Cantera  2.0
Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes | Private Member Functions | Static Private Member Functions | Private Attributes | List of all members
HMWSoln Class Reference

Class HMWSoln represents a dilute or concentrated liquid electrolyte phase which obeys the Pitzer formulation for nonideality. More...

#include <HMWSoln.h>

Inheritance diagram for HMWSoln:
[legend]
Collaboration diagram for HMWSoln:
[legend]

Public Member Functions

 HMWSoln ()
 Default Constructor.
 
 HMWSoln (std::string inputFile, std::string id="")
 Construct and initialize an HMWSoln ThermoPhase object directly from an ASCII input file.
 
 HMWSoln (XML_Node &phaseRef, std::string id="")
 Construct and initialize an HMWSoln ThermoPhase object directly from an XML database.
 
 HMWSoln (const HMWSoln &right)
 Copy Constructor.
 
HMWSolnoperator= (const HMWSoln &right)
 Assignment operator.
 
 HMWSoln (int testProb)
 This is a special constructor, used to replicate test problems during the initial verification of the object.
 
virtual ~HMWSoln ()
 Destructor.
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplicator from the ThermoPhase parent class.
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters.
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector.
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries.
 
void constructPhaseFile (std::string inputFile, std::string id)
 Initialization of a HMWSoln phase using an xml file.
 
void constructPhaseXML (XML_Node &phaseNode, std::string id)
 Import and initialize a HMWSoln phase specification in an XML tree into the current object.
 
virtual void initThermo ()
 Internal initialization required after all species have been added.
 
virtual void initThermoXML (XML_Node &phaseNode, std::string id)
 Initialize the phase parameters from an XML file.
 
double speciesMolarVolume (int k) const
 Report the molar volume of species k.
 
virtual double A_Debye_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the Debye Huckel constant as a function of temperature and pressure.
 
virtual double dA_DebyedT_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.
 
virtual double dA_DebyedP_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the derivative of the Debye Huckel constant with respect to pressure, as a function of temperature and pressure.
 
double ADebye_L (double temperature=-1.0, double pressure=-1.0) const
 Return Pitzer's definition of A_L.
 
double ADebye_J (double temperature=-1.0, double pressure=-1.0) const
 Return Pitzer's definition of A_J.
 
double ADebye_V (double temperature=-1.0, double pressure=-1.0) const
 Return Pitzer's definition of A_V.
 
virtual double d2A_DebyedT2_TP (double temperature=-1.0, double pressure=-1.0) const
 Value of the 2nd derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.
 
double AionicRadius (int k=0) const
 Reports the ionic radius of the kth species.
 
int formPitzer () const
 formPitzer():
 
void printCoeffs () const
 Print out all of the input coefficients.
 
void getUnscaledMolalityActivityCoefficients (doublereal *acMolality) const
 Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
int debugPrinting ()
 Return int specifying the amount of debug printing.
 
virtual void setStateFromXML (const XML_Node &state)
 Set equation of state parameter values from XML entries.
 
void setState_TPM (doublereal t, doublereal p, const doublereal *const molalities)
 Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes.
 
void setState_TPM (doublereal t, doublereal p, compositionMap &m)
 Set the temperature (K), pressure (Pa), and molalities.
 
void setState_TPM (doublereal t, doublereal p, const std::string &m)
 Set the temperature (K), pressure (Pa), and molalities.
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to specified comma separated files
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature.
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase.
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state.
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState.
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector.
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k.
 
doublereal molarMass (size_t k) const
 Return the Molar mass of species k Alternate name for molecular weight.
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights.
 
void getMolecularWeights (int iwt, doublereal *weights) const
 Copy the vector of molecular weights into array weights.
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
doublereal size (size_t k) const
 This routine returns the size of species k.
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
doublereal chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual void freezeSpecies ()
 Call when finished adding species.
 
bool speciesFrozen ()
 True if freezeSpecies has been called.
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
void stateMFChangeCalc (bool forceChange=false)
 Every time the mole fractions have changed, this routine will increment the stateMFNumber.
 
Utilities
virtual int eosType () const
 Equation of state type flag.
 
Molar Thermodynamic Properties of the Solution --------------
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol.
 
virtual doublereal relative_enthalpy () const
 Excess molar enthalpy of the solution from the mixing process.
 
virtual doublereal relative_molal_enthalpy () const
 Excess molar enthalpy of the solution from the mixing process on a molality basis.
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol.
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K.
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol.
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K.
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K.
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

Activity is assumed to be molality-based here.

virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized activity concentrations.
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species.
 
virtual doublereal logStandardConc (size_t k=0) const
 Returns the natural logarithm of the standard concentration of the kth species.
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations.
 
virtual void getActivities (doublereal *ac) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
Partial Molar Properties of the Solution -----------------
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol.
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture.
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution.
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture.
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture.
 
Chemical Equilibrium

Chemical equilibrium.

virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver.
 
Critical state properties.

These methods are only implemented by some subclasses.

virtual doublereal critTemperature () const
 Critical temperature (K).
 
virtual doublereal critPressure () const
 Critical pressure (Pa).
 
virtual doublereal critDensity () const
 Critical density (kg/m3).
 
Saturation properties.

These methods are only implemented by subclasses that implement full liquid-vapor equations of state.

virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure.
 
virtual doublereal satPressure (doublereal T) const
 Get the saturation pressure for a given temperature.
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure.
 
Utilities
void setpHScale (const int pHscaleType)
 Set the pH scale, which determines the scale for single-ion activity coefficients.
 
int pHScale () const
 Reports the pH scale, which determines the scale for single-ion activity coefficients.
 
Utilities for Solvent ID and Molality
void setSolvent (size_t k)
 This routine sets the index number of the solvent for the phase.
 
void setMoleFSolventMin (doublereal xmolSolventMIN)
 Sets the minimum mole fraction in the molality formulation.
 
size_t solventIndex () const
 Returns the solvent index.
 
doublereal moleFSolventMin () const
 Returns the minimum mole fraction in the molality formulation.
 
void calcMolalities () const
 Calculates the molality of all species and stores the result internally.
 
void getMolalities (doublereal *const molal) const
 This function will return the molalities of the species.
 
void setMolalities (const doublereal *const molal)
 Set the molalities of the solutes in a phase.
 
void setMolalitiesByName (compositionMap &xMap)
 Set the molalities of a phase.
 
void setMolalitiesByName (const std::string &name)
 Set the molalities of a phase.
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and pressure.

int activityConvention () const
 This method returns the activity convention.
 
void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual void getMolalityActivityCoefficients (doublereal *acMolality) const
 Get the array of non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual double osmoticCoefficient () const
 Calculate the osmotic coefficient.
 
Partial Molar Properties of the Solution
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials.
 
Utilities (VPStandardStateTP)
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log concentration-like derivatives of the log activity coefficients.
 
Partial Molar Properties of the Solution (VPStandardStateTP)
void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.
 
Initialization Methods - For Internal use (VPStandardState)
void setVPSSMgr (VPSSMgr *vp_ptr)
 set the VPSS Mgr
 
VPSSMgrprovideVPSSMgr ()
 Return a pointer to the VPSSMgr for this phase.
 
void createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr)
 
PDSSprovidePDSS (size_t k)
 
const PDSSprovidePDSS (size_t k) const
 
Information Methods
virtual doublereal refPressure () const
 Returns the reference pressure in Pa.
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
Mechanical Properties
virtual void updateDensity ()
 
Electric Potential

The phase may be at some non-zero electrical potential.

These methods set or get the value of the electric potential.

void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V).
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V).
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition.

The activity is dimensionless.

virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
Partial Molar Properties of the Solution
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.
 
Properties of the Standard State of the Species in the Solution
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.
 
Thermodynamic Values for the Species Reference States
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition.
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition.
 
Specific Properties
doublereal enthalpy_mass () const
 Specific enthalpy.
 
doublereal intEnergy_mass () const
 Specific internal energy.
 
doublereal entropy_mass () const
 Specific entropy.
 
doublereal gibbs_mass () const
 Specific Gibbs function.
 
doublereal cp_mass () const
 Specific heat at constant pressure.
 
doublereal cv_mass () const
 Specific heat at constant volume.
 
