Cantera  3.2.0a2
Loading...
Searching...
No Matches
IonFlow.cpp
Go to the documentation of this file.
1//! @file IonFlow.cpp
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
8#include "cantera/oneD/refine.h"
13#include "cantera/base/global.h"
14
15namespace Cantera
16{
17
18IonFlow::IonFlow(ThermoPhase* ph, size_t nsp, size_t points) :
19 Flow1D(ph, nsp, points)
20{
21 // make a local copy of species charge
22 for (size_t k = 0; k < m_nsp; k++) {
23 m_speciesCharge.push_back(m_thermo->charge(k));
24 }
25
26 // Find indices for charge of species
27 for (size_t k = 0; k < m_nsp; k++){
28 if (m_speciesCharge[k] != 0){
29 m_kCharge.push_back(k);
30 } else {
31 m_kNeutral.push_back(k);
32 }
33 }
34
35 // Find the index of electron
36 if (m_thermo->speciesIndex("E") != npos ) {
38 }
39
40 // no bound for electric potential
41 setBounds(c_offset_E, -1.0e20, 1.0e20);
42
43 // Set tighter negative species limit on charged species to avoid
44 // instabilities. Tolerance on electrons is even tighter to account for the
45 // low "molecular" weight.
46 for (size_t k : m_kCharge) {
47 setBounds(c_offset_Y + k, -1e-14, 1.0);
48 }
49 setBounds(c_offset_Y + m_kElectron, -1e-18, 1.0);
50
51 m_refiner->setActive(c_offset_E, false);
53}
54
55IonFlow::IonFlow(shared_ptr<Solution> sol, const string& id, size_t points)
56 : IonFlow(sol->thermo().get(), sol->thermo()->nSpecies(), points)
57{
58 setSolution(sol);
59 m_id = id;
60 m_kin = m_solution->kinetics().get();
61 m_trans = m_solution->transport().get();
62 if (m_trans->transportModel() == "none") {
63 throw CanteraError("IonFlow::IonFlow",
64 "An appropriate transport model\nshould be set when instantiating the "
65 "Solution ('gas') object.");
66 }
67 m_solution->registerChangedCallback(this, [this]() {
68 setKinetics(m_solution->kinetics());
69 setTransport(m_solution->transport());
70 });
71}
72
73string IonFlow::domainType() const {
74 if (m_isFree) {
75 return "free-ion-flow";
76 }
77 if (m_usesLambda) {
78 return "axisymmetric-ion-flow";
79 }
80 return "unstrained-ion-flow";
81}
82
83void IonFlow::resize(size_t components, size_t points){
84 Flow1D::resize(components, points);
86}
87
88bool IonFlow::componentActive(size_t n) const
89{
90 if (n == c_offset_E) {
91 return true;
92 } else {
94 }
95}
96
97void IonFlow::updateTransport(double* x, size_t j0, size_t j1)
98{
100 for (size_t j = j0; j < j1; j++) {
101 setGasAtMidpoint(x,j);
104 size_t k = m_kElectron;
105 double tlog = log(m_thermo->temperature());
106 m_mobility[k+m_nsp*j] = poly5(tlog, m_mobi_e_fix.data());
107 double rho = m_thermo->density();
108 double wtm = m_thermo->meanMolecularWeight();
109 m_diff[k+m_nsp*j] = m_wt[k]*rho*poly5(tlog, m_diff_e_fix.data())/wtm;
110 }
111 }
112}
113
114void IonFlow::updateDiffFluxes(const double* x, size_t j0, size_t j1)
115{
117 electricFieldMethod(x,j0,j1);
118 } else {
119 frozenIonMethod(x,j0,j1);
120 }
121}
122
123void IonFlow::frozenIonMethod(const double* x, size_t j0, size_t j1)
124{
125 for (size_t j = j0; j < j1; j++) {
126 double dz = z(j+1) - z(j);
127 double sum = 0.0;
128 for (size_t k : m_kNeutral) {
129 m_flux(k,j) = m_diff[k+m_nsp*j];
130 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;
131 sum -= m_flux(k,j);
132 }
133
134 // correction flux to insure that \sum_k Y_k V_k = 0.
