m_rtol_ss
 Relative tolerances for steady mode.
 
vector< double > m_rtol_ts
 Relative tolerances for transient mode.
 
vector< double > m_atol_ss
 Absolute tolerances for steady mode.
 
vector< double > m_atol_ts
 Absolute tolerances for transient mode.
 
vector< double > m_z
 1D spatial grid coordinates
 
OneDimm_container = nullptr
 Parent OneDim simulation containing this and adjacent domains.
 
size_t m_index
 Left-to-right location of this domain.
 
size_t m_iloc = 0
 Starting location within the solution vector for unknowns that correspond to this domain.
 
size_t m_jstart = 0
 Index of the first point in this domain in the global point list.
 
Domain1Dm_left = nullptr
 Pointer to the domain to the left.
 
Domain1Dm_right = nullptr
 Pointer to the domain to the right.
 
string m_id
 Identity tag for the domain.
 
unique_ptr< Refinerm_refiner
 Refiner object used for placing grid points.
 
vector< string > m_name
 Names of solution components.
 
int m_bw = -1
 See bandwidth()
 
bool m_force_full_update = false
 see forceFullUpdate()
 
shared_ptr< Solutionm_solution
 Composite thermo/kinetics/transport handler.
 

Private Attributes

vector< double > m_ybar
 Holds the average of the species mass fractions between grid points j and j+1.
 

Constructor & Destructor Documentation

◆ Flow1D() [1/3]

Flow1D ( ThermoPhase ph = 0,
size_t  nsp = 1,
size_t  points = 1 
)

Create a new flow domain.

Parameters
phObject representing the gas phase. This object will be used to evaluate all thermodynamic, kinetic, and transport properties.
nspNumber of species.
pointsInitial number of grid points

Definition at line 19 of file Flow1D.cpp.

◆ Flow1D() [2/3]

Flow1D ( shared_ptr< ThermoPhase th,
size_t  nsp = 1,
size_t  points = 1 
)

Delegating constructor.

Definition at line 90 of file Flow1D.cpp.

◆ Flow1D() [3/3]

Flow1D ( shared_ptr< Solution sol,
const string &  id = "",
size_t  points = 1 
)

Create a new flow domain.

Parameters
solSolution object used to evaluate all thermodynamic, kinetic, and transport properties
idname of flow domain
pointsinitial number of grid points

Definition at line 98 of file Flow1D.cpp.

◆ ~Flow1D()

~Flow1D ( )

Definition at line 116 of file Flow1D.cpp.

Member Function Documentation

◆ domainType()

string domainType ( ) const
overridevirtual

Domain type flag.

Since
Starting in Cantera 3.1, the return type is a string.

Reimplemented from Domain1D.

Reimplemented in IonFlow.

Definition at line 123 of file Flow1D.cpp.

◆ setupGrid()

void setupGrid ( size_t  n,
const double *  z 
)
overridevirtual

called to set up initial grid, and after grid refinement

Reimplemented from Domain1D.

Definition at line 185 of file Flow1D.cpp.

◆ resetBadValues()

void resetBadValues ( double *  xg)
overridevirtual

When called, this function should reset "bad" values in the state vector such as negative species concentrations.

This function may be called after a failed solution attempt.

Reimplemented from Domain1D.

Definition at line 200 of file Flow1D.cpp.

◆ phase()

ThermoPhase & phase ( )
inline

Access the phase object used to compute thermodynamic properties for points in this domain.

Definition at line 82 of file Flow1D.h.

◆ kinetics()

Kinetics & kinetics ( )
inline

Access the Kinetics object used to compute reaction rates for points in this domain.

Definition at line 88 of file Flow1D.h.

◆ setKinetics()

void setKinetics ( shared_ptr< Kinetics kin)
overridevirtual

Set the Kinetics object used for reaction rate calculations.

Reimplemented from Domain1D.

Definition at line 133 of file Flow1D.cpp.

◆ setTransport()

void setTransport ( shared_ptr< Transport trans)
overridevirtual

Set the transport manager used for transport property calculations.

Reimplemented from Domain1D.

Definition at line 139 of file Flow1D.cpp.

◆ setTransportModel()

void setTransportModel ( const string &  trans)

Set the transport model.

Since
New in Cantera 3.0.

Definition at line 210 of file Flow1D.cpp.

◆ transportModel()

string transportModel ( ) const

Retrieve transport model.

Since
New in Cantera 3.0.

Definition at line 215 of file Flow1D.cpp.

◆ enableSoret()

void enableSoret ( bool  withSoret)
inline

Enable thermal diffusion, also known as Soret diffusion.

Requires that multicomponent transport properties be enabled to carry out calculations.

Definition at line 109 of file Flow1D.h.

◆ withSoret()

bool withSoret ( ) const
inline

Indicates if thermal diffusion (Soret effect) term is being calculated.

Definition at line 114 of file Flow1D.h.

◆ setFluxGradientBasis()

void setFluxGradientBasis ( ThermoBasis  fluxGradientBasis)

Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.

