Cantera
2.0
|
An interface between multiple bulk phases. More...
#include <Interface.h>
Public Member Functions | |
Interface (std::string infile, std::string id, std::vector< Cantera::ThermoPhase * > otherPhases) | |
Constructor. | |
Interface (const Interface &ii) | |
Copy Constructor. | |
Interface & | operator= (const Interface &right) |
Assignment operator. | |
virtual | ~Interface () |
Destructor. Does nothing. | |
bool | operator! () |
Not operator. | |
bool | ready () const |
return whether the object has been instantiated | |
ThermoPhase * | duplMyselfAsThermoPhase () const |
Duplicator from the ThermoPhase parent class. | |
virtual int | eosType () const |
Equation of state type flag. | |
virtual doublereal | enthalpy_mole () const |
Return the Molar Enthalpy. Units: J/kmol. | |
virtual doublereal | intEnergy_mole () const |
Return the Molar Internal Energy. Units: J/kmol. | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. | |
virtual void | getStandardChemPotentials (doublereal *mu0) const |
Get the array of chemical potentials at unit activity for the standard state species at the current T and P of the solution. | |
virtual void | getActivityConcentrations (doublereal *c) const |
Return a vector of activity concentrations for each species. | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. | |
virtual doublereal | logStandardConc (size_t k=0) const |
Return the log of the standard concentration for the kth species. | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters from the argument list. | |
virtual void | setParametersFromXML (const XML_Node &thermoData) |
Set the Equation-of-State parameters by reading an XML Node Input. | |
virtual void | initThermo () |
Initialize the SurfPhase object after all species have been set up. | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the Surface Phase from an XML_Node. | |
doublereal | siteDensity () |
Returns the site density. | |
void | setPotentialEnergy (int k, doublereal pe) |
Sets the potential energy of species k. | |
doublereal | potentialEnergy (int k) |
Return the potential energy of species k. | |
void | setSiteDensity (doublereal n0) |
Set the site density of the surface phase (kmol m-2) | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species standard states at their standard states at the current T and P of the solution. | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the species standard states at the current T and P of the solution. | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. | |
virtual doublereal | pressure () const |
Return the thermodynamic pressure (Pa). | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. | |
void | setCoverages (const doublereal *theta) |
Set the surface site fractions to a specified state. | |
void | setCoveragesNoNorm (const doublereal *theta) |
Set the surface site fractions to a specified state. | |
void | setCoveragesByName (std::string cov) |
Set the coverages from a string of colon-separated name:value pairs. | |
void | getCoverages (doublereal *theta) const |
Return a vector of surface coverages. | |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. | |
XML_Node & | xml () |
Returns a reference to the XML_Node stored for the phase. | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase Write to vector 'state' the current internal state. | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . | |
doublereal | molarMass (size_t k) const |
Return the Molar mass of species k Alternate name for molecular weight. | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. | |
void | getMolecularWeights (int iwt, doublereal *weights) const |
Copy the vector of molecular weights into array weights. | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. | |
doublereal | size (size_t k) const |
This routine returns the size of species k. | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). | |
virtual void | freezeSpecies () |
Call when finished adding species. | |
bool | speciesFrozen () |
True if freezeSpecies has been called. | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. | |
void | stateMFChangeCalc (bool forceChange=false) |
Every time the mole fractions have changed, this routine will increment the stateMFNumber. | |
virtual Kinetics * | duplMyselfAsKinetics (const std::vector< thermo_t * > &tpVector) const |
Duplication routine for objects which inherit from Kinetics. | |
virtual int | ID () const |
Return the ID of the kinetics object. | |
virtual int | type () const |
Return the type of the kinetics object. | |
void | setElectricPotential (int n, doublereal V) |
Set the electric potential in the nth phase. | |
void | incrementRxnCount () |
Increment the number of reactions in the mechanism by one. | |
void | selectPhase (const doublereal *data, const thermo_t *phase, doublereal *phase_data) |
Extract from array data the portion pertaining to phase phase . | |
Information Methods | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. | |
doublereal | Hf298SS (const int k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) | |
virtual void | modifyOneHf298SS (const int k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. | |
Molar Thermodynamic Properties of the Solution | |
virtual doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. | |
Mechanical Properties | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. | |
virtual void | updateDensity () |
Electric Potential | |
The phase may be at some non-zero electrical potential. These methods set or get the value of the electric potential. | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition. The activity is dimensionless. | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. | |
virtual void | getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const |
Returns the units of the standard and generalized concentrations. | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. | |
Partial Molar Properties of the Solution | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. | |
virtual void | getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. | |
virtual void | getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. | |
Properties of the Standard State of the Species in the Solution | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. | |
virtual void | getdStandardVolumes_dT (doublereal *d_vol_dT) const |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. | |
virtual void | getdStandardVolumes_dP (doublereal *d_vol_dP) const |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. | |
Thermodynamic Values for the Species Reference States | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. | |
Specific Properties | |
doublereal | enthalpy_mass () const |
Specific enthalpy. | |
doublereal | intEnergy_mass () const |
Specific internal energy. | |
doublereal | entropy_mass () const |
Specific entropy. | |
doublereal | gibbs_mass () const |
Specific Gibbs function. | |
doublereal | cp_mass () const |
Specific heat at constant pressure. | |
doublereal | cv_mass () const |
Specific heat at constant volume. | |
Setting the State | |
These methods set all or part of the thermodynamic state. | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPX (doublereal t, doublereal p, compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TPY (doublereal t, doublereal p, compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) | |
void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. | |
void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. | |
virtual void | setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. | |
virtual void | setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). | |
virtual void | setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and pressure (Pa). | |
virtual void | setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). | |
Chemical Equilibrium | |
Chemical equilibrium. | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. | |
Critical State Properties. | |
These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date. | |
virtual doublereal | critTemperature () const |
Critical temperature (K). | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). | |
Saturation Properties. | |
These methods are only implemented by subclasses that implement full liquid-vapor equations of state. They may be moved out of ThermoPhase at a later date. | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. | |
virtual doublereal | satPressure (doublereal t) const |
Return the saturation pressure given the temperature. | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. | |
Initialization Methods - For Internal Use (ThermoPhase) | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. | |
void | setSpeciesThermo (SpeciesThermo *spthermo) |
Install a species thermodynamic property manager. | |
virtual SpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. | |
virtual void | initThermoFile (std::string inputFile, std::string id) |
virtual void | initThermoXML (XML_Node &phaseNode, std::string id) |
Import and initialize a ThermoPhase object using an XML tree. | |
virtual void | installSlavePhases (Cantera::XML_Node *phaseNode) |
Add in species from Slave phases. | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. | |
Derivatives of Thermodynamic Variables needed for Applications | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Printing | |
virtual std::string | report (bool show_thermo=true) const |
returns a summary of the state of the phase as a string | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file | |
Name and ID | |
Class Phase contains two strings that identify a phase. The ID is the value of the ID attribute of the XML phase node that is used to initialize a phase when it is read. The name field is also initialized to the value of the ID attribute of the XML phase node. However, the name field may be changed to another value during the course of a calculation. For example, if a phase is located in two places, but has the same constitutive input, the ids of the two phases will be the same, but the names of the two phases may be different. It is an error to have two phases in a single problem with the same name or the same id (or the name from one phase being the same as the id of another phase). Thus, it is expected that there is a 1-1 correspondence between names and unique phases within a Cantera problem. | |
std::string | id () const |
Return the string id for the phase. | |
void | setID (std::string id) |
Set the string id for the phase. | |
std::string | name () const |
Return the name of the phase. | |
void | setName (std::string nm) |
Sets the string name for the phase. | |
Element and Species Information | |
std::string | elementName (size_t m) const |
Name of the element with index m. | |
size_t | elementIndex (std::string name) const |
Return the index of element named 'name'. | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. | |
int | atomicNumber (size_t m) const |
Atomic number of element m. | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. | |
size_t | nElements () const |
Number of elements. | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. | |
size_t | speciesIndex (std::string name) const |
Returns the index of a species named 'name' within the Phase object. | |
std::string | speciesName (size_t k) const |
Name of the species with index k. | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. | |
size_t | nSpecies () const |
Returns the number of species in the phase. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
Set thermodynamic state | |
Set the internal thermodynamic state by setting the internally stored temperature, density and species composition. Note that the composition is always set first. Temperature and density are held constant if not explicitly set. | |
void | setMoleFractionsByName (compositionMap &xMap) |
Set the species mole fractions by name. | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. | |
void | setMassFractionsByName (compositionMap &yMap) |
Set the species mass fractions by name. | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. | |
void | setState_TRX (doublereal t, doublereal dens, compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. | |
void | setState_TRY (doublereal t, doublereal dens, compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. | |
Composition | |
void | getMoleFractionsByName (compositionMap &x) const |
Get the mole fractions by name. | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. | |
doublereal | moleFraction (std::string name) const |
Return the mole fraction of a single species. | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. | |
doublereal | massFraction (std::string name) const |
Return the mass fraction of a single species. | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values and normalize them. | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). | |
doublereal | concentration (const size_t k) const |
Concentration of species k. | |
virtual void | setConcentrations (const doublereal *const conc) |
Set the concentrations to the specified values within the phase. | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. | |
Thermodynamic Properties | |
doublereal | temperature () const |
Temperature (K). | |
virtual doublereal | density () const |
Density (kg/m^3). | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). | |
virtual void | setDensity (const doublereal density) |
Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable. | |
virtual void | setMolarDensity (const doublereal molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. | |
virtual void | setTemperature (const doublereal temp) |
Set the internally stored temperature of the phase (K). | |
Mean Properties | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. | |
doublereal | mean_Y (const doublereal *const Q) const |
Evaluate the mass-fraction-weighted mean of an array Q. | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). | |
doublereal | sum_xlogQ (doublereal *const Q) const |
Evaluate \( \sum_k X_k \log Q_k \). | |
Adding Elements and Species | |
These methods are used to add new elements or species. These are not usually called by user programs. Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species. | |
void | addElement (const std::string &symbol, doublereal weight=-12345.0) |
Add an element. | |
void | addElement (const XML_Node &e) |
Add an element from an XML specification. | |
void | addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addUniqueElement (const XML_Node &e) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addElementsFromXML (const XML_Node &phase) |
Add all elements referenced in an XML_Node tree. | |
void | freezeElements () |
Prohibit addition of more elements, and prepare to add species. | |
bool | elementsFrozen () |
True if freezeElements has been called. | |
size_t | addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
void | addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. | |
Reaction Rates Of Progress | |
virtual void | getFwdRatesOfProgress (doublereal *fwdROP) |
Return the forward rates of progress for each reaction. | |
virtual void | getRevRatesOfProgress (doublereal *revROP) |
Return the reverse rates of progress for each reaction. | |
virtual void | getNetRatesOfProgress (doublereal *netROP) |
Return the net rates of progress for each reaction. | |
virtual void | getEquilibriumConstants (doublereal *kc) |
Get the equilibrium constants of all reactions, whether the reaction is reversible or not. | |
void | getExchangeCurrentQuantities () |
virtual void | getDeltaGibbs (doublereal *deltaG) |
Return the vector of values for the reaction gibbs free energy change. | |
virtual void | getDeltaElectrochemPotentials (doublereal *deltaM) |
Return the vector of values for the reaction electrochemical free energy change. | |
virtual void | getDeltaEnthalpy (doublereal *deltaH) |
Return the vector of values for the reactions change in enthalpy. | |
virtual void | getDeltaEntropy (doublereal *deltaS) |
Return the vector of values for the change in entropy due to each reaction. | |
virtual void | getDeltaSSGibbs (doublereal *deltaG) |
Return the vector of values for the reaction standard state gibbs free energy change. | |
virtual void | getDeltaSSEnthalpy (doublereal *deltaH) |
Return the vector of values for the change in the standard state enthalpies of reaction. | |
virtual void | getDeltaSSEntropy (doublereal *deltaS) |
Return the vector of values for the change in the standard state entropies for each reaction. | |
Species Production Rates | |
virtual void | getCreationRates (doublereal *cdot) |
Returns the Species creation rates [kmol/m^2/s]. | |
virtual void | getDestructionRates (doublereal *ddot) |
Return the Species destruction rates [kmol/m^2/s]. | |
virtual void | getNetProductionRates (doublereal *net) |
Return the species net production rates [kmol/m^2/s]. | |
Reaction Mechanism Informational Query Routines | |
virtual doublereal | reactantStoichCoeff (size_t k, size_t i) const |
Stoichiometric coefficient of species k as a reactant in reaction i. | |
virtual doublereal | productStoichCoeff (size_t k, size_t i) const |
Stoichiometric coefficient of species k as a product in reaction i. | |
virtual int | reactionType (size_t i) const |
Flag specifying the type of reaction. | |
virtual void | getActivityConcentrations (doublereal *const conc) |
Get the vector of activity concentrations used in the kinetics object. | |
doublereal | electrochem_beta (size_t irxn) const |
Return the charge transfer rxn Beta parameter for the ith reaction. | |
virtual bool | isReversible (size_t i) |
True if reaction i has been declared to be reversible. | |
virtual std::string | reactionString (size_t i) const |
Return a string representing the reaction. | |
virtual void | getFwdRateConstants (doublereal *kfwd) |
Update the rates of progress of the reactions in the reaction mechanism. | |
virtual void | getRevRateConstants (doublereal *krev, bool doIrreversible=false) |
Update the rates of progress of the reactions in the reaction mechanism. | |
virtual void | getActivationEnergies (doublereal *E) |
Return the activation energies in Kelvin. | |
Constructors and General Information about Mechanism | |
virtual void | assignShallowPointers (const std::vector< thermo_t * > &tpVector) |
Reassign the shallow pointers within the FKinetics object. | |
size_t | nReactions () const |
Number of reactions in the reaction mechanism. | |
void | checkReactionIndex (size_t m) const |
Check that the specified reaction index is in range Throws an exception if i is greater than nReactions() | |
void | checkReactionArraySize (size_t ii) const |
Check that an array size is at least nReactions() Throws an exception if ii is less than nReactions(). | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. | |
void | checkSpeciesArraySize (size_t mm) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
Information/Lookup Functions about Phases and Species | |
size_t | nPhases () const |
The number of phases participating in the reaction mechanism. | |
void | checkPhaseIndex (size_t m) const |
Check that the specified phase index is in range Throws an exception if m is greater than nPhases() | |
void | checkPhaseArraySize (size_t mm) const |
Check that an array size is at least nPhases() Throws an exception if mm is less than nPhases(). | |
size_t | phaseIndex (std::string ph) |
Return the phase index of a phase in the list of phases defined within the object. | |
size_t | surfacePhaseIndex () |
This returns the integer index of the phase which has ThermoPhase type cSurf. | |
size_t | reactionPhaseIndex () |
Phase where the reactions occur. | |
thermo_t & | thermo (size_t n=0) |
This method returns a reference to the nth ThermoPhase object defined in this kinetics mechanism. | |
const thermo_t & | thermo (size_t n=0) const |
thermo_t & | phase (size_t n=0) |
This method returns a reference to the nth ThermoPhase defined in this kinetics mechanism. | |
const thermo_t & | phase (size_t n=0) const |
This method returns a reference to the nth ThermoPhase defined in this kinetics mechanism. | |
size_t | nTotalSpecies () const |
The total number of species in all phases participating in the kinetics mechanism. | |
size_t | start (size_t n) |
Returns the starting index of the species in the nth phase associated with the reaction mechanism. | |
size_t | kineticsSpeciesIndex (size_t k, size_t n) const |
The location of species k of phase n in species arrays. | |
size_t | kineticsSpeciesIndex (const std::string &nm) const |
This routine will look up a species number based on the input std::string nm. | |
size_t | kineticsSpeciesIndex (const std::string &nm, const std::string &ph) const |
This routine will look up a species number based on the input std::string nm. | |
std::string | kineticsSpeciesName (size_t k) const |
Return the std::string name of the kth species in the kinetics manager. | |
thermo_t & | speciesPhase (std::string nm) |
This function looks up the std::string name of a species and returns a reference to the ThermoPhase object of the phase where the species resides. | |
thermo_t & | speciesPhase (size_t k) |
This function takes as an argument the kineticsSpecies index (i.e., the list index in the list of species in the kinetics manager) and returns the species' owning ThermoPhase object. | |
size_t | speciesPhaseIndex (size_t k) |
This function takes as an argument the kineticsSpecies index (i.e., the list index in the list of species in the kinetics manager) and returns the index of the phase owning the species. | |
Reaction Rates Of Progress | |
virtual void | getReactionDelta (const doublereal *property, doublereal *deltaProperty) |
Change in species properties. | |
Reaction Mechanism Informational Query Routines | |
virtual doublereal | reactantOrder (size_t k, size_t i) const |
Reactant order of species k in reaction i. | |
virtual doublereal | productOrder (int k, int i) const |
product Order of species k in reaction i. | |
virtual const std::vector < size_t > & | reactants (size_t i) const |
Returns a read-only reference to the vector of reactant index numbers for reaction i. | |
virtual const std::vector < size_t > & | products (size_t i) const |
Returns a read-only reference to the vector of product index numbers for reaction i. | |
Reaction Mechanism Construction | |
virtual const std::vector < grouplist_t > & | reactantGroups (size_t i) |
virtual const std::vector < grouplist_t > & | productGroups (size_t i) |
Altering Reaction Rates | |
These methods alter reaction rates. They are designed primarily for carrying out sensitivity analysis, but may be used for any purpose requiring dynamic alteration of rate constants. For each reaction, a real-valued multiplier may be defined that multiplies the reaction rate coefficient. The multiplier may be set to zero to completely remove a reaction from the mechanism. | |
doublereal | multiplier (size_t i) const |
The current value of the multiplier for reaction i. | |
void | setMultiplier (size_t i, doublereal f) |
Set the multiplier for reaction i to f. | |
Protected Member Functions | |
void | init (const vector_fp &mw) |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. | |
Protected Attributes | |
bool | m_ok |
Flag indicating that the object has been instantiated. | |
Cantera::XML_Node * | m_r |
XML_Node pointer to the XML File object that contains the Surface and the Interfacial Reaction object description. | |
doublereal | m_n0 |
Surface site density (kmol m-2) | |
doublereal | m_logn0 |
log of the surface site density | |
doublereal | m_tmin |
Minimum temperature for valid species standard state thermo props. | |
doublereal | m_tmax |
Maximum temperature for valid species standard state thermo props. | |
doublereal | m_press |
Current value of the pressure (Pa) | |
doublereal | m_tlast |
Current value of the temperature (Kelvin) | |
vector_fp | m_h0 |
Temporary storage for the reference state enthalpies. | |
vector_fp | m_s0 |
Temporary storage for the reference state entropies. | |
vector_fp | m_cp0 |
Temporary storage for the reference state heat capacities. | |
vector_fp | m_mu0 |
Temporary storage for the reference state gibbs energies. | |
vector_fp | m_work |
Temporary work array. | |
vector_fp | m_pe |
Potential energy of each species in the surface phase. | |
vector_fp | m_logsize |
vector storing the log of the size of each species. | |
SpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. | |
doublereal | m_phi |
Stored value of the electric potential for this phase. | |
vector_fp | m_lambdaRRT |
Vector of element potentials. | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. | |
int | m_ssConvention |
Contains the standard state convention. | |
std::vector< doublereal > | xMol_Ref |
Reference Mole Fraction Composition. | |
size_t | m_kk |
Number of species in the phase. | |
size_t | m_ndim |
Dimensionality of the phase. | |
vector_fp | m_speciesComp |
Atomic composition of the species. | |
vector_fp | m_speciesSize |
Vector of species sizes. | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. | |
size_t | m_ii |
Number of reactions in the mechanism. | |
size_t | m_kk |
The number of species in all of the phases that participate in this kinetics mechanism. | |
vector_fp | m_perturb |
Vector of perturbation factors for each reaction's rate of progress vector. | |
std::vector< std::vector < size_t > > | m_reactants |
This is a vector of vectors containing the reactants for each reaction. | |
std::vector< std::vector < size_t > > | m_products |
This is a vector of vectors containing the products for each reaction. | |
std::vector< thermo_t * > | m_thermo |
m_thermo is a vector of pointers to ThermoPhase objects that are involved with this kinetics operator | |
std::vector< size_t > | m_start |
m_start is a vector of integers specifying the beginning position for the species vector for the n'th phase in the kinetics class. | |
std::map< std::string, size_t > | m_phaseindex |
Mapping of the phase id, i.e., the id attribute in the xml phase element to the position of the phase within the kinetics object. | |
size_t | m_surfphase |
Index in the list of phases of the one surface phase. | |
size_t | m_rxnphase |
Phase Index where reactions are assumed to be taking place. | |
size_t | m_mindim |
number of spatial dimensions of lowest-dimensional phase. | |
Reaction Mechanism Construction | |
vector_fp | m_grt |
Temporary work vector of length m_kk. | |
std::vector< size_t > | m_revindex |
List of reactions numbers which are reversible reactions. | |
Rate1< SurfaceArrhenius > | m_rates |
Templated class containing the vector of reactions for this interface. | |
bool | m_redo_rates |
std::map< size_t, std::pair < int, size_t > > | m_index |
Vector of information about reactions in the mechanism. | |
std::vector< size_t > | m_irrev |
Vector of irreversible reaction numbers. | |
ReactionStoichMgr | m_rxnstoich |
Stoichiometric manager for the reaction mechanism. | |
size_t | m_nirrev |
Number of irreversible reactions in the mechanism. | |
size_t | m_nrev |
Number of reversible reactions in the mechanism. | |
std::vector< std::map< size_t, doublereal > > | m_rrxn |
m_rrxn is a vector of maps, containing the reactant stoichiometric coefficient information | |
std::vector< std::map< size_t, doublereal > > | m_prxn |
m_prxn is a vector of maps, containing the reactant stoichiometric coefficient information | |
std::vector< std::string > | m_rxneqn |
String expression for each rxn. | |
InterfaceKineticsData * | m_kdata |
Temporary data storage used in calculating the rates of of reactions. | |
vector_fp | m_conc |
an array of generalized concentrations for each species | |
vector_fp | m_mu0 |
Vector of standard state chemical potentials. | |
vector_fp | m_phi |
Vector of phase electric potentials. | |
vector_fp | m_pot |
Vector of potential energies due to Voltages. | |
vector_fp | m_rwork |
Vector temporary. | |
vector_fp | m_E |
Vector of raw activation energies for the reactions. | |
SurfPhase * | m_surf |
Pointer to the single surface phase. | |
ImplicitSurfChem * | m_integrator |
Pointer to the Implicit surface chemistry object. | |
vector_fp | m_beta |
std::vector< size_t > | m_ctrxn |
Vector of reaction indexes specifying the id of the current transfer reactions in the mechanism. | |
vector_int | m_ctrxn_ecdf |
Vector of booleans indicating whether the charge transfer reaction may be described by an exchange current density expression. | |
vector_fp | m_StandardConc |
vector_fp | m_deltaG0 |
vector_fp | m_ProdStanConcReac |
bool | m_finalized |
boolean indicating whether mechanism has been finalized | |
bool | m_has_coverage_dependence |
Boolean flag indicating whether any reaction in the mechanism has a coverage dependent forward reaction rate. | |
bool | m_has_electrochem_rxns |
Boolean flag indicating whether any reaction in the mechanism has a beta electrochemical parameter. | |
bool | m_has_exchange_current_density_formulation |
Boolean flag indicating whether any reaction in the mechanism is described by an exchange current density expression. | |
int | m_phaseExistsCheck |
Int flag to indicate that some phases in the kinetics mechanism are non-existent. | |
std::vector< bool > | m_phaseExists |
Vector of booleans indicating whether phases exist or not. | |
std::vector< int > | m_phaseIsStable |
Vector of int indicating whether phases are stable or not. | |
std::vector< bool * > | m_rxnPhaseIsReactant |
Vector of vector of booleans indicating whether a phase participates in a reaction as a reactant. | |
std::vector< bool * > | m_rxnPhaseIsProduct |
Vector of vector of booleans indicating whether a phase participates in a reaction as a product. | |
std::vector< int > | m_phaseIsIntermediate |
Vector of ints indicating whether zeroed phase is an intermediate for the formation of another phase. | |
int | m_numIntermediatePhases |
std::vector< doublereal > | m_rxnRateFactorPhaseIntermediates |
Reaction rate reduction factor for intermediates. | |
std::vector< doublereal > | m_speciesTmpP |
Work vector having length number of species. | |
std::vector< doublereal > | m_speciesTmpD |
int | m_ioFlag |
virtual void | addPhase (thermo_t &thermo) |
Add a phase to the kinetics manager object. | |
virtual void | init () |
Prepare the class for the addition of reactions. | |
virtual void | addReaction (ReactionData &r) |
Add a single reaction to the mechanism. | |
virtual void | finalize () |
Finish adding reactions and prepare for use. | |
void | updateROP () |
Internal routine that updates the Rates of Progress of the reactions. | |
void | _update_rates_T () |
Update properties that depend on temperature. | |
void | _update_rates_phi () |
Update properties that depend on the electric potential. | |
void | _update_rates_C () |
Update properties that depend on the species mole fractions and/or concentration. | |
void | advanceCoverages (doublereal tstep) |
Advance the surface coverages in time. | |
void | solvePseudoSteadyStateProblem (int ifuncOverride=-1, doublereal timeScaleOverride=1.0) |
Solve for the pseudo steady-state of the surface problem. | |
void | setIOFlag (int ioFlag) |
void | checkPartialEquil () |
size_t | reactionNumber () const |
void | addElementaryReaction (ReactionData &r) |
void | addGlobalReaction (const ReactionData &r) |
void | installReagents (const ReactionData &r) |
void | updateKc () |
Update the equilibrium constants in molar units for all reversible reactions. | |
void | registerReaction (size_t rxnNumber, int type, size_t loc) |
Write values into m_index. | |
void | applyButlerVolmerCorrection (doublereal *const kf) |
Apply corrections for interfacial charge transfer reactions. | |
void | applyExchangeCurrentDensityFormulation (doublereal *const kfwd) |
When an electrode reaction rate is optionally specified in terms of its exchange current density, extra vectors need to be precalculated. | |
void | setPhaseExistence (const size_t iphase, const bool exists) |
Set the existence of a phase in the reaction object. | |
void | setPhaseStability (const int iphase, const int isStable) |
Set the stability of a phase in the reaction object. | |
int | phaseExistence (const int iphase) const |
Gets the phase existence int for the ith phase. | |
int | phaseStability (const int iphase) const |
Gets the phase stability int for the ith phase. | |
An interface between multiple bulk phases.