Setting the State

These methods set all or part of the thermodynamic state.

virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions.
 
void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions.
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
Chemical Equilibrium

Chemical equilibrium.

void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object.
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object.
 
Initialization Methods - For Internal Use (ThermoPhase)
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase.
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase.
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager.
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual void initThermoFile (std::string inputFile, std::string id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases.
 
Derivatives of Thermodynamic Variables needed for Applications
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
Name and ID

Class Phase contains two strings that identify a phase. The ID is the value of the ID attribute of the XML phase node that is used to initialize a phase when it is read. The name field is also initialized to the value of the ID attribute of the XML phase node.

However, the name field may be changed to another value during the course of a calculation. For example, if a phase is located in two places, but has the same constitutive input, the ids of the two phases will be the same, but the names of the two phases may be different.

It is an error to have two phases in a single problem with the same name or the same id (or the name from one phase being the same as the id of another phase). Thus, it is expected that there is a 1-1 correspondence between names and unique phases within a Cantera problem.

std::string id () const
 Return the string id for the phase.
 
void setID (std::string id)
 Set the string id for the phase.
 
std::string name () const
 Return the name of the phase.
 
void setName (std::string nm)
 Sets the string name for the phase.
 
Element and Species Information
std::string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (std::string name) const
 Return the index of element named 'name'.
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m.
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements().
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
 
size_t speciesIndex (std::string name) const
 Returns the index of a species named 'name' within the Phase object.
 
std::string speciesName (size_t k) const
 Name of the species with index k.
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
 
Set thermodynamic state

Set the internal thermodynamic state by setting the internally stored temperature, density and species composition. Note that the composition is always set first.

Temperature and density are held constant if not explicitly set.

void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name.
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions.
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions.
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions.
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions.
 
Composition
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name.
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
doublereal moleFraction (std::string name) const
 Return the mole fraction of a single species.
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species.
 
doublereal massFraction (std::string name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector.
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions.
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them.
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing.
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3).
 
doublereal concentration (const size_t k) const
 Concentration of species k.
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase.
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array.
 
Thermodynamic Properties
doublereal temperature () const
 Temperature (K).
 
doublereal molarDensity () const
 Molar density (kmol/m^3).
 
doublereal molarVolume () const
 Molar volume (m^3/kmol).
 
Mean Properties
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q.
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \).
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \).
 
Adding Elements and Species

These methods are used to add new elements or species.

These are not usually called by user programs.

Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species.

void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element.
 
void addElement (const XML_Node &e)
 Add an element from an XML specification.
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree.
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species.
 
bool elementsFrozen ()
 True if freezeElements has been called.
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.
 

Public Attributes

int m_form_A_Debye
 Form of the constant outside the Debye-Huckel term called A.
 
int m_debugCalc
 

Protected Member Functions

void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 

Protected Attributes

size_t m_indexSolvent
 Index of the solvent.
 
int m_pHScalingType
 Scaling to be used for output of single-ion species activity coefficients.
 
size_t m_indexCLM
 Index of the phScale species.
 
doublereal m_weightSolvent
 Molecular weight of the Solvent.
 
doublereal m_xmolSolventMIN
 
doublereal m_Mnaught
 This is the multiplication factor that goes inside log expressions involving the molalities of species.
 
vector_fp m_molalities
 Current value of the molalities of the species in the phase.
 
doublereal m_Pcurrent
 Current value of the pressure - state variable.
 
doublereal m_Tlast_ss
 The last temperature at which the standard statethermodynamic properties were calculated at.
 
doublereal m_Plast_ss
 The last pressure at which the Standard State thermodynamic properties were calculated at.
 
doublereal m_P0
 
VPSSMgrm_VPSS_ptr
 Pointer to the VPSS manager that calculates all of the standard state info efficiently.
 
std::vector< PDSS * > m_PDSS_storage
 Storage for the PDSS objects for the species.
 
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases.
 
doublereal m_phi
 Stored value of the electric potential for this phase.
 
vector_fp m_lambdaRRT
 Vector of element potentials.
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase.
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention
 Contains the standard state convention.
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition.
 
size_t m_kk
 Number of species in the phase.
 
size_t m_ndim
 Dimensionality of the phase.
 
vector_fp m_speciesComp
 Atomic composition of the species.
 
vector_fp m_speciesSize
 Vector of species sizes.
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk.
 

Private Member Functions

void s_updateScaling_pHScaling () const
 Apply the current phScale to a set of activity Coefficients.
 
void s_updateScaling_pHScaling_dT () const
 Apply the current phScale to a set of derivatives of the activity Coefficients wrt temperature.
 
void s_updateScaling_pHScaling_dT2 () const
 Apply the current phScale to a set of 2nd derivatives of the activity Coefficients wrt temperature.
 
void s_updateScaling_pHScaling_dP () const
 Apply the current phScale to a set of derivatives of the activity Coefficients wrt pressure.
 
doublereal s_NBS_CLM_lnMolalityActCoeff () const
 Calculate the Chlorine activity coefficient on the NBS scale.
 
doublereal s_NBS_CLM_dlnMolalityActCoeff_dT () const
 Calculate the temperature derivative of the Chlorine activity coefficient on the NBS scale.
 
doublereal s_NBS_CLM_d2lnMolalityActCoeff_dT2 () const
 Calculate the second temperature derivative of the Chlorine activity coefficient on the NBS scale.
 
doublereal s_NBS_CLM_dlnMolalityActCoeff_dP () const
 Calculate the pressure derivative of the Chlorine activity coefficient.
 
doublereal err (std::string msg) const
 Local error routine.
 
void initLengths ()
 Initialize all of the species - dependent lengths in the object.
 
virtual void applyphScale (doublereal *acMolality) const
 Apply the current phScale to a set of activity Coefficients or activities.
 
void s_update_lnMolalityActCoeff () const
 Calculate the natural log of the molality-based activity coefficients.
 
void s_update_dlnMolalityActCoeff_dT () const
 This function calculates the temperature derivative of the natural logarithm of the molality activity coefficients.
 
void s_update_d2lnMolalityActCoeff_dT2 () const
 This function calculates the temperature second derivative of the natural logarithm of the molality activity coefficients.
 
void s_update_dlnMolalityActCoeff_dP () const
 This function calculates the pressure derivative of the natural logarithm of the molality activity coefficients.
 
void s_updateIMS_lnMolalityActCoeff () const
 This function will be called to update the internally stored natural logarithm of the molality activity coefficients.
 
void s_updatePitzer_lnMolalityActCoeff () const
 This function does the main pitzer coefficient calculation.
 
void s_updatePitzer_dlnMolalityActCoeff_dT () const
 Calculates the temperature derivative of the natural logarithm of the molality activity coefficients.
 
void s_updatePitzer_d2lnMolalityActCoeff_dT2 () const
 This function calculates the temperature second derivative of the natural logarithm of the molality activity coefficients.
 
void s_updatePitzer_dlnMolalityActCoeff_dP () const
 Calculates the Pressure derivative of the natural logarithm of the molality activity coefficients.
 
void s_updatePitzer_CoeffWRTemp (int doDerivs=2) const
 Calculates the Pitzer coefficients' dependence on the temperature.
 
void calc_lambdas (double is) const
 Calculate the lambda interactions.
 
void calc_thetas (int z1, int z2, double *etheta, double *etheta_prime) const
 Calculate etheta and etheta_prime.
 
void counterIJ_setup () const
 Set up a counter variable for keeping track of symmetric binary interactions amongst the solute species.
 
void calcMolalitiesCropped () const
 Calculate the cropped molalities.
 
void readXMLBinarySalt (XML_Node &BinSalt)
 Process an XML node called "binarySaltParameters".
 
void readXMLThetaAnion (XML_Node &BinSalt)
 Process an XML node called "thetaAnion".
 
void readXMLThetaCation (XML_Node &BinSalt)
 Process an XML node called "thetaCation".
 
void readXMLPsiCommonAnion (XML_Node &BinSalt)
 Process an XML node called "psiCommonAnion".
 
void readXMLPsiCommonCation (XML_Node &BinSalt)
 Process an XML node called "psiCommonCation".
 
void readXMLLambdaNeutral (XML_Node &BinSalt)
 Process an XML node called "lambdaNeutral".
 
void readXMLMunnnNeutral (XML_Node &BinSalt)
 Process an XML node called "MunnnNeutral".
 
void readXMLZetaCation (const XML_Node &BinSalt)
 Process an XML node called "zetaCation".
 
void readXMLCroppingCoefficients (const XML_Node &acNode)
 Process an XML node called "croppingCoefficients" for the cropping coefficients values.
 
void calcIMSCutoffParams_ ()
 Precalculate the IMS Cutoff parameters for typeCutoff = 2.
 
void calcMCCutoffParams_ ()
 Calculate molality cut-off parameters.
 