Parameters
fluxGradientBasisset flux computation to mass or mole basis
Since
New in Cantera 3.1.

Definition at line 219 of file Flow1D.cpp.

◆ fluxGradientBasis()

ThermoBasis fluxGradientBasis ( ) const
inline

Compute species diffusive fluxes with respect to their mass fraction gradients (fluxGradientBasis = ThermoBasis::mass) or mole fraction gradients (fluxGradientBasis = ThermoBasis::molar, default) when using the mixture-averaged transport model.

Returns
the basis used for flux computation (mass or mole fraction gradients)
Since
New in Cantera 3.1.

Definition at line 132 of file Flow1D.h.

◆ setPressure()

void setPressure ( double  p)
inline

Set the pressure.

Since the flow equations are for the limit of small Mach number, the pressure is very nearly constant throughout the flow.

Definition at line 138 of file Flow1D.h.

◆ pressure()

double pressure ( ) const
inline

The current pressure [Pa].

Definition at line 143 of file Flow1D.h.

◆ _getInitialSoln()

void _getInitialSoln ( double *  x)
overridevirtual

Write the initial solution estimate into array x.

Reimplemented from Domain1D.

Definition at line 229 of file Flow1D.cpp.

◆ _finalize()

void _finalize ( const double *  x)
overridevirtual

In some cases, a domain may need to set parameters that depend on the initial solution estimate.

In such cases, the parameters may be set in method _finalize. This method is called just before the Newton solver is called, and the x array is guaranteed to be the local solution vector for this domain that will be used as the initial guess. If no such parameters need to be set, then method _finalize does not need to be overloaded.

Reimplemented from Domain1D.

Reimplemented in IonFlow.

Definition at line 258 of file Flow1D.cpp.

◆ setFixedTempProfile()

void setFixedTempProfile ( vector< double > &  zfixed,
vector< double > &  tfixed 
)
inline

Sometimes it is desired to carry out the simulation using a specified temperature profile, rather than computing it by solving the energy equation.

This method specifies this profile.

Definition at line 155 of file Flow1D.h.

◆ setTemperature()

void setTemperature ( size_t  j,
double  t 
)
inline

Set the temperature fixed point at grid point j, and disable the energy equation so that the solution will be held to this value.

Definition at line 164 of file Flow1D.h.

◆ T_fixed()

double T_fixed ( size_t  j) const
inline

The fixed temperature value at point j.

Definition at line 170 of file Flow1D.h.

◆ componentName()

string componentName ( size_t  n) const
overridevirtual

Name of component n. May be overloaded.

Reimplemented from Domain1D.

Definition at line 793 of file Flow1D.cpp.

◆ componentIndex()

size_t componentIndex ( const string &  name) const
overridevirtual

index of component with name name.

Reimplemented from Domain1D.

Definition at line 817 of file Flow1D.cpp.

◆ componentActive()

bool componentActive ( size_t  n) const
virtual

Returns true if the specified component is an active part of the solver state.

Reimplemented in IonFlow.

Definition at line 842 of file Flow1D.cpp.

◆ show()

void show ( const double *  x)
overridevirtual

Print the solution.

Parameters
xPointer to the local portion of the system state vector

Reimplemented from Domain1D.

Definition at line 776 of file Flow1D.cpp.

◆ asArray()

shared_ptr< SolutionArray > asArray ( const double *  soln) const
overridevirtual

Save the state of this domain as a SolutionArray.

Parameters
solnlocal solution vector for this domain
Todo:
Despite the method's name, data are copied; the intent is to access data directly in future revisions, where a non-const version will be implemented.
Since
New in Cantera 3.0.

Reimplemented from Domain1D.

Definition at line 909 of file Flow1D.cpp.

◆ fromArray()

void fromArray ( SolutionArray arr,
double *  soln 
)
overridevirtual

Restore the solution for this domain from a SolutionArray.

Parameters
[in]arrSolutionArray defining the state of this domain
[out]solnValue of the solution vector, local to this domain
Since
New in Cantera 3.0.

Reimplemented from Domain1D.

Definition at line 943 of file Flow1D.cpp.

◆ setFreeFlow()

void setFreeFlow ( )
inline

Set flow configuration for freely-propagating flames, using an internal point with a fixed temperature as the condition to determine the inlet mass flux.

Definition at line 190 of file Flow1D.h.

◆ setAxisymmetricFlow()

void setAxisymmetricFlow ( )
inline

Set flow configuration for axisymmetric counterflow flames, using specified inlet mass fluxes.

Definition at line 198 of file Flow1D.h.

◆ setUnstrainedFlow()

void setUnstrainedFlow ( )
inline

Set flow configuration for burner-stabilized flames, using specified inlet mass fluxes.

Definition at line 206 of file Flow1D.h.

◆ solveEnergyEqn()

void solveEnergyEqn ( size_t  j = npos)

Specify that the energy equation should be solved at point j.

The converse of this method is fixTemperature().

Parameters
jPoint at which to enable the energy equation. npos means all points.

Definition at line 1040 of file Flow1D.cpp.