This class is defined mostly for convenience. It inherits both from Cantera::SurfPhase and Cantera::InterfaceKinetics. It therefore represents a surface phase, and also acts as the kinetics manager to manage reactions occurring on the surface, possibly involving species from other phases.
Definition at line 23 of file Interface.h.
|
inline |
Constructor.
Construct an Interface instance from a specification in an input file.
infile | Cantera input file in CTI or CTML format. |
id | Identification string to distinguish between multiple definitions within one input file. |
otherPhases | Neighboring phases that may participate in the reactions on this interface. Don't include the surface phase |
Definition at line 47 of file Interface.h.
References Cantera::get_XML_File(), Cantera::get_XML_Node(), Cantera::importKinetics(), Cantera::importPhase(), Interface::m_ok, and Interface::m_r.
Copy Constructor.
ii | Interface object to be copied. |
Definition at line 70 of file Interface.h.
|
inlinevirtual |
Destructor. Does nothing.
Definition at line 93 of file Interface.h.
Assignment operator.
right | Interface object to be copied. |
Definition at line 81 of file Interface.h.
References Interface::m_ok, Interface::m_r, InterfaceKinetics::operator=(), and SurfPhase::operator=().
|
inline |
|
inlinevirtual |
return whether the object has been instantiated
Reimplemented from InterfaceKinetics.
Definition at line 105 of file Interface.h.
References Interface::m_ok.
|
virtualinherited |
Duplicator from the ThermoPhase parent class.
Reimplemented from ThermoPhase.
Definition at line 147 of file SurfPhase.cpp.
References SurfPhase::SurfPhase().
|
inlinevirtualinherited |
Equation of state type flag.
Redefine this to return cSurf, listed in mix_defs.h.
Reimplemented from ThermoPhase.
Reimplemented in EdgePhase.
Definition at line 212 of file SurfPhase.h.
References Cantera::cSurf.
|
virtualinherited |
Return the Molar Enthalpy. Units: J/kmol.
For an ideal solution,
\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T), \]
and is a function only of temperature. The standard-state pure-species Enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.
Reimplemented from ThermoPhase.
Definition at line 154 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), DATA_PTR, SurfPhase::m_h0, SurfPhase::m_n0, and Phase::mean_X().
Referenced by SurfPhase::intEnergy_mole().
|
virtualinherited |
Return the Molar Internal Energy. Units: J/kmol.
For a surface phase, the pressure is not a relevant thermodynamic variable, and so the Enthalpy is equal to the Internal Energy.
Reimplemented from ThermoPhase.
Definition at line 173 of file SurfPhase.cpp.
References SurfPhase::enthalpy_mole().
|
virtualinherited |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 232 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), DATA_PTR, Cantera::GasConstant, SurfPhase::getActivityConcentrations(), SurfPhase::logStandardConc(), Phase::m_kk, SurfPhase::m_mu0, SurfPhase::m_work, and Phase::temperature().
|
virtualinherited |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
hbar | Output vector of species partial molar enthalpies. Length: m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 182 of file SurfPhase.cpp.
References Cantera::GasConstant, SurfPhase::getEnthalpy_RT(), Phase::m_kk, and Phase::temperature().
|
virtualinherited |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K.
sbar | Output vector of species partial molar entropies. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 197 of file SurfPhase.cpp.
References Cantera::GasConstant, SurfPhase::getEntropy_R(), and Phase::m_kk.
|
virtualinherited |
Return an array of partial molar heat capacities for the species in the mixture.
Units: J/kmol/K
cpbar | Output vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 211 of file SurfPhase.cpp.
References Cantera::GasConstant, SurfPhase::getCp_R(), and Phase::m_kk.
|
virtualinherited |
Return an array of partial molar volumes for the species in the mixture.
Units: m^3/kmol.
vbar | Output vector of species partial molar volumes. Length = m_kk. units are m^3/kmol. |
Reimplemented from ThermoPhase.
Definition at line 221 of file SurfPhase.cpp.
References SurfPhase::getStandardVolumes().
|
virtualinherited |
Get the array of chemical potentials at unit activity for the standard state species at the current T and P of the solution.
These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution
mu0 | Output vector of chemical potentials. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 226 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), and SurfPhase::m_mu0.
|
virtualinherited |
Return a vector of activity concentrations for each species.
For this phase the activity concentrations, \( C^a_k \), are defined to be equal to the actual concentrations, \( C^s_k \). Activity concentrations are
\[ C^a_k = C^s_k = \frac{\theta_k n_0}{s_k} \]
where \( \theta_k \) is the surface site fraction for species k, \( n_0 \) is the surface site density for the phase, and \( s_k \) is the surface size of species k.
\( C^a_k\) that are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages,
c | vector of activity concentration (kmol m-2). |
Reimplemented from ThermoPhase.
Definition at line 243 of file SurfPhase.cpp.
References Phase::getConcentrations().
Referenced by SurfPhase::getChemPotentials().
|
virtualinherited |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. For this phase, the standard concentration is species- specific
\[ C^0_k = \frac{n_0}{s_k} \]
This definition implies that the activity is equal to \( \theta_k \).
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from ThermoPhase.
Definition at line 248 of file SurfPhase.cpp.
References SurfPhase::m_n0, and Phase::size().
Referenced by SurfPhase::getStandardVolumes().
|
virtualinherited |
Return the log of the standard concentration for the kth species.
k | species index (default 0) |
Reimplemented from ThermoPhase.
Definition at line 253 of file SurfPhase.cpp.
References SurfPhase::m_logn0, and SurfPhase::m_logsize.
Referenced by SurfPhase::getChemPotentials().
|
virtualinherited |
Set the equation of state parameters from the argument list.
The only parameter that can be set is the site density.
Set equation of state parameters.
n | number of parameters. Must be one |
c | array of n coefficients c[0] = The site density (kmol m-2) |
Reimplemented from ThermoPhase.
Definition at line 259 of file SurfPhase.cpp.
References SurfPhase::m_logn0, and SurfPhase::m_n0.
Referenced by SurfPhase::setSiteDensity().
|
virtualinherited |
Set the Equation-of-State parameters by reading an XML Node Input.
The Equation-of-State data consists of one item, the site density.
thermoData | Reference to an XML_Node named thermo containing the equation-of-state data. The XML_Node is within the phase XML_Node describing the SurfPhase object. |
An example of the contents of the thermoData XML_Node is provided below. The units attribute is used to supply the units of the site density in any convenient form. Internally it is changed into MKS form.
* <thermo model="Surface"> * <site_density units="mol/cm2"> 3e-09 </site_density> * </thermo> *
Reimplemented from ThermoPhase.
Reimplemented in EdgePhase.
Definition at line 474 of file SurfPhase.cpp.
References XML_Node::_require(), ctml::getFloat(), SurfPhase::m_logn0, and SurfPhase::m_n0.
|
virtualinherited |
Initialize the SurfPhase object after all species have been set up.
Initialize.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from ThermoPhase::initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().
Reimplemented from ThermoPhase.
Definition at line 330 of file SurfPhase.cpp.
References DATA_PTR, SurfPhase::m_cp0, SurfPhase::m_h0, Phase::m_kk, SurfPhase::m_logsize, SurfPhase::m_mu0, SurfPhase::m_pe, SurfPhase::m_s0, SurfPhase::m_work, SurfPhase::setCoverages(), and Phase::size().
|
virtualinherited |
Set the initial state of the Surface Phase from an XML_Node.
State variables that can be set by this routine are the temperature and the surface site coverages.
state | XML_Node containing the state information |
An example of the XML code block is given below.
* <state> * <temperature units="K">1200.0</temperature> * <coverages>c6H*:0.1, c6HH:0.9</coverages> * </state> *
Reimplemented from ThermoPhase.
Definition at line 486 of file SurfPhase.cpp.
References ctml::getChildValue(), ctml::getOptionalFloat(), XML_Node::hasChild(), SurfPhase::setCoveragesByName(), and Phase::setTemperature().
|
inlineinherited |
Returns the site density.
Site density kmol m-2
Definition at line 429 of file SurfPhase.h.
References SurfPhase::m_n0.
Referenced by ReactingSurf1D::eval().
|
inherited |
Sets the potential energy of species k.
k | Species index |
pe | Value of the potential energy (J kmol-1) |
Definition at line 351 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), and SurfPhase::m_pe.
|
inlineinherited |
Return the potential energy of species k.
Returns the potential energy of species, k, J kmol-1
k | Species index |
Definition at line 448 of file SurfPhase.h.
References SurfPhase::m_pe.
|
inherited |
Set the site density of the surface phase (kmol m-2)
n0 | Site density of the surface phase (kmol m-2) |
Definition at line 357 of file SurfPhase.cpp.
References SurfPhase::setParameters().
|
virtualinherited |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
grt | Output vector of nondimensional standard state gibbs free energies Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 273 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_mu0, Cantera::scale(), and Phase::temperature().
Referenced by SurfPhase::getGibbs_RT_ref().
|
virtualinherited |
Get the nondimensional Enthalpy functions for the species standard states at their standard states at the current T and P of the solution.
hrt | Output vector of nondimensional standard state enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 281 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_h0, Cantera::scale(), and Phase::temperature().
Referenced by SurfPhase::getEnthalpy_RT_ref(), and SurfPhase::getPartialMolarEnthalpies().
|
virtualinherited |
Get the array of nondimensional Entropy functions for the species standard states at the current T and P of the solution.
sr | Output vector of nondimensional standard state entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 288 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_s0, and Cantera::scale().
Referenced by SurfPhase::getEntropy_R_ref(), and SurfPhase::getPartialMolarEntropies().
|
virtualinherited |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
cpr | Output vector of nondimensional standard state heat capacities Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 295 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Cantera::GasConstant, SurfPhase::m_cp0, and Cantera::scale().
Referenced by SurfPhase::getCp_R_ref(), and SurfPhase::getPartialMolarCp().
|
virtualinherited |
Get the molar volumes of the species standard states at the current T and P of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 302 of file SurfPhase.cpp.
References SurfPhase::_updateThermo(), Phase::m_kk, and SurfPhase::standardConcentration().
Referenced by SurfPhase::getPartialMolarVolumes().
|
inlinevirtualinherited |
Return the thermodynamic pressure (Pa).
This method must be overloaded in derived classes. Since the mass density, temperature, and mass fractions are stored, this method should use these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).
Reimplemented from ThermoPhase.
Definition at line 509 of file SurfPhase.h.
References SurfPhase::m_press.
|
inlinevirtualinherited |
Set the internally stored pressure (Pa) at constant temperature and composition.
This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is the density. Therefore, this function solves for the density that will yield the desired input pressure. The temperature and composition iare held constant during this process.
This base class function will print an error, if not overwritten.
p | input Pressure (Pa) |
Reimplemented from ThermoPhase.
Definition at line 526 of file SurfPhase.h.
References SurfPhase::m_press.
|
virtualinherited |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 310 of file SurfPhase.cpp.
References SurfPhase::getGibbs_RT().
|
virtualinherited |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
hrt | Output vector of nondimensional standard state enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 315 of file SurfPhase.cpp.
References SurfPhase::getEnthalpy_RT().
|
virtualinherited |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
er | Output vector containing the nondimensional reference state entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 320 of file SurfPhase.cpp.
References SurfPhase::getEntropy_R().
|
virtualinherited |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
cprt | Output vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 325 of file SurfPhase.cpp.
References SurfPhase::getCp_R().
|
inherited |
Set the surface site fractions to a specified state.
Set the coverage fractions to a specified state.
This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.
theta | This is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity. |
This routine normalizes the theta's to 1, before application
This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.
Definition at line 382 of file SurfPhase.cpp.
References DATA_PTR, Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_work, Phase::setConcentrations(), and Phase::size().
Referenced by ReactingSurf1D::eval(), SurfPhase::initThermo(), and SurfPhase::setCoveragesByName().
|
inherited |
Set the surface site fractions to a specified state.
This routine converts to concentrations in kmol/m2, using m_n0, the surface site density, and size(k), which is defined to be the number of surface sites occupied by the kth molecule. It then calls Phase::setConcentrations to set the internal concentration in the object.
theta | This is the surface site fraction for the kth species in the surface phase. This is a dimensionless quantity. |
Definition at line 406 of file SurfPhase.cpp.
References DATA_PTR, Phase::m_kk, SurfPhase::m_n0, SurfPhase::m_work, Phase::setConcentrations(), and Phase::size().
|
inherited |
Set the coverages from a string of colon-separated name:value pairs.
cov | String containing colon-separated name:value pairs |
Definition at line 428 of file SurfPhase.cpp.
References DATA_PTR, Phase::nSpecies(), Cantera::parseCompString(), SurfPhase::setCoverages(), and Phase::speciesName().
Referenced by SurfPhase::setStateFromXML().
|
inherited |
Return a vector of surface coverages.
Get the coverages.
theta | Array theta must be at least as long as the number of species. |
Definition at line 419 of file SurfPhase.cpp.
References Phase::getConcentrations(), Phase::m_kk, SurfPhase::m_n0, and Phase::size().
Referenced by ReactingSurf1D::_getInitialSoln(), and InterfaceKinetics::_update_rates_T().
|
inlinevirtualinherited |
Returns the reference pressure in Pa.
This function is a wrapper that calls the species thermo refPressure function.
Reimplemented in LatticeSolidPhase.
Definition at line 164 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::refPressure().
Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), RedlichKwongMFTP::getChemPotentials(), RedlichKwongMFTP::getPartialMolarEntropies(), MixtureFugacityTP::getStandardVolumes_ref(), ChemEquil::initialize(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), and RedlichKwongMFTP::setToEquilState().
|
inlinevirtualinherited |
Minimum temperature for which the thermodynamic data for the species or phase are valid.
If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.
k | index of the species. Default is -1, which will return the max of the min value over all species. |
Reimplemented in LatticeSolidPhase.
Definition at line 181 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().
Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | species index |
Definition at line 221 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | Species k |
Hf298New | Specify the new value of the Heat of Formation at 298K and 1 bar |
Definition at line 233 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Maximum temperature for which the thermodynamic data for the species are valid.
If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.
k | index of the species. Default is -1, which will return the min of the max value over all species. |
Reimplemented in LatticeSolidPhase.
Definition at line 250 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().
Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Returns the chargeNeutralityNecessity boolean.
Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.
Definition at line 261 of file ThermoPhase.h.
References ThermoPhase::m_chargeNeutralityNecessary.
|
inlinevirtualinherited |
Molar entropy. Units: J/kmol/K.
Reimplemented in HMWSoln, DebyeHuckel, PhaseCombo_Interaction, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, IdealGasPhase, LatticePhase, LatticeSolidPhase, IdealMolalSoln, IdealSolidSolnPhase, IonsFromNeutralVPSSTP, SingleSpeciesTP, RedlichKwongMFTP, StoichSubstance, ConstDensityThermo, IdealSolnGasVPSS, PureFluidPhase, and MetalPhase.
Definition at line 282 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by ThermoPhase::entropy_mass(), ThermoPhase::gibbs_mole(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), MolalityVPSSTP::report(), ThermoPhase::report(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Molar Gibbs function. Units: J/kmol.
Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticePhase, LatticeSolidPhase, IdealMolalSoln, IdealSolidSolnPhase, IonsFromNeutralVPSSTP, SingleSpeciesTP, RedlichKwongMFTP, StoichSubstance, ConstDensityThermo, IdealSolnGasVPSS, PureFluidPhase, and MetalPhase.
Definition at line 287 of file ThermoPhase.h.
References ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mole(), and Phase::temperature().
Referenced by MixtureFugacityTP::corr0(), ThermoPhase::gibbs_mass(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), MolalityVPSSTP::report(), ThermoPhase::report(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Molar heat capacity at constant pressure. Units: J/kmol/K.
Reimplemented in HMWSoln, DebyeHuckel, PhaseCombo_Interaction, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, IdealGasPhase, LatticePhase, LatticeSolidPhase, IdealMolalSoln, IdealSolidSolnPhase, IonsFromNeutralVPSSTP, SingleSpeciesTP, RedlichKwongMFTP, StoichSubstance, ConstDensityThermo, IdealSolnGasVPSS, PureFluidPhase, and MetalPhase.
Definition at line 292 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by ThermoPhase::cp_mass(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), MolalityVPSSTP::report(), ThermoPhase::report(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Molar heat capacity at constant volume. Units: J/kmol/K.
Reimplemented in HMWSoln, DebyeHuckel, PhaseCombo_Interaction, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, IdealGasPhase, LatticePhase, LatticeSolidPhase, IdealSolidSolnPhase, IdealMolalSoln, IonsFromNeutralVPSSTP, WaterSSTP, SingleSpeciesTP, RedlichKwongMFTP, StoichSubstance, ConstDensityThermo, IdealSolnGasVPSS, PureFluidPhase, and MetalPhase.
Definition at line 297 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by ThermoPhase::cv_mass(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), MolalityVPSSTP::report(), ThermoPhase::report(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Returns the isothermal compressibility. Units: 1/Pa.