Static Private Member Functions

static int interp_est (std::string estString)
 Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field.
 

Private Attributes

int m_formPitzer
 This is the form of the Pitzer parameterization used in this model.
 
int m_formPitzerTemp
 This is the form of the temperature dependence of Pitzer parameterization used in the model.
 
int m_formGC
 Format for the generalized concentration:
 
vector_int m_electrolyteSpeciesType
 Vector containing the electrolyte species type.
 
vector_fp m_Aionic
 a_k = Size of the ionic species in the DH formulation units = meters
 
double m_IionicMolality
 Current value of the ionic strength on the molality scale Associated Salts, if present in the mechanism, don't contribute to the value of the ionic strength in this version of the Ionic strength.
 
double m_maxIionicStrength
 Maximum value of the ionic strength allowed in the calculation of the activity coefficients.
 
double m_TempPitzerRef
 Reference Temperature for the Pitzer formulations.
 
double m_IionicMolalityStoich
 Stoichiometric ionic strength on the molality scale.
 
double m_A_Debye
 A_Debye -> this expression appears on the top of the ln actCoeff term in the general Debye-Huckel expression It depends on temperature.
 
PDSSm_waterSS
 Water standard state calculator.
 
double m_densWaterSS
 density of standard-state water
 
WaterPropsm_waterProps
 Pointer to the water property calculator.
 
vector_fp m_expg0_RT
 Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
 
vector_fp m_pe
 Vector of potential energies for the species.
 
vector_fp m_pp
 Temporary array used in equilibrium calculations.
 
vector_fp m_tmpV
 vector of size m_kk, used as a temporary holding area.
 
vector_fp m_speciesCharge_Stoich
 Stoichiometric species charge -> This is for calculations of the ionic strength which ignore ion-ion pairing into neutral molecules.
 
vector_fp m_Beta0MX_ij
 Array of 2D data used in the Pitzer/HMW formulation.
 
vector_fp m_Beta0MX_ij_L
 Derivative of Beta0_ij[i][j] wrt T.
 
vector_fp m_Beta0MX_ij_LL
 Derivative of Beta0_ij[i][j] wrt TT.
 
vector_fp m_Beta0MX_ij_P
 Derivative of Beta0_ij[i][j] wrt P.
 
Array2D m_Beta0MX_ij_coeff
 Array of coefficients for Beta0, a variable in Pitzer's papers.
 
vector_fp m_Beta1MX_ij
 
vector_fp m_Beta1MX_ij_L
 Derivative of Beta1_ij[i][j] wrt T.
 
vector_fp m_Beta1MX_ij_LL
 Derivative of Beta1_ij[i][j] wrt TT.
 
vector_fp m_Beta1MX_ij_P
 Derivative of Beta1_ij[i][j] wrt P.
 
Array2D m_Beta1MX_ij_coeff
 Array of coefficients for Beta1, a variable in Pitzer's papers.
 
vector_fp m_Beta2MX_ij
 Array of 2D data used in the Pitzer/HMW formulation.
 
vector_fp m_Beta2MX_ij_L
 Derivative of Beta2_ij[i][j] wrt T.
 
vector_fp m_Beta2MX_ij_LL
 Derivative of Beta2_ij[i][j] wrt TT.
 
vector_fp m_Beta2MX_ij_P
 Derivative of Beta2_ij[i][j] wrt P.
 
Array2D m_Beta2MX_ij_coeff
 Array of coefficients for Beta2, a variable in Pitzer's papers.
 
vector_fp m_Alpha1MX_ij
 Array of 2D data used in the Pitzer/HMW formulation.
 
vector_fp m_Alpha2MX_ij
 Array of 2D data used in the Pitzer/HMW formulation.
 
vector_fp m_CphiMX_ij
 Array of 2D data used in the Pitzer/HMW formulation.
 
vector_fp m_CphiMX_ij_L
 Derivative of Cphi_ij[i][j] wrt T.
 
vector_fp m_CphiMX_ij_LL
 Derivative of Cphi_ij[i][j] wrt TT.
 
vector_fp m_CphiMX_ij_P
 Derivative of Cphi_ij[i][j] wrt P.
 
Array2D m_CphiMX_ij_coeff
 Array of coefficients for CphiMX, a parameter in the activity coefficient formulation.
 
vector_fp m_Theta_ij
 Array of 2D data for Theta_ij[i][j] in the Pitzer/HMW formulation.
 
vector_fp m_Theta_ij_L
 Derivative of Theta_ij[i][j] wrt T.
 
vector_fp m_Theta_ij_LL
 Derivative of Theta_ij[i][j] wrt TT.
 
vector_fp m_Theta_ij_P
 Derivative of Theta_ij[i][j] wrt P.
 
Array2D m_Theta_ij_coeff
 Array of coefficients for Theta_ij[i][j] in the Pitzer/HMW formulation.
 
vector_fp m_Psi_ijk
 Array of 3D data used in the Pitzer/HMW formulation.
 
vector_fp m_Psi_ijk_L
 Derivative of Psi_ijk[n] wrt T.
 
vector_fp m_Psi_ijk_LL
 Derivative of Psi_ijk[n] wrt TT.
 
vector_fp m_Psi_ijk_P
 Derivative of Psi_ijk[n] wrt P.
 
Array2D m_Psi_ijk_coeff
 Array of coefficients for Psi_ijk[n] in the Pitzer/HMW formulation.
 
Array2D m_Lambda_nj
 Lambda coefficient for the ij interaction.
 
Array2D m_Lambda_nj_L
 Derivative of Lambda_nj[i][j] wrt T. see m_Lambda_ij.
 
Array2D m_Lambda_nj_LL
 Derivative of Lambda_nj[i][j] wrt TT.
 
Array2D m_Lambda_nj_P
 Derivative of Lambda_nj[i][j] wrt P.
 
Array2D m_Lambda_nj_coeff
 Array of coefficients for Lambda_nj[i][j] in the Pitzer/HMW formulation.
 
vector_fp m_Mu_nnn
 Mu coefficient for the self-ternary neutral coefficient.
 
vector_fp m_Mu_nnn_L
 Mu coefficient temperature derivative for the self-ternary neutral coefficient.
 
vector_fp m_Mu_nnn_LL
 Mu coefficient 2nd temperature derivative for the self-ternary neutral coefficient.
 
vector_fp m_Mu_nnn_P
 Mu coefficient pressure derivative for the self-ternary neutral coefficient.
 