135 for (size_t k : m_kNeutral) {
136 m_flux(k,j) += sum*Y(x,k,j);
137 }
138
139 // flux for ions
140 // Set flux to zero to prevent some fast charged species (such electrons)
141 // to run away
142 for (size_t k : m_kCharge) {
143 m_flux(k,j) = 0;
144 }
145 }
146}
147
148void IonFlow::electricFieldMethod(const double* x, size_t j0, size_t j1)
149{
150 for (size_t j = j0; j < j1; j++) {
151 double rho = density(j);
152 double dz = z(j+1) - z(j);
153
154 // mixture-average diffusion
155 for (size_t k = 0; k < m_nsp; k++) {
156 m_flux(k,j) = m_diff[k+m_nsp*j];
157 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;
158 }
159
160 // ambipolar diffusion
161 double E_ambi = E(x,j);
162 for (size_t k : m_kCharge) {
163 double Yav = 0.5 * (Y(x,k,j) + Y(x,k,j+1));
164 double drift = rho * Yav * E_ambi
165 * m_speciesCharge[k] * m_mobility[k+m_nsp*j];
166 m_flux(k,j) += drift;
167 }
168
169 // correction flux
170 double sum_flux = 0.0;
171 for (size_t k = 0; k < m_nsp; k++) {
172 sum_flux -= m_flux(k,j); // total net flux
173 }
174 double sum_ion = 0.0;
175 for (size_t k : m_kCharge) {
176 sum_ion += Y(x,k,j);
177 }
178 // The portion of correction for ions is taken off
179 for (size_t k : m_kNeutral) {
180 m_flux(k,j) += Y(x,k,j) / (1-sum_ion) * sum_flux;
181 }
182 }
183}
184
185void IonFlow::setSolvingStage(const size_t stage)
186{
187 warn_deprecated("IonFlow::setSolvingStage", "To be removed after Cantera 3.2. ",
188 "Use solveElectricField() or fixElectricField() instead");
189 if (stage == 1) {
190 m_do_electric_field = false;
191 } else if (stage == 2) {
192 m_do_electric_field = true;
193 } else {
194 throw CanteraError("IonFlow::setSolvingStage",
195 "solution stage must be set to: "
196 "1) frozenIonMethod, "
197 "2) electricFieldEqnMethod");
198 }
199}
200
201//! Evaluate the electric field equation residual
202void IonFlow::evalElectricField(double* x, double* rsd, int* diag,
203 double rdt, size_t jmin, size_t jmax)
204{
205 Flow1D::evalElectricField(x, rsd, diag, rdt, jmin, jmax);
206 if (!m_do_electric_field) {
207 return;
208 }
209
210 if (jmin == 0) { // left boundary
211 rsd[index(c_offset_E, jmin)] = E(x,jmin);
212 }
213
214 if (jmax == m_points - 1) { // right boundary
215 rsd[index(c_offset_E, jmax)] = dEdz(x,jmax) - rho_e(x,jmax) / epsilon_0;
216 }
217
218 // j0 and j1 are constrained to only interior points
219 size_t j0 = std::max<size_t>(jmin, 1);
220 size_t j1 = std::min(jmax, m_points - 2);
221 for (size_t j = j0; j <= j1; j++) {
222 rsd[index(c_offset_E, j)] = dEdz(x,j) - rho_e(x,j) / epsilon_0;
223 diag[index(c_offset_E, j)] = 0;
224 }
225}
226
227void IonFlow::evalSpecies(double* x, double* rsd, int* diag,
228 double rdt, size_t jmin, size_t jmax)
229{
230 Flow1D::evalSpecies(x, rsd, diag, rdt, jmin, jmax);
231 if (!m_do_electric_field) {
232 return;
233 }
234
235 if (jmin == 0) { // left boundary
236 // enforcing the flux for charged species is difficult
237 // since charged species are also affected by electric
238 // force, so Neumann boundary condition is used.
239 for (size_t k : m_kCharge) {
240 rsd[index(c_offset_Y + k, jmin)] = Y(x,k,jmin) - Y(x,k,jmin + 1);
241 }
242 }
243}
244
246{
247 if (j != npos) {
248 warn_deprecated("IonFlow::solveElectricField", "Argument to be removed after "
249 "Cantera 3.2.");
250 }
251 if (!m_do_electric_field) {
253 }
254 m_refiner->setActive(c_offset_U, true);
255 m_refiner->setActive(c_offset_V, true);
256 m_refiner->setActive(c_offset_T, true);
257 m_refiner->setActive(c_offset_E, true);
258 m_do_electric_field = true;
259}
260
262{
263 if (j != npos) {
264 warn_deprecated("IonFlow::fixElectricField", "Argument to be removed after "
265 "Cantera 3.2.");
266 }
269 }
270 m_refiner->setActive(c_offset_U, false);
271 m_refiner->setActive(c_offset_V, false);
272 m_refiner->setActive(c_offset_T, false);
273 m_refiner->setActive(c_offset_E, false);
274 m_do_electric_field = false;
275}
276
277void IonFlow::setElectronTransport(vector<double>& tfix, vector<double>& diff_e,
278 vector<double>& mobi_e)
279{
281 size_t degree = 5;
282 size_t n = tfix.size();
283 vector<double> tlog;
284 for (size_t i = 0; i < n; i++) {
285 tlog.push_back(log(tfix[i]));
286 }
287 vector<double> w(n, -1.0);
288 m_diff_e_fix.resize(degree + 1);
289 m_mobi_e_fix.resize(degree + 1);
290 polyfit(n, degree, tlog.data(), diff_e.data(), w.data(), m_diff_e_fix.data());
291 polyfit(n, degree, tlog.data(), mobi_e.data(), w.data(), m_mobi_e_fix.data());
292}
293
294}
Headers for the Transport object, which is the virtual base class for all transport property evaluato...
