Cantera  3.2.0a4
Loading...
Searching...
No Matches
Transport.h
Go to the documentation of this file.
1/**
2 * @file Transport.h Headers for the Transport object, which is the virtual
3 * base class for all transport property evaluators and also includes the
4 * tranprops group definition (see @ref tranprops and @link
5 * Cantera::Transport Transport @endlink) .
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
11/**
12 * @defgroup tranprops Transport Properties
13 *
14 * These classes provide transport properties, including diffusion coefficients,
15 * thermal conductivity, and viscosity.
16 */
17
18#ifndef CT_TRANSPORT_H
19#define CT_TRANSPORT_H
20
23#include "cantera/base/AnyMap.h"
24
25namespace Cantera
26{
27
28class ThermoPhase;
29
30/**
31 * @addtogroup tranprops
32 */
33//! @cond
34
35const int CK_Mode = 10;
36
37//! @endcond
38
39//! Base class for transport property managers.
40/*!
41 * All classes that compute transport properties for a single phase derive from
42 * this class. Class Transport is meant to be used as a base class only. It is
43 * possible to instantiate it, but its methods throw exceptions if called.
44 *
45 * ## Relationship of the Transport class to the ThermoPhase Class
46 *
47 * This section describes how calculations are carried out within the Transport
48 * class. The Transport class and derived classes of the the Transport class
49 * necessarily use the ThermoPhase class to obtain the list of species and the
50 * thermodynamic state of the phase.
51 *
52 * No state information is stored within Transport classes. Queries to the
53 * underlying ThermoPhase object must be made to obtain the state of the system.
54 *
55 * An exception to this however is the state information concerning the the
56 * gradients of variables. This information is not stored within the ThermoPhase
57 * objects. It may be collected within the Transport objects. In fact, the
58 * meaning of const operations within the Transport class refers to calculations
59 * which do not change the state of the system nor the state of the first order
60 * gradients of the system.
61 *
62 * When a const operation is evoked within the Transport class, it is also
63 * implicitly assumed that the underlying state within the ThermoPhase object
64 * has not changed its values.
65 *
66 * @todo Provide a general mechanism to store the gradients of state variables
67 * within the system.
68 *
69 * @ingroup tranprops
70 */
72{
73public:
74 //! Constructor.
75 /*!
76 * New transport managers should be created using TransportFactory, not by
77 * calling the constructor directly.
78 *
79 * @see TransportFactory
80 */
81 Transport() = default;
82
83 virtual ~Transport() {}
84
85 // Transport objects are not copyable or assignable
86 Transport(const Transport&) = delete;
87 Transport& operator=(const Transport&) = delete;
88
89 //! Create a new Transport object using the same transport model and species
90 //! transport properties as this one.
91 //! @param thermo ThermoPhase used to specify the state for the newly cloned
92 //! Transport object. Can be created from the phase used by the current
93 //! Transport object using the ThermoPhase::clone() method.
94 //! @since New in %Cantera 3.2.
95 shared_ptr<Transport> clone(shared_ptr<ThermoPhase> thermo) const;
96
97 //! Identifies the model represented by this Transport object. Each derived class
98 //! should override this method to return a meaningful identifier.
99 //! @since New in %Cantera 3.0. The name returned by this method corresponds
100 //! to the canonical name used in the YAML input format.
101 virtual string transportModel() const {
102 return "none";
103 }
104
105 /**
106 * Phase object. Every transport manager is designed to compute properties
107 * for a specific phase of a mixture, which might be a liquid solution, a
108 * gas mixture, a surface, etc. This method returns a reference to the
109 * object representing the phase itself.
110 */
112 return *m_thermo;
113 }
114
115 //! Check that the specified species index is in range. Throws an exception
116 //! if k is greater than #m_nsp.
117 void checkSpeciesIndex(size_t k) const;
118
119 //! Check that an array size is at least #m_nsp. Throws an exception if
120 //! kk is less than #m_nsp. Used before calls which take an array
121 //! pointer.