The isothermal compressibility is defined as
\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]
or
\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]
Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, WaterSSTP, RedlichKwongMFTP, and IdealSolnGasVPSS.
Definition at line 348 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by SingleSpeciesTP::cv_mole().
|
inlinevirtualinherited |
Return the volumetric thermal expansion coefficient. Units: 1/K.
The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, and WaterSSTP.
Definition at line 360 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by SingleSpeciesTP::cv_mole().
|
inlinevirtualinherited |
|
inlineinherited |
Set the electric potential of this phase (V).
This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.
Each phase may have its own electric potential.
v | Input value of the electric potential in Volts |
Definition at line 390 of file ThermoPhase.h.
References ThermoPhase::m_phi.
Referenced by InterfaceKinetics::setElectricPotential(), vcs_VolPhase::setElectricPotential(), and vcs_VolPhase::setState_TP().
|
inlineinherited |
Returns the electric potential of this phase (V).
Units are Volts (which are Joules/coulomb)
Definition at line 398 of file ThermoPhase.h.
References ThermoPhase::m_phi.
Referenced by InterfaceKinetics::_update_rates_phi(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), and vcs_VolPhase::setPtrThermoPhase().
|
virtualinherited |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
Currently, there are two activity conventions:
Reimplemented in MolalityVPSSTP.
Definition at line 143 of file ThermoPhase.cpp.
References Cantera::cAC_CONVENTION_MOLAR.
Referenced by vcs_MultiPhaseEquil::reportCSV(), and LiquidTransport::stefan_maxwell_solve().
|
virtualinherited |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
Currently, there are two standard state conventions:
Reimplemented in PureFluidPhase, LatticeSolidPhase, MixtureFugacityTP, and VPStandardStateTP.
Definition at line 148 of file ThermoPhase.cpp.
References ThermoPhase::m_ssConvention.
Referenced by Cantera::importPhase().
|
virtualinherited |
Returns the units of the standard and generalized concentrations.
Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.
This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.
The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.
uA | Output vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0 |
k | species index. Defaults to 0. |
sizeUA | output int containing the size of the vector. Currently, this is equal to 6. |
Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, MolalityVPSSTP, IdealMolalSoln, MetalSHEelectrons, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, RedlichKwongMFTP, GibbsExcessVPSSTP, IdealSolnGasVPSS, and StoichSubstance.
Definition at line 848 of file ThermoPhase.cpp.
References Phase::nDim().
|
virtualinherited |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
Note, for molality based formulations, this returns the molality based activities.
We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.
a | Output vector of activities. Length: m_kk. |
Reimplemented in HMWSoln, DebyeHuckel, MolalityVPSSTP, IdealMolalSoln, GibbsExcessVPSSTP, PureFluidPhase, and SingleSpeciesTP.
Definition at line 158 of file ThermoPhase.cpp.
References ThermoPhase::getActivityConcentrations(), Phase::nSpecies(), and ThermoPhase::standardConcentration().
Referenced by vcs_MultiPhaseEquil::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
ac | Output vector of activity coefficients. Length: m_kk. |
Reimplemented in LatticePhase, IdealGasPhase, MolalityVPSSTP, IdealSolidSolnPhase, PhaseCombo_Interaction, MixedSolventElectrolyte, LatticeSolidPhase, RedlichKwongMFTP, GibbsExcessVPSSTP, IonsFromNeutralVPSSTP, IdealSolnGasVPSS, SingleSpeciesTP, and ConstDensityThermo.
Definition at line 555 of file ThermoPhase.h.
References ThermoPhase::err(), and Phase::m_kk.
Referenced by vcs_VolPhase::_updateActCoeff(), ChemEquil::calcEmoles(), ChemEquil::estimateEP_Brinkley(), ThermoPhase::getLnActivityCoefficients(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), ThermoPhase::reportCSV(), and LiquidTransport::stefan_maxwell_solve().
|
virtualinherited |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
lnac | Output vector of ln activity coefficients. Length: m_kk. |
Reimplemented in MargulesVPSSTP, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.
Definition at line 166 of file ThermoPhase.cpp.
References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.
Referenced by GibbsExcessVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
inlinevirtualinherited |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.
\( \mu_k / \hat R T \). Units: unitless
mu | Output vector of dimensionless chemical potentials. Length: m_kk. |
Reimplemented in IdealSolidSolnPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, StoichSubstance, MixtureFugacityTP, and VPStandardStateTP.
Definition at line 583 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlineinherited |
Get the species electrochemical potentials.
These are partial molar quantities. This method adds a term \( F z_k \phi_p \) to each chemical potential. The electrochemical potential of species k in a phase p, \( \zeta_k \), is related to the chemical potential via the following equation,
\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]
mu | Output vector of species electrochemical potentials. Length: m_kk. Units: J/kmol |
Definition at line 616 of file ThermoPhase.h.
References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.
Referenced by InterfaceKinetics::getDeltaElectrochemPotentials().
|
inlinevirtualinherited |
Return an array of partial molar internal energies for the species in the mixture.
Units: J/kmol.
ubar | Output vector of species partial molar internal energies. Length = m_kk. units are J/kmol. |
Reimplemented in IdealGasPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, and PureFluidPhase.
Definition at line 650 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.
Units: m^3/kmol.
The derivative is at constant pressure
d_vbar_dT | Output vector of derivatives of species partial molar volumes wrt T. Length = m_kk. units are m^3/kmol/K. |
Definition at line 683 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.
Units: m^3/kmol.
The derivative is at constant temperature
d_vbar_dP | Output vector of derivatives of species partial molar volumes wrt P. Length = m_kk. units are m^3/kmol/Pa. |
Definition at line 695 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
Units are Joules/kmol
gpure | Output vector of standard state gibbs free energies Length: m_kk. |
Reimplemented in IdealSolidSolnPhase, LatticePhase, IdealGasPhase, SingleSpeciesTP, StoichSubstance, MixtureFugacityTP, VPStandardStateTP, and ConstDensityThermo.
Definition at line 754 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
urt | output vector of nondimensional standard state internal energies of the species. Length: m_kk. |
Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MetalSHEelectrons, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, WaterSSTP, MixtureFugacityTP, and VPStandardStateTP.
Definition at line 764 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by SingleSpeciesTP::getPartialMolarIntEnergies().
|
inlinevirtualinherited |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.
The derivative is at constant pressure units = m^3 / kmol / K
d_vol_dT | Output vector containing derivatives of standard state volumes wrt T Length: m_kk. |
Definition at line 800 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.
The derivative is at constant temperature. units = m^3 / kmol / Pa
d_vol_dP | Output vector containing the derivative of standard state volumes wrt P. Length: m_kk. |
Definition at line 813 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
units = J/kmol
g | Output vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol. |
Reimplemented in LatticePhase, IdealSolidSolnPhase, IdealGasPhase, LatticeSolidPhase, MixtureFugacityTP, FixedChemPotSSTP, VPStandardStateTP, SingleSpeciesTP, PureFluidPhase, StoichSubstance, and WaterSSTP.
Definition at line 856 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by vcs_VolPhase::_updateG0().
|
inlinevirtualinherited |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
urt | Output vector of nondimensional reference state internal energies of the species. Length: m_kk |
Reimplemented in IdealSolidSolnPhase, IdealGasPhase, FixedChemPotSSTP, MetalSHEelectrons, MineralEQ3, and StoichSubstanceSSTP.
Definition at line 879 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented in IdealGasPhase, MixtureFugacityTP, VPStandardStateTP, and WaterSSTP.
Definition at line 904 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by PDSS_IonsFromNeutral::molarVolume_ref().
|
virtualinherited |
Sets the reference composition.
x | Mole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector. |
Definition at line 992 of file ThermoPhase.cpp.
References DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.
Referenced by ThermoPhase::initThermoXML().
|
virtualinherited |
Gets the reference composition.
The reference mole fraction is a safe mole fraction.
x | Mole fraction vector containing the reference composition. |
Definition at line 1013 of file ThermoPhase.cpp.
References Phase::m_kk, and ThermoPhase::xMol_Ref.
|
inlineinherited |
Specific enthalpy.
Units: J/kg.
Definition at line 937 of file ThermoPhase.h.
References ThermoPhase::enthalpy_mole(), and Phase::meanMolecularWeight().
Referenced by ConstPressureReactor::initialize(), Reactor::initialize(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), ReactorBase::setThermoMgr(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inlineinherited |
Specific internal energy.
Units: J/kg.
Definition at line 944 of file ThermoPhase.h.
References ThermoPhase::intEnergy_mole(), and Phase::meanMolecularWeight().
Referenced by ConstPressureReactor::initialize(), Reactor::initialize(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_UV(), ReactorBase::setThermoMgr(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inlineinherited |
Specific entropy.
Units: J/kg/K.
Definition at line 951 of file ThermoPhase.h.
References ThermoPhase::entropy_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), and SingleSpeciesTP::setState_SV().
|
inlineinherited |
Specific Gibbs function.
Units: J/kg.
Definition at line 958 of file ThermoPhase.h.
References ThermoPhase::gibbs_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlineinherited |
Specific heat at constant pressure.
Units: J/kg/K.
Definition at line 965 of file ThermoPhase.h.
References ThermoPhase::cp_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), and StFlow::updateThermo().
|
inlineinherited |
Specific heat at constant volume.
Units: J/kg/K.
Definition at line 972 of file ThermoPhase.h.
References ThermoPhase::cv_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), and SingleSpeciesTP::setState_UV().
|
inlineinherited |
Return the Gas Constant multiplied by the current temperature.
The units are Joules kmol-1
Definition at line 981 of file ThermoPhase.h.
References Cantera::GasConstant, and Phase::temperature().
Referenced by MixtureFugacityTP::corr0(), RedlichKwongMFTP::enthalpy_mole(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), PureFluidPhase::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT_ref(), WaterSSTP::getGibbs_ref(), MixtureFugacityTP::getGibbs_ref(), IdealGasPhase::getGibbs_ref(), PureFluidPhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealMolalSoln::getPartialMolarEnthalpies(), ConstDensityThermo::getPureGibbs(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), LatticePhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), and MixtureFugacityTP::z().
|
virtualinherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | Vector of mole fractions. Length is equal to m_kk. |
Reimplemented in SingleSpeciesTP, and MixtureFugacityTP.
Definition at line 174 of file ThermoPhase.cpp.
References Phase::setMoleFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().
Referenced by MultiTransport::getMassFluxes(), DustyGasTransport::getMolarFluxes(), MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().
|
inherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | Composition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction |
Definition at line 181 of file ThermoPhase.cpp.
References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | String containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction |
Definition at line 188 of file ThermoPhase.cpp.
References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | Vector of mass fractions. Length is equal to m_kk. |
Definition at line 206 of file ThermoPhase.cpp.
References Phase::setMassFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | Composition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction |
Definition at line 214 of file ThermoPhase.cpp.
References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | String containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction |
Definition at line 222 of file ThermoPhase.cpp.
References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().
|
inherited |
Set the temperature (K) and pressure (Pa)
Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
Definition at line 242 of file ThermoPhase.cpp.
References ThermoPhase::setPressure(), and Phase::setTemperature().
Referenced by StoichSubstance::initThermo(), ImplicitSurfChem::setCommonState_TP(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), vcs_VolPhase::setState_TP(), PDSS_IonsFromNeutral::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), and FlowReactor::updateState().
|
inherited |
Set the pressure (Pa) and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
p | Pressure (Pa) |
x | Vector of mole fractions. Length is equal to m_kk. |
Definition at line 249 of file ThermoPhase.cpp.
References Phase::setMoleFractions(), and ThermoPhase::setPressure().
Referenced by vcs_VolPhase::_updateMoleFractionDependencies(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().
|
inherited |
Set the internally stored pressure (Pa) and mass fractions.
Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
p | Pressure (Pa) |
y | Vector of mass fractions. Length is equal to m_kk. |
Definition at line 256 of file ThermoPhase.cpp.
References Phase::setMassFractions(), and ThermoPhase::setPressure().
|
virtualinherited |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
h | Specific enthalpy (J/kg) |
p | Pressure (Pa) |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 263 of file ThermoPhase.cpp.
References ThermoPhase::setState_HPorUV().
Referenced by FlowReactor::updateState(), and ConstPressureReactor::updateState().
|
virtualinherited |
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.
u | specific internal energy (J/kg) |
v | specific volume (m^3/kg). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 270 of file ThermoPhase.cpp.
References ThermoPhase::setState_HPorUV().
Referenced by Reactor::updateState().
|
virtualinherited |
Set the specific entropy (J/kg/K) and pressure (Pa).
This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.
s | specific entropy (J/kg/K) |
p | specific pressure (Pa). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 546 of file ThermoPhase.cpp.
References ThermoPhase::setState_SPorSV().
|
virtualinherited |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.
s | specific entropy (J/kg/K) |
v | specific volume (m^3/kg). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 553 of file ThermoPhase.cpp.
References ThermoPhase::setState_SPorSV().
|
inlinevirtualinherited |
This method is used by the ChemEquil equilibrium solver.
It sets the state such that the chemical potentials satisfy
\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]
where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.
lambda_RT | Input vector of dimensionless element potentials The length is equal to nElements(). |
Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, IdealGasPhase, IdealMolalSoln, MolalityVPSSTP, RedlichKwongMFTP, IdealSolnGasVPSS, and ConstDensityThermo.
Definition at line 1193 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by ChemEquil::setToEquilState().
|
inherited |
Stores the element potentials in the ThermoPhase object.
Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are stored in their dimensionless forms, calculated by dividing by RT.
lambda | Input vector containing the element potentials. Length = nElements. Units are Joules/kmol. |
Definition at line 1106 of file ThermoPhase.cpp.
References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().
Referenced by Cantera::equilibrate(), ChemEquil::equilibrate(), and Cantera::vcs_equilibrate().
|
inherited |
Returns the element potentials stored in the ThermoPhase object.
Returns the stored element potentials. The element potentials are retrieved from their stored dimensionless forms by multiplying by RT.
lambda | Output vector containing the element potentials. Length = nElements. Units are Joules/kmol. |
Definition at line 1129 of file ThermoPhase.cpp.
References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().
Referenced by ChemEquil::equilibrate().
|
inlinevirtualinherited |
Critical temperature (K).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1236 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::calculatePsat(), MixtureFugacityTP::densityCalc(), MixtureFugacityTP::phaseState(), and MixtureFugacityTP::psatEst().
|
inlinevirtualinherited |
Critical pressure (Pa).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1242 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::calculatePsat(), and MixtureFugacityTP::psatEst().
|
inlinevirtualinherited |
Critical density (kg/m3).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1248 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::densityCalc(), and MixtureFugacityTP::phaseState().
|
inlinevirtualinherited |
Return the saturation temperature given the pressure.
p | Pressure (Pa) |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.
Definition at line 1267 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return the saturation pressure given the temperature.
t | Temperature (Kelvin) |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.
Definition at line 1276 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return the fraction of vapor at the current conditions.
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.
Definition at line 1282 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Set the state to a saturated system at a particular temperature.
t | Temperature (kelvin) |
x | Fraction of vapor |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.
Definition at line 1292 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Set the state to a saturated system at a particular pressure.
p | Pressure (Pa) |
x | Fraction of vapor |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.
Definition at line 1301 of file ThermoPhase.h.
References ThermoPhase::err().
|
inherited |
Store a reference pointer to the XML tree containing the species data for this phase.
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.
This is used to access data needed to construct transport manager later.
k | Species index |
data | Pointer to the XML_Node data containing information about the species in the phase. |
Definition at line 1050 of file ThermoPhase.cpp.
References ThermoPhase::m_speciesData.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Return a pointer to the vector of XML nodes containing the species data for this phase.
Definition at line 1060 of file ThermoPhase.cpp.
References Phase::m_kk, and ThermoPhase::m_speciesData.
Referenced by MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::initTransport(), LatticeSolidPhase::installSlavePhases(), and TransportFactory::setupLiquidTransport().
|
inherited |
Install a species thermodynamic property manager.
The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.
spthermo | input pointer to the species thermodynamic property manager. |
Definition at line 886 of file ThermoPhase.cpp.
References ThermoPhase::m_spthermo.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), and VPSSMgrFactory::newVPSSMgr().
|
virtualinherited |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
k | Speices id. The default is -1, meaning return the default |
Reimplemented in LatticeSolidPhase.
Definition at line 904 of file ThermoPhase.cpp.
References ThermoPhase::m_spthermo.
Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().
|
virtualinherited |
Initialization of a ThermoPhase object using an ctml file.
This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.
inputFile | XML file containing the description of the phase |
id | Optional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used. |
Definition at line 928 of file ThermoPhase.cpp.
References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().
|
virtualinherited |
Import and initialize a ThermoPhase object using an XML tree.
Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, LatticePhase, IdealMolalSoln, MolalityVPSSTP, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, MixtureFugacityTP, IonsFromNeutralVPSSTP, FixedChemPotSSTP, electrodeElectron, VPStandardStateTP, RedlichKwongMFTP, MineralEQ3, MetalSHEelectrons, WaterSSTP, StoichSubstanceSSTP, MolarityIonicVPSSTP, IdealSolnGasVPSS, and PseudoBinaryVPSSTP.
Definition at line 979 of file ThermoPhase.cpp.
References XML_Node::child(), XML_Node::hasChild(), ThermoPhase::setReferenceComposition(), and ThermoPhase::setStateFromXML().
Referenced by Cantera::importPhase(), ThermoPhase::initThermoFile(), StoichSubstanceSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), VPStandardStateTP::initThermoXML(), electrodeElectron::initThermoXML(), FixedChemPotSSTP::initThermoXML(), MixtureFugacityTP::initThermoXML(), LatticePhase::initThermoXML(), and IdealSolidSolnPhase::initThermoXML().
|
virtualinherited |
Add in species from Slave phases.
This hook is used for cSS_CONVENTION_SLAVE phases
phaseNode | XML Element for the phase |
Reimplemented in LatticeSolidPhase.
Definition at line 1045 of file ThermoPhase.cpp.
Referenced by Cantera::importPhase().
|
inlinevirtualinherited |
Get the equation of state parameters in a vector.
The number and meaning of these depends on the subclass.
n | number of parameters |
c | array of n coefficients |
Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealMolalSoln, SingleSpeciesTP, FixedChemPotSSTP, MineralEQ3, MetalSHEelectrons, StoichSubstanceSSTP, StoichSubstance, and ConstDensityThermo.
Definition at line 1462 of file ThermoPhase.h.
|
inlinevirtualinherited |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
dTds | Input of temperature change along the path |
dXds | Input vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one. |
dlnActCoeffds | Output vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m. |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 1511 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().
|
inlinevirtualinherited |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnX_diag | Output vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 1533 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().
|
inlinevirtualinherited |
Get the array of log species mole number derivatives of the log activity coefficients.
This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that species mole number variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnN_diag | Output vector of derivatives of the log Activity Coefficients. length = m_kk |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, MixtureFugacityTP, and VPStandardStateTP.
Definition at line 1554 of file ThermoPhase.h.
References ThermoPhase::err().
|
virtualinherited |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.
units = 1 / kmol
dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.
\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]
ld | Number of rows in the matrix |
dlnActCoeffdlnN | Output vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk |
Reimplemented in MolalityVPSSTP, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, and GibbsExcessVPSSTP.
Definition at line 1158 of file ThermoPhase.cpp.
References Phase::m_kk.
Referenced by vcs_VolPhase::_updateLnActCoeffJac().
|
virtualinherited |
returns a summary of the state of the phase as a string
show_thermo | If true, extra information is printed out about the thermodynamic state of the system. |
Reimplemented in MolalityVPSSTP, PureFluidPhase, MolarityIonicVPSSTP, and PseudoBinaryVPSSTP.
Definition at line 1243 of file ThermoPhase.cpp.
References ThermoPhase::cp_mass(), ThermoPhase::cp_mole(), ThermoPhase::cv_mass(), ThermoPhase::cv_mole(), Phase::density(), ThermoPhase::electricPotential(), ThermoPhase::enthalpy_mass(), ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mass(), ThermoPhase::entropy_mole(), ThermoPhase::err(), Cantera::GasConstant, ThermoPhase::getChemPotentials(), Phase::getMassFractions(), Phase::getMoleFractions(), ThermoPhase::gibbs_mass(), ThermoPhase::gibbs_mole(), ThermoPhase::intEnergy_mass(), ThermoPhase::intEnergy_mole(), Phase::meanMolecularWeight(), Phase::name(), Phase::nSpecies(), ThermoPhase::pressure(), CanteraError::save(), Cantera::SmallNumber, Phase::speciesName(), and Phase::temperature().
Referenced by Cantera::operator<<(), and Cantera::report().
|
virtualinherited |
returns a summary of the state of the phase to a comma separated file
csvFile | ofstream file to print comma separated data for the phase |
Reimplemented in MolalityVPSSTP, and PureFluidPhase.
Definition at line 1350 of file ThermoPhase.cpp.
References ThermoPhase::cp_mass(), ThermoPhase::cp_mole(), ThermoPhase::cv_mass(), ThermoPhase::cv_mole(), Phase::density(), ThermoPhase::electricPotential(), ThermoPhase::enthalpy_mass(), ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mass(), ThermoPhase::entropy_mole(), ThermoPhase::err(), ThermoPhase::getActivities(), ThermoPhase::getActivityCoefficients(), ThermoPhase::getChemPotentials(), Phase::getMassFractions(), Phase::getMoleFractions(), ThermoPhase::getPartialMolarCp(), ThermoPhase::getPartialMolarEnthalpies(), ThermoPhase::getPartialMolarEntropies(), ThermoPhase::getPartialMolarIntEnergies(), ThermoPhase::getPartialMolarVolumes(), ThermoPhase::gibbs_mass(), ThermoPhase::gibbs_mole(), ThermoPhase::intEnergy_mass(), ThermoPhase::intEnergy_mole(), Phase::meanMolecularWeight(), Phase::name(), Phase::nSpecies(), ThermoPhase::pressure(), CanteraError::save(), Cantera::SmallNumber, Phase::speciesName(), and Phase::temperature().
|
inherited |
Returns a reference to the XML_Node stored for the phase.