Array2D m_Mu_nnn_coeff
 Array of coefficients form_Mu_nnn term.
 
vector_fp m_lnActCoeffMolal_Scaled
 Logarithm of the activity coefficients on the molality scale.
 
vector_fp m_lnActCoeffMolal_Unscaled
 Logarithm of the activity coefficients on the molality scale.
 
vector_fp m_dlnActCoeffMolaldT_Scaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt T.
 
vector_fp m_dlnActCoeffMolaldT_Unscaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt T.
 
vector_fp m_d2lnActCoeffMolaldT2_Scaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT.
 
vector_fp m_d2lnActCoeffMolaldT2_Unscaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT.
 
vector_fp m_dlnActCoeffMolaldP_Scaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt P.
 
vector_fp m_dlnActCoeffMolaldP_Unscaled
 Derivative of the Logarithm of the activity coefficients on the molality scale wrt P.
 
vector_fp m_molalitiesCropped
 Cropped and modified values of the molalities used in activity coefficient calculations.
 
bool m_molalitiesAreCropped
 Boolean indicating whether the molalities are cropped or are modified.
 
vector_int m_CounterIJ
 a counter variable for keeping track of symmetric binary interactions amongst the solute species.
 
double elambda [17]
 This is elambda, MEC.
 
double elambda1 [17]
 This is elambda1, MEC.
 
vector_fp m_gfunc_IJ
 Various temporary arrays used in the calculation of the Pitzer activity coefficients.
 
vector_fp m_g2func_IJ
 This is the value of g2(x2) in Pitzer's papers.
 
vector_fp m_hfunc_IJ
 hfunc, was called gprime in Pitzer's paper.
 
vector_fp m_h2func_IJ
 hfunc2, was called gprime in Pitzer's paper.
 
vector_fp m_BMX_IJ
 Intermediate variable called BMX in Pitzer's paper This is the basic cation - anion interaction.
 
vector_fp m_BMX_IJ_L
 Derivative of BMX_IJ wrt T.
 
vector_fp m_BMX_IJ_LL
 Derivative of BMX_IJ wrt TT.
 
vector_fp m_BMX_IJ_P
 Derivative of BMX_IJ wrt P.
 
vector_fp m_BprimeMX_IJ
 Intermediate variable called BprimeMX in Pitzer's paper.
 
vector_fp m_BprimeMX_IJ_L
 Derivative of BprimeMX wrt T.
 
vector_fp m_BprimeMX_IJ_LL
 Derivative of BprimeMX wrt TT.
 
vector_fp m_BprimeMX_IJ_P
 Derivative of BprimeMX wrt P.
 
vector_fp m_BphiMX_IJ
 Intermediate variable called BphiMX in Pitzer's paper.
 
vector_fp m_BphiMX_IJ_L
 Derivative of BphiMX_IJ wrt T.
 
vector_fp m_BphiMX_IJ_LL
 Derivative of BphiMX_IJ wrt TT.
 
vector_fp m_BphiMX_IJ_P
 Derivative of BphiMX_IJ wrt P.
 
vector_fp m_Phi_IJ
 Intermediate variable called Phi in Pitzer's paper.
 
vector_fp m_Phi_IJ_L
 Derivative of m_Phi_IJ wrt T.
 
vector_fp m_Phi_IJ_LL
 Derivative of m_Phi_IJ wrt TT.
 
vector_fp m_Phi_IJ_P
 Derivative of m_Phi_IJ wrt P.
 
vector_fp m_Phiprime_IJ
 Intermediate variable called Phiprime in Pitzer's paper.
 
vector_fp m_PhiPhi_IJ
 Intermediate variable called PhiPhi in Pitzer's paper.
 
vector_fp m_PhiPhi_IJ_L
 Derivative of m_PhiPhi_IJ wrt T.
 
vector_fp m_PhiPhi_IJ_LL
 Derivative of m_PhiPhi_IJ wrt TT.
 
vector_fp m_PhiPhi_IJ_P
 Derivative of m_PhiPhi_IJ wrt P.
 
vector_fp m_CMX_IJ
 Intermediate variable called CMX in Pitzer's paper.
 
vector_fp m_CMX_IJ_L
 Derivative of m_CMX_IJ wrt T.
 
vector_fp m_CMX_IJ_LL
 Derivative of m_CMX_IJ wrt TT.
 
vector_fp m_CMX_IJ_P
 Derivative of m_CMX_IJ wrt P.
 
vector_fp m_gamma_tmp
 Intermediate storage of the activity coefficient itself.
 
vector_fp IMS_lnActCoeffMolal_
 Logarithm of the molal activity coefficients.
 
int IMS_typeCutoff_
 IMS Cutoff type.
 
doublereal IMS_X_o_cutoff_
 value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;
 
doublereal IMS_gamma_o_min_
 gamma_o value for the cutoff process at the zero solvent point
 
doublereal IMS_gamma_k_min_
 gamma_k minimum for the cutoff process at the zero solvent point
 
doublereal IMS_cCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_slopefCut_
 Parameter in the polyExp cutoff treatment.
 
doublereal IMS_dfCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_efCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_afCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_bfCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_slopegCut_
 Parameter in the polyExp cutoff treatment.
 
doublereal IMS_dgCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_egCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_agCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal IMS_bgCut_
 Parameter in the polyExp cutoff treatment having to do with rate of exp decay.
 
doublereal MC_X_o_cutoff_
 value of the solvent mole fraction that centers the cutoff polynomials for the cutoff =1 process;
 
doublereal MC_X_o_min_
 gamma_o value for the cutoff process at the zero solvent point
 
doublereal MC_slopepCut_
 Parameter in the Molality Exp cutoff treatment.
 
doublereal MC_dpCut_
 Parameter in the Molality Exp cutoff treatment.
 
doublereal MC_epCut_
 Parameter in the Molality Exp cutoff treatment.
 
doublereal MC_apCut_
 Parameter in the Molality Exp cutoff treatment.
 
doublereal MC_bpCut_
 Parameter in the Molality Exp cutoff treatment.
 
doublereal MC_cpCut_
 Parameter in the Molality Exp cutoff treatment.
 
doublereal CROP_ln_gamma_o_min
 Parameter in the Molality Exp cutoff treatment.
 
doublereal CROP_ln_gamma_o_max
 Parameter in the Molality Exp cutoff treatment.
 
doublereal CROP_ln_gamma_k_min
 Parameter in the Molality Exp cutoff treatment.
 
doublereal CROP_ln_gamma_k_max
 Parameter in the Molality Exp cutoff treatment.
 
std::vector< int > CROP_speciesCropped_
 This is a boolean-type vector indicating whether a species's activity coefficient is in the cropped regime.
 

Mechanical Equation of State Properties ---------------------

virtual doublereal pressure () const
 In this equation of state implementation, the density is a function only of the mole fractions.
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
virtual doublereal density () const
 Returns the current value of the density.
 
void setDensity (const doublereal rho)
 Set the internally stored density (kg/m^3) of the phase.
 
void setMolarDensity (const doublereal conc)
 Set the internally stored molar density (kmol/m^3) for the phase.
 
virtual void setTemperature (const doublereal temp)
 Set the temperature (K)
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa)
 
virtual doublereal isothermalCompressibility () const
 The isothermal compressibility.
 
virtual doublereal thermalExpansionCoeff () const
 The thermal expansion coefficient.
 
void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
 

Properties of the Standard State of the Species in the Solution

          (VPStandardStateTP)

Within VPStandardStateTP, these properties are calculated via a common routine, _updateStandardStateThermo(), which must be overloaded in inherited objects. The values are cached within this object, and are not recalculated unless the temperature or pressure changes.

virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity.
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution.
 
void getPureGibbs (doublereal *gpure) const
 Get the standard state Gibbs functions for each species at the current T and P.
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P.
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution.
 
virtual void updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution.
 
virtual void _updateStandardStateThermo () const
 Updates the standard state thermodynamic functions at the current T and P of the solution.
 

Thermodynamic Values for the Species Reference States (VPStandardStateTP)

virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
const vector_fpGibbs_RT_ref () const
 

Detailed Description

Class HMWSoln represents a dilute or concentrated liquid electrolyte phase which obeys the Pitzer formulation for nonideality.

As a prerequisite to the specification of thermodynamic quantities, The concentrations of the ionic species are assumed to obey the electroneutrality condition.


Specification of Species Standard State Properties


The solvent is assumed to be liquid water. A real model for liquid water (IAPWS 1995 formulation) is used as its standard state. All standard state properties for the solvent are based on this real model for water, and involve function calls to the object that handles the real water model, Cantera::WaterPropsIAPWS.

The standard states for solutes are on the unit molality basis. Therefore, in the documentation below, the normal \( o \) superscript is replaced with the \( \triangle \) symbol. The reference state symbol is now \( \triangle, ref \).

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

For solutes that rely on ThermoPhase::m_spthermo, are assumed to have an incompressible standard state mechanical property. In other words, the molar volumes are independent of temperature and pressure.

For these incompressible, standard states, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_0 \hat v\) is subtracted from the specified molar enthalpy to compute the molar internal energy. The entropy is assumed to be independent of the pressure.