122 void checkSpeciesArraySize(size_t kk) const;
123
124 //! @name Transport Properties
125 //! @{
126
127 //! Get the dynamic viscosity [Pa·s]
128 virtual double viscosity() {
129 throw NotImplementedError("Transport::viscosity",
130 "Not implemented for transport model '{}'.", transportModel());
131 }
132
133 //! Get the pure species viscosities [Pa·s].
134 /*!
135 * @param visc Vector of viscosities; length is the number of species
136 */
137 virtual void getSpeciesViscosities(double* const visc) {
138 throw NotImplementedError("Transport::getSpeciesViscosities",
139 "Not implemented for transport model '{}'.", transportModel());
140 }
141
142 //! The bulk viscosity [Pa·s].
143 /*!
144 * The bulk viscosity is only non-zero in rare cases. Most transport
145 * managers either overload this method to return zero, or do not implement
146 * it, in which case an exception is thrown if called.
147 */
148 virtual double bulkViscosity() {
149 throw NotImplementedError("Transport::bulkViscosity",
150 "Not implemented for transport model '{}'.", transportModel());
151 }
152
153 //! Get the mixture thermal conductivity [W/m/K].
154 virtual double thermalConductivity() {
155 throw NotImplementedError("Transport::thermalConductivity",
156 "Not implemented for transport model '{}'.", transportModel());
157 }
158
159 //! Get the electrical conductivity [siemens/m].
160 virtual double electricalConductivity() {
161 throw NotImplementedError("Transport::electricalConductivity",
162 "Not implemented for transport model '{}'.", transportModel());
163 }
164
165 //! Get the electrical mobilities [m²/V/s].
166 /*!
167 * This function returns the mobilities. In some formulations this is equal
168 * to the normal mobility multiplied by Faraday's constant.
169 *
170 * Frequently, but not always, the mobility is calculated from the diffusion
171 * coefficient using the Einstein relation
172 *
173 * @f[
174 * \mu^e_k = \frac{F D_k}{R T}
175 * @f]
176 *
177 * @param mobil_e Returns the mobilities of the species in array @c
178 * mobil_e. The array must be dimensioned at least as large as
179 * the number of species.
180 */
181 virtual void getMobilities(double* const mobil_e) {
182 throw NotImplementedError("Transport::getMobilities",
183 "Not implemented for transport model '{}'.", transportModel());
184 }
185
186 //! @}
187
188 //! Get the species diffusive mass fluxes [kg/m²/s] with respect to the specified
189 //! solution averaged velocity, given the mole fraction and temperature gradients.
190 /*!
191 * Usually the specified solution average velocity is the mass averaged velocity.
192 * This is changed in some subclasses, however.
193 *
194 * @param ndim Number of dimensions in the flux expressions
195 * @param[in] grad_T Gradient of the temperature (length `ndim`)
196 * @param ldx Leading dimension of the `grad_X` array (usually equal to the number
197 * of species)
198 * @param[in] grad_X Gradients of the mole fractions; flattened matrix such that
199 * @f$ dX_k/dx_n = \tt{ grad\_X[n*ldx+k]} @f$ is the gradient of species *k*
200 * in dimension *n*. Length is `ldx` * `ndim`.
201 * @param ldf Leading dimension of the `fluxes` array (usually equal to the number
202 * of species)
203 * @param[out] fluxes The diffusive mass fluxes; flattened matrix such that
204 * @f$ j_{kn} = \tt{ fluxes[n*ldf+k]} @f$ is the flux of species *k*
205 * in dimension *n*. Length is `ldf` * `ndim`.
206 */
207 virtual void getSpeciesFluxes(size_t ndim, const double* const grad_T,
208 size_t ldx, const double* const grad_X,
209 size_t ldf, double* const fluxes) {
210 throw NotImplementedError("Transport::getSpeciesFluxes",
211 "Not implemented for transport model '{}'.", transportModel());
212 }
213
214 //! Get the molar fluxes [kmol/m²/s], given the thermodynamic state at two
215 //! nearby points.
216 /*!
217 * @param[in] state1 Array of temperature, density, and mass fractions for
218 * state 1.