◆ getSolvingStage()

size_t getSolvingStage ( ) const
virtual

Get the solving stage (used by IonFlow specialization)

Since
New in Cantera 3.0

Reimplemented in IonFlow.

Definition at line 1064 of file Flow1D.cpp.

◆ setSolvingStage()

void setSolvingStage ( const size_t  stage)
virtual

Solving stage mode for handling ionized species (used by IonFlow specialization)

  • stage=1: the fluxes of charged species are set to zero
  • stage=2: the electric field equation is solved, and the drift flux for ionized species is evaluated

Reimplemented in IonFlow.

Definition at line 1070 of file Flow1D.cpp.

◆ solveElectricField()

void solveElectricField ( size_t  j = npos)
virtual

Set to solve electric field in a point (used by IonFlow specialization)

Reimplemented in IonFlow.

Definition at line 1076 of file Flow1D.cpp.

◆ fixElectricField()

void fixElectricField ( size_t  j = npos)
virtual

Set to fix voltage in a point (used by IonFlow specialization)

Reimplemented in IonFlow.

Definition at line 1082 of file Flow1D.cpp.

◆ doElectricField()

bool doElectricField ( size_t  j) const
virtual

Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)

Reimplemented in IonFlow.

Definition at line 1088 of file Flow1D.cpp.

◆ enableRadiation()

void enableRadiation ( bool  doRadiation)
inline

Turn radiation on / off.

Definition at line 238 of file Flow1D.h.

◆ radiationEnabled()

bool radiationEnabled ( ) const
inline

Returns true if the radiation term in the energy equation is enabled.

Definition at line 243 of file Flow1D.h.

◆ radiativeHeatLoss()

double radiativeHeatLoss ( size_t  j) const
inline

Return radiative heat loss at grid point j.

Definition at line 248 of file Flow1D.h.

◆ setBoundaryEmissivities()

void setBoundaryEmissivities ( double  e_left,
double  e_right 
)

Set the emissivities for the boundary values.

Reads the emissivities for the left and right boundary values in the radiative term and writes them into the variables, which are used for the calculation.

Definition at line 1094 of file Flow1D.cpp.

◆ leftEmissivity()

double leftEmissivity ( ) const
inline

Return emissivity at left boundary.

Definition at line 261 of file Flow1D.h.

◆ rightEmissivity()

double rightEmissivity ( ) const
inline

Return emissivity at right boundary.

Definition at line 266 of file Flow1D.h.

◆ fixTemperature()

void fixTemperature ( size_t  j = npos)

Specify that the the temperature should be held fixed at point j.

The converse of this method is enableEnergyEqn().

Parameters
jPoint at which to specify a fixed temperature. npos means all points.

Definition at line 1108 of file Flow1D.cpp.

◆ leftControlPointTemperature()

double leftControlPointTemperature ( ) const

Returns the temperature at the left control point.

Definition at line 1141 of file Flow1D.cpp.

◆ leftControlPointCoordinate()

double leftControlPointCoordinate ( ) const

Returns the z-coordinate of the left control point.

Definition at line 1156 of file Flow1D.cpp.

◆ setLeftControlPointTemperature()

void setLeftControlPointTemperature ( double  temperature)

Sets the temperature of the left control point.

Definition at line 1171 of file Flow1D.cpp.

◆ setLeftControlPointCoordinate()

void setLeftControlPointCoordinate ( double  z_left)

Sets the coordinate of the left control point.

Definition at line 1186 of file Flow1D.cpp.

◆ rightControlPointTemperature()

double rightControlPointTemperature ( ) const

Returns the temperature at the right control point.

Definition at line 1196 of file Flow1D.cpp.

◆ rightControlPointCoordinate()

double rightControlPointCoordinate ( ) const

Returns the z-coordinate of the right control point.

Definition at line 1211 of file Flow1D.cpp.

◆ setRightControlPointTemperature()

void setRightControlPointTemperature ( double  temperature)

Sets the temperature of the right control point.

Definition at line 1226 of file Flow1D.cpp.

◆ setRightControlPointCoordinate()

void setRightControlPointCoordinate ( double  z_right)

Sets the coordinate of the right control point.

Definition at line 1241 of file Flow1D.cpp.

◆ enableTwoPointControl()

void enableTwoPointControl ( bool  twoPointControl)

Sets the status of the two-point control.

Definition at line 1251 of file Flow1D.cpp.

◆ twoPointControlEnabled()

bool twoPointControlEnabled ( ) const
inline

Returns the status of the two-point control.

Definition at line 328 of file Flow1D.h.

◆ doEnergy()

bool doEnergy ( size_t  j)
inline

true if the energy equation is solved at point j or false if a fixed temperature condition is imposed.

Definition at line 335 of file Flow1D.h.

◆ resize()

void resize ( size_t  components,
size_t  points 
)
overridevirtual

Change the grid size. Called after grid refinement.

Reimplemented from Domain1D.

Reimplemented in IonFlow.

Definition at line 159 of file Flow1D.cpp.