The enthalpy function is given by the following relation.

\[ \raggedright h^\triangle_k(T,P) = h^{\triangle,ref}_k(T) + \tilde{v}_k \left( P - P_{ref} \right) \]

For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \tilde v\) is subtracted from the specified reference molar enthalpy to compute the molar internal energy.

\[ u^\triangle_k(T,P) = h^{\triangle,ref}_k(T) - P_{ref} \tilde{v}_k \]

The solute standard state heat capacity and entropy are independent of pressure. The solute standard state gibbs free energy is obtained from the enthalpy and entropy functions.

The vector Phase::m_speciesSize[] is used to hold the base values of species sizes. These are defined as the molar volumes of species at infinite dilution at 300 K and 1 atm of water. m_speciesSize are calculated during the initialization of the HMWSoln object and are then not touched.

The current model assumes that an incompressible molar volume for all solutes. The molar volume for the water solvent, however, is obtained from a pure water equation of state, waterSS. Therefore, the water standard state varies with both T and P. It is an error to request standard state water properties at a T and P where the water phase is not a stable phase, i.e., beyond its spinodal curve.


Specification of Solution Thermodynamic Properties


Chemical potentials of the solutes, \( \mu_k \), and the solvent, \( \mu_o \), which are based on the molality form, have the following general format:

\[ \mu_k = \mu^{\triangle}_k(T,P) + R T ln(\gamma_k^{\triangle} \frac{m_k}{m^\triangle}) \]

\[ \mu_o = \mu^o_o(T,P) + RT ln(a_o) \]

where \( \gamma_k^{\triangle} \) is the molality based activity coefficient for species \(k\).

Individual activity coefficients of ions can not be independently measured. Instead, only binary pairs forming electroneutral solutions can be measured. This problem leads to a redundancy in the evaluation of species standard state properties. The redundancy issue is resolved by setting the standard state chemical potential enthalpy, entropy, and volume for the hydrogen ion, H+, to zero, for every temperature and pressure. After this convention is applied, all other standard state properties of ionic species contain meaningful information.

Ionic Strength

Most of the parameterizations within the model use the ionic strength as a key variable. The ionic strength, \( I\) is defined as follows

\[ I = \frac{1}{2} \sum_k{m_k z_k^2} \]

\( m_k \) is the molality of the kth species. \( z_k \) is the charge of the kth species. Note, the ionic strength is a defined units quantity. The molality has defined units of gmol kg-1, and therefore the ionic strength has units of sqrt( gmol kg-1).

In some instances, from some authors, a different formulation is used for the ionic strength in the equations below. The different formulation is due to the possibility of the existence of weak acids and how association wrt to the weak acid equilibrium relation affects the calculation of the activity coefficients via the assumed value of the ionic strength.

If we are to assume that the association reaction doesn't have an effect on the ionic strength, then we will want to consider the associated weak acid as in effect being fully dissociated, when we calculate an effective value for the ionic strength. We will call this calculated value, the stoichiometric ionic strength, \( I_s \), putting a subscript s to denote it from the more straightforward calculation of \( I \).

\[ I_s = \frac{1}{2} \sum_k{m_k^s z_k^2} \]

Here, \( m_k^s \) is the value of the molalities calculated assuming that all weak acid-base pairs are in their fully dissociated states. This calculation may be simplified by considering that the weakly associated acid may be made up of two charged species, k1 and k2, each with their own charges, obeying the following relationship:

\[ z_k = z_{k1} + z_{k2} \]

Then, we may only need to specify one charge value, say, \( z_{k1}\), the cation charge number, in order to get both numbers, since we have already specified \( z_k \) in the definition of original species. Then, the stoichiometric ionic strength may be calculated via the following formula.

\[ I_s = \frac{1}{2} \left(\sum_{k,ions}{m_k z_k^2}+ \sum_{k,weak_assoc}(m_k z_{k1}^2 + m_k z_{k2}^2) \right) \]

The specification of which species are weakly associated acids is made in the input file via the stoichIsMods XML block, where the charge for k1 is also specified. An example is given below:

<stoichIsMods>
NaCl(aq):-1.0
</stoichIsMods>

Because we need the concept of a weakly associated acid in order to calculated \( I_s \) we need to catalog all species in the phase. This is done using the following categories:

Polar and non-polar neutral species are differentiated, because some additions to the activity coefficient expressions distinguish between these two types of solutes. This is the so-called salt-out effect.

The type of species is specified in the electrolyteSpeciesType XML block. Note, this is not considered a part of the specification of the standard state for the species, at this time. Therefore, this information is put under the activityCoefficient XML block. An example is given below

<electrolyteSpeciesType>
H2L(L):solvent
H+:chargedSpecies
NaOH(aq):weakAcidAssociated
NaCl(aq):strongAcidAssociated
NH3(aq):polarNeutral
O2(aq):nonpolarNeutral
</electrolyteSpeciesType>

Much of the species electrolyte type information is inferred from other information in the input file. For example, as species which is charged is given the "chargedSpecies" default category. A neutral solute species is put into the "nonpolarNeutral" category by default.

Specification of the Excess Gibbs Free Energy

Pitzer's formulation may best be represented as a specification of the excess gibbs free energy, \( G^{ex} \), defined as the deviation of the total gibbs free energy from that of an ideal molal solution.

\[ G = G^{id} + G^{ex} \]

The ideal molal solution contribution, not equal to an ideal solution contribution and in fact containing a singularity at the zero solvent mole fraction limit, is given below.

\[ G^{id} = n_o \mu^o_o + \sum_{k\ne o} n_k \mu_k^{\triangle} + \tilde{M}_o n_o ( RT (\sum{m_i(\ln(m_i)-1)})) \]

From the excess Gibbs free energy formulation, the activity coefficient expression and the osmotic coefficient expression for the solvent may be defined, by taking the appropriate derivatives. Using this approach guarantees that the entire system will obey the Gibbs-Duhem relations.

Pitzer employs the following general expression for the excess Gibbs free energy

\[ \begin{array}{cclc} \frac{G^{ex}}{\tilde{M}_o n_o RT} &= & \left( \frac{4A_{Debye}I}{3b} \right) \ln(1 + b \sqrt{I}) + 2 \sum_c \sum_a m_c m_a B_{ca} + \sum_c \sum_a m_c m_a Z C_{ca} \\&& + \sum_{c < c'} \sum m_c m_{c'} \left[ 2 \Phi_{c{c'}} + \sum_a m_a \Psi_{c{c'}a} \right] + \sum_{a < a'} \sum m_a m_{a'} \left[ 2 \Phi_{a{a'}} + \sum_c m_c \Psi_{a{a'}c} \right] \\&& + 2 \sum_n \sum_c m_n m_c \lambda_{nc} + 2 \sum_n \sum_a m_n m_a \lambda_{na} + 2 \sum_{n < n'} \sum m_n m_{n'} \lambda_{n{n'}} + \sum_n m^2_n \lambda_{nn} \end{array} \]

a is a subscript over all anions, c is a subscript extending over all cations, and i is a subscript that extends over all anions and cations. n is a subscript that extends only over neutral solute molecules. The second line contains cross terms where cations affect cations and/or cation/anion pairs, and anions affect anions or cation/anion pairs. Note part of the coefficients, \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) stem from the theory of unsymmetrical mixing of electrolytes with different charges. This theory depends on the total ionic strength of the solution, and therefore, \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) will depend on I, the ionic strength. \( B_{ca}\) is a strong function of the total ionic strength, I, of the electrolyte. The rest of the coefficients are assumed to be independent of the molalities or ionic strengths. However, all coefficients are potentially functions of the temperature and pressure of the solution.

A is the Debye-Huckel constant. Its specification is described in its own section below.

\( I\) is the ionic strength of the solution, and is given by:

\[ I = \frac{1}{2} \sum_k{m_k z_k^2} \]

In contrast to several other Debye-Huckel implementations (see \ref DebyeHuckel), the
parameter \form#292 in the above equation is a constant that
does not vary with respect to ion identity. This is an important simplification
as it avoids troubles with satisfaction of the Gibbs-Duhem analysis.