219 * @param[in] state2 Array of temperature, density, and mass fractions for
220 * state 2.
221 * @param[in] delta Distance [m] from state 1 to state 2.
222 * @param[out] cfluxes Array containing the diffusive molar fluxes of species from
223 * `state1` to `state2`; Length is number of species.
224 */
225 virtual void getMolarFluxes(const double* const state1,
226 const double* const state2, const double delta,
227 double* const cfluxes) {
228 throw NotImplementedError("Transport::getMolarFluxes",
229 "Not implemented for transport model '{}'.", transportModel());
230 }
231
232 //! Get the mass fluxes [kg/m²/s], given the thermodynamic state at two
233 //! nearby points.
234 /*!
235 * @param[in] state1 Array of temperature, density, and mass
236 * fractions for state 1.
237 * @param[in] state2 Array of temperature, density, and mass fractions for
238 * state 2.
239 * @param[in] delta Distance [m] from state 1 to state 2.
240 * @param[out] mfluxes Array containing the diffusive mass fluxes of species from
241 * `state1` to `state2`; length is number of species.
242 */
243 virtual void getMassFluxes(const double* state1,
244 const double* state2, double delta,
245 double* mfluxes) {
246 throw NotImplementedError("Transport::getMassFluxes",
247 "Not implemented for transport model '{}'.", transportModel());
248 }
249
250 //! Return a vector of thermal diffusion coefficients [kg/m/s].
251 /*!
252 * The thermal diffusion coefficient @f$ D^T_k @f$ is defined so that the
253 * diffusive mass flux of species *k* induced by the local temperature
254 * gradient is given by:
255 *
256 * @f[
257 * \mathbf{j}_k = -D^T_k \frac{\nabla T}{T}.
258 * @f]
259 *
260 * The thermal diffusion coefficient can be either positive or negative.
261 *
262 * @param dt On return, dt will contain the species thermal diffusion coefficients.
263 * Dimension dt at least as large as the number of species.
264 */
265 virtual void getThermalDiffCoeffs(double* const dt) {
266 throw NotImplementedError("Transport::getThermalDiffCoeffs",
267 "Not implemented for transport model '{}'.", transportModel());
268 }
269
270 //! Returns the matrix of binary diffusion coefficients [m²/s].
271 /*!
272 * @param[in] ld Leading dimension of the flattened array `d` used to store the
273 * diffusion coefficient matrix; usually equal to the number of
274 * species.
275 * @param[out] d Diffusion coefficient matrix stored in column-major (Fortran)
276 * order, such that @f$ \mathcal{D}_{ij} = \tt{d[ld*j + i]} @f$; must
277 * be at least `ld` times the number of species in length.
278 * @see GasTransport::fitDiffCoeffs()
279 */
280 virtual void getBinaryDiffCoeffs(const size_t ld, double* const d) {
281 throw NotImplementedError("Transport::getBinaryDiffCoeffs",
282 "Not implemented for transport model '{}'.", transportModel());
283 }
284
285 //! Return the multicomponent diffusion coefficients [m²/s].
286 /*!
287 * If the transport manager implements a multicomponent diffusion
288 * model, then this method returns the array of multicomponent
289 * diffusion coefficients. Otherwise it throws an exception.
290 *
291 * @param[in] ld Leading dimension of the flattened array `d` used to store the
292 * diffusion coefficient matrix; usually equal to the number of
293 * species.
294 * @param[out] d Diffusion coefficient matrix stored in column-major (Fortran)
295 * order, such that @f$ D_{ij} = \tt{d[ld*j + i]} @f$ is the
296 * diffusion coefficient for species *i* due to concentration
297 * gradients in species *j*; must be at least `ld` times the number
298 * of species in length.
299 */
300 virtual void getMultiDiffCoeffs(const size_t ld, double* const d) {
301 throw NotImplementedError("Transport::getMultiDiffCoeffs",
302 "Not implemented for transport model '{}'.", transportModel());
303 }
304
305 //! Return a vector of mixture averaged diffusion coefficients [m²/s].