The XML_Node for the phase contains all of the input data used to set up the model for the phase, during its initialization.
Definition at line 125 of file Phase.cpp.
References Phase::m_xml.
Referenced by MolarityIonicVPSSTP::constructPhaseFile(), LatticePhase::constructPhaseFile(), RedlichKisterVPSSTP::constructPhaseFile(), MargulesVPSSTP::constructPhaseFile(), MixedSolventElectrolyte::constructPhaseFile(), WaterSSTP::constructPhaseFile(), PhaseCombo_Interaction::constructPhaseFile(), IonsFromNeutralVPSSTP::constructPhaseFile(), IdealMolalSoln::constructPhaseFile(), IdealSolidSolnPhase::constructPhaseFile(), DebyeHuckel::constructPhaseFile(), Cantera::importPhase(), SimpleTransport::initLiquid(), ThermoPhase::initThermoFile(), TransportFactory::newTransport(), and TransportFactory::setupLiquidTransport().
|
inherited |
Return the string id for the phase.
Definition at line 130 of file Phase.cpp.
References Phase::m_id.
Referenced by Kinetics::assignShallowPointers(), Cantera::equilibrate(), Cantera::getEfficiencies(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesIndex(), MultiPhase::phaseIndex(), MultiPhase::phaseName(), solveProb::print_header(), RedlichKwongMFTP::RedlichKwongMFTP(), Phase::setID(), LatticeSolidPhase::setParametersFromXML(), vcs_VolPhase::transferElementsFM(), and Cantera::vcs_equilibrate().
|
inherited |
Set the string id for the phase.
id | String id of the phase |
Definition at line 135 of file Phase.cpp.
References Phase::id(), and Phase::m_id.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Return the name of the phase.
Definition at line 140 of file Phase.cpp.
References Phase::m_name.
Referenced by Cantera::operator<<(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inherited |
Sets the string name for the phase.
nm | String name of the phase |
Definition at line 145 of file Phase.cpp.
References Phase::m_name.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Name of the element with index m.
m | Element index. |
Definition at line 169 of file Phase.cpp.
References Phase::checkElementIndex(), and Phase::m_elementNames.
Referenced by MultiPhase::addPhase(), Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), ChemEquil::equilibrate(), ChemEquil::equilResidual(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), ChemEquil::initialize(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), ChemEquil::setInitialMoles(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Return the index of element named 'name'.
The index is an integer assigned to each element in the order it was added. Returns npos if the specified element is not found.
name | Name of the element |
Definition at line 175 of file Phase.cpp.
References Phase::m_elementNames, Phase::m_mm, and Cantera::npos.
Referenced by Phase::addUniqueElementAfterFreeze(), MultiPhase::init(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().
|
inherited |
Return a read-only reference to the vector of element names.
Definition at line 185 of file Phase.cpp.
References Phase::m_elementNames.
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), and IonsFromNeutralVPSSTP::initThermoXML().
|
inherited |
Atomic weight of element m.
m | Element index |
Definition at line 190 of file Phase.cpp.
References Phase::m_atomicWeights.
Referenced by ChemEquil::initialize(), and WaterSSTP::initThermoXML().
|
inherited |
Entropy of the element in its standard state at 298 K and 1 bar.
m | Element index |
Definition at line 195 of file Phase.cpp.
References AssertThrowMsg, AssertTrace, ENTROPY298_UNKNOWN, Phase::m_entropy298, and Phase::m_mm.
Referenced by LatticeSolidPhase::installSlavePhases(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().
|
inherited |
Atomic number of element m.
m | Element index |
Definition at line 209 of file Phase.cpp.
References Phase::m_atomicNumbers.
Referenced by MultiPhase::addPhase(), and LatticeSolidPhase::installSlavePhases().
|
inherited |
Return the element constraint type Possible types include:
CT_ELEM_TYPE_TURNEDOFF -1 CT_ELEM_TYPE_ABSPOS 0 CT_ELEM_TYPE_ELECTRONCHARGE 1 CT_ELEM_TYPE_CHARGENEUTRALITY 2 CT_ELEM_TYPE_LATTICERATIO 3 CT_ELEM_TYPE_KINETICFROZEN 4 CT_ELEM_TYPE_SURFACECONSTRAINT 5 CT_ELEM_TYPE_OTHERCONSTRAINT 6
The default is CT_ELEM_TYPE_ABSPOS.
m | Element index |
Definition at line 214 of file Phase.cpp.
References Phase::m_elem_type.
Referenced by LatticeSolidPhase::installSlavePhases(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Change the element type of the mth constraint Reassigns an element type.
m | Element index |
elem_type | New elem type to be assigned |
Definition at line 219 of file Phase.cpp.
References Phase::m_elem_type.
|
inherited |
Return a read-only reference to the vector of atomic weights.
Definition at line 204 of file Phase.cpp.
References Phase::m_atomicWeights.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Number of elements.
Definition at line 150 of file Phase.cpp.
References Phase::m_mm.
Referenced by MultiPhase::addPhase(), Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), ChemEquil::equilibrate(), MolalityVPSSTP::findCLMIndex(), FixedChemPotSSTP::FixedChemPotSSTP(), ThermoPhase::getElementPotentials(), ChemEquil::initialize(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), LatticeSolidPhase::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), ThermoPhase::setElementPotentials(), vcs_VolPhase::setPtrThermoPhase(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.
Definition at line 155 of file Phase.cpp.
References Phase::m_mm.
Referenced by Phase::elementName(), and Phase::nAtoms().
|
inherited |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements().
Used before calls which take an array pointer.
Definition at line 162 of file Phase.cpp.
References Phase::m_mm.
|
inherited |
Number of atoms of element m
in species k
.
k | species index |
m | element index |
Definition at line 226 of file Phase.cpp.
References Phase::checkElementIndex(), Phase::checkSpeciesIndex(), Phase::m_mm, and Phase::m_speciesComp.
Referenced by Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), MolalityVPSSTP::findCLMIndex(), MultiPhase::init(), ChemEquil::initialize(), IonsFromNeutralVPSSTP::initThermoXML(), IdealSolidSolnPhase::setToEquilState(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Get a vector containing the atomic composition of species k.
k | species index |
atomArray | vector containing the atomic number in the species. Length: m_mm |
Definition at line 233 of file Phase.cpp.
References Phase::m_mm, and Phase::m_speciesComp.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Returns the index of a species named 'name' within the Phase object.
The first species in the phase will have an index 0, and the last one will have an index of nSpecies() - 1.
name | String name of the species. It may also be in the form phaseName:speciesName |
Definition at line 240 of file Phase.cpp.
References Phase::m_id, Phase::m_kk, Phase::m_name, Phase::m_speciesNames, Cantera::npos, and Cantera::parseSpeciesName().
Referenced by PDSS_IonsFromNeutral::constructPDSSXML(), TransportFactory::getLiquidInteractionsTransportData(), TransportFactory::getLiquidSpeciesTransportData(), Cantera::getStick(), HMWSoln::HMWSoln(), Cantera::importSolution(), LiquidTranInteraction::init(), DebyeHuckel::initThermoXML(), FlowDevice::install(), Kinetics::kineticsSpeciesIndex(), MargulesVPSSTP::MargulesVPSSTP(), Phase::massFraction(), MixedSolventElectrolyte::MixedSolventElectrolyte(), Phase::moleFraction(), PhaseCombo_Interaction::PhaseCombo_Interaction(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), RedlichKisterVPSSTP::RedlichKisterVPSSTP(), MolalityVPSSTP::report(), MolalityVPSSTP::reportCSV(), and Kinetics::speciesPhase().
|
inherited |
Name of the species with index k.
k | index of the species |
Definition at line 257 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_speciesNames.
Referenced by StFlow::componentName(), ReactingSurf1D::componentName(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), TransportFactory::fitProperties(), AqueousTransport::getLiquidTransportData(), Phase::getMoleFractionsByName(), Cantera::importSolution(), MultiPhase::init(), ChemEquil::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), FlowDevice::install(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesName(), solveProb::print_header(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), StFlow::save(), SurfPhase::setCoveragesByName(), ChemEquil::setInitialMoles(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Inlet1D::showSolution(), ReactingSurf1D::showSolution(), Phase::speciesSPName(), and ChemEquil::update().
|
inherited |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
k | Species index within the phase |
Definition at line 282 of file Phase.cpp.
References Phase::m_name, and Phase::speciesName().
|
inherited |
Return a const reference to the vector of species names.
Definition at line 263 of file Phase.cpp.
References Phase::m_speciesNames.
Referenced by PDSS_ConstVol::constructPDSSFile(), PDSS_HKFT::constructPDSSFile(), PDSS_IonsFromNeutral::constructPDSSFile(), PDSS_SSVol::constructPDSSFile(), VPSSMgr_ConstVol::initThermoXML(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Returns the number of species in the phase.
Definition at line 252 of file Phase.h.
References Phase::m_kk.
Referenced by MultiPhase::addPhase(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::assignShallowPointers(), MultiPhase::calcElemAbundances(), Phase::chargeDensity(), MultiPhaseEquil::computeReactionSteps(), PDSS_IonsFromNeutral::constructPDSSXML(), RedlichKisterVPSSTP::cp_mole(), MargulesVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), PhaseCombo_Interaction::cp_mole(), SolidTransport::electricalConductivity(), RedlichKisterVPSSTP::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MargulesVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), ChemEquil::equilibrate(), vcs_MultiPhaseEquil::equilibrate_TP(), ChemEquil::estimateElementPotentials(), ThermoPhase::getActivities(), MetalPhase::getActivityConcentrations(), MetalPhase::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MetalPhase::getEnthalpy_RT(), MetalPhase::getEntropy_R(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MultiTransport::getMolarFluxes(), Phase::getMoleFractionsByName(), MultiPhase::getMoles(), MetalPhase::getStandardChemPotentials(), ImplicitSurfChem::ImplicitSurfChem(), Cantera::importSolution(), LiquidTranInteraction::init(), MultiPhase::init(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), GasTransport::initGas(), ChemEquil::initialize(), DustyGasTransport::initialize(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), VPSSMgr::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), LatticePhase::initThermo(), FlowDevice::install(), rxninfo::installReaction(), LatticeSolidPhase::installSlavePhases(), Kinetics::nTotalSpecies(), solveProb::print_header(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::restoreState(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), Phase::saveState(), Kinetics::selectPhase(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMoles(), SolidTransport::setParameters(), MultiPhase::setPhaseMoleFractions(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Transport::setThermo(), ReactorBase::setThermoMgr(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), Inlet1D::showSolution(), solveSP::solveSP(), StFlow::StFlow(), vcs_VolPhase::transferElementsFM(), AqueousKinetics::updateKc(), InterfaceKinetics::updateKc(), ConstPressureReactor::updateState(), Reactor::updateState(), and MultiPhase::uploadMoleFractionsFromPhases().
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
Definition at line 268 of file Phase.cpp.
References Phase::m_kk.
Referenced by Phase::concentration(), Phase::massFraction(), Phase::molecularWeight(), Phase::moleFraction(), Phase::nAtoms(), and Phase::speciesName().
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 275 of file Phase.cpp.
References Phase::m_kk.
|
inherited |
Save the current internal state of the phase Write to vector 'state' the current internal state.
state | output vector. Will be resized to nSpecies() + 2. |
Definition at line 288 of file Phase.cpp.
References Phase::nSpecies().
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), TransportFactory::newTransport(), ReactorBase::setThermoMgr(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inherited |
Write to array 'state' the current internal state.
lenstate | length of the state array. Must be >= nSpecies()+2 |
state | output vector. Must be of length nSpecies() + 2 or greater. |
Definition at line 293 of file Phase.cpp.
References Phase::density(), Phase::getMassFractions(), and Phase::temperature().
|
inherited |
Restore a state saved on a previous call to saveState.
state | State vector containing the previously saved state. |
Definition at line 300 of file Phase.cpp.
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiTransport::getMassFluxes(), FlowReactor::initialize(), ConstPressureReactor::initialize(), Reactor::initialize(), and TransportFactory::newTransport().
|
inherited |
Restore the state of the phase from a previously saved state vector.
lenstate | Length of the state vector |
state | Vector of state conditions. |
Definition at line 305 of file Phase.cpp.
References Phase::nSpecies(), Phase::setDensity(), Phase::setMassFractions_NoNorm(), and Phase::setTemperature().
|
inherited |
Set the species mole fractions by name.
@param xMap map from species names to mole fraction values.
Species not listed by name in xMap
are set to zero.
Definition at line 362 of file Phase.cpp.
References Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().
Referenced by Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().
|
inherited |
Set the mole fractions of a group of species by name.
Species which are not listed by name in the composition map are set to zero.
x | string x in the form of a composition map |
Definition at line 376 of file Phase.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Phase::speciesName().
|
inherited |
Set the species mass fractions by name.
@param yMap map from species names to mass fraction values.
Species not listed by name in yMap
are set to zero.
Definition at line 416 of file Phase.cpp.
References Phase::nSpecies(), Phase::setMassFractions(), and Phase::speciesName().
Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().
|
inherited |
Set the species mass fractions by name.
Species not listed by name in x
are set to zero.
x | String containing a composition map |
Definition at line 430 of file Phase.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Phase::speciesName().
|
inherited |
Set the internally stored temperature (K), density, and mole fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 441 of file Phase.cpp.
References Phase::setDensity(), Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mole fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
x | Composition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction. |
Definition at line 455 of file Phase.cpp.
References Phase::setDensity(), Phase::setMoleFractionsByName(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mass fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
y | vector of species mass fractions, length m_kk |
Definition at line 462 of file Phase.cpp.
References Phase::setDensity(), Phase::setMassFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mass fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
y | Composition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction. |
Definition at line 469 of file Phase.cpp.
References Phase::setDensity(), Phase::setMassFractionsByName(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
t | Temperature in kelvin |
n | molar density (kmol/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 448 of file Phase.cpp.
References Phase::setMolarDensity(), Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K) and density (kg/m^3)
t | Temperature in kelvin |
rho | Density (kg/m^3) |
Definition at line 476 of file Phase.cpp.
References Phase::setDensity(), and Phase::setTemperature().
Referenced by PureFluidPhase::setState_HP(), PureFluidPhase::setState_SP(), PureFluidPhase::setState_SV(), PDSS_IonsFromNeutral::setState_TR(), and PureFluidPhase::setState_UV().
|
inherited |
Set the internally stored temperature (K) and mole fractions.
t | Temperature in kelvin |
x | vector of species mole fractions, length m_kk |
Definition at line 482 of file Phase.cpp.
References Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K) and mass fractions.
t | Temperature in kelvin |
y | vector of species mass fractions, length m_kk |
Definition at line 488 of file Phase.cpp.
References Phase::setMassFractions(), and Phase::setTemperature().
|
inherited |
Set the density (kg/m^3) and mole fractions.
rho | Density (kg/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 494 of file Phase.cpp.
References Phase::setDensity(), and Phase::setMoleFractions().
|
inherited |
Set the density (kg/m^3) and mass fractions.
rho | Density (kg/m^3) |
y | vector of species mass fractions, length m_kk |
Definition at line 500 of file Phase.cpp.
References Phase::setDensity(), and Phase::setMassFractions().
|
inherited |
Molecular weight of species k
.
k | index of species k |
k
. Definition at line 506 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_molwts.
Referenced by VPSSMgr_Water_ConstVol::_updateRefStateThermo(), VPSSMgr_Water_HKFT::_updateRefStateThermo(), VPSSMgr_Water_ConstVol::_updateStandardStateThermo(), VPSSMgr_Water_HKFT::_updateStandardStateThermo(), SingleSpeciesTP::cv_mole(), SingleSpeciesTP::getPartialMolarVolumes(), SingleSpeciesTP::getStandardVolumes(), VPSSMgr_Water_ConstVol::getStandardVolumes_ref(), PDSS::initThermo(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), PDSS_ConstVol::initThermoXML(), MineralEQ3::initThermoXML(), PDSS_SSVol::initThermoXML(), Phase::molarMass(), MolalityVPSSTP::setSolvent(), HMWSoln::speciesMolarVolume(), and LiquidTransport::stefan_maxwell_solve().
|
inlineinherited |
Return the Molar mass of species k
Alternate name for molecular weight.
@param k index for species @return Return the molar mass of species k kg/kmol.
Definition at line 388 of file Phase.h.
References Phase::molecularWeight().
|
inherited |
Copy the vector of molecular weights into vector weights.
weights | Output vector of molecular weights (kg/kmol) |
Definition at line 512 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Copy the vector of molecular weights into array weights.
@param iwt Unused. @param weights Output array of molecular weights (kg/kmol)
Definition at line 521 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Copy the vector of molecular weights into array weights.
weights | Output array of molecular weights (kg/kmol) |
Definition at line 527 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Return a const reference to the internal vector of molecular weights.
units = kg / kmol
Definition at line 533 of file Phase.cpp.
References Phase::m_molwts.
Referenced by ReactingSurf1D::eval(), Phase::freezeSpecies(), Phase::getMolecularWeights(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), Cantera::getStick(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), and StFlow::StFlow().
|
inlineinherited |
This routine returns the size of species k.
k | index of the species |
Definition at line 413 of file Phase.h.
References Phase::m_speciesSize.
Referenced by MolarityIonicVPSSTP::constructPhaseXML(), RedlichKisterVPSSTP::constructPhaseXML(), MargulesVPSSTP::constructPhaseXML(), MixedSolventElectrolyte::constructPhaseXML(), PhaseCombo_Interaction::constructPhaseXML(), IonsFromNeutralVPSSTP::constructPhaseXML(), IdealMolalSoln::constructPhaseXML(), IdealSolidSolnPhase::constructPhaseXML(), DebyeHuckel::constructPhaseXML(), ReactingSurf1D::eval(), SurfPhase::getCoverages(), SurfPhase::initThermo(), IdealMolalSoln::initThermoXML(), LatticeSolidPhase::installSlavePhases(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), and SurfPhase::standardConcentration().
|
inherited |
Get the mole fractions by name.
[out] | x | composition map containing the species mole fractions. |
Definition at line 538 of file Phase.cpp.
References Phase::moleFraction(), Phase::nSpecies(), and Phase::speciesName().
|
inherited |
Return the mole fraction of a single species.
k | species index |
Definition at line 552 of file Phase.cpp.
References Phase::checkSpeciesIndex(), Phase::m_mmw, and Phase::m_ym.
Referenced by Phase::chargeDensity(), SolidTransport::electricalConductivity(), ChemEquil::equilibrate(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealMolalSoln::getMolalityActivityCoefficients(), Phase::getMoleFractionsByName(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), Phase::moleFraction(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and ChemEquil::setInitialMoles().
|
inherited |
Return the mole fraction of a single species.
name | String name of the species |
Definition at line 558 of file Phase.cpp.
References Phase::moleFraction(), Cantera::npos, and Phase::speciesIndex().
|
inherited |
Return the mass fraction of a single species.
k | species index |
Definition at line 573 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_y.
|
inherited |
Return the mass fraction of a single species.
name | String name of the species |
Definition at line 579 of file Phase.cpp.
References Phase::massFractions(), Cantera::npos, and Phase::speciesIndex().
|
inherited |
Get the species mole fraction vector.
x | On return, x contains the mole fractions. Must have a length greater than or equal to the number of species. |
Definition at line 547 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::scale().
Referenced by IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::enthalpy_mole(), HMWSoln::enthalpy_mole(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GibbsExcessVPSSTP::getActivities(), LatticePhase::getActivityConcentrations(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), LTI_MoleFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), LatticeSolidPhase::getMoleFractions(), DustyGasTransport::initialize(), GibbsExcessVPSSTP::initThermo(), HMWSoln::printCoeffs(), HMWSoln::relative_molal_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), MixtureFugacityTP::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalitiesByName(), MixtureFugacityTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), MultiPhase::setMoles(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setReferenceComposition(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), AqueousTransport::stefan_maxwell_solve(), ChemEquil::update(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), solveSP::updateMFKinSpecies(), DustyGasTransport::updateTransport_C(), and MultiPhase::uploadMoleFractionsFromPhases().
|
virtualinherited |
Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector.
Internally, the Phase object will normalize this vector before storing its contents.
x | Array of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species, m_kk. |
Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, IdealSolidSolnPhase, LatticeSolidPhase, and RedlichKwongMFTP.
Definition at line 317 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, ckr::max(), and Phase::stateMFChangeCalc().
Referenced by ChemEquil::calcEmoles(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), WaterSSTP::initThermoXML(), IonsFromNeutralVPSSTP::setConcentrations(), IonsFromNeutralVPSSTP::setMassFractions(), IonsFromNeutralVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), MolalityVPSSTP::setMolalitiesByName(), Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), LatticeSolidPhase::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions(), MixtureFugacityTP::setMoleFractions(), LatticePhase::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), IonsFromNeutralVPSSTP::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions_NoNorm(), LatticePhase::setMoleFractions_NoNorm(), Phase::setMoleFractionsByName(), ThermoPhase::setState_PX(), Phase::setState_RX(), Phase::setState_TNX(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), and Phase::setState_TX().
|
virtualinherited |
Set the mole fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
x | Input vector of mole fractions. Length is m_kk. |
Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 350 of file Phase.cpp.
References Cantera::dot(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, and Phase::stateMFChangeCalc().
Referenced by MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), and IonsFromNeutralVPSSTP::setMoleFractions_NoNorm().
|
inherited |
Get the species mass fractions.
[out] | y | Array of mass fractions, length nSpecies() |
Definition at line 589 of file Phase.cpp.
References Phase::m_y.