The function \form#293 is given by

\[ Z = \sum_i m_i \left| z_i \right| \]

The value of \form#291 is given by the following function

\[ B_{ca} = \beta^{(0)}_{ca} + \beta^{(1)}_{ca} g(\alpha^{(1)}_{ca} \sqrt{I}) + \beta^{(2)}_{ca} g(\alpha^{(2)}_{ca} \sqrt{I}) \]

where

\[ g(x) = 2 \frac{(1 - (1 + x)\exp[-x])}{x^2} \]

The formulation for \form#291 combined with the formulation of the
Debye-Huckel term in the eqn. for the excess Gibbs free energy stems
essentially from an empirical fit to the ionic strength dependent data
based over a wide sampling of binary electrolyte systems. \form#297,

\( \lambda_{nc} \), \( \lambda_{na} \), \( \lambda_{nn} \), \( \Psi_{c{c'}a} \), \( \Psi_{a{a'}c} \) are experimentally derived coefficients that may have pressure and/or temperature dependencies. The \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) formulations are slightly more complicated. \( b \) is a universal constant defined to be equal to \( 1.2\ kg^{1/2}\ gmol^{-1/2} \). The exponential coefficient \( \alpha^{(1)}_{ca} \) is usually fixed at \( \alpha^{(1)}_{ca} = 2.0\ kg^{1/2} gmol^{-1/2}\) except for 2-2 electrolytes, while other parameters were fit to experimental data. For 2-2 electrolytes, \( \alpha^{(1)}_{ca} = 1.4\ kg^{1/2}\ gmol^{-1/2}\) is used in combination with either \( \alpha^{(2)}_{ca} = 12\ kg^{1/2}\ gmol^{-1/2}\) or \( \alpha^{(2)}_{ca} = k A_\psi \), where k is a constant. For electrolytes other than 2-2 electrolytes the \( \beta^{(2)}_{ca} g(\alpha^{(2)}_{ca} \sqrt{I}) \) term is not used in the fitting procedure; it is only used for divalent metal solfates and other high-valence electrolytes which exhibit significant association at low ionic strengths.

The \( \beta^{(0)}_{ca} \), \( \beta^{(1)}_{ca}\), \( \beta^{(2)}_{ca} \), and \( C_{ca} \) binary coefficients are referred to as ion-interaction or Pitzer parameters. These Pitzer parameters may vary with temperature and pressure but they do not depend on the ionic strength. Their values and temperature derivatives of their values have been tabulated for a range of electrolytes

The \( \Phi_{c{c'}} \) and \( \Phi_{a{a'}} \) contributions, which capture cation-cation and anion-anion interactions, also have an ionic strength dependence.

Ternary contributions \( \Psi_{c{c'}a} \) and \( \Psi_{a{a'}c} \) have been measured also for some systems. The success of the Pitzer method lies in its ability to model nonlinear activity coefficients of complex multicomponent systems with just binary and minor ternary contributions, which can be independently measured in binary or ternary subsystems.

Multicomponent Activity Coefficients for Solutes

The formulas for activity coefficients of solutes may be obtained by taking the following derivative of the excess Gibbs Free Energy formulation described above:

\[ \ln(\gamma_k^\triangle) = \frac{d\left( \frac{G^{ex}}{M_o n_o RT} \right)}{d(m_k)}\Bigg|_{n_i} \]

 In the formulas below the following conventions are used. The subscript <I>M</I> refers
 to a particular cation. The subscript X refers to a particular anion, whose
 activity is being currently evaluated. the subscript <I>a</I> refers to a summation
 over all anions in the solution, while the subscript <I>c</I> refers to a summation
 over all cations in the solutions.

  The activity coefficient for a particular cation <I>M</I> is given by

\[ \ln(\gamma_M^\triangle) = -z_M^2(F) + \sum_a m_a \left( 2 B_{Ma} + Z C_{Ma} \right) + z_M \left( \sum_a \sum_c m_a m_c C_{ca} \right) + \sum_c m_c \left[ 2 \Phi_{Mc} + \sum_a m_a \Psi_{Mca} \right] + \sum_{a < a'} \sum m_a m_{a'} \Psi_{Ma{a'}} + 2 \sum_n m_n \lambda_{nM} \]

  The activity coefficient for a particular anion <I>X</I> is given by

\[ \ln(\gamma_X^\triangle) = -z_X^2(F) + \sum_a m_c \left( 2 B_{cX} + Z C_{cX} \right) + \left|z_X \right| \left( \sum_a \sum_c m_a m_c C_{ca} \right) + \sum_a m_a \left[ 2 \Phi_{Xa} + \sum_c m_c \Psi_{cXa} \right] + \sum_{c < c'} \sum m_c m_{c'} \Psi_{c{c'}X} + 2 \sum_n m_n \lambda_{nM} \]

where the function \( F \) is given by

\[ F = - A_{\phi} \left[ \frac{\sqrt{I}}{1 + b \sqrt{I}} + \frac{2}{b} \ln{\left(1 + b\sqrt{I}\right)} \right] + \sum_a \sum_c m_a m_c B'_{ca} + \sum_{c < c'} \sum m_c m_{c'} \Phi'_{c{c'}} + \sum_{a < a'} \sum m_a m_{a'} \Phi'_{a{a'}} \]

We have employed the definition of \form#318, also used by Pitzer
which is equal to

\[ A_{\phi} = \frac{A_{Debye}}{3} \]

In the above formulas, \form#320  and \form#321 are the
ionic strength derivatives of \form#289  and \form#290,
respectively.

The function \form#322 is defined as:

\[ B'_{MX} = \left( \frac{\beta^{(1)}_{MX} h(\alpha^{(1)}_{MX} \sqrt{I})}{I} \right) \left( \frac{\beta^{(2)}_{MX} h(\alpha^{(2)}_{MX} \sqrt{I})}{I} \right) \]

where \( h(x) \) is defined as

\[ h(x) = g'(x) \frac{x}{2} = \frac{2\left(1 - \left(1 + x + \frac{x^2}{2} \right)\exp(-x) \right)}{x^2} \]

The activity coefficient for neutral species <I>N</I> is given by

\[ \ln(\gamma_N^\triangle) = 2 \left( \sum_i m_i \lambda_{iN}\right) \]

Activity of the Water Solvent

The activity for the solvent water, \( a_o \), is not independent and must be determined either from the Gibbs-Duhem relation or from taking the appropriate derivative of the same excess Gibbs free energy function as was used to formulate the solvent activity coefficients. Pitzer's description follows the later approach to derive a formula for the osmotic coefficient, \( \phi \).

\[ \phi - 1 = - \left( \frac{d\left(\frac{G^{ex}}{RT} \right)}{d(\tilde{M}_o n_o)} \right) \frac{1}{\sum_{i \ne 0} m_i} \]

The osmotic coefficient may be related to the water activity by the following relation:

\[ \phi = - \frac{1}{\tilde{M}_o \sum_{i \neq o} m_i} \ln(a_o) = - \frac{n_o}{\sum_{i \neq o}n_i} \ln(a_o) \]

The result is the following

\[ \begin{array}{ccclc} \phi - 1 &= & \frac{2}{\sum_{i \ne 0} m_i} \bigg[ & - A_{\phi} \frac{I^{3/2}}{1 + b \sqrt{I}} + \sum_c \sum_a m_c m_a \left( B^{\phi}_{ca} + Z C_{ca}\right) \\&&& + \sum_{c < c'} \sum m_c m_{c'} \left[ \Phi^{\phi}_{c{c'}} + \sum_a m_a \Psi_{c{c'}a} \right] + \sum_{a < a'} \sum m_a m_{a'} \left[ \Phi^{\phi}_{a{a'}} + \sum_c m_c \Psi_{a{a'}c} \right] \\&&& + \sum_n \sum_c m_n m_c \lambda_{nc} + \sum_n \sum_a m_n m_a \lambda_{na} + \sum_{n < n'} \sum m_n m_{n'} \lambda_{n{n'}} + \frac{1}{2} \left( \sum_n m^2_n \lambda_{nn}\right) \bigg] \end{array} \]

It can be shown that the expression

\[ B^{\phi}_{ca} = \beta^{(0)}_{ca} + \beta^{(1)}_{ca} \exp{(- \alpha^{(1)}_{ca} \sqrt{I})} + \beta^{(2)}_{ca} \exp{(- \alpha^{(2)}_{ca} \sqrt{I} )} \]

is consistent with the expression \( B_{ca} \) in the \( G^{ex} \) expression after carrying out the derivative wrt \( m_M \).