306 /**
307 * Mixture-averaged diffusion coefficients [m^2/s]. If the transport
308 * manager implements a mixture-averaged diffusion model, then this method
309 * returns the array of mixture-averaged diffusion coefficients. Otherwise
310 * it throws an exception.
311 *
312 * @param d Return vector of mixture averaged diffusion coefficients; length is
313 * the number of species.
314 */
315 virtual void getMixDiffCoeffs(double* const d) {
316 throw NotImplementedError("Transport::getMixDiffCoeffs",
317 "Not implemented for transport model '{}'.", transportModel());
318 }
319
320 //! Returns a vector of mixture averaged diffusion coefficients [m²/s].
321 virtual void getMixDiffCoeffsMole(double* const d) {
322 throw NotImplementedError("Transport::getMixDiffCoeffsMole",
323 "Not implemented for transport model '{}'.", transportModel());
324 }
325
326 //! Returns a vector of mixture averaged diffusion coefficients [m²/s].
327 virtual void getMixDiffCoeffsMass(double* const d) {
328 throw NotImplementedError("Transport::getMixDiffCoeffsMass",
329 "Not implemented for transport model '{}'.", transportModel());
330 }
331
332 //! Return the polynomial fits to the viscosity of species `i`.
333 virtual void getViscosityPolynomial(size_t i, double* coeffs) const{
334 throw NotImplementedError("Transport::getViscosityPolynomial",
335 "Not implemented for transport model '{}'.", transportModel());
336 }
337
338 //! Return the temperature fits of the heat conductivity of species `i`.
339 virtual void getConductivityPolynomial(size_t i, double* coeffs) const{
340 throw NotImplementedError("Transport::getConductivityPolynomial",
341 "Not implemented for transport model '{}'.", transportModel());
342 }
343
344 //! Return the polynomial fits to the binary diffusivity of species pair (i, j)
345 virtual void getBinDiffusivityPolynomial(size_t i, size_t j, double* coeffs) const{
346 throw NotImplementedError("Transport::getBinDiffusivityPolynomial",
347 "Not implemented for transport model '{}'.", transportModel());
348 }
349
350 //! Return the polynomial fits to the collision integral of species pair (i, j)
351 virtual void getCollisionIntegralPolynomial(size_t i, size_t j,
352 double* astar_coeffs,
353 double* bstar_coeffs,
354 double* cstar_coeffs) const{
355 throw NotImplementedError("Transport::getCollisionIntegralPolynomial",
356 "Not implemented for transport model '{}'.", transportModel());
357 }
358
359 //! Modify the polynomial fits to the viscosity of species `i`
360 virtual void setViscosityPolynomial(size_t i, double* coeffs){
361 throw NotImplementedError("Transport::setViscosityPolynomial",
362 "Not implemented for transport model '{}'.", transportModel());
363 }
364
365 //! Modify the temperature fits of the heat conductivity of species `i`
366 virtual void setConductivityPolynomial(size_t i, double* coeffs){
367 throw NotImplementedError("Transport::setConductivityPolynomial",
368 "Not implemented for transport model '{}'.", transportModel());
369 }
370
371 //! Modify the polynomial fits to the binary diffusivity of species pair (i, j)
372 virtual void setBinDiffusivityPolynomial(size_t i, size_t j, double* coeffs){
373 throw NotImplementedError("Transport::setBinDiffusivityPolynomial",
374 "Not implemented for transport model '{}'.", transportModel());
375 }
376
377 //! Modify the polynomial fits to the collision integral of species pair (i, j)
378 virtual void setCollisionIntegralPolynomial(size_t i, size_t j,
379 double* astar_coeffs,
380 double* bstar_coeffs,
381 double* cstar_coeffs, bool flag){
382 throw NotImplementedError("Transport::setCollisionIntegralPolynomial",
383 "Not implemented for transport model '{}'.", transportModel());
384 }
385
386 //! Return the parameters for a phase definition which are needed to
387 //! reconstruct an identical object using the newTransport() function. This
388 //! excludes the individual species transport properties, which are handled
389 //! separately.