◆ setGas()

void setGas ( const double *  x,
size_t  j 
)

Set the gas object state to be consistent with the solution at point j.

Definition at line 238 of file Flow1D.cpp.

◆ setGasAtMidpoint()

void setGasAtMidpoint ( const double *  x,
size_t  j 
)

Set the gas state to be consistent with the solution at the midpoint between j and j + 1.

Definition at line 246 of file Flow1D.cpp.

◆ density()

double density ( size_t  j) const
inline

Get the density [kg/m³] at point j

Definition at line 350 of file Flow1D.h.

◆ isFree()

bool isFree ( ) const
inline

Retrieve flag indicating whether flow is freely propagating.

The flow is unstrained and the axial mass flow rate is not specified. For free flame propagation, the axial velocity is determined by the solver.

Since
New in Cantera 3.0

Definition at line 360 of file Flow1D.h.

◆ isStrained()

bool isStrained ( ) const
inline

Retrieve flag indicating whether flow uses radial momentum.

If true, radial momentum equation for \( V \) as well as \( d\Lambda/dz = 0 \) are solved; if false, \( \Lambda(z) = 0 \) and \( V(z) = 0 \) by definition.

Since
New in Cantera 3.0

Definition at line 371 of file Flow1D.h.

◆ setViscosityFlag()

void setViscosityFlag ( bool  dovisc)
inline

Specify if the viscosity term should be included in the momentum equation.

Definition at line 376 of file Flow1D.h.

◆ eval()

void eval ( size_t  jGlobal,
double *  xGlobal,
double *  rsdGlobal,
integer *  diagGlobal,
double  rdt 
)
overridevirtual

Evaluate the residual functions for axisymmetric stagnation flow.

If jGlobal == npos, the residual function is evaluated at all grid points. Otherwise, the residual function is only evaluated at grid points j-1, j, and j+1. This option is used to efficiently evaluate the Jacobian numerically.

These residuals at all the boundary grid points are evaluated using a default boundary condition that may be modified by a boundary object that is attached to the domain. The boundary object connected will modify these equations by subtracting the boundary object's values for V, T, mdot, etc. As a result, these residual equations will force the solution variables to the values of the connected boundary object.

Parameters
jGlobalGlobal grid point at which to update the residual
[in]xGlobalGlobal state vector
[out]rsdGlobalGlobal residual vector
[out]diagGlobalGlobal boolean mask indicating whether each solution component has a time derivative (1) or not (0).
[in]rdtReciprocal of the timestep (rdt=0 implies steady-state.)

Reimplemented from Domain1D.

Definition at line 305 of file Flow1D.cpp.

◆ leftExcessSpecies()

size_t leftExcessSpecies ( ) const
inline

Index of the species on the left boundary with the largest mass fraction.

Definition at line 404 of file Flow1D.h.

◆ rightExcessSpecies()

size_t rightExcessSpecies ( ) const
inline

Index of the species on the right boundary with the largest mass fraction.

Definition at line 409 of file Flow1D.h.

◆ getMeta()

AnyMap getMeta ( ) const
overrideprotectedvirtual

Retrieve meta data.

Reimplemented from Domain1D.

Definition at line 858 of file Flow1D.cpp.

◆ setMeta()

void setMeta ( const AnyMap meta)
overrideprotectedvirtual

Retrieve meta data.

Reimplemented from Domain1D.

Definition at line 973 of file Flow1D.cpp.

◆ updateThermo()

void updateThermo ( const double *  x,
size_t  j0,
size_t  j1 
)
inlineprotected

Update the thermodynamic properties from point j0 to point j1 (inclusive), based on solution x.

The gas state is set to be consistent with the solution at the points from j0 to j1.

Properties that are computed and cached are:

  • m_rho (density)
  • m_wtm (mean molecular weight)
  • m_cp (specific heat capacity)
  • m_hk (species specific enthalpies)
  • m_wdot (species production rates)

Definition at line 436 of file Flow1D.h.

◆ updateTransport()

void updateTransport ( double *  x,
size_t  j0,
size_t  j1 
)
protectedvirtual

Update the transport properties at grid points in the range from j0 to j1, based on solution x.

Evaluates the solution at the midpoint between j and j + 1 to compute the transport properties. For example, the viscosity at element j is the viscosity evaluated at the midpoint between j and j + 1.

Reimplemented in IonFlow.

Definition at line 368 of file Flow1D.cpp.

◆ updateDiffFluxes()

void updateDiffFluxes ( const double *  x,
size_t  j0,
size_t  j1 
)
protectedvirtual

Update the diffusive mass fluxes.

Reimplemented in IonFlow.

Definition at line 416 of file Flow1D.cpp.

◆ updateProperties()

void updateProperties ( size_t  jg,
double *  x,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Update the properties (thermo, transport, and diffusion flux).

This function is called in eval after the points which need to be updated are defined.

Definition at line 344 of file Flow1D.cpp.

◆ computeRadiation()

void computeRadiation ( double *  x,
size_t  jmin,
size_t  jmax 
)
protected

Computes the radiative heat loss vector over points jmin to jmax and stores the data in the qdotRadiation variable.