Base class for exceptions thrown by Cantera classes.
shared_ptr< Solution > m_solution
Composite thermo/kinetics/transport handler.
Definition Domain1D.h:613
string id() const
Returns the identifying tag for this domain.
Definition Domain1D.h:471
double z(size_t jlocal) const
Get the coordinate [m] of the point with local index jlocal
Definition Domain1D.h:484
void setSolution(shared_ptr< Solution > sol)
Set the solution manager.
Definition Domain1D.cpp:31
size_t m_points
Number of grid points.
Definition Domain1D.h:576
string m_id
Identity tag for the domain.
Definition Domain1D.h:606
unique_ptr< Refiner > m_refiner
Refiner object used for placing grid points.
Definition Domain1D.h:607
void setBounds(size_t n, double lower, double upper)
Set the upper and lower bounds for a solution component, n.
Definition Domain1D.h:209
void needJacUpdate()
Set this if something has changed in the governing equations (for example, the value of a constant ha...
Definition Domain1D.cpp:113
size_t index(size_t n, size_t j) const
Returns the index of the solution vector, which corresponds to component n at grid point j.
Definition Domain1D.h:335
This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemic...
Definition Flow1D.h:46
ThermoPhase * m_thermo
Phase object used for calculating thermodynamic properties.
Definition Flow1D.h:897
double density(size_t j) const
Get the density [kg/m³] at point j
Definition Flow1D.h:358
double X(const double *x, size_t k, size_t j) const
Get the mole fraction of species k at point j from the local state vector x.
Definition Flow1D.h:708
void setTransport(shared_ptr< Transport > trans) override
Set the transport manager used for transport property calculations.
Definition Flow1D.cpp:139
void setKinetics(shared_ptr< Kinetics > kin) override
Set the Kinetics object used for reaction rate calculations.
Definition Flow1D.cpp:133
Kinetics * m_kin
Kinetics object used for calculating species production rates.
Definition Flow1D.h:900
void resize(size_t components, size_t points) override
Change the grid size. Called after grid refinement.
Definition Flow1D.cpp:159
bool m_usesLambda
Flag that is true for counterflow configurations that use the pressure eigenvalue in the radial mome...
Definition Flow1D.h:954
vector< double > m_diff
Coefficient used in diffusion calculations for each species at each grid point.
Definition Flow1D.h:873
Array2D m_flux
Array of size m_nsp by m_points for saving diffusive mass fluxes.
Definition Flow1D.h:883
Transport * m_trans
Transport object used for calculating transport properties.
Definition Flow1D.h:903
virtual bool componentActive(size_t n) const
Returns true if the specified component is an active part of the solver state.
Definition Flow1D.cpp:855
virtual void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
Evaluate the species equations' residuals.
Definition Flow1D.cpp:740
vector< double > m_wt
Molecular weight of each species.
Definition Flow1D.h:860
double Y(const double *x, size_t k, size_t j) const
Get the mass fraction of species k at point j from the local state vector x.
Definition Flow1D.h:691
bool m_isFree
Flag that is true for freely propagating flames anchored by a temperature fixed point.
Definition Flow1D.h:949
virtual void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
Evaluate the electric field equation residual to be zero everywhere.
Definition Flow1D.cpp:780
size_t m_nsp
Number of species in the mechanism.
Definition Flow1D.h:894
void setGasAtMidpoint(const double *x, size_t j)
Set the gas state to be consistent with the solution at the midpoint between j and j + 1.
Definition Flow1D.cpp:251
virtual void updateTransport(double *x, size_t j0, size_t j1)
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition Flow1D.cpp:378
This class models the ion transportation in a flame.