390 AnyMap parameters() const;
391
392 //! Get error metrics about any functional fits calculated for pure species
393 //! transport properties.
394 //!
395 //! See GasTransport::fitDiffCoeffs and GasTransport::fitProperties.
396 //!
397 //! @warning This method is an experimental part of the %Cantera API and may be
398 //! changed or removed without notice.
399 //! @since New in %Cantera 3.1.
401
402 //! @name Transport manager construction
403 //!
404 //! These methods are used during construction.
405 //! @{
406
407 //! Initialize a transport manager
408 /*!
409 * This routine sets up a transport manager. It calculates the collision
410 * integrals and populates species-dependent data structures.
411 *
412 * @param thermo Pointer to the ThermoPhase object
413 * @param mode Chemkin compatible mode or not. This alters the
414 * specification of the collision integrals. defaults to no.
415 * @deprecated To be removed after %Cantera 3.2. Use version that takes
416 * `shared_ptr<ThermoPhase>`.
417 */
418 virtual void init(ThermoPhase* thermo, int mode=0) {}
419
420 //! Initialize a transport manager
421 /*!
422 * This routine sets up a transport manager. It calculates the collision
423 * integrals and populates species-dependent data structures.
424 *
425 * @param thermo ThermoPhase object determining conditions for which to compute
426 * transport properties.
427 * @param mode Chemkin compatible mode or not. This alters the
428 * specification of the collision integrals. defaults to no.
429 * @since Changed to use `shared_ptr<ThermoPhase>` in %Cantera 3.2.
430 */
431 virtual void init(shared_ptr<ThermoPhase> thermo, int mode=0) {}
432
433 //! Boolean indicating the form of the transport properties polynomial fits.
434 //! Returns true if the Chemkin form is used.
435 virtual bool CKMode() const {
436 throw NotImplementedError("Transport::CK_Mode",
437 "Not implemented for transport model '{}'.", transportModel());
438 }
439
440 //! @}
441
442 //! Invalidate any cached values which are normally updated only when a
443 //! change in state is detected
444 //! @since New in %Cantera 3.1.
445 virtual void invalidateCache() {}
446
447protected:
448 //! pointer to the object representing the phase
450
451 //! Number of species in the phase
452 size_t m_nsp = 0;
453
454 //! Maximum errors associated with fitting pure species transport properties.
456};
457
458}
459
460#endif
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:431
An error indicating that an unimplemented function has been called.
Base class for a phase with thermodynamic properties.
Base class for transport property managers.
Definition Transport.h:72
ThermoPhase * m_thermo
pointer to the object representing the phase
Definition Transport.h:449
virtual void init(ThermoPhase *thermo, int mode=0)
Initialize a transport manager.
Definition Transport.h:418
virtual void getBinDiffusivityPolynomial(size_t i, size_t j, double *coeffs) const
Return the polynomial fits to the binary diffusivity of species pair (i, j)
Definition Transport.h:345
virtual void setCollisionIntegralPolynomial(size_t i, size_t j, double *astar_coeffs, double *bstar_coeffs, double *cstar_coeffs, bool flag)
Modify the polynomial fits to the collision integral of species pair (i, j)
Definition Transport.h:378
void checkSpeciesIndex(size_t k) const
Check that the specified species index is in range.
Definition Transport.cpp:21
virtual double bulkViscosity()
The bulk viscosity [Pa·s].
Definition Transport.h:148
virtual double electricalConductivity()
Get the electrical conductivity [siemens/m].
Definition Transport.h:160
Transport()=default
Constructor.
virtual void init(shared_ptr< ThermoPhase > thermo, int mode=0)
Initialize a transport manager.
Definition Transport.h:431
virtual void getSpeciesFluxes(size_t ndim, const double *const grad_T, size_t ldx, const double *const grad_X, size_t ldf, double *const fluxes)
Get the species diffusive mass fluxes [kg/m²/s] with respect to the specified solution averaged veloc...
Definition Transport.h:207
virtual void getViscosityPolynomial(size_t i, double *coeffs) const
Return the polynomial fits to the viscosity of species i.