Referenced by LTI_MassFracs::getMixTransProp(), Cantera::importSolution(), PureFluidPhase::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), ThermoPhase::reportCSV(), Phase::saveState(), Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), and LiquidTransport::update_C().
|
inlineinherited |
Return a const pointer to the mass fraction array.
Definition at line 469 of file Phase.h.
References Phase::m_y.
Referenced by MultiTransport::getMassFluxes(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), and Phase::massFraction().
|
virtualinherited |
Set the mass fractions to the specified values and normalize them.
@param[in] y Array of unnormalized mass fraction values. Length
must be greater than or equal to the number of species. The Ptate object will normalize this vector before storing its contents.
Reimplemented in IonsFromNeutralVPSSTP, LatticePhase, GibbsExcessVPSSTP, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 387 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, ckr::max(), Cantera::scale(), and Phase::stateMFChangeCalc().
Referenced by Cantera::importSolution(), IdealSolidSolnPhase::setMassFractions(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), LatticePhase::setMassFractions(), Phase::setMassFractionsByName(), ThermoPhase::setState_PY(), Phase::setState_RY(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), Phase::setState_TY(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
virtualinherited |
Set the mass fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
y | Input vector of mass fractions. Length is m_kk. |
Reimplemented in IonsFromNeutralVPSSTP, LatticePhase, GibbsExcessVPSSTP, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 403 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Phase::stateMFChangeCalc().
Referenced by Phase::restoreState(), StFlow::setGas(), StFlow::setGasAtMidpoint(), IdealSolidSolnPhase::setMassFractions_NoNorm(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), and LatticePhase::setMassFractions_NoNorm().
|
inherited |
Get the species concentrations (kmol/m^3).
@param[out] c Array of species concentrations Length must be
greater than or equal to the number of species.
Definition at line 600 of file Phase.cpp.
References Phase::m_dens, Phase::m_ym, and Cantera::scale().
Referenced by ConstDensityThermo::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), SurfPhase::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), SurfPhase::getCoverages(), solveSP::solveSurfProb(), SimpleTransport::update_C(), and LiquidTransport::update_C().
|
inherited |
Concentration of species k.
If k is outside the valid range, an exception will be thrown.
k | Index of species |
Definition at line 594 of file Phase.cpp.
References Phase::checkSpeciesIndex(), Phase::m_dens, Phase::m_rmolwts, and Phase::m_y.
|
virtualinherited |
Set the concentrations to the specified values within the phase.
We set the concentrations here and therefore we set the overall density of the phase. We hold the temperature constant during this operation. Therefore, we have possibly changed the pressure of the phase by calling this routine.
[in] | conc | Array of concentrations in dimensional units. For bulk phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the numberof species in the phase. |
Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 605 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, ckr::max(), Phase::setDensity(), and Phase::stateMFChangeCalc().
Referenced by IdealSolidSolnPhase::setConcentrations(), MixtureFugacityTP::setConcentrations(), LatticePhase::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoverages(), and SurfPhase::setCoveragesNoNorm().
|
inherited |
Returns a const pointer to the start of the moleFraction/MW array.
This array is the array of mole fractions, each divided by the mean molecular weight.
Definition at line 568 of file Phase.cpp.
References Phase::m_ym.
Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().
|
inherited |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
k | species index |
Definition at line 642 of file Phase.cpp.
References Phase::m_speciesCharge.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), HMWSoln::calcMolalitiesCropped(), Phase::chargeDensity(), PDSS_HKFT::constructPDSSXML(), SolidTransport::electricalConductivity(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), InterfaceKinetics::getEquilibriumConstants(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), PDSS_HKFT::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), DebyeHuckel::initThermoXML(), LatticeSolidPhase::installSlavePhases(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::transferElementsFM(), and InterfaceKinetics::updateKc().
|
inherited |
Charge density [C/m^3].
Definition at line 647 of file Phase.cpp.
References Phase::charge(), Phase::moleFraction(), and Phase::nSpecies().
|
inlineinherited |
Returns the number of spatial dimensions (1, 2, or 3)
Definition at line 523 of file Phase.h.
References Phase::m_ndim.
Referenced by Kinetics::addPhase(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), IdealSolnGasVPSS::getUnitsStandardConc(), RedlichKwongMFTP::getUnitsStandardConc(), IdealMolalSoln::getUnitsStandardConc(), MolalityVPSSTP::getUnitsStandardConc(), IdealSolidSolnPhase::getUnitsStandardConc(), ThermoPhase::getUnitsStandardConc(), DebyeHuckel::getUnitsStandardConc(), and HMWSoln::getUnitsStandardConc().
|
inlineinherited |
Set the number of spatial dimensions (1, 2, or 3).
The number of spatial dimensions is used for vector involving directions.
ndim | Input number of dimensions. |
Definition at line 530 of file Phase.h.
References Phase::m_ndim.
Referenced by EdgePhase::EdgePhase(), FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().
|
inlineinherited |
Temperature (K).
Definition at line 539 of file Phase.h.
References Phase::m_temp.
Referenced by ThermoPhase::_RT(), InterfaceKinetics::_update_rates_T(), MixtureFugacityTP::_updateReferenceStateThermo(), VPStandardStateTP::_updateStandardStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), LatticeSolidPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), DebyeHuckel::A_Debye_TP(), HMWSoln::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), IdealSolnGasVPSS::calcDensity(), MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::cv_mole(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), HMWSoln::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), FixedChemPotSSTP::FixedChemPotSSTP(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), StoichSubstance::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), PhaseCombo_Interaction::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), PureFluidPhase::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), PureFluidPhase::getEntropy_R_ref(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), StoichSubstance::getGibbs_ref(), PureFluidPhase::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), StoichSubstance::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), PureFluidPhase::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), LatticePhase::getPureGibbs(), LTPspecies_Arrhenius::getSpeciesTransProp(), LTPspecies_Poly::getSpeciesTransProp(), LTPspecies_ExpT::getSpeciesTransProp(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), ConstDensityThermo::gibbs_mole(), StoichSubstance::gibbs_mole(), RedlichKwongMFTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), ThermoPhase::gibbs_mole(), LatticePhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), RedlichKwongMFTP::hresid(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), RedlichKwongMFTP::pressureDerivatives(), HMWSoln::relative_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), ChemEquil::setInitialMoles(), PureFluidPhase::setPressure(), WaterSSTP::setPressure(), GibbsExcessVPSSTP::setPressure(), IdealMolalSoln::setPressure(), VPStandardStateTP::setPressure(), MixtureFugacityTP::setPressure(), IdealGasPhase::setPressure(), IonsFromNeutralVPSSTP::setPressure(), DebyeHuckel::setPressure(), HMWSoln::setPressure(), vcs_VolPhase::setPtrThermoPhase(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), PureFluidPhase::setTPXState(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), RedlichKwongMFTP::sresid(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), ChemEquil::update(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), RedlichKwongMFTP::updateAB(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), VPStandardStateTP::updateStandardStateThermo(), Reactor::updateState(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_T(), and WaterSSTP::vaporFraction().
|
inlinevirtualinherited |
Density (kg/m^3).
Reimplemented in HMWSoln.
Definition at line 545 of file Phase.h.
References Phase::m_dens.
Referenced by MixtureFugacityTP::calculatePsat(), SingleSpeciesTP::cv_mole(), HMWSoln::density(), WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), MultiTransport::getMassFluxes(), ConstDensityThermo::getParameters(), StoichSubstance::getParameters(), StoichSubstanceSSTP::getParameters(), MetalSHEelectrons::getParameters(), MineralEQ3::getParameters(), SingleSpeciesTP::getPartialMolarVolumes(), MultiTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), SingleSpeciesTP::getStandardVolumes(), WaterSSTP::getStandardVolumes_ref(), RedlichKwongMFTP::hresid(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), WaterSSTP::satPressure(), Phase::saveState(), IdealMolalSoln::setDensity(), IdealSolidSolnPhase::setDensity(), Phase::setDensity(), DebyeHuckel::setDensity(), WaterSSTP::setPressure(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), WaterSSTP::setTemperature(), PureFluidPhase::setTPXState(), RedlichKwongMFTP::sresid(), ChemEquil::update(), SimpleTransport::update_C(), LiquidTransport::update_C(), ConstPressureReactor::updateState(), StFlow::updateThermo(), WaterSSTP::vaporFraction(), and MixtureFugacityTP::z().
|
inherited |
Molar density (kmol/m^3).
Definition at line 627 of file Phase.cpp.
References Phase::density(), and Phase::meanMolecularWeight().
Referenced by solveSP::calc_t(), SolidTransport::electricalConductivity(), ConstDensityThermo::enthalpy_mole(), StoichSubstance::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), ConstDensityThermo::getChemPotentials(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), LatticePhase::getParameters(), PureFluidPhase::getPartialMolarVolumes(), StoichSubstance::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), StoichSubstance::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealSolnGasVPSS::intEnergy_mole(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), RedlichKwongMFTP::intEnergy_mole(), IonsFromNeutralVPSSTP::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), DebyeHuckel::intEnergy_mole(), HMWSoln::intEnergy_mole(), ConstDensityThermo::logStandardConc(), Phase::molarVolume(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), IdealMolalSoln::setMolarDensity(), DebyeHuckel::setMolarDensity(), and ConstDensityThermo::standardConcentration().
|
inherited |
Molar volume (m^3/kmol).
Definition at line 637 of file Phase.cpp.
References Phase::molarDensity().
Referenced by RedlichKwongMFTP::cp_mole(), HMWSoln::cv_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarVolumes(), ThermoPhase::intEnergy_mole(), RedlichKwongMFTP::pressureDerivatives(), MixtureFugacityTP::setState_TR(), and LiquidTransport::stefan_maxwell_solve().
|
inlinevirtualinherited |
Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable.
[in] | density | density (kg/m^3). |
Reimplemented in HMWSoln, DebyeHuckel, WaterSSTP, IdealSolidSolnPhase, and IdealMolalSoln.
Definition at line 560 of file Phase.h.
References Phase::density(), and Phase::m_dens.
Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), IdealSolidSolnPhase::calcDensity(), LatticeSolidPhase::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), StoichSubstanceSSTP::initThermoXML(), WaterSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), MineralEQ3::initThermoXML(), electrodeElectron::initThermoXML(), Phase::restoreState(), Phase::setConcentrations(), WaterSSTP::setDensity(), ConstDensityThermo::setParameters(), StoichSubstance::setParameters(), StoichSubstanceSSTP::setParameters(), MetalSHEelectrons::setParameters(), MineralEQ3::setParameters(), electrodeElectron::setParameters(), SemiconductorPhase::setParametersFromXML(), MetalPhase::setParametersFromXML(), StoichSubstance::setParametersFromXML(), ConstDensityThermo::setParametersFromXML(), StoichSubstanceSSTP::setParametersFromXML(), MetalSHEelectrons::setParametersFromXML(), PureFluidPhase::setPressure(), IdealGasPhase::setPressure(), ThermoPhase::setState_HPorUV(), PureFluidPhase::setState_Psat(), Phase::setState_RX(), Phase::setState_RY(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), Phase::setState_TR(), MixtureFugacityTP::setState_TR(), Phase::setState_TRX(), Phase::setState_TRY(), PureFluidPhase::setState_Tsat(), SingleSpeciesTP::setState_UV(), ThermoPhase::setStateFromXML(), and Reactor::updateState().
|
virtualinherited |
Set the internally stored molar density (kmol/m^3) of the phase.
[in] | molarDensity | Input molar density (kmol/m^3). |
Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, and IdealMolalSoln.
Definition at line 632 of file Phase.cpp.
References Phase::m_dens, and Phase::meanMolecularWeight().
Referenced by LatticePhase::calcDensity(), LatticePhase::setParameters(), and Phase::setState_TNX().
|
inlinevirtualinherited |
Set the internally stored temperature of the phase (K).
temp | Temperature in Kelvin |
Reimplemented in HMWSoln, DebyeHuckel, IonsFromNeutralVPSSTP, WaterSSTP, MixtureFugacityTP, VPStandardStateTP, and RedlichKwongMFTP.
Definition at line 570 of file Phase.h.
References Phase::m_temp.
Referenced by ChemEquil::equilibrate(), ReactingSurf1D::eval(), TransportFactory::fitProperties(), WaterSSTP::initThermoXML(), Phase::restoreState(), StFlow::setGas(), StFlow::setGasAtMidpoint(), ThermoPhase::setState_HPorUV(), PureFluidPhase::setState_Psat(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), Phase::setState_TNX(), VPStandardStateTP::setState_TP(), IdealMolalSoln::setState_TP(), MixtureFugacityTP::setState_TP(), GibbsExcessVPSSTP::setState_TP(), DebyeHuckel::setState_TP(), ThermoPhase::setState_TP(), HMWSoln::setState_TP(), SingleSpeciesTP::setState_TPX(), ThermoPhase::setState_TPX(), SingleSpeciesTP::setState_TPY(), ThermoPhase::setState_TPY(), Phase::setState_TR(), MixtureFugacityTP::setState_TR(), Phase::setState_TRX(), Phase::setState_TRY(), PureFluidPhase::setState_Tsat(), Phase::setState_TX(), Phase::setState_TY(), SingleSpeciesTP::setState_UV(), SurfPhase::setStateFromXML(), ThermoPhase::setStateFromXML(), RedlichKwongMFTP::setTemperature(), PDSS_IonsFromNeutral::setTemperature(), WaterSSTP::setTemperature(), ChemEquil::setToEquilState(), and Reactor::updateState().
|
inherited |
Evaluate the mole-fraction-weighted mean of an array Q.
\[ \sum_k X_k Q_k. \]
Q should contain pure-species molar property values.
[in] | Q | Array of length m_kk that is to be averaged. |
Definition at line 658 of file Phase.cpp.
References Phase::m_mmw, and Phase::m_ym.
Referenced by IdealSolnGasVPSS::cp_mole(), ConstDensityThermo::cp_mole(), RedlichKwongMFTP::cp_mole(), IonsFromNeutralVPSSTP::cp_mole(), IdealSolidSolnPhase::cp_mole(), IdealMolalSoln::cp_mole(), LatticePhase::cp_mole(), IdealGasPhase::cp_mole(), DebyeHuckel::cp_mole(), HMWSoln::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IonsFromNeutralVPSSTP::enthalpy_mole(), IdealMolalSoln::enthalpy_mole(), SurfPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), DebyeHuckel::enthalpy_mole(), HMWSoln::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IonsFromNeutralVPSSTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealMolalSoln::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), DebyeHuckel::entropy_mole(), HMWSoln::entropy_mole(), IonsFromNeutralVPSSTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealMolalSoln::gibbs_mole(), DebyeHuckel::gibbs_mole(), HMWSoln::gibbs_mole(), ConstDensityThermo::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealMolalSoln::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), and HMWSoln::relative_enthalpy().
|
inherited |
Evaluate the mass-fraction-weighted mean of an array Q.
\[ \sum_k Y_k Q_k \]
[in] | Q | Array of species property values in mass units. |
Definition at line 663 of file Phase.cpp.
References Cantera::dot(), and Phase::m_y.
|
inlineinherited |
The mean molecular weight. Units: (kg/kmol)
Definition at line 592 of file Phase.h.
References Phase::m_mmw.
Referenced by IdealSolnGasVPSS::calcDensity(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), LatticePhase::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), MixtureFugacityTP::calculatePsat(), ThermoPhase::cp_mass(), RedlichKwongMFTP::critDensity(), ThermoPhase::cv_mass(), RedlichKwongMFTP::densityCalc(), MixtureFugacityTP::densityCalc(), RedlichKwongMFTP::densSpinodalGas(), RedlichKwongMFTP::densSpinodalLiquid(), ThermoPhase::enthalpy_mass(), ThermoPhase::entropy_mass(), IdealSolidSolnPhase::getActivityConcentrations(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), MultiTransport::getMultiDiffCoeffs(), WaterSSTP::getStandardVolumes_ref(), ThermoPhase::gibbs_mass(), RedlichKwongMFTP::hresid(), ThermoPhase::intEnergy_mass(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::setMolarDensity(), IdealGasPhase::setPressure(), RedlichKwongMFTP::sresid(), SimpleTransport::update_C(), LiquidTransport::update_C(), StFlow::updateThermo(), StFlow::updateTransport(), and MixtureFugacityTP::z().
|
inherited |
Evaluate \( \sum_k X_k \log X_k \).
Definition at line 668 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogx().
Referenced by IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), and IdealSolidSolnPhase::gibbs_mole().
|
inherited |
Evaluate \( \sum_k X_k \log Q_k \).
Q | Vector of length m_kk to take the log average of |
Definition at line 673 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogQ().
|
inherited |
Add an element.
symbol | Atomic symbol std::string. |
weight | Atomic mass in amu. |
Definition at line 678 of file Phase.cpp.
References CT_ELEM_TYPE_ABSPOS, CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, and Phase::m_mm.
Referenced by Phase::addElement().
|
inherited |
Add an element from an XML specification.
e | Reference to the XML_Node where the element is described. |
Definition at line 701 of file Phase.cpp.
References Phase::addElement().
|
inherited |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
symbol | String symbol of the element |
weight | Atomic weight of the element (kg kmol-1). |
atomicNumber | Atomic number of the element (unitless) |
entropy298 | Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error. |
elem_type | Specifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element. |
Definition at line 708 of file Phase.cpp.
References CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicNumbers, Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, Phase::m_entropy298, and Phase::m_mm.
Referenced by Phase::addElementsFromXML(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), and FixedChemPotSSTP::FixedChemPotSSTP().
|
inherited |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
e | Reference to the XML_Node where the element is described. |
Definition at line 755 of file Phase.cpp.
References Phase::addUniqueElement(), Cantera::atofCheck(), XML_Node::child(), ENTROPY298_UNKNOWN, XML_Node::hasAttrib(), XML_Node::hasChild(), and Cantera::stripws().
|
inherited |
Add all elements referenced in an XML_Node tree.
phase | Reference to the root XML_Node of a phase |
Definition at line 780 of file Phase.cpp.
References Phase::addUniqueElement(), XML_Node::child(), XML_Node::findByAttr(), Cantera::get_XML_File(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and XML_Node::root().
Referenced by Cantera::importPhase().
|
inherited |
Prohibit addition of more elements, and prepare to add species.
Definition at line 831 of file Phase.cpp.
References Phase::m_elementsFrozen.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP().
|
inherited |
True if freezeElements has been called.
Definition at line 836 of file Phase.cpp.
References Phase::m_elementsFrozen.
|
inherited |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
symbol | String symbol of the element |
weight | Atomic weight of the element (kg kmol-1). |
atomicNumber | Atomic number of the element (unitless) |
entropy298 | Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which if used will cause Cantera to throw an error. |
elem_type | Specifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element. |
Definition at line 841 of file Phase.cpp.
References Phase::addUniqueElement(), Phase::elementIndex(), Phase::m_elementsFrozen, Phase::m_kk, Phase::m_mm, Phase::m_speciesComp, and Cantera::npos.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.
It only adds the species if it is unique.
name | String name of the species |
comp | Array containing the elemental composition of the species. |
charge | Charge of the species. Defaults to zero. |
size | Size of the species (meters). Defaults to 1 meter. |
Definition at line 919 of file Phase.cpp.
References Phase::m_kk, Phase::m_mm, Phase::m_speciesCharge, Phase::m_speciesComp, Phase::m_speciesNames, and Phase::m_speciesSize.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), LatticeSolidPhase::installSlavePhases(), and Cantera::installSpecies().
|
virtualinherited |
Call when finished adding species.
Prepare to use them for calculation of mixture properties.
Definition at line 952 of file Phase.cpp.
References Phase::init(), Phase::m_speciesFrozen, and Phase::molecularWeights().
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inlineinherited |
True if freezeSpecies has been called.
Definition at line 694 of file Phase.h.
References Phase::m_speciesFrozen.
|
inlineinherited |
Return the State Mole Fraction Number.
Definition at line 701 of file Phase.h.
References Phase::m_stateNum.
Referenced by SimpleTransport::update_C(), and LiquidTransport::update_C().
|
inlineinherited |
Every time the mole fractions have changed, this routine will increment the stateMFNumber.
@param forceChange If this is true then the stateMFNumber always
changes. This defaults to false.
Definition at line 115 of file Phase.cpp.
References Phase::m_stateNum.
Referenced by Phase::setConcentrations(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), Phase::setMoleFractions(), and Phase::setMoleFractions_NoNorm().
|
protectedinherited |
Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size.
mw | Vector of molecular weights of the species. |
Definition at line 958 of file Phase.cpp.
References Cantera::int2str(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Cantera::Tiny.
Referenced by Phase::freezeSpecies().
|
inlineprotectedinherited |
Set the molecular weight of a single species to a given value.
k | id of the species |
mw | Molecular Weight (kg kmol-1) |
Definition at line 722 of file Phase.h.
References Phase::m_molwts, and Phase::m_rmolwts.
Referenced by PureFluidPhase::initThermo(), and WaterSSTP::initThermoXML().
|
virtualinherited |
Duplication routine for objects which inherit from Kinetics.
This virtual routine can be used to duplicate Kinetics objects inherited from Kinetics even if the application only has a pointer to Kinetics to work with.
These routines are basically wrappers around the derived copy constructor.
tpVector | Vector of shallow pointers to ThermoPhase objects. this is the m_thermo vector within this object |
Reimplemented from Kinetics.
Reimplemented in EdgeKinetics.
Definition at line 253 of file InterfaceKinetics.cpp.
References Kinetics::assignShallowPointers(), and InterfaceKinetics::InterfaceKinetics().
|
virtualinherited |
Return the ID of the kinetics object.
Reimplemented from Kinetics.
Reimplemented in EdgeKinetics.
Definition at line 231 of file InterfaceKinetics.cpp.
|
virtualinherited |
Return the type of the kinetics object.
Reimplemented from Kinetics.