The simple radiation model used was established by Liu and Rogg [23]. This model considers the radiation of CO2 and H2O.

This model uses the optically thin limit and the gray-gas approximation to simply calculate a volume specified heat flux out of the Planck absorption coefficients, the boundary emissivities and the temperature. Polynomial lines calculate the species Planck coefficients for H2O and CO2. The data for the lines are taken from the RADCAL program [9]. The coefficients for the polynomials are taken from TNF Workshop material.

Definition at line 462 of file Flow1D.cpp.

◆ evalContinuity()

void evalContinuity ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the continuity equation residual.

\[ \frac{d(\rho u)}{dz} + 2\rho V = 0 \]

Axisymmetric flame: The continuity equation propagates information from right-to-left. The \( \rho u \) at point 0 is dependent on \( \rho u \) at point 1, but not on \( \dot{m} \) from the inlet.

Freely-propagating flame: The continuity equation propagates information away from a fixed temperature point that is set in the domain.

Unstrained flame: A specified mass flux; the main example being burner-stabilized flames.

The default boundary condition for the continuity equation is ( \( u = 0 \)) at the right boundary. Because the equation is a first order equation, only one boundary condition is needed.

Parameters
[in]xLocal domain state vector, includes variables like temperature, density, etc.
[out]rsdLocal domain residual vector that stores the continuity equation residuals.
[out]diagLocal domain diagonal matrix that controls whether an entry has a time-derivative (used by the solver).
[in]rdtReciprocal of the timestep.
[in]jminThe index for the starting point in the local domain grid.
[in]jmaxThe index for the ending point in the local domain grid.

Definition at line 509 of file Flow1D.cpp.

◆ evalMomentum()

void evalMomentum ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the momentum equation residual.

\[ \rho u \frac{dV}{dz} + \rho V^2 = \frac{d}{dz}\left( \mu \frac{dV}{dz} \right) - \Lambda \]

The radial momentum equation is used for axisymmetric flows, and incorporates terms for time and spatial variations of radial velocity ( \( V \)). The default boundary condition is zero radial velocity ( \( V \)) at the left and right boundary.

For argument explanation, see evalContinuity().

Definition at line 566 of file Flow1D.cpp.

◆ evalLambda()

void evalLambda ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the lambda equation residual.

\[ \frac{d\Lambda}{dz} = 0 \]

The lambda equation serves as an eigenvalue that allows the momentum equation and continuity equations to be simultaneously satisfied in axisymmetric flows. The lambda equation propagates information from left-to-right. The default boundary condition is \( \Lambda = 0 \) at the left boundary. The equation is first order and so only one boundary condition is needed.

For argument explanation, see evalContinuity().

Definition at line 602 of file Flow1D.cpp.

◆ evalEnergy()

void evalEnergy ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the energy equation residual.

\[ \rho c_p u \frac{dT}{dz} = \frac{d}{dz}\left( \lambda \frac{dT}{dz} \right) - \sum_k h_kW_k\dot{\omega}_k - \sum_k j_k \frac{dh_k}{dz} \]

The energy equation includes contributions from chemical reactions and diffusion. Default is zero temperature ( \( T \)) at the left and right boundaries. These boundary values are updated by the specific boundary object connected to the domain.

For argument explanation, see evalContinuity().

Definition at line 645 of file Flow1D.cpp.

◆ evalSpecies()

void evalSpecies ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the species equations' residuals.

\[ \rho u \frac{dY_k}{dz} + \frac{dj_k}{dz} = W_k\dot{\omega}_k \]

The species equations include terms for temporal and spatial variations of species mass fractions ( \( Y_k \)). The default boundary condition is zero flux for species at the left and right boundary.

For argument explanation, see evalContinuity().

Reimplemented in IonFlow.

Definition at line 727 of file Flow1D.cpp.

◆ evalElectricField()

void evalElectricField ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the electric field equation residual to be zero everywhere.

The electric field equation is implemented in the IonFlow class. The default boundary condition is zero electric field ( \( E \)) at the boundary, and \( E \) is zero within the domain.

For argument explanation, see evalContinuity().

Reimplemented in IonFlow.

Definition at line 767 of file Flow1D.cpp.

◆ evalUo()

void evalUo ( double *  x,
double *  rsd,
int *  diag,
double  rdt,
size_t  jmin,
size_t  jmax 
)
protectedvirtual

Evaluate the oxidizer axial velocity equation residual.

The function calculates the oxidizer axial velocity equation as

\[ \frac{dU_{o}}{dz} = 0 \]

This equation serves as a dummy equation that is used only in the context of two-point flame control, and serves as the way for two interior control points to be specified while maintaining block tridiagonal structure. The default boundary condition is \( U_o = 0 \) at the right and zero flux at the left boundary.

For argument explanation, see evalContinuity().

Definition at line 687 of file Flow1D.cpp.

◆ T() [1/2]

double T ( const double *  x,
size_t  j 
) const
inlineprotected

Get the temperature at point j from the local state vector x.