Also taking into account that \( {\Phi}_{c{c'}} \) and \( {\Phi}_{a{a'}} \) has an ionic strength dependence.

\[ \Phi^{\phi}_{c{c'}} = {\Phi}_{c{c'}} + I \frac{d{\Phi}_{c{c'}}}{dI} \]

\[ \Phi^{\phi}_{a{a'}} = \Phi_{a{a'}} + I \frac{d\Phi_{a{a'}}}{dI} \]

Temperature and Pressure Dependence of the Pitzer Parameters

In general most of the coefficients introduced in the previous section may have a temperature and pressure dependence. The temperature and pressure dependence of these coefficients strongly influence the value of the excess Enthalpy and excess Volumes of Pitzer solutions. Therefore, these are readily measurable quantities. HMWSoln provides several different methods for putting these dependencies into the coefficients. HMWSoln has an implementation described by Silverter and Pitzer (1977), which was used to fit experimental data for NaCl over an extensive range, below the critical temperature of water. They found a temperature functional form for fitting the 3 following coefficients that describe the Pitzer parameterization for a single salt to be adequate to describe how the excess gibbs free energy values for the binary salt changes with respect to temperature. The following functional form was used to fit the temperature dependence of the Pitzer Coefficients for each cation - anion pair, M X.

\[ \beta^{(0)}_{MX} = q^{b0}_0 + q^{b0}_1 \left( T - T_r \right) + q^{b0}_2 \left( T^2 - T_r^2 \right) + q^{b0}_3 \left( \frac{1}{T} - \frac{1}{T_r}\right) + q^{b0}_4 \ln \left( \frac{T}{T_r} \right) \]

\[ \beta^{(1)}_{MX} = q^{b1}_0 + q^{b1}_1 \left( T - T_r \right) + q^{b1}_{2} \left( T^2 - T_r^2 \right) \]

\[ C^{\phi}_{MX} = q^{Cphi}_0 + q^{Cphi}_1 \left( T - T_r \right) + q^{Cphi}_2 \left( T^2 - T_r^2 \right) + q^{Cphi}_3 \left( \frac{1}{T} - \frac{1}{T_r}\right) + q^{Cphi}_4 \ln \left( \frac{T}{T_r} \right) \]

where

\[ C^{\phi}_{MX} = 2 {\left| z_M z_X \right|}^{1/2} C_{MX} \]

In later papers, Pitzer has added additional temperature dependencies to all of the other remaining second and third order virial coefficients. Some of these dependencies are justified and motivated by theory. Therefore, a formalism wherein all of the coefficients in the base theory have temperature dependencies associated with them has been implemented within the HMWSoln object. Much of the formalism, however, has been unexercised.

In the HMWSoln object, the temperature dependence of the Pitzer parameters are specified in the following way.

The temperature dependence is specified in an attributes field in the activityCoefficients XML block, called TempModel . Permissible values for that attribute are CONSTANT, COMPLEX1, and LINEAR.

The specification of the binary interaction between a cation and an anion is given by the coefficients, \( B_{MX}\) and \( C_{MX}\) The specification of \( B_{MX}\) is a function of \(\beta^{(0)}_{MX} \), \(\beta^{(1)}_{MX} \), \(\beta^{(2)}_{MX} \), \(\alpha^{(1)}_{MX} \), and \(\alpha^{(2)}_{MX} \). \( C_{MX}\) is calculated from \(C^{\phi}_{MX} \) from the formula above. All of the underlying coefficients are specified in the XML element block binarySaltParameters , which has the attribute cation and anion to identify the interaction. XML elements named beta0, beta1, beta2, Cphi, Alpha1, Alpha2 within each binarySaltParameters block specify the parameters. Within each of these blocks multiple parameters describing temperature or pressure dependence are serially listed in the order that they appear in the equation in this document. An example of the beta0 block that fits the COMPLEX1 temperature dependence given above is

<binarySaltParameters cation="Na+" anion="OH-">
<beta0> q0, q1, q2, q3, q4 </beta0>
</binarySaltParameters>

The parameters for \( \beta^{(0)}\) fit the following equation:

\[ \beta^{(0)} = q_0^{{\beta}0} + q_1^{{\beta}0} \left( T - T_r \right) + q_2^{{\beta}0} \left( T^2 - T_r^2 \right) + q_3^{{\beta}0} \left( \frac{1}{T} - \frac{1}{T_r} \right) + q_4^{{\beta}0} \ln \left( \frac{T}{T_r} \right) \]

This same COMPLEX1 temperature dependence given above is used for the following parameters: \( \beta^{(0)}_{MX} \), \( \beta^{(1)}_{MX} \), \( \beta^{(2)}_{MX} \), \( \Theta_{cc'} \), \(\Theta_{aa'} \), \( \Psi_{c{c'}a} \) and \( \Psi_{ca{a'}} \).

Like-Charged Binary Ion Parameters and the Mixing Parameters

The previous section contained the functions, \( \Phi_{c{c'}} \), \( \Phi_{a{a'}} \) and their derivatives wrt the ionic strength, \( \Phi'_{c{c'}} \) and \( \Phi'_{a{a'}} \). Part of these terms come from theory.

Since like charged ions repel each other and are generally not near each other, the virial coefficients for same-charged ions are small. However, Pitzer doesn't ignore these in his formulation. Relatively larger and longer range terms between like-charged ions exist however, which appear only for unsymmetrical mixing of same-sign charged ions with different charges. \( \Phi_{ij} \), where \( ij \) is either \( a{a'} \) or \( c{c'} \) is given by

\[ {\Phi}_{ij} = \Theta_{ij} + \,^E \Theta_{ij}(I) \]

\( \Theta_{ij} \) is the small virial coefficient expansion term. Dependent in general on temperature and pressure, its ionic strength dependence is ignored in Pitzer's approach. \( \,^E\Theta_{ij}(I) \) accounts for the electrostatic unsymmetrical mixing effects and is dependent only on the charges of the ions i, j, the total ionic strength and on the dielectric constant and density of the solvent. This seems to be a relatively well-documented part of the theory. They theory below comes from Pitzer summation (Pitzer) in the appendix. It's also mentioned in Bethke's book (Bethke), and the equations are summarized in Harvie & Weare (1980). Within the code, \( \,^E\Theta_{ij}(I) \) is evaluated according to the algorithm described in Appendix B [Pitzer] as

\[ \,^E\Theta_{ij}(I) = \left( \frac{z_i z_j}{4I} \right) \left( J(x_{ij}) - \frac{1}{2} J(x_{ii}) - \frac{1}{2} J(x_{jj}) \right) \]

where \( x_{ij} = 6 z_i z_j A_{\phi} \sqrt{I} \) and

\[ J(x) = \frac{1}{x} \int_0^{\infty}{\left( 1 + q + \frac{1}{2} q^2 - e^q \right) y^2 dy} \]

and \( q = - (\frac{x}{y}) e^{-y} \). \( J(x) \) is evaluated by numerical integration.

The \( \Theta_{ij} \) term is a constant that is specified by the XML element thetaCation and thetaAnion , which has the attribute cation1 , cation2 and anion1 , anion2 respectively to identify the interaction. No temperature or pressure dependence of this parameter is currently allowed. An example of the block is presented below.

<thetaCation cation1="Na+" cation2="H+">
<Theta> 0.036 </Theta>
</thetaCation>

Ternary Pitzer Parameters

The \( \Psi_{c{c'}a} \) and \( \Psi_{ca{a'}} \) terms represent ternary interactions between two cations and an anion and two anions and a cation, respectively. In Pitzer's implementation these terms are usually small in absolute size. Currently these parameters do not have any dependence on temperature, pressure, or ionic strength.

Their values are input using the XML element psiCommonCation and psiCommonAnion . The species id's are specified in attribute fields in the XML element. The fields cation, anion1, and anion2 are used for psiCommonCation. The fields anion, cation1 and cation2 are used for psiCommonAnion. An example block is given below. The Theta field below is a duplicate of the thetaAnion field mentioned above. The two fields are input into the same block for convenience, and because their data are highly correlated, in practice. It is an error for the two blocks to specify different information about thetaAnion (or thetaCation) in different blocks. It's ok to specify duplicate but consistent information in multiple blocks.

<psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">
<Theta> -0.05 </Theta>
<Psi> -0.006 </Psi>
</psiCommonCation>

Treatment of Neutral Species

Binary virial-coefficient-like interactions between two neutral species may be specified in the \( \lambda_{mn} \) terms that appear in the formulas above. Currently these interactions are independent of temperature, pressure, and ionic strength. Also, currently, the neutrality of the species are not checked. Therefore, this interaction may involve charged species in the solution as well. The identity of the species is specified by the species1 and species2 attributes to the XML lambdaNeutral node. These terms are symmetrical; species1 and species2 may be reversed and the term will be the same. An example is given below.

<lambdaNeutral species1="CO2" species2="CH4">
<lambda> 0.05 </lambda>
</lambdaNeutral>

Example of the Specification of Parameters for the Activity Coefficients

An example is given below.

An example activityCoefficients XML block for this formulation is supplied below

  <activityCoefficients model="Pitzer" TempModel="complex1">
              <!-- Pitzer Coefficients
                   These coefficients are from Pitzer's main
                   paper, in his book.
                -->
              <A_Debye model="water" />
              <ionicRadius default="3.042843"  units="Angstroms">
              </ionicRadius>
              <binarySaltParameters cation="Na+" anion="Cl-">
                <beta0> 0.0765, 0.008946, -3.3158E-6,
                        -777.03, -4.4706
                </beta0>
                <beta1> 0.2664, 6.1608E-5, 1.0715E-6, 0.0, 0.0 </beta1>
                <beta2> 0.0,   0.0, 0.0, 0.0, 0.0  </beta2>
                <Cphi> 0.00127, -4.655E-5, 0.0,
                       33.317, 0.09421
                </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="H+" anion="Cl-">
                <beta0> 0.1775, 0.0, 0.0, 0.0, 0.0 </beta0>
                <beta1> 0.2945, 0.0, 0.0, 0.0, 0.0 </beta1>
                <beta2> 0.0,    0.0, 0.0, 0.0, 0.0 </beta2>
                <Cphi> 0.0008, 0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="Na+" anion="OH-">
                <beta0> 0.0864, 0.0, 0.0, 0.0, 0.0 </beta0>
                <beta1> 0.253,  0.0, 0.0  0.0, 0.0 </beta1>
                <beta2> 0.0     0.0, 0.0, 0.0, 0.0 </beta2>
                <Cphi> 0.0044,  0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <thetaAnion anion1="Cl-" anion2="OH-">
                <Theta> -0.05,  0.0, 0.0, 0.0, 0.0 </Theta>
              </thetaAnion>

              <psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">
                <Theta> -0.05,  0.0, 0.0, 0.0, 0.0 </Theta>
                <Psi> -0.006 </Psi>
              </psiCommonCation>

              <thetaCation cation1="Na+" cation2="H+">
                <Theta> 0.036,  0.0, 0.0, 0.0, 0.0 </Theta>
              </thetaCation>

              <psiCommonAnion anion="Cl-" cation1="Na+" cation2="H+">
                <Theta> 0.036,  0.0, 0.0, 0.0, 0.0 </Theta>
                <Psi> -0.004 </Psi>
              </psiCommonAnion>

     </activityCoefficients>

Specification of the Debye-Huckel Constant

In the equations above, the formula for \( A_{Debye} \) is needed. The HMWSoln object uses two methods for specifying these quantities. The default method is to assume that \( A_{Debye} \) is a constant, given in the initialization process, and stored in the member double, m_A_Debye. Optionally, a full water treatment may be employed that makes \( A_{Debye} \) a full function of T and P and creates nontrivial entries for the excess heat capacity, enthalpy, and excess volumes of solution.

\[ A_{Debye} = \frac{F e B_{Debye}}{8 \pi \epsilon R T} {\left( C_o \tilde{M}_o \right)}^{1/2} \]

where

\[ B_{Debye} = \frac{F} {{(\frac{\epsilon R T}{2})}^{1/2}} \]

Therefore:

\[ A_{Debye} = \frac{1}{8 \pi} {\left(\frac{2 N_a \rho_o}{1000}\right)}^{1/2} {\left(\frac{N_a e^2}{\epsilon R T }\right)}^{3/2} \]

         Units = sqrt(kg/gmol)

  where
   -  \form#238 is Avogadro's number
   -  \form#239 is the density of water
   -  \form#240 is the electronic charge
   -  \form#241 is the permittivity of water
        where \form#242 is the dielectric constant of water,
        and \form#243 is the permittivity of free space.
   -  \form#244 is the density of the solvent in its standard state.

         Nominal value at 298 K and 1 atm = 1.172576 (kg/gmol)<SUP>1/2</SUP>
               based on:
              -    \form#245 = 78.54
                        (water at 25C)
              -   T = 298.15 K
              -   B_Debye = 3.28640E9 (kg/gmol)<SUP>1/2</SUP> m<SUP>-1</SUP>

An example of a fixed value implementation is given below.

<activityCoefficients model="Pitzer">
<!-- A_Debye units = sqrt(kg/gmol) -->
<A_Debye> 1.172576 </A_Debye>
<!-- object description continues -->
</activityCoefficients>

An example of a variable value implementation within the HMWSoln object is given below. The model attribute, "water", triggers the full implementation.

<activityCoefficients model="Pitzer">
<!-- A_Debye units = sqrt(kg/gmol) -->
<A_Debye model="water" />
<!-- object description continues -->
</activityCoefficients>

Temperature and Pressure Dependence of the Activity Coefficients

Temperature dependence of the activity coefficients leads to nonzero terms for the excess enthalpy and entropy of solution. This means that the partial molar enthalpies, entropies, and heat capacities are all non-trivial to compute. The following formulas are used.

The partial molar enthalpy, \( \bar s_k(T,P) \):

\[ \bar h_k(T,P) = h^{\triangle}_k(T,P) - R T^2 \frac{d \ln(\gamma_k^\triangle)}{dT} \]

The solvent partial molar enthalpy is equal to

\[ \bar h_o(T,P) = h^{o}_o(T,P) - R T^2 \frac{d \ln(a_o)}{dT} = h^{o}_o(T,P) + R T^2 (\sum_{k \neq o} m_k) \tilde{M_o} (\frac{d \phi}{dT}) \]

The partial molar entropy, \( \bar s_k(T,P) \):

\[ \bar s_k(T,P) = s^{\triangle}_k(T,P) - R \ln( \gamma^{\triangle}_k \frac{m_k}{m^{\triangle}})) - R T \frac{d \ln(\gamma^{\triangle}_k) }{dT} \]

\[ \bar s_o(T,P) = s^o_o(T,P) - R \ln(a_o) - R T \frac{d \ln(a_o)}{dT} \]

The partial molar heat capacity, \( C_{p,k}(T,P)\):

\[ \bar C_{p,k}(T,P) = C^{\triangle}_{p,k}(T,P) - 2 R T \frac{d \ln( \gamma^{\triangle}_k)}{dT} - R T^2 \frac{d^2 \ln(\gamma^{\triangle}_k) }{{dT}^2} \]

\[ \bar C_{p,o}(T,P) = C^o_{p,o}(T,P) - 2 R T \frac{d \ln(a_o)}{dT} - R T^2 \frac{d^2 \ln(a_o)}{{dT}^2} \]

The pressure dependence of the activity coefficients leads to non-zero terms for the excess Volume of the solution. Therefore, the partial molar volumes are functions of the pressure derivatives of the activity coefficients.

\[ \bar V_k(T,P) = V^{\triangle}_k(T,P) + R T \frac{d \ln(\gamma^{\triangle}_k) }{dP} \]

\[ \bar V_o(T,P) = V^o_o(T,P) + R T \frac{d \ln(a_o)}{dP} \]

The majority of work for these functions take place in the internal routines that calculate the first and second derivatives of the log of the activity coefficients wrt temperature, s_update_dlnMolalityActCoeff_dT(), s_update_d2lnMolalityActCoeff_dT2(), and the first derivative of the log activity coefficients wrt pressure, s_update_dlnMolalityActCoeff_dP().


Application within Kinetics Managers


For the time being, we have set the standard concentration for all solute species in this phase equal to the default concentration of the solvent at the system temperature and pressure multiplied by