Reimplemented in EdgeKinetics.
Definition at line 236 of file InterfaceKinetics.cpp.
Referenced by InterfaceKinetics::registerReaction().
|
inherited |
Set the electric potential in the nth phase.
n | phase Index in this kinetics object. |
V | Electric potential (volts) |
Definition at line 265 of file InterfaceKinetics.cpp.
References ThermoPhase::setElectricPotential(), and Kinetics::thermo().
|
inlinevirtualinherited |
Return the forward rates of progress for each reaction.
fwdROP | vector of rates of progress. length = number of reactions, Units are kmol m-2 s-1. |
Reimplemented from Kinetics.
Definition at line 181 of file InterfaceKinetics.h.
References InterfaceKinetics::m_kdata, and InterfaceKinetics::updateROP().
|
inlinevirtualinherited |
Return the reverse rates of progress for each reaction.
revROP | vector of rates of progress. length = number of reactions, Units are kmol m-2 s-1. |
Reimplemented from Kinetics.
Definition at line 191 of file InterfaceKinetics.h.
References InterfaceKinetics::m_kdata, and InterfaceKinetics::updateROP().
|
inlinevirtualinherited |
Return the net rates of progress for each reaction.
netROP | vector of rates of progress. length = number of reactions, Units are kmol m-2 s-1. |
Reimplemented from Kinetics.
Definition at line 201 of file InterfaceKinetics.h.
References InterfaceKinetics::m_kdata, and InterfaceKinetics::updateROP().
|
virtualinherited |
Get the equilibrium constants of all reactions, whether the reaction is reversible or not.
Get the equilibrium constants of all reactions, whether reversible or not.
kc | Returns the concentration equation constant for the reaction. Length is the number of reactions |
Reimplemented from Kinetics.
Definition at line 449 of file InterfaceKinetics.cpp.
References Phase::charge(), DATA_PTR, Cantera::GasConstant, ReactionStoichMgr::getReactionDelta(), ThermoPhase::getStandardChemPotentials(), ThermoPhase::logStandardConc(), Kinetics::m_ii, InterfaceKinetics::m_mu0, InterfaceKinetics::m_phi, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), Phase::nSpecies(), Phase::temperature(), and Kinetics::thermo().
Referenced by InterfaceKinetics::getRevRateConstants().
|
virtualinherited |
Return the vector of values for the reaction gibbs free energy change.
These values depend upon the concentration of the solution.
units = J kmol-1
deltaG | Output vector of deltaG's for reactions Length: m_ii. |
Reimplemented from Kinetics.
Definition at line 841 of file InterfaceKinetics.cpp.
References DATA_PTR, ThermoPhase::getChemPotentials(), ReactionStoichMgr::getReactionDelta(), InterfaceKinetics::m_grt, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
|
virtualinherited |
Return the vector of values for the reaction electrochemical free energy change.
These values depend upon the concentration of the solution and the voltage of the phases
units = J kmol-1
deltaM | Output vector of deltaM's for reactions Length: m_ii. |
Reimplemented from Kinetics.
Definition at line 871 of file InterfaceKinetics.cpp.
References DATA_PTR, ThermoPhase::getElectrochemPotentials(), ReactionStoichMgr::getReactionDelta(), InterfaceKinetics::m_grt, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
|
virtualinherited |
Return the vector of values for the reactions change in enthalpy.
These values depend upon the concentration of the solution.
units = J kmol-1
Reimplemented from Kinetics.
Definition at line 899 of file InterfaceKinetics.cpp.
References DATA_PTR, ThermoPhase::getPartialMolarEnthalpies(), ReactionStoichMgr::getReactionDelta(), InterfaceKinetics::m_grt, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
|
virtualinherited |
Return the vector of values for the change in entropy due to each reaction.
These values depend upon the concentration of the solution.
units = J kmol-1 Kelvin-1
deltaS | vector of Enthalpy changes Length = m_ii, number of reactions |
Reimplemented from Kinetics.
Definition at line 928 of file InterfaceKinetics.cpp.
References DATA_PTR, ThermoPhase::getPartialMolarEntropies(), ReactionStoichMgr::getReactionDelta(), InterfaceKinetics::m_grt, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
|
virtualinherited |
Return the vector of values for the reaction standard state gibbs free energy change.
These values don't depend upon the concentration of the solution.
deltaG | vector of rxn SS free energy changes units = J kmol-1 |
Return the vector of values for the reaction standard state gibbs free energy change. These values don't depend upon the concentration of the solution.
units = J kmol-1
Reimplemented from Kinetics.
Definition at line 955 of file InterfaceKinetics.cpp.
References DATA_PTR, ReactionStoichMgr::getReactionDelta(), ThermoPhase::getStandardChemPotentials(), InterfaceKinetics::m_grt, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
|
virtualinherited |
Return the vector of values for the change in the standard state enthalpies of reaction.
These values don't depend upon the concentration of the solution.
deltaH | vector of rxn SS enthalpy changes units = J kmol-1 |
Return the vector of values for the change in the standard state enthalpies of reaction. These values don't depend upon the concentration of the solution.
units = J kmol-1
Reimplemented from Kinetics.
Definition at line 984 of file InterfaceKinetics.cpp.
References DATA_PTR, Cantera::GasConstant, ThermoPhase::getEnthalpy_RT(), ReactionStoichMgr::getReactionDelta(), InterfaceKinetics::m_grt, Kinetics::m_kk, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), Phase::temperature(), and Kinetics::thermo().
|
virtualinherited |
Return the vector of values for the change in the standard state entropies for each reaction.
These values don't depend upon the concentration of the solution.
deltaS | vector of rxn SS entropy changes units = J kmol-1 Kelvin-1 |
Reimplemented from Kinetics.
Definition at line 1017 of file InterfaceKinetics.cpp.
References DATA_PTR, Cantera::GasConstant, ThermoPhase::getEntropy_R(), ReactionStoichMgr::getReactionDelta(), InterfaceKinetics::m_grt, Kinetics::m_kk, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
|
virtualinherited |
Returns the Species creation rates [kmol/m^2/s].
Return the species creation rates in array cdot, which must be dimensioned at least as large as the total number of species in all phases of the kinetics model
cdot | Vector containing creation rates. length = m_kk. units = kmol/m^2/s |
Reimplemented from Kinetics.
Definition at line 513 of file InterfaceKinetics.cpp.
References ReactionStoichMgr::getCreationRates(), InterfaceKinetics::m_kdata, Kinetics::m_kk, InterfaceKinetics::m_rxnstoich, and InterfaceKinetics::updateROP().
|
virtualinherited |
Return the Species destruction rates [kmol/m^2/s].
Return the species destruction rates in array ddot, which must be dimensioned at least as large as the total number of species in all phases of the kinetics model
ddot | Vector containing destruction rates. length = m_kk. units = kmol/m^2/s |
Reimplemented from Kinetics.
Definition at line 526 of file InterfaceKinetics.cpp.
References ReactionStoichMgr::getDestructionRates(), InterfaceKinetics::m_kdata, Kinetics::m_kk, InterfaceKinetics::m_rxnstoich, and InterfaceKinetics::updateROP().
|
virtualinherited |
Return the species net production rates [kmol/m^2/s].
Species net production rates [kmol/m^2/s]. Return the species net production rates (creation - destruction) in array wdot, which must be dimensioned at least as large as the total number of species in all phases of the kinetics model
net | Vector of species production rates. units kmol m-d s-1, where d is dimension. |
Reimplemented from Kinetics.
Definition at line 544 of file InterfaceKinetics.cpp.
References ReactionStoichMgr::getNetProductionRates(), InterfaceKinetics::m_kdata, Kinetics::m_kk, InterfaceKinetics::m_rxnstoich, and InterfaceKinetics::updateROP().
Referenced by solveSP::calc_t(), ReactingSurf1D::eval(), solveSP::fun_eval(), solveProb::print_header(), and solveProb::printIteration().
|
inlinevirtualinherited |
Stoichiometric coefficient of species k as a reactant in reaction i.
Reimplemented from Kinetics.
Definition at line 353 of file InterfaceKinetics.h.
References InterfaceKinetics::m_rrxn.
|
inlinevirtualinherited |
Stoichiometric coefficient of species k as a product in reaction i.
Reimplemented from Kinetics.
Definition at line 361 of file InterfaceKinetics.h.
References InterfaceKinetics::m_prxn.
|
inlinevirtualinherited |
Flag specifying the type of reaction.
The legal values and their meaning are specific to the particular kinetics manager.
Reimplemented from Kinetics.
Definition at line 370 of file InterfaceKinetics.h.
References InterfaceKinetics::m_index.
|
virtualinherited |
Get the vector of activity concentrations used in the kinetics object.
conc | (output) Vector of activity concentrations. Length is equal to the number of species in the kinetics object |
Reimplemented from Kinetics.
Definition at line 348 of file InterfaceKinetics.cpp.
References InterfaceKinetics::_update_rates_C(), and InterfaceKinetics::m_conc.
|
inherited |
Return the charge transfer rxn Beta parameter for the ith reaction.
Returns the beta parameter for a charge transfer reaction. This parameter is not important for non-charge transfer reactions. Note, the parameter defaults to zero. However, a value of 0.5 should be supplied for every charge transfer reaction if no information is known, as a value of 0.5 pertains to a symmetric transition state. The value can vary between 0 to 1.
irxn | Reaction number in the kinetics mechanism |
Definition at line 1363 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_ctrxn.
|
inlinevirtualinherited |
True if reaction i has been declared to be reversible.
If isReversible(i) is false, then the reverse rate of progress for reaction i is always zero.
Reimplemented from Kinetics.
Definition at line 404 of file InterfaceKinetics.h.
References InterfaceKinetics::m_revindex.
|
inlinevirtualinherited |
Return a string representing the reaction.
Reimplemented from Kinetics.
Definition at line 416 of file InterfaceKinetics.h.
References InterfaceKinetics::m_rxneqn.
|
virtualinherited |
Update the rates of progress of the reactions in the reaction mechanism.
This routine operates on internal data.
Reimplemented from Kinetics.
Definition at line 641 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_kdata, Kinetics::m_perturb, Cantera::multiply_each(), Kinetics::nReactions(), and InterfaceKinetics::updateROP().
Referenced by InterfaceKinetics::getRevRateConstants().
|
virtualinherited |
Update the rates of progress of the reactions in the reaction mechanism.
This routine operates on internal data.
Reimplemented from Kinetics.
Definition at line 661 of file InterfaceKinetics.cpp.
References DATA_PTR, InterfaceKinetics::getEquilibriumConstants(), InterfaceKinetics::getFwdRateConstants(), Kinetics::m_ii, InterfaceKinetics::m_kdata, Cantera::multiply_each(), and Kinetics::nReactions().
|
virtualinherited |
Return the activation energies in Kelvin.
length is the number of reactions
E | Ouptut vector of activation energies. Length: m_ii. |
Reimplemented from Kinetics.
Definition at line 677 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_E.
|
virtualinherited |
Add a phase to the kinetics manager object.
This must be done before the function init() is called or before any reactions are input.
This function calls the Kinetics operator addPhase. It also sets the following functions
m_phaseExists[]
thermo | Reference to the ThermoPhase to be added. |
Reimplemented from Kinetics.
Definition at line 1294 of file InterfaceKinetics.cpp.
References Kinetics::addPhase(), InterfaceKinetics::m_phaseExists, and InterfaceKinetics::m_phaseIsStable.
Referenced by InterfaceKinetics::InterfaceKinetics().
|
virtualinherited |
Prepare the class for the addition of reactions.
This function must be called after instantiation of the class, but before any reactions are actually added to the mechanism. This function calculates m_kk the number of species in all phases participating in the reaction mechanism. We don't know m_kk previously, before all phases have been added.
Reimplemented from Kinetics.
Definition at line 1309 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_conc, InterfaceKinetics::m_grt, Kinetics::m_kk, InterfaceKinetics::m_mu0, InterfaceKinetics::m_phi, InterfaceKinetics::m_pot, InterfaceKinetics::m_prxn, InterfaceKinetics::m_rrxn, Kinetics::nPhases(), Phase::nSpecies(), and Kinetics::thermo().
|
virtualinherited |
Add a single reaction to the mechanism.
r | Reference to a ReactionData object containing all of the info needed to describe the reaction. |
This routine must be called after init() and before finalize(). This function branches on the types of reactions allowed by the interfaceKinetics manager in order to install the reaction correctly in the manager. The manager allows the following reaction types Elementary Surface Global There is no difference between elementary and surface reactions.
Reimplemented from Kinetics.
Definition at line 1052 of file InterfaceKinetics.cpp.
References Kinetics::incrementRxnCount(), InterfaceKinetics::m_rxneqn, InterfaceKinetics::m_rxnPhaseIsProduct, InterfaceKinetics::m_rxnPhaseIsReactant, Kinetics::nPhases(), Kinetics::products(), Kinetics::reactants(), and Kinetics::speciesPhaseIndex().
|
virtualinherited |
Finish adding reactions and prepare for use.
This function must be called after all reactions are entered into the mechanism and before the mechanism is used to calculate reaction rates.
This function must be called after all reactions are entered into the mechanism and before the mechanism is used to calculate reaction rates.
Here, we resize work arrays based on the number of reactions, since we don't know this number up to now.
Reimplemented from Kinetics.
Reimplemented in EdgeKinetics.
Definition at line 1332 of file InterfaceKinetics.cpp.
References Kinetics::finalize(), Cantera::int2str(), InterfaceKinetics::m_finalized, Kinetics::m_kk, Kinetics::m_perturb, InterfaceKinetics::m_phaseExists, InterfaceKinetics::m_rwork, InterfaceKinetics::m_surf, Kinetics::m_thermo, Phase::nDim(), Cantera::npos, Kinetics::nReactions(), Kinetics::reactionPhaseIndex(), and Kinetics::thermo().
|
inherited |
Internal routine that updates the Rates of Progress of the reactions.
Update the rates of progress of the reactions in the reaction mechanism.
This is actually the guts of the functionality of the object
This routine operates on internal data.
Definition at line 686 of file InterfaceKinetics.cpp.
References InterfaceKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_T(), DATA_PTR, InterfaceKinetics::m_conc, Kinetics::m_ii, InterfaceKinetics::m_kdata, Kinetics::m_perturb, InterfaceKinetics::m_phaseExists, InterfaceKinetics::m_phaseExistsCheck, InterfaceKinetics::m_phaseIsStable, InterfaceKinetics::m_rxnPhaseIsProduct, InterfaceKinetics::m_rxnPhaseIsReactant, InterfaceKinetics::m_rxnstoich, Cantera::multiply_each(), ReactionStoichMgr::multiplyReactants(), ReactionStoichMgr::multiplyRevProducts(), and Kinetics::nPhases().
Referenced by InterfaceKinetics::getCreationRates(), InterfaceKinetics::getDestructionRates(), InterfaceKinetics::getFwdRateConstants(), InterfaceKinetics::getFwdRatesOfProgress(), InterfaceKinetics::getNetProductionRates(), InterfaceKinetics::getNetRatesOfProgress(), and InterfaceKinetics::getRevRatesOfProgress().
|
inherited |
Update properties that depend on temperature.
This is called to update all of the properties that depend on temperature
Current objects that this function updates m_kdata->m_logtemp m_kdata->m_rfn m_rates. updateKc();
Definition at line 281 of file InterfaceKinetics.cpp.
References InterfaceKinetics::_update_rates_phi(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), DATA_PTR, SurfPhase::getCoverages(), InterfaceKinetics::m_conc, InterfaceKinetics::m_has_coverage_dependence, InterfaceKinetics::m_has_electrochem_rxns, InterfaceKinetics::m_has_exchange_current_density_formulation, InterfaceKinetics::m_kdata, InterfaceKineticsData::m_logtemp, InterfaceKinetics::m_rates, InterfaceKinetics::m_surf, InterfaceKineticsData::m_temp, Kinetics::surfacePhaseIndex(), Phase::temperature(), Kinetics::thermo(), Rate1< R >::update(), Rate1< R >::update_C(), and InterfaceKinetics::updateKc().
Referenced by InterfaceKinetics::updateROP().
|
inherited |
Update properties that depend on the electric potential.
This is called to update all of the properties that depend on potential
Definition at line 307 of file InterfaceKinetics.cpp.
References ThermoPhase::electricPotential(), InterfaceKinetics::m_phi, Kinetics::nPhases(), and Kinetics::thermo().
Referenced by InterfaceKinetics::_update_rates_T().
|
inherited |
Update properties that depend on the species mole fractions and/or concentration.
Update properties that depend on concentrations.
This is called to update all of the properties that depend on concentration
This method fills out the array of generalized concentrations by calling method getActivityConcentrations for each phase, which classes representing phases should overload to return the appropriate quantities.
Definition at line 326 of file InterfaceKinetics.cpp.
References DATA_PTR, ThermoPhase::getActivityConcentrations(), InterfaceKinetics::m_conc, InterfaceKinetics::m_kdata, Kinetics::m_start, Kinetics::nPhases(), and Kinetics::thermo().
Referenced by InterfaceKinetics::getActivityConcentrations(), and InterfaceKinetics::updateROP().
|
inherited |
Advance the surface coverages in time.
This method carries out a time-accurate advancement of the surface coverages for a specified amount of time.
\[ \dot {\theta}_k = \dot s_k (\sigma_k / s_0) \]
tstep | Time value to advance the surface coverages |
Definition at line 1384 of file InterfaceKinetics.cpp.
References ImplicitSurfChem::initialize(), ImplicitSurfChem::integrate(), and InterfaceKinetics::m_integrator.
|
inherited |
Solve for the pseudo steady-state of the surface problem.
Solve for the steady state of the surface problem. This is the same thing as the advanceCoverages() function, but at infinite times.
Note, a direct solve is carried out under the hood here, to reduce the computational time.
ifuncOverride | 4 values are possible 1 SFLUX_INITIALIZE 2 SFLUX_RESIDUAL 3 SFLUX_JACOBIAN 4 SFLUX_TRANSIENT The default is -1, which means that the program will decide. |
timeScaleOverride | When a pseudo transient is selected this value can be used to override the default time scale for integration which is one. When SFLUX_TRANSIENT is used, this is equal to the time over which the equations are integrated. When SFLUX_INITIALIZE is used, this is equal to the time used in the initial transient algorithm, before the equation system is solved directly. |
Definition at line 1410 of file InterfaceKinetics.cpp.
References ImplicitSurfChem::initialize(), InterfaceKinetics::m_integrator, and ImplicitSurfChem::solvePseudoSteadyStateProblem().
|
inherited |
Update the equilibrium constants in molar units for all reversible reactions.
Irreversible reactions have their equilibrium constant set to zero.
Definition at line 360 of file InterfaceKinetics.cpp.
References Phase::charge(), DATA_PTR, Cantera::GasConstant, ReactionStoichMgr::getRevReactionDelta(), ThermoPhase::getStandardChemPotentials(), Cantera::int2str(), ThermoPhase::logStandardConc(), Kinetics::m_ii, InterfaceKinetics::m_irrev, InterfaceKinetics::m_kdata, InterfaceKinetics::m_mu0, InterfaceKinetics::m_nirrev, InterfaceKinetics::m_nrev, InterfaceKinetics::m_phi, InterfaceKinetics::m_revindex, InterfaceKinetics::m_rxnstoich, Kinetics::m_start, Kinetics::nPhases(), Cantera::npos, Kinetics::nReactions(), Phase::nSpecies(), Phase::temperature(), and Kinetics::thermo().
Referenced by InterfaceKinetics::_update_rates_T().
|
inlineinherited |
Write values into m_index.
rxnNumber | reaction number |
type | reaction type |
loc | location ?? |
Definition at line 572 of file InterfaceKinetics.h.
References InterfaceKinetics::m_index, and InterfaceKinetics::type().
|
inherited |
Apply corrections for interfacial charge transfer reactions.
For reactions that transfer charge across a potential difference, the activation energies are modified by the potential difference. (see, for example, ...). This method applies this correction.
kf | Vector of forward reaction rate constants on which to have the correction applied |
Definition at line 562 of file InterfaceKinetics.cpp.
References Phase::charge(), DATA_PTR, Cantera::fp2str(), Cantera::GasConstant, ReactionStoichMgr::getReactionDelta(), Cantera::int2str(), InterfaceKinetics::m_ctrxn, InterfaceKinetics::m_E, InterfaceKinetics::m_phi, InterfaceKinetics::m_pot, InterfaceKinetics::m_rwork, InterfaceKinetics::m_rxnstoich, Kinetics::nPhases(), Phase::nSpecies(), Phase::temperature(), Kinetics::thermo(), and Cantera::writelog().
Referenced by InterfaceKinetics::_update_rates_T().
|
inherited |
When an electrode reaction rate is optionally specified in terms of its exchange current density, extra vectors need to be precalculated.
Definition at line 618 of file InterfaceKinetics.cpp.
References Cantera::GasConstant, InterfaceKinetics::m_ctrxn, InterfaceKinetics::m_ctrxn_ecdf, Phase::temperature(), and Kinetics::thermo().
Referenced by InterfaceKinetics::_update_rates_T().
|
inherited |
Set the existence of a phase in the reaction object.
Tell the kinetics object whether a phase in the object exists. This is actually an extrinsic specification that must be carried out on top of the intrinsic calculation of the reaction rate. The routine will also flip the IsStable boolean within the kinetics object as well.
iphase | Index of the phase. This is the order within the internal thermo vector object |
exists | Boolean indicating whether the phase exists or not |
Definition at line 1427 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_phaseExists, InterfaceKinetics::m_phaseExistsCheck, InterfaceKinetics::m_phaseIsStable, and Kinetics::m_thermo.
|
inherited |
Set the stability of a phase in the reaction object.