Definition at line 633 of file Flow1D.h.

◆ T() [2/2]

double & T ( double *  x,
size_t  j 
)
inlineprotected

Get the temperature at point j from the local state vector x.

Definition at line 637 of file Flow1D.h.

◆ T_prev()

double T_prev ( size_t  j) const
inlineprotected

Get the temperature at point j from the previous time step.

Definition at line 642 of file Flow1D.h.

◆ rho_u()

double rho_u ( const double *  x,
size_t  j 
) const
inlineprotected

Get the axial mass flux [kg/m²/s] at point j from the local state vector x.

Definition at line 647 of file Flow1D.h.

◆ u()

double u ( const double *  x,
size_t  j 
) const
inlineprotected

Get the axial velocity [m/s] at point j from the local state vector x.

Definition at line 652 of file Flow1D.h.

◆ V()

double V ( const double *  x,
size_t  j 
) const
inlineprotected

Get the spread rate (tangential velocity gradient) [1/s] at point j from the local state vector x.

Definition at line 658 of file Flow1D.h.

◆ V_prev()

double V_prev ( size_t  j) const
inlineprotected

Get the spread rate [1/s] at point j from the previous time step.

Definition at line 663 of file Flow1D.h.

◆ lambda()

double lambda ( const double *  x,
size_t  j 
) const
inlineprotected

Get the radial pressure gradient [N/m⁴] at point j from the local state vector x

Definition at line 669 of file Flow1D.h.

◆ Uo()

double Uo ( const double *  x,
size_t  j 
) const
inlineprotected

Get the oxidizer inlet velocity [m/s] linked to point j from the local state vector x.

See also
evalUo()

Definition at line 677 of file Flow1D.h.

◆ Y() [1/2]

double Y ( const double *  x,
size_t  k,
size_t  j 
) const
inlineprotected

Get the mass fraction of species k at point j from the local state vector x.

Definition at line 683 of file Flow1D.h.

◆ Y() [2/2]

double & Y ( double *  x,
size_t  k,
size_t  j 
)
inlineprotected

Get the mass fraction of species k at point j from the local state vector x.

Definition at line 689 of file Flow1D.h.

◆ Y_prev()

double Y_prev ( size_t  k,
size_t  j 
) const
inlineprotected

Get the mass fraction of species k at point j from the previous time step.

Definition at line 694 of file Flow1D.h.

◆ X()

double X ( const double *  x,
size_t  k,
size_t  j 
) const
inlineprotected

Get the mole fraction of species k at point j from the local state vector x.

Definition at line 700 of file Flow1D.h.

◆ flux()

double flux ( size_t  k,
size_t  j 
) const
inlineprotected

Get the diffusive mass flux [kg/m²/s] of species k at point j

Definition at line 705 of file Flow1D.h.

◆ dVdz()

double dVdz ( const double *  x,
size_t  j 
) const
inlineprotected

Calculates the spatial derivative of velocity V with respect to z at point j using upwind differencing.

For more details on the upwinding scheme, see the science reference documentation.

\[ \frac{\partial V}{\partial z} \bigg|_{j} \approx \frac{V_{\ell} - V_{\ell-1}}{z_{\ell} - z_{\ell-1}} \]

Where the value of \( \ell \) is determined by the sign of the axial velocity. If the axial velocity is positive, the value of \( \ell \) is j. If the axial velocity is negative, the value of \( \ell \) is j + 1. A positive velocity means that the flow is moving left-to-right.

Parameters
[in]xThe local domain state vector.
[in]jThe grid point index at which the derivative is computed.

Definition at line 738 of file Flow1D.h.

◆ dYdz()

double dYdz ( const double *  x,
size_t  k,
size_t  j 
) const
inlineprotected

Calculates the spatial derivative of the species mass fraction \( Y_k \) with respect to z for species k at point j using upwind differencing.

For details on the upwinding scheme, see dVdz().

Parameters
[in]xThe local domain state vector.
[in]kThe species index.
[in]jThe grid point index at which the derivative is computed.

Definition at line 753 of file Flow1D.h.

◆ dTdz()

double dTdz ( const double *  x,
size_t  j 
) const
inlineprotected

Calculates the spatial derivative of temperature T with respect to z at point j using upwind differencing.

For details on the upwinding scheme, see dVdz().

Parameters
[in]xThe local domain state vector.
[in]jThe grid point index at which the derivative is computed.

Definition at line 767 of file Flow1D.h.

◆ shear()

double shear ( const double *  x,
size_t  j 
) const
inlineprotected

Compute the shear term from the momentum equation using a central three-point differencing scheme.

The term to be discretized is:

\[ \frac{d}{dz}\left(\mu \frac{dV}{dz}\right) \]

For more details on the discretization scheme used for the second derivative, see the documentation.

\[ \frac{d}{dz}\left(\mu \frac{dV}{dz}\right) \approx \frac{\mu_{j+1/2} \frac{V_{j+1} - V_j}{z_{j+1} - z_j} - \mu_{j-1/2} \frac{V_j - V_{j-1}}{z_j - z_{j-1}}}{\frac{z_{j+1} - z_{j-1}}{2}} \]

Parameters
[in]xThe local domain state vector.
[in]jThe grid point index at which the derivative is computed.