Definition IonFlow.h:29
vector< size_t > m_kCharge
index of species with charges
Definition IonFlow.h:135
vector< double > m_diff_e_fix
Coefficients of polynomial fit for electron diffusivity as a function of temperature.
Definition IonFlow.h:148
void electricFieldMethod(const double *x, size_t j0, size_t j1)
Solving phase two: the electric field equation is added coupled by the electrical drift.
Definition IonFlow.cpp:148
double E(const double *x, size_t j) const
electric field [V/m]
Definition IonFlow.h:157
size_t m_kElectron
index of electron
Definition IonFlow.h:154
void frozenIonMethod(const double *x, size_t j0, size_t j1)
Solving phase one: the fluxes of charged species are turned off and the electric field is not solved.
Definition IonFlow.cpp:123
void resize(size_t components, size_t points) override
Change the grid size. Called after grid refinement.
Definition IonFlow.cpp:83
bool m_do_electric_field
flag for solving electric field or not
Definition IonFlow.h:126
void setElectronTransport(vector< double > &tfix, vector< double > &diff_e, vector< double > &mobi_e)
Sometimes it is desired to carry out the simulation using a specified electron transport profile,...
Definition IonFlow.cpp:277
void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the electric field equation residual by Gauss's law.
Definition IonFlow.cpp:202
double rho_e(double *x, size_t j) const
total charge density
Definition IonFlow.h:172
void updateTransport(double *x, size_t j0, size_t j1) override
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition IonFlow.cpp:97
vector< double > m_mobility
mobility
Definition IonFlow.h:151
double dEdz(const double *x, size_t j) const
Axial gradient of the electric field [V/m²].
Definition IonFlow.h:162
void updateDiffFluxes(const double *x, size_t j0, size_t j1) override
Update the diffusive mass fluxes.
Definition IonFlow.cpp:114
void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the species equations' residual.
Definition IonFlow.cpp:227
void setSolvingStage(const size_t stage) override
Solving stage mode for handling ionized species (used by IonFlow specialization)
Definition IonFlow.cpp:185
bool m_import_electron_transport
flag for importing transport of electron
Definition IonFlow.h:129
void solveElectricField(size_t j=npos) override
Set to solve electric field in a point (used by IonFlow specialization)
Definition IonFlow.cpp:245
void fixElectricField(size_t j=npos) override
Set to fix voltage in a point (used by IonFlow specialization)
Definition IonFlow.cpp:261
string domainType() const override
Domain type flag.
Definition IonFlow.cpp:73
vector< size_t > m_kNeutral
index of neutral species
Definition IonFlow.h:138
vector< double > m_mobi_e_fix
Coefficients of polynomial fit for electron mobility as a function of temperature.
Definition IonFlow.h:143
IonFlow(ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
Create a new IonFlow domain.
Definition IonFlow.cpp:18
bool componentActive(size_t n) const override
Returns true if the specified component is an active part of the solver state.
Definition IonFlow.cpp:88
vector< double > m_speciesCharge
electrical properties
Definition IonFlow.h:132
double temperature() const
Temperature (K).
Definition Phase.h:563
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:656
size_t speciesIndex(const string &name) const
Returns the index of a species named 'name' within the Phase object.
Definition Phase.cpp:129
virtual double density() const
Density (kg/m^3).
Definition Phase.h:588
double charge(size_t k) const
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the...
Definition Phase.h:539
Base class for a phase with thermodynamic properties.
virtual string transportModel() const
Identifies the model represented by this Transport object.
Definition Transport.h:93
virtual void getMobilities(double *const mobil_e)
Get the electrical mobilities [m²/V/s].
Definition Transport.h:173
Header for a file containing miscellaneous numerical functions.
This file contains definitions for utility functions and text for modules, inputfiles and logging,...
R poly5(D x, R *c)
Templated evaluation of a polynomial of order 5.
Definition utilities.h:141
double polyfit(size_t n, size_t deg, const double *xp, const double *yp, const double *wp, double *pp)
Fits a polynomial function to a set of data points.
Definition polyfit.cpp:14
const double epsilon_0
Permittivity of free space [F/m].
Definition ct_defs.h:137
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
@ c_offset_U
axial velocity [m/s]
Definition Flow1D.h:25
@ c_offset_V
strain rate
Definition Flow1D.h:26
@ c_offset_E
electric field
Definition Flow1D.h:29
@ c_offset_Y
mass fractions
Definition Flow1D.h:31
@ c_offset_T
temperature [kelvin]
Definition Flow1D.h:27
void warn_deprecated(const string &source, const AnyBase &node, const string &message)
A deprecation warning for syntax in an input file.
Definition AnyMap.cpp:1997
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...