Tell the kinetics object whether a phase in the object is stable. Species in an unstable phase will not be allowed to have a positive rate of formation from this kinetics object. This is actually an extrinsic specification that must be carried out on top of the intrinsic calculation of the reaction rate.
While conceptually not needed since kinetics is consistent with thermo when taken as a whole, in practice it has found to be very useful to turn off the creation of phases which shouldn't be forming. Typically this can reduce the oscillations in phase formation and destruction which are observed.
iphase | Index of the phase. This is the order within the internal thermo vector object |
isStable | Flag indicating whether the phase is stable or not |
Definition at line 1480 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_phaseIsStable, and Kinetics::m_thermo.
|
inherited |
Gets the phase existence int for the ith phase.
iphase | Phase Id |
Definition at line 1454 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_phaseExists, and Kinetics::m_thermo.
|
inherited |
Gets the phase stability int for the ith phase.
iphase | Phase Id |
Definition at line 1471 of file InterfaceKinetics.cpp.
References InterfaceKinetics::m_phaseIsStable, and Kinetics::m_thermo.
|
virtualinherited |
Reassign the shallow pointers within the FKinetics object.
This type or routine is absolute necessary because the Kinetics object doesn't own the ThermoPhase objects. After a duplication, we need to point to different ThermoPhase objects.
We check that the ThermoPhase objects are aligned in the same order and have the following identical properties to the ones that they are replacing. id() eosType() nSpecies()
tpVector | Vector of shallow pointers to ThermoPhase objects. this is the m_thermo vector within this object |
Definition at line 179 of file Kinetics.cpp.
References ThermoPhase::eosType(), Phase::id(), Kinetics::m_thermo, and Phase::nSpecies().
Referenced by EdgeKinetics::duplMyselfAsKinetics(), AqueousKinetics::duplMyselfAsKinetics(), GasKinetics::duplMyselfAsKinetics(), InterfaceKinetics::duplMyselfAsKinetics(), and Kinetics::duplMyselfAsKinetics().
|
inlineinherited |
Number of reactions in the reaction mechanism.
Definition at line 209 of file Kinetics.h.
References Kinetics::m_ii.
Referenced by EdgeKinetics::finalize(), InterfaceKinetics::finalize(), InterfaceKinetics::getFwdRateConstants(), InterfaceKinetics::getRevRateConstants(), and InterfaceKinetics::updateKc().
|
inherited |
Check that the specified reaction index is in range Throws an exception if i is greater than nReactions()
Definition at line 136 of file Kinetics.cpp.
References Kinetics::m_ii.
|
inherited |
Check that an array size is at least nReactions() Throws an exception if ii is less than nReactions().
Used before calls which take an array pointer.
Definition at line 143 of file Kinetics.cpp.
References Kinetics::m_ii.
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
Definition at line 164 of file Kinetics.cpp.
References Kinetics::m_kk.
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 171 of file Kinetics.cpp.
References Kinetics::m_kk.
|
inlineinherited |
The number of phases participating in the reaction mechanism.
For a homogeneous reaction mechanism, this will always return 1, but for a heterogeneous mechanism it will return the total number of phases in the mechanism.
Definition at line 244 of file Kinetics.h.
References Kinetics::m_thermo.
Referenced by InterfaceKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_phi(), Kinetics::addPhase(), InterfaceKinetics::addReaction(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::checkPhaseArraySize(), Kinetics::checkPhaseIndex(), Kinetics::finalize(), InterfaceKinetics::getDeltaElectrochemPotentials(), InterfaceKinetics::getDeltaEnthalpy(), InterfaceKinetics::getDeltaEntropy(), InterfaceKinetics::getDeltaGibbs(), InterfaceKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSGibbs(), InterfaceKinetics::getEquilibriumConstants(), ImplicitSurfChem::ImplicitSurfChem(), InterfaceKinetics::init(), Kinetics::nTotalSpecies(), InterfaceKinetics::operator=(), solveProb::print_header(), Kinetics::selectPhase(), InterfaceKinetics::updateKc(), solveSP::updateMFKinSpecies(), and InterfaceKinetics::updateROP().
|
inherited |
Check that the specified phase index is in range Throws an exception if m is greater than nPhases()
Definition at line 150 of file Kinetics.cpp.
References Kinetics::nPhases().
|
inherited |
Check that an array size is at least nPhases() Throws an exception if mm is less than nPhases().
Used before calls which take an array pointer.
Definition at line 157 of file Kinetics.cpp.
References Kinetics::nPhases().
|
inlineinherited |
Return the phase index of a phase in the list of phases defined within the object.
ph | std::string name of the phase |
If a -1 is returned, then the phase is not defined in the Kinetics object.
Definition at line 266 of file Kinetics.h.
References Kinetics::m_phaseindex, and Cantera::npos.
Referenced by Cantera::importKinetics().
|
inlineinherited |
This returns the integer index of the phase which has ThermoPhase type cSurf.
For heterogeneous mechanisms, this identifies the one surface phase. For homogeneous mechanisms, this returns -1.
Definition at line 280 of file Kinetics.h.
References Kinetics::m_surfphase.
Referenced by InterfaceKinetics::_update_rates_T(), solveSP::calc_t(), solveSP::fun_eval(), Cantera::getRateCoefficient(), solveProb::print_header(), and solveSP::solveSP().
|
inlineinherited |
Phase where the reactions occur.
For heterogeneous mechanisms, one of the phases in the list of phases represents the 2D interface or 1D edge at which the reactions take place. This method returns the index of the phase with the smallest spatial dimension (1, 2, or 3) among the list of phases. If there is more than one, the index of the first one is returned. For homogeneous mechanisms, the value 0 is returned.
Definition at line 294 of file Kinetics.h.
References Kinetics::m_rxnphase.
Referenced by EdgeKinetics::finalize(), and InterfaceKinetics::finalize().
|
inlineinherited |
This method returns a reference to the nth ThermoPhase object defined in this kinetics mechanism.
It is typically used so that member functions of the ThermoPhase object may be called. For homogeneous mechanisms, there is only one object, and this method can be called without an argument to access it.
n | Index of the ThermoPhase being sought. |
Definition at line 309 of file Kinetics.h.
References Kinetics::m_thermo.
Referenced by AqueousKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_phi(), InterfaceKinetics::_update_rates_T(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), solveSP::calc_t(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), InterfaceKinetics::getDeltaElectrochemPotentials(), AqueousKinetics::getDeltaEnthalpy(), GasKinetics::getDeltaEnthalpy(), InterfaceKinetics::getDeltaEnthalpy(), AqueousKinetics::getDeltaEntropy(), GasKinetics::getDeltaEntropy(), InterfaceKinetics::getDeltaEntropy(), AqueousKinetics::getDeltaGibbs(), GasKinetics::getDeltaGibbs(), InterfaceKinetics::getDeltaGibbs(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), AqueousKinetics::getDeltaSSEntropy(), GasKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSEntropy(), AqueousKinetics::getDeltaSSGibbs(), GasKinetics::getDeltaSSGibbs(), InterfaceKinetics::getDeltaSSGibbs(), Cantera::getEfficiencies(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), Cantera::getRateCoefficient(), Cantera::getStick(), ImplicitSurfChem::ImplicitSurfChem(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), ConstPressureReactor::initialize(), Reactor::initialize(), Kinetics::kineticsSpeciesIndex(), Kinetics::kineticsSpeciesName(), Kinetics::nTotalSpecies(), solveProb::print_header(), InterfaceKinetics::setElectricPotential(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), solveSP::solveSP(), Kinetics::speciesPhase(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), and solveSP::updateMFKinSpecies().
|
inlineinherited |
This method returns a reference to the nth ThermoPhase defined in this kinetics mechanism.
It is typically used so that member functions of the ThermoPhase may be called.
n | Index of the ThermoPhase being sought. |
Definition at line 324 of file Kinetics.h.
References Cantera::deprecatedMethod(), and Kinetics::m_thermo.
|
inlineinherited |
This method returns a reference to the nth ThermoPhase defined in this kinetics mechanism.
It is typically used so that member functions of the ThermoPhase may be called.
n | Index of the ThermoPhase being sought. |
Definition at line 336 of file Kinetics.h.
References Cantera::deprecatedMethod(), and Kinetics::m_thermo.
|
inlineinherited |
The total number of species in all phases participating in the kinetics mechanism.
This is useful to dimension arrays for use in calls to methods that return the species production rates, for example.
Definition at line 347 of file Kinetics.h.
References Kinetics::nPhases(), Phase::nSpecies(), and Kinetics::thermo().
Referenced by ReactingSurf1D::init(), and rxninfo::installReaction().
|
inlineinherited |
Returns the starting index of the species in the nth phase associated with the reaction mechanism.
n | Return the index of first species in the nth phase associated with the reaction mechanism. |
Definition at line 363 of file Kinetics.h.
References Cantera::deprecatedMethod(), and Kinetics::m_start.
|
inlineinherited |
The location of species k of phase n in species arrays.
Kinetics manager classes return species production rates in flat arrays, with the species of each phases following one another, in the order the phases were added. This method is useful to find the value for a particular species of a particular phase in arrays returned from methods like getCreationRates that return an array of species-specific quantities.
Example: suppose a heterogeneous mechanism involves three phases. The first contains 12 species, the second 26, and the third 3. Then species arrays must have size at least 41, and positions 0 - 11 are the values for the species in the first phase, positions 12 - 37 are the values for the species in the second phase, etc. Then kineticsSpeciesIndex(7, 0) = 7, kineticsSpeciesIndex(4, 1) = 16, and kineticsSpeciesIndex(2, 2) = 40.
k | species index |
n | phase index for the species |
Definition at line 391 of file Kinetics.h.
References Kinetics::m_start.
Referenced by solveSP::calc_t(), Cantera::checkRxnElementBalance(), ReactingSurf1D::eval(), solveSP::fun_eval(), Cantera::getEfficiencies(), Cantera::getReagents(), Cantera::getStick(), Kinetics::kineticsSpeciesIndex(), solveSP::solveSP(), and solveSP::updateMFKinSpecies().
|
inherited |
This routine will look up a species number based on the input std::string nm.
The lookup of species will occur for all phases listed in the kinetics object.
return
nm | Input string name of the species |
Definition at line 263 of file Kinetics.cpp.
References Phase::id(), Kinetics::m_start, Kinetics::m_thermo, Cantera::npos, Phase::speciesIndex(), and Kinetics::thermo().
|
inherited |
This routine will look up a species number based on the input std::string nm.
The lookup of species will occur in the specified phase of the object, or all phases if ph is "<any>".
return
nm | Input string name of the species |
ph | Input string name of the phase. |
Definition at line 288 of file Kinetics.cpp.
References Phase::id(), Kinetics::kineticsSpeciesIndex(), Kinetics::m_start, Kinetics::m_thermo, Cantera::npos, Phase::speciesIndex(), and Kinetics::thermo().
|
inherited |
Return the std::string name of the kth species in the kinetics manager.
k is an integer from 0 to ktot - 1, where ktot is the number of species in the kinetics manager, which is the sum of the number of species in all phases participating in the kinetics manager. If k is out of bounds, the std::string "<unknown>" is returned.
k | species index |
Return the string name of the kth species in the kinetics manager. k is an integer from 0 to ktot - 1, where ktot is the number of species in the kinetics manager, which is the sum of the number of species in all phases participating in the kinetics manager. If k is out of bounds, the string "<unknown>" is returned.
Definition at line 242 of file Kinetics.cpp.
References Kinetics::m_start, Cantera::npos, Phase::speciesName(), and Kinetics::thermo().
Referenced by Cantera::getStick(), solveSP::printFinal(), solveProb::printIteration(), and solveSP::printIteration().
|
inherited |
This function looks up the std::string name of a species and returns a reference to the ThermoPhase object of the phase where the species resides.
This function looks up the string name of a species and returns a reference to the ThermoPhase object of the phase where the species resides.
Will throw an error if the species std::string doesn't match.
nm | String containing the name of the species. |
Will throw an error if the species string doesn't match.
Definition at line 315 of file Kinetics.cpp.
References Kinetics::m_thermo, Cantera::npos, Phase::speciesIndex(), and Kinetics::thermo().
Referenced by Cantera::checkRxnElementBalance(), Cantera::getStick(), and rxninfo::installReaction().
|
inlineinherited |
This function takes as an argument the kineticsSpecies index (i.e., the list index in the list of species in the kinetics manager) and returns the species' owning ThermoPhase object.
k | Species index |
Definition at line 454 of file Kinetics.h.
References Kinetics::speciesPhaseIndex(), and Kinetics::thermo().
|
inherited |
This function takes as an argument the kineticsSpecies index (i.e., the list index in the list of species in the kinetics manager) and returns the index of the phase owning the species.
k | Species index |
Definition at line 337 of file Kinetics.cpp.
References Cantera::int2str(), Kinetics::m_start, and Cantera::npos.
Referenced by InterfaceKinetics::addReaction(), Cantera::checkRxnElementBalance(), Cantera::getStick(), and Kinetics::speciesPhase().
|
inlinevirtualinherited |
Change in species properties.
Given an array of molar species property values \( z_k, k = 1, \dots, K \), return the array of reaction values
\[ \Delta Z_i = \sum_k \nu_{k,i} z_k, i = 1, \dots, I. \]
For example, if this method is called with the array of standard-state molar Gibbs free energies for the species, then the values returned in array deltaProperty
would be the standard-state Gibbs free energies of reaction for each reaction.
property | Input vector of property value. Length: m_kk. |
deltaProperty | Output vector of deltaRxn. Length: m_ii. |
Definition at line 547 of file Kinetics.h.
References Kinetics::err().
|
inlinevirtualinherited |
Reactant order of species k in reaction i.
This is the nominal order of the activity concentration in determining the forward rate of progress of the reaction
k | kinetic species index |
i | reaction index |
Definition at line 735 of file Kinetics.h.
References Kinetics::err().
|
inlinevirtualinherited |
product Order of species k in reaction i.
This is the nominal order of the activity concentration of species k in determining the reverse rate of progress of the reaction i
For irreversible reactions, this will all be zero.
k | kinetic species index |
i | reaction index |
Definition at line 750 of file Kinetics.h.
References Kinetics::err().
|
inlinevirtualinherited |
Returns a read-only reference to the vector of reactant index numbers for reaction i.
i | reaction index |
Definition at line 770 of file Kinetics.h.
References Kinetics::m_reactants.
Referenced by InterfaceKinetics::addReaction(), and rxninfo::installReaction().
|
inlinevirtualinherited |
Returns a read-only reference to the vector of product index numbers for reaction i.
i | reaction index |
Definition at line 780 of file Kinetics.h.
References Kinetics::m_products.
Referenced by InterfaceKinetics::addReaction(), and rxninfo::installReaction().
|
inlineinherited |
The current value of the multiplier for reaction i.
i | index of the reaction |
Definition at line 953 of file Kinetics.h.
References Kinetics::m_perturb.
|
inlineinherited |
Set the multiplier for reaction i to f.
i | index of the reaction |
f | value of the multiplier. |
Definition at line 962 of file Kinetics.h.
References Kinetics::m_perturb.
|
inlineinherited |
Increment the number of reactions in the mechanism by one.
Definition at line 972 of file Kinetics.h.
References Kinetics::m_ii, and Kinetics::m_perturb.
Referenced by AqueousKinetics::addReaction(), GasKinetics::addReaction(), and InterfaceKinetics::addReaction().
|
inherited |
Extract from array data
the portion pertaining to phase phase
.
Takes as input an array of properties for all species in the mechanism and copies those values beloning to a particular phase to the output array.
data | data |
phase | phase |
phase_data | phase_data |
data | Input data array. |
phase | Pointer to one of the phase objects participating in this reaction mechanism |
phase_data | Output array where the values for the the specified phase are to be written. |
Definition at line 217 of file Kinetics.cpp.
References Kinetics::m_start, Kinetics::m_thermo, Kinetics::nPhases(), and Phase::nSpecies().
|
protected |
Flag indicating that the object has been instantiated.
Definition at line 112 of file Interface.h.
Referenced by Interface::Interface(), Interface::operator!(), Interface::operator=(), and Interface::ready().
|
protected |
XML_Node pointer to the XML File object that contains the Surface and the Interfacial Reaction object description.
Definition at line 116 of file Interface.h.
Referenced by Interface::Interface(), and Interface::operator=().
|
protectedinherited |
Surface site density (kmol m-2)
Definition at line 638 of file SurfPhase.h.
Referenced by SurfPhase::enthalpy_mole(), SurfPhase::getCoverages(), SurfPhase::operator=(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), SurfPhase::setParameters(), EdgePhase::setParametersFromXML(), SurfPhase::setParametersFromXML(), SurfPhase::siteDensity(), and SurfPhase::standardConcentration().
|
protectedinherited |
log of the surface site density
Definition at line 641 of file SurfPhase.h.
Referenced by SurfPhase::logStandardConc(), SurfPhase::operator=(), SurfPhase::setParameters(), EdgePhase::setParametersFromXML(), SurfPhase::setParametersFromXML(), and SurfPhase::SurfPhase().
|
protectedinherited |
Minimum temperature for valid species standard state thermo props.
This is the minimum temperature at which all species have valid standard state thermo props defined.
Definition at line 648 of file SurfPhase.h.
Referenced by SurfPhase::operator=().
|
protectedinherited |
Maximum temperature for valid species standard state thermo props.
This is the maximum temperature at which all species have valid standard state thermo props defined.
Definition at line 655 of file SurfPhase.h.
Referenced by SurfPhase::operator=().
|
protectedinherited |
Current value of the pressure (Pa)
Definition at line 658 of file SurfPhase.h.
Referenced by SurfPhase::operator=(), SurfPhase::pressure(), and SurfPhase::setPressure().
|
mutableprotectedinherited |
Current value of the temperature (Kelvin)
Definition at line 661 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), and SurfPhase::operator=().
|
mutableprotectedinherited |
Temporary storage for the reference state enthalpies.
Definition at line 664 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::enthalpy_mole(), SurfPhase::getEnthalpy_RT(), SurfPhase::initThermo(), and SurfPhase::operator=().
|
mutableprotectedinherited |
Temporary storage for the reference state entropies.
Definition at line 667 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::getEntropy_R(), SurfPhase::initThermo(), and SurfPhase::operator=().
|
mutableprotectedinherited |
Temporary storage for the reference state heat capacities.
Definition at line 670 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::getCp_R(), SurfPhase::initThermo(), and SurfPhase::operator=().
|
mutableprotectedinherited |
Temporary storage for the reference state gibbs energies.
Definition at line 673 of file SurfPhase.h.
Referenced by SurfPhase::_updateThermo(), SurfPhase::getChemPotentials(), SurfPhase::getGibbs_RT(), SurfPhase::getStandardChemPotentials(), SurfPhase::initThermo(), and SurfPhase::operator=().
|
mutableprotectedinherited |
Temporary work array.
Definition at line 676 of file SurfPhase.h.
Referenced by SurfPhase::getChemPotentials(), SurfPhase::initThermo(), SurfPhase::operator=(), SurfPhase::setCoverages(), and SurfPhase::setCoveragesNoNorm().
|
mutableprotectedinherited |
Potential energy of each species in the surface phase.
Definition at line 687 of file SurfPhase.h.
Referenced by SurfPhase::initThermo(), SurfPhase::operator=(), SurfPhase::potentialEnergy(), and SurfPhase::setPotentialEnergy().
|
mutableprotectedinherited |
vector storing the log of the size of each species.
The size of each species is defined as the number of surface sites each species occupies.
Definition at line 694 of file SurfPhase.h.
Referenced by SurfPhase::initThermo(), SurfPhase::logStandardConc(), and SurfPhase::operator=().
|
protectedinherited |
Pointer to the calculation manager for species reference-state thermodynamic properties.
This class is called when the reference-state thermodynamic properties of all the species in the phase needs to be evaluated.
Definition at line 1611 of file ThermoPhase.h.
Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), ConstDensityThermo::enthalpy_mole(), LatticePhase::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), IdealGasPhase::entropy_mole(), FixedChemPotSSTP::FixedChemPotSSTP(), ConstDensityThermo::getChemPotentials(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), PureFluidPhase::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), PureFluidPhase::getGibbs_RT_ref(), IdealGasPhase::getPartialMolarEntropies(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), ConstDensityThermo::intEnergy_mole(), LatticePhase::intEnergy_mole(), ThermoPhase::maxTemp(), ThermoPhase::minTemp(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), ThermoPhase::refPressure(), ThermoPhase::setSpeciesThermo(), LatticeSolidPhase::speciesThermo(), ThermoPhase::speciesThermo(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Vector of pointers to the species databases.
This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.
Definition at line 1621 of file ThermoPhase.h.
Referenced by LatticeSolidPhase::installSlavePhases(), ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Stored value of the electric potential for this phase.
Units are Volts
Definition at line 1627 of file ThermoPhase.h.
Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().
|
protectedinherited |
Vector of element potentials.
-> length equal to number of elements
Definition at line 1631 of file ThermoPhase.h.
Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().
|
protectedinherited |
Boolean indicating whether there is a valid set of saved element potentials for this phase.
Definition at line 1635 of file ThermoPhase.h.
Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().
|
protectedinherited |
Boolean indicating whether a charge neutrality condition is a necessity.
Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.
Definition at line 1645 of file ThermoPhase.h.
Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().
|
protectedinherited |
Contains the standard state convention.
Definition at line 1648 of file ThermoPhase.h.
Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().
|
protectedinherited |
Reference Mole Fraction Composition.
Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file
Definition at line 1657 of file ThermoPhase.h.
Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().
|
protectedinherited |
Number of species in the phase.
Definition at line 727 of file Phase.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), HMWSoln::applyphScale(), RedlichKwongMFTP::applyStandardMixingRules(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKwongMFTP::calculateAB(), GibbsExcessVPSSTP::checkMFSum(), Phase::checkSpeciesArraySize(), Phase::checkSpeciesIndex(), HMWSoln::counterIJ_setup(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), ConstDensityThermo::expGibbs_RT(), IdealGasPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), GibbsExcessVPSSTP::getActivities(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), ConstDensityThermo::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IonsFromNeutralVPSSTP::getActivityCoefficients(), GibbsExcessVPSSTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityCoefficients(), LatticeSolidPhase::getActivityCoefficients(), MixedSolventElectrolyte::getActivityCoefficients(), PhaseCombo_Interaction::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), ThermoPhase::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), LatticePhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), HMWSoln::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), RedlichKisterVPSSTP::getd2lnActCoeffdT2(), MargulesVPSSTP::getd2lnActCoeffdT2(), MixedSolventElectrolyte::getd2lnActCoeffdT2(), PhaseCombo_Interaction::getd2lnActCoeffdT2(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), PhaseCombo_Interaction::getdlnActCoeffdlnN(), RedlichKisterVPSSTP::getdlnActCoeffdlnN(), MargulesVPSSTP::getdlnActCoeffdlnN(), MixedSolventElectrolyte::getdlnActCoeffdlnN(), ThermoPhase::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnN_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), MargulesVPSSTP::getdlnActCoeffdlnN_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnX_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnX_diag(), MargulesVPSSTP::getdlnActCoeffdlnX_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), LatticePhase::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), MolarityIonicVPSSTP::getLnActivityCoefficients(), RedlichKisterVPSSTP::getLnActivityCoefficients(), MargulesVPSSTP::getLnActivityCoefficients(), ThermoPhase::getLnActivityCoefficients(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), LatticePhase::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), MolarityIonicVPSSTP::getPartialMolarVolumes(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::HMWSoln(), Phase::init(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), RedlichKwongMFTP::initLengths(), VPStandardStateTP::initLengths(), LatticeSolidPhase::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), ConstDensityThermo::initThermo(), SurfPhase::initThermo(), MolarityIonicVPSSTP::initThermo(), StoichSubstanceSSTP::initThermo(), VPStandardStateTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), ThermoPhase::initThermo(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), Phase::nSpecies(), VPStandardStateTP::operator=(), Phase::operator=(), ThermoPhase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::printCoeffs(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), IdealSolidSolnPhase::referenceConcentration(), HMWSoln::relative_enthalpy(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), MolarityIonicVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), Phase::setConcentrations(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), Phase::setMoleFractions(), Phase::setMoleFractions_NoNorm(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), ThermoPhase::speciesData(), Phase::speciesIndex(), IdealSolidSolnPhase::standardConcentration(), RedlichKwongMFTP::updateAB(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Dimensionality of the phase.
Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.
Definition at line 731 of file Phase.h.
Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().
|
protectedinherited |
Atomic composition of the species.
The number of atoms of element i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm
Definition at line 736 of file Phase.h.
Referenced by Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), Phase::getAtoms(), LatticeSolidPhase::installSlavePhases(), Phase::nAtoms(), and Phase::operator=().
|
protectedinherited |
Vector of species sizes.
length m_kk. Used in some equations of state which employ the constant partial molar volume approximation.
Definition at line 740 of file Phase.h.
Referenced by Phase::addUniqueSpecies(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), Phase::operator=(), Phase::size(), HMWSoln::speciesMolarVolume(), and DebyeHuckel::standardConcentration().
|
protectedinherited |
Vector of species charges. length m_kk.
Definition at line 742 of file Phase.h.
Referenced by Phase::addUniqueSpecies(), HMWSoln::applyphScale(), HMWSoln::calcMolalitiesCropped(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), Phase::charge(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), MolarityIonicVPSSTP::initThermo(), DebyeHuckel::initThermoXML(), Phase::operator=(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), and HMWSoln::s_updateScaling_pHScaling_dT2().
|
protectedinherited |
Temporary work vector of length m_kk.
Definition at line 647 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::getDeltaElectrochemPotentials(), InterfaceKinetics::getDeltaEnthalpy(), InterfaceKinetics::getDeltaEntropy(), InterfaceKinetics::getDeltaGibbs(), InterfaceKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSGibbs(), InterfaceKinetics::init(), and InterfaceKinetics::operator=().
|
protectedinherited |
List of reactions numbers which are reversible reactions.
This is a vector of reaction numbers. Each reaction in the list is reversible. Length = number of reversible reactions
Definition at line 655 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::isReversible(), InterfaceKinetics::operator=(), and InterfaceKinetics::updateKc().
|
protectedinherited |
Templated class containing the vector of reactions for this interface.
The templated class is described in RateCoeffMgr.h The class SurfaceArrhenius is described in RxnRates.h
Definition at line 662 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_T(), and InterfaceKinetics::operator=().
|
mutableprotectedinherited |
Vector of information about reactions in the mechanism.
The key is the reaction index (0 < i < m_ii). The first pair is the reactionType of the reaction. The second pair is ...
Definition at line 673 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::operator=(), InterfaceKinetics::reactionType(), and InterfaceKinetics::registerReaction().
|
protectedinherited |
Vector of irreversible reaction numbers.
vector containing the reaction numbers of irreversible reactions.
Definition at line 680 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::operator=(), and InterfaceKinetics::updateKc().
|
protectedinherited |
Stoichiometric manager for the reaction mechanism.
This is the manager for the kinetics mechanism that handles turning reaction extents into species production rates and also handles turning thermo properties into reaction thermo properties.
Definition at line 689 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::getCreationRates(), InterfaceKinetics::getDeltaElectrochemPotentials(), InterfaceKinetics::getDeltaEnthalpy(), InterfaceKinetics::getDeltaEntropy(), InterfaceKinetics::getDeltaGibbs(), InterfaceKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSGibbs(), InterfaceKinetics::getDestructionRates(), InterfaceKinetics::getEquilibriumConstants(), InterfaceKinetics::getNetProductionRates(), InterfaceKinetics::operator=(), InterfaceKinetics::updateKc(), and InterfaceKinetics::updateROP().
|
protectedinherited |
Number of irreversible reactions in the mechanism.
Definition at line 692 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::operator=(), and InterfaceKinetics::updateKc().
|
protectedinherited |
Number of reversible reactions in the mechanism.
Definition at line 695 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::operator=(), and InterfaceKinetics::updateKc().
|
mutableprotectedinherited |
m_rrxn is a vector of maps, containing the reactant stoichiometric coefficient information
m_rrxn has a length equal to the total number of species in the kinetics object. For each species, there exists a map, with the reaction number being the key, and the reactant stoichiometric coefficient for the species being the value. HKM -> mutable because search sometimes creates extra entries. To be fixed in future...
Definition at line 709 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::init(), InterfaceKinetics::operator=(), and InterfaceKinetics::reactantStoichCoeff().
|
mutableprotectedinherited |
m_prxn is a vector of maps, containing the reactant stoichiometric coefficient information
m_prxn is a vector of maps. m_prxn has a length equal to the total number of species in the kinetics object. For each species, there exists a map, with the reaction number being the key, and the product stoichiometric coefficient for the species being the value.
Definition at line 720 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::init(), InterfaceKinetics::operator=(), and InterfaceKinetics::productStoichCoeff().
|
protectedinherited |
String expression for each rxn.
Vector of strings of length m_ii, the number of reactions, containing the string expressions for each reaction (e.g., reactants <=> product1 + product2)
Definition at line 729 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::addReaction(), InterfaceKinetics::operator=(), and InterfaceKinetics::reactionString().
|
protectedinherited |
Temporary data storage used in calculating the rates of of reactions.
Definition at line 735 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_T(), InterfaceKinetics::getCreationRates(), InterfaceKinetics::getDestructionRates(), InterfaceKinetics::getFwdRateConstants(), InterfaceKinetics::getFwdRatesOfProgress(), InterfaceKinetics::getNetProductionRates(), InterfaceKinetics::getNetRatesOfProgress(), InterfaceKinetics::getRevRateConstants(), InterfaceKinetics::getRevRatesOfProgress(), InterfaceKinetics::InterfaceKinetics(), InterfaceKinetics::operator=(), InterfaceKinetics::updateKc(), InterfaceKinetics::updateROP(), and InterfaceKinetics::~InterfaceKinetics().
|
protectedinherited |
an array of generalized concentrations for each species
An array of generalized concentrations \( C_k \) that are defined such that \( a_k = C_k / C^0_k, \) where \( C^0_k \) is a standard concentration/ These generalized concentrations are used by this kinetics manager class to compute the forward and reverse rates of elementary reactions. The "units" for the concentrations of each phase depend upon the implementation of kinetics within that phase. The order of the species within the vector is based on the order of listed ThermoPhase objects in the class, and the order of the species within each ThermoPhase class.
Definition at line 751 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_T(), InterfaceKinetics::getActivityConcentrations(), InterfaceKinetics::init(), InterfaceKinetics::operator=(), and InterfaceKinetics::updateROP().
|
protectedinherited |
Vector of standard state chemical potentials.
This vector contains a temporary vector of standard state chemical potentials for all of the species in the kinetics object
Length = m_k units = J/kmol
Definition at line 762 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::getEquilibriumConstants(), InterfaceKinetics::init(), InterfaceKinetics::operator=(), and InterfaceKinetics::updateKc().
|
protectedinherited |
Vector of phase electric potentials.
Temporary vector containing the potential of each phase in the kinetics object
length = number of phases units = Volts
Definition at line 772 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_phi(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::getEquilibriumConstants(), InterfaceKinetics::init(), InterfaceKinetics::operator=(), and InterfaceKinetics::updateKc().
|
protectedinherited |
Vector of potential energies due to Voltages.
Length is the number of species in kinetics mech. It's used to store the potential energy due to the voltage.
Definition at line 779 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::init(), and InterfaceKinetics::operator=().
|
protectedinherited |
Vector temporary.
Length is number of reactions. It's used to store the voltage contribution to the activation energy.
Definition at line 786 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), and InterfaceKinetics::operator=().
|
protectedinherited |
Vector of raw activation energies for the reactions.
units are in Kelvin Length is number of reactions.
Definition at line 793 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::getActivationEnergies(), and InterfaceKinetics::operator=().
|
protectedinherited |
Pointer to the single surface phase.
Definition at line 796 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_T(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), and InterfaceKinetics::operator=().
|
protectedinherited |
Pointer to the Implicit surface chemistry object.
Note this object is owned by this InterfaceKinetics object. It may only be used to solve this single InterfaceKinetics objects's surface problem uncoupled from other surface phases.
Definition at line 805 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::advanceCoverages(), InterfaceKinetics::operator=(), InterfaceKinetics::solvePseudoSteadyStateProblem(), and InterfaceKinetics::~InterfaceKinetics().
|
protectedinherited |
Vector of reaction indexes specifying the id of the current transfer reactions in the mechanism.
Vector of reaction indices which involve current transfers. This provides an index into the m_beta array.
irxn = m_ctrxn[i]
Definition at line 817 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), InterfaceKinetics::electrochem_beta(), and InterfaceKinetics::operator=().
|
protectedinherited |
Vector of booleans indicating whether the charge transfer reaction may be described by an exchange current density expression.
Definition at line 821 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::applyExchangeCurrentDensityFormulation(), and InterfaceKinetics::operator=().
|
protectedinherited |
boolean indicating whether mechanism has been finalized
Definition at line 830 of file InterfaceKinetics.h.
Referenced by EdgeKinetics::finalize(), InterfaceKinetics::finalize(), InterfaceKinetics::operator=(), and InterfaceKinetics::ready().
|
protectedinherited |
Boolean flag indicating whether any reaction in the mechanism has a coverage dependent forward reaction rate.
If this is true, then the coverage dependence is multiplied into the forward reaction rates constant
Definition at line 838 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_T(), and InterfaceKinetics::operator=().
|
protectedinherited |
Boolean flag indicating whether any reaction in the mechanism has a beta electrochemical parameter.
If this is true, the Butler-Volmer correction is applied to the forward reaction rate for those reactions.
fac = exp ( - beta * (delta_phi))
Definition at line 848 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_T(), and InterfaceKinetics::operator=().
|
protectedinherited |
Boolean flag indicating whether any reaction in the mechanism is described by an exchange current density expression.
If this is true, the standard state gibbs free energy of the reaction and the product of the reactant standard concentrations must be precalculated in order to calculate the rate constant.
Definition at line 857 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::_update_rates_T(), and InterfaceKinetics::operator=().
|
protectedinherited |
Int flag to indicate that some phases in the kinetics mechanism are non-existent.
We change the ROP vectors to make sure that non-existent phases are treated correctly in the kinetics operator. The value of this is equal to the number of phases which don't exist.
Definition at line 866 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::operator=(), InterfaceKinetics::setPhaseExistence(), and InterfaceKinetics::updateROP().
|
protectedinherited |
Vector of booleans indicating whether phases exist or not.
Vector of booleans indicating whether a phase exists or not. We use this to set the ROP's so that unphysical things don't happen
length = number of phases in the object By default all phases exist.
Definition at line 876 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::addPhase(), InterfaceKinetics::finalize(), InterfaceKinetics::operator=(), InterfaceKinetics::phaseExistence(), InterfaceKinetics::setPhaseExistence(), and InterfaceKinetics::updateROP().
|
protectedinherited |
Vector of int indicating whether phases are stable or not.
Vector of booleans indicating whether a phase is stable or not under the current conditions. We use this to set the ROP's so that unphysical things don't happen
length = number of phases in the object By default all phases are stable
Definition at line 887 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::addPhase(), InterfaceKinetics::operator=(), InterfaceKinetics::phaseStability(), InterfaceKinetics::setPhaseExistence(), InterfaceKinetics::setPhaseStability(), and InterfaceKinetics::updateROP().
|
protectedinherited |
Vector of vector of booleans indicating whether a phase participates in a reaction as a reactant.
m_rxnPhaseIsReactant[j][p] indicates whether a species in phase p participates in reaction j as a reactant.
Definition at line 895 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::addReaction(), InterfaceKinetics::operator=(), InterfaceKinetics::updateROP(), and InterfaceKinetics::~InterfaceKinetics().
|
protectedinherited |
Vector of vector of booleans indicating whether a phase participates in a reaction as a product.
m_rxnPhaseIsReactant[j][p] indicates whether a species in phase p participates in reaction j as a product.
Definition at line 903 of file InterfaceKinetics.h.
Referenced by InterfaceKinetics::addReaction(), InterfaceKinetics::operator=(), InterfaceKinetics::updateROP(), and InterfaceKinetics::~InterfaceKinetics().
|
protectedinherited |
Vector of ints indicating whether zeroed phase is an intermediate for the formation of another phase.
If a phase is zeroed out but it is an intermediate, then the phase can be formed whether it is stable or not, but the destruction rate of species in that phase can't exceed the formation rate for species in that phase.
length = number of phases in the object By default all phases are not intermediates
Definition at line 917 of file InterfaceKinetics.h.
|
protectedinherited |
Reaction rate reduction factor for intermediates.
Individual reaction rates are reduced to accommodate the requirements of intermediate zero phases.
length = number of reactions in the object By default all phases are not intermediates
Definition at line 928 of file InterfaceKinetics.h.
|
protectedinherited |
Work vector having length number of species.
Definition at line 931 of file InterfaceKinetics.h.
|
protectedinherited |
Number of reactions in the mechanism.
Definition at line 1000 of file Kinetics.h.
Referenced by Kinetics::checkReactionArraySize(), Kinetics::checkReactionIndex(), AqueousKinetics::finalize(), GasKinetics::finalize(), AqueousKinetics::getDeltaEnthalpy(), GasKinetics::getDeltaEnthalpy(), AqueousKinetics::getDeltaEntropy(), GasKinetics::getDeltaEntropy(), AqueousKinetics::getDeltaGibbs(), GasKinetics::getDeltaGibbs(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), AqueousKinetics::getDeltaSSEntropy(), GasKinetics::getDeltaSSEntropy(), AqueousKinetics::getDeltaSSGibbs(), GasKinetics::getDeltaSSGibbs(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), AqueousKinetics::getFwdRateConstants(), GasKinetics::getFwdRateConstants(), AqueousKinetics::getRevRateConstants(), GasKinetics::getRevRateConstants(), InterfaceKinetics::getRevRateConstants(), Kinetics::incrementRxnCount(), Kinetics::nReactions(), InterfaceKinetics::operator=(), Kinetics::operator=(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), InterfaceKinetics::updateROP(), and InterfaceKinetics::~InterfaceKinetics().
|
protectedinherited |
The number of species in all of the phases that participate in this kinetics mechanism.
Definition at line 1004 of file Kinetics.h.
Referenced by Kinetics::checkSpeciesArraySize(), Kinetics::checkSpeciesIndex(), InterfaceKinetics::finalize(), Kinetics::finalize(), AqueousKinetics::getCreationRates(), GasKinetics::getCreationRates(), InterfaceKinetics::getCreationRates(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), AqueousKinetics::getDeltaSSEntropy(), GasKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSEntropy(), AqueousKinetics::getDestructionRates(), GasKinetics::getDestructionRates(), InterfaceKinetics::getDestructionRates(), AqueousKinetics::getNetProductionRates(), GasKinetics::getNetProductionRates(), InterfaceKinetics::getNetProductionRates(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), and Kinetics::operator=().
|
protectedinherited |
Vector of perturbation factors for each reaction's rate of progress vector.
It is initialized to one.
Definition at line 1009 of file Kinetics.h.
Referenced by EdgeKinetics::finalize(), AqueousKinetics::finalize(), GasKinetics::finalize(), InterfaceKinetics::finalize(), AqueousKinetics::getFwdRateConstants(), GasKinetics::getFwdRateConstants(), InterfaceKinetics::getFwdRateConstants(), Kinetics::incrementRxnCount(), Kinetics::multiplier(), Kinetics::operator=(), Kinetics::setMultiplier(), and InterfaceKinetics::updateROP().
|
protectedinherited |
This is a vector of vectors containing the reactants for each reaction.
The outer vector is over the number of reactions, m_ii. The inner vector is a list of species indices. If the stoichiometric coefficient for a reactant is greater than one, then the reactant is listed contiguously in the vector a number of times equal to its stoichiometric coefficient. NOTE: These vectors will be wrong if there are real stoichiometric coefficients in the expression.
Definition at line 1022 of file Kinetics.h.
Referenced by Kinetics::operator=(), and Kinetics::reactants().
|
protectedinherited |
This is a vector of vectors containing the products for each reaction.
The outer vector is over the number of reactions, m_ii. The inner vector is a list of species indices. If the stoichiometric coefficient for a product is greater than one, then the reactant is listed contiguously in the vector a number of times equal to its stoichiometric coefficient. NOTE: These vectors will be wrong if there are real stoichiometric coefficients in the expression.
Definition at line 1035 of file Kinetics.h.
Referenced by Kinetics::operator=(), and Kinetics::products().
|
protectedinherited |
m_thermo is a vector of pointers to ThermoPhase objects that are involved with this kinetics operator
For homogeneous kinetics applications, this vector will only have one entry. For interfacial reactions, this vector will consist of multiple entries; some of them will be surface phases, and the other ones will be bulk phases. The order that the objects are listed determines the order in which the species comprising each phase are listed in the source term vector, originating from the reaction mechanism.
Note that this kinetics object doesn't own these ThermoPhase objects and is not responsible for creating or deleting them.
Definition at line 1052 of file Kinetics.h.
Referenced by Kinetics::addPhase(), Kinetics::assignShallowPointers(), InterfaceKinetics::finalize(), Kinetics::finalize(), GRI_30_Kinetics::gri30_updateKc(), Kinetics::kineticsSpeciesIndex(), Kinetics::nPhases(), Kinetics::operator=(), Kinetics::phase(), InterfaceKinetics::phaseExistence(), InterfaceKinetics::phaseStability(), Kinetics::selectPhase(), InterfaceKinetics::setPhaseExistence(), InterfaceKinetics::setPhaseStability(), Kinetics::speciesPhase(), and Kinetics::thermo().
|
protectedinherited |
m_start is a vector of integers specifying the beginning position for the species vector for the n'th phase in the kinetics class.
Definition at line 1059 of file Kinetics.h.
Referenced by InterfaceKinetics::_update_rates_C(), Kinetics::addPhase(), InterfaceKinetics::getDeltaElectrochemPotentials(), InterfaceKinetics::getDeltaEnthalpy(), InterfaceKinetics::getDeltaEntropy(), InterfaceKinetics::getDeltaGibbs(), InterfaceKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSGibbs(), InterfaceKinetics::getEquilibriumConstants(), Kinetics::kineticsSpeciesIndex(), Kinetics::kineticsSpeciesName(), Kinetics::operator=(), Kinetics::selectPhase(), Kinetics::speciesPhaseIndex(), Kinetics::start(), and InterfaceKinetics::updateKc().
|
protectedinherited |
Mapping of the phase id, i.e., the id attribute in the xml phase element to the position of the phase within the kinetics object.
Positions start with the value of 1. The member function, phaseIndex() decrements by one before returning the index value, so that missing phases return -1.
Definition at line 1069 of file Kinetics.h.
Referenced by Kinetics::addPhase(), Kinetics::operator=(), and Kinetics::phaseIndex().
|
protectedinherited |
Index in the list of phases of the one surface phase.
Definition at line 1075 of file Kinetics.h.
Referenced by Kinetics::addPhase(), Kinetics::operator=(), and Kinetics::surfacePhaseIndex().
|
protectedinherited |
Phase Index where reactions are assumed to be taking place.
We calculate this by assuming that the phase with the lowest dimensionality is the phase where reactions are taking place
Definition at line 1083 of file Kinetics.h.
Referenced by Kinetics::addPhase(), Kinetics::operator=(), and Kinetics::reactionPhaseIndex().
|
protectedinherited |
number of spatial dimensions of lowest-dimensional phase.
Definition at line 1086 of file Kinetics.h.
Referenced by Kinetics::addPhase(), and Kinetics::operator=().