Definition at line 795 of file Flow1D.h.

◆ conduction()

double conduction ( const double *  x,
size_t  j 
) const
inlineprotected

Compute the conduction term from the energy equation using a central three-point differencing scheme.

For the details about the discretization, see shear().

Parameters
[in]xThe local domain state vector.
[in]jThe grid point index at which the derivative is computed.

Definition at line 810 of file Flow1D.h.

◆ mindex()

size_t mindex ( size_t  k,
size_t  j,
size_t  m 
)
inlineprotected

Array access mapping for a 3D array stored in a 1D vector.

Used for accessing data in the m_multidiff member variable.

Parameters
[in]kFirst species index.
[in]jThe grid point index.
[in]mThe second species index.

Definition at line 824 of file Flow1D.h.

◆ grad_hk()

void grad_hk ( const double *  x,
size_t  j 
)
protectedvirtual

Compute the spatial derivative of species specific molar enthalpies using upwind differencing.

Updates all species molar enthalpies for all species at point j. Updates the m_dhk_dz 2D array.

For details on the upwinding scheme, see dVdz().

Parameters
[in]xThe local domain state vector.
[in]jThe index at which the derivative is computed.

Definition at line 1132 of file Flow1D.cpp.

Member Data Documentation

◆ m_press

double m_press = -1.0
protected

pressure [Pa]

Definition at line 844 of file Flow1D.h.

◆ m_dz

vector<double> m_dz
protected

Grid spacing. Element j holds the value of z(j+1) - z(j).

Definition at line 847 of file Flow1D.h.

◆ m_rho

vector<double> m_rho
protected

Density at each grid point.

Definition at line 850 of file Flow1D.h.

◆ m_wtm

vector<double> m_wtm
protected

Mean molecular weight at each grid point.

Definition at line 851 of file Flow1D.h.

◆ m_wt

vector<double> m_wt
protected

Molecular weight of each species.

Definition at line 852 of file Flow1D.h.

◆ m_cp

vector<double> m_cp
protected

Specific heat capacity at each grid point.

Definition at line 853 of file Flow1D.h.

◆ m_visc

vector<double> m_visc
protected

Dynamic viscosity at each grid point [Pa∙s].

Definition at line 856 of file Flow1D.h.

◆ m_tcon

vector<double> m_tcon
protected

Thermal conductivity at each grid point [W/m/K].

Definition at line 857 of file Flow1D.h.

◆ m_diff

vector<double> m_diff
protected

Coefficient used in diffusion calculations for each species at each grid point.

The value stored is different depending on the transport model (multicomponent versus mixture averaged) and flux gradient basis (mass or molar). Vector size is m_nsp × m_points, where m_diff[k + j*m_nsp] contains the value for species k at point j.

Definition at line 865 of file Flow1D.h.

◆ m_multidiff

vector<double> m_multidiff
protected

Vector of size m_nsp × m_nsp × m_points for saving multicomponent diffusion coefficients.

Order of elements is defined by mindex().

Definition at line 869 of file Flow1D.h.

◆ m_dthermal

Array2D m_dthermal
protected

Array of size m_nsp by m_points for saving thermal diffusion coefficients.

Definition at line 872 of file Flow1D.h.

◆ m_flux

Array2D m_flux
protected

Array of size m_nsp by m_points for saving diffusive mass fluxes.

Definition at line 875 of file Flow1D.h.

◆ m_hk

Array2D m_hk
protected

Array of size m_nsp by m_points for saving molar enthalpies.

Definition at line 878 of file Flow1D.h.

◆ m_dhk_dz

Array2D m_dhk_dz
protected

Array of size m_nsp by m_points-1 for saving enthalpy fluxes.

Definition at line 881 of file Flow1D.h.

◆ m_wdot

Array2D m_wdot
protected

Array of size m_nsp by m_points for saving species production rates.

Definition at line 884 of file Flow1D.h.

◆ m_nsp

size_t m_nsp
protected

Number of species in the mechanism.

Definition at line 886 of file Flow1D.h.

◆ m_thermo

ThermoPhase* m_thermo = nullptr
protected

Phase object used for calculating thermodynamic properties.

Definition at line 889 of file Flow1D.h.

◆ m_kin

Kinetics* m_kin = nullptr
protected

Kinetics object used for calculating species production rates.

Definition at line 892 of file Flow1D.h.

◆ m_trans

Transport* m_trans = nullptr
protected

Transport object used for calculating transport properties.

Definition at line 895 of file Flow1D.h.

◆ m_epsilon_left

double m_epsilon_left = 0.0
protected

Emissivity of the surface to the left of the domain.

Used for calculating radiative heat loss.

Definition at line 899 of file Flow1D.h.

◆ m_epsilon_right

double m_epsilon_right = 0.0
protected

Emissivity of the surface to the right of the domain.

Used for calculating radiative heat loss.