Definition Transport.h:333
virtual void getThermalDiffCoeffs(double *const dt)
Return a vector of thermal diffusion coefficients [kg/m/s].
Definition Transport.h:265
virtual void getMixDiffCoeffsMole(double *const d)
Returns a vector of mixture averaged diffusion coefficients [m²/s].
Definition Transport.h:321
virtual void getMolarFluxes(const double *const state1, const double *const state2, const double delta, double *const cfluxes)
Get the molar fluxes [kmol/m²/s], given the thermodynamic state at two nearby points.
Definition Transport.h:225
virtual void getConductivityPolynomial(size_t i, double *coeffs) const
Return the temperature fits of the heat conductivity of species i.
Definition Transport.h:339
virtual string transportModel() const
Identifies the model represented by this Transport object.
Definition Transport.h:101
AnyMap parameters() const
Return the parameters for a phase definition which are needed to reconstruct an identical object usin...
Definition Transport.cpp:35
virtual void getMobilities(double *const mobil_e)
Get the electrical mobilities [m²/V/s].
Definition Transport.h:181
virtual void setViscosityPolynomial(size_t i, double *coeffs)
Modify the polynomial fits to the viscosity of species i
Definition Transport.h:360
virtual void getMixDiffCoeffs(double *const d)
Return a vector of mixture averaged diffusion coefficients [m²/s].
Definition Transport.h:315
virtual void getSpeciesViscosities(double *const visc)
Get the pure species viscosities [Pa·s].
Definition Transport.h:137
virtual void getMassFluxes(const double *state1, const double *state2, double delta, double *mfluxes)
Get the mass fluxes [kg/m²/s], given the thermodynamic state at two nearby points.
Definition Transport.h:243
virtual void setConductivityPolynomial(size_t i, double *coeffs)
Modify the temperature fits of the heat conductivity of species i
Definition Transport.h:366
virtual void getBinaryDiffCoeffs(const size_t ld, double *const d)
Returns the matrix of binary diffusion coefficients [m²/s].
Definition Transport.h:280
virtual double thermalConductivity()
Get the mixture thermal conductivity [W/m/K].
Definition Transport.h:154
virtual bool CKMode() const
Boolean indicating the form of the transport properties polynomial fits.
Definition Transport.h:435
AnyMap fittingErrors() const
Get error metrics about any functional fits calculated for pure species transport properties.
Definition Transport.h:400
size_t m_nsp
Number of species in the phase.
Definition Transport.h:452
shared_ptr< Transport > clone(shared_ptr< ThermoPhase > thermo) const
Create a new Transport object using the same transport model and species transport properties as this...
Definition Transport.cpp:16
virtual void getMixDiffCoeffsMass(double *const d)
Returns a vector of mixture averaged diffusion coefficients [m²/s].
Definition Transport.h:327
ThermoPhase & thermo()
Phase object.
Definition Transport.h:111
AnyMap m_fittingErrors
Maximum errors associated with fitting pure species transport properties.
Definition Transport.h:455
void checkSpeciesArraySize(size_t kk) const
Check that an array size is at least m_nsp.
Definition Transport.cpp:28
virtual void invalidateCache()
Invalidate any cached values which are normally updated only when a change in state is detected.
Definition Transport.h:445
virtual double viscosity()
Get the dynamic viscosity [Pa·s].
Definition Transport.h:128
virtual void getMultiDiffCoeffs(const size_t ld, double *const d)
Return the multicomponent diffusion coefficients [m²/s].
Definition Transport.h:300
virtual void setBinDiffusivityPolynomial(size_t i, size_t j, double *coeffs)
Modify the polynomial fits to the binary diffusivity of species pair (i, j)
Definition Transport.h:372
virtual void getCollisionIntegralPolynomial(size_t i, size_t j, double *astar_coeffs, double *bstar_coeffs, double *cstar_coeffs) const
Return the polynomial fits to the collision integral of species pair (i, j)
Definition Transport.h:351
This file contains definitions of constants, types and terms that are used in internal routines and a...
Definitions for the classes that are thrown when Cantera experiences an error condition (also contain...
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595