Definition at line 903 of file Flow1D.h.

◆ m_kRadiating

vector<size_t> m_kRadiating
protected

Indices within the ThermoPhase of the radiating species.

First index is for CO2, second is for H2O.

Definition at line 907 of file Flow1D.h.

◆ m_do_energy

vector<bool> m_do_energy
protected

For each point in the domain, true if energy equation is solved or false if temperature is held constant.

See also
doEnergy, fixTemperature

Definition at line 915 of file Flow1D.h.

◆ m_do_soret

bool m_do_soret = false
protected

true if the Soret diffusion term should be calculated.

Definition at line 918 of file Flow1D.h.

◆ m_fluxGradientBasis

ThermoBasis m_fluxGradientBasis = ThermoBasis::molar
protected

Determines whether diffusive fluxes are computed using gradients of mass fraction or mole fraction.

See also
setFluxGradientBasis, fluxGradientBasis

Definition at line 923 of file Flow1D.h.

◆ m_do_multicomponent

bool m_do_multicomponent = false
protected

true if transport fluxes are computed using the multicomponent diffusion coefficients, or false if mixture-averaged diffusion coefficients are used.

Definition at line 927 of file Flow1D.h.

◆ m_do_radiation

bool m_do_radiation = false
protected

Determines whether radiative heat loss is calculated.

See also
enableRadiation, radiationEnabled, computeRadiation

Definition at line 931 of file Flow1D.h.

◆ m_dovisc

bool m_dovisc
protected

Determines whether the viscosity term in the momentum equation is calculated.

See also
setViscosityFlag, setFreeFlow, setAxisymmetricFlow, setUnstrainedFlow, updateTransport, shear

Definition at line 936 of file Flow1D.h.

◆ m_isFree

bool m_isFree
protected

Flag that is true for freely propagating flames anchored by a temperature fixed point.

See also
setFreeFlow, setAxisymmetricFlow, setUnstrainedFlow

Definition at line 941 of file Flow1D.h.

◆ m_usesLambda

bool m_usesLambda
protected

Flag that is true for counterflow configurations that use the pressure eigenvalue \( \Lambda \) in the radial momentum equation.

See also
setFreeFlow, setAxisymmetricFlow, setUnstrainedFlow

Definition at line 946 of file Flow1D.h.

◆ m_twoPointControl

bool m_twoPointControl = false
protected

Flag for activating two-point flame control.

Definition at line 949 of file Flow1D.h.

◆ m_qdotRadiation

vector<double> m_qdotRadiation
protected

radiative heat loss vector

Definition at line 953 of file Flow1D.h.

◆ m_fixedtemp

vector<double> m_fixedtemp
protected

Fixed values of the temperature at each grid point that are used when solving with the energy equation disabled.

Values are interpolated from profiles specified with the setFixedTempProfile method as part of _finalize().

Definition at line 961 of file Flow1D.h.

◆ m_zfix

vector<double> m_zfix
protected

Relative coordinates used to specify a fixed temperature profile.

0 corresponds to the left edge of the domain and 1 corresponds to the right edge of the domain. Length is the same as the m_tfix array.

See also
setFixedTempProfile, _finalize

Definition at line 968 of file Flow1D.h.

◆ m_tfix

vector<double> m_tfix
protected

Fixed temperature values at the relative coordinates specified in m_zfix.

See also
setFixedTempProfile, _finalize

Definition at line 972 of file Flow1D.h.

◆ m_kExcessLeft

size_t m_kExcessLeft = 0
protected

Index of species with a large mass fraction at the left boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.

Definition at line 976 of file Flow1D.h.

◆ m_kExcessRight

size_t m_kExcessRight = 0
protected

Index of species with a large mass fraction at the right boundary, for which the mass fraction may be calculated as 1 minus the sum of the other mass fractions.

Definition at line 980 of file Flow1D.h.

◆ m_zLeft

double m_zLeft = Undef
protected

Location of the left control point when two-point control is enabled.

Definition at line 983 of file Flow1D.h.

◆ m_tLeft

double m_tLeft = Undef
protected

Temperature of the left control point when two-point control is enabled.

Definition at line 986 of file Flow1D.h.

◆ m_zRight

double m_zRight = Undef
protected

Location of the right control point when two-point control is enabled.

Definition at line 989 of file Flow1D.h.

◆ m_tRight

double m_tRight = Undef
protected

Temperature of the right control point when two-point control is enabled.

Definition at line 992 of file Flow1D.h.

◆ m_zfixed

double m_zfixed = Undef

Location of the point where temperature is fixed.

Definition at line 996 of file Flow1D.h.

◆ m_tfixed

double m_tfixed = -1.0

Temperature at the point used to fix the flame location.

Definition at line 999 of file Flow1D.h.

◆ m_ybar

vector<double> m_ybar
private

Holds the average of the species mass fractions between grid points j and j+1.

Used when building a gas state at the grid midpoints for evaluating transport properties at the midpoints.

Definition at line 1005 of file Flow1D.h.


The documentation for this class was generated from the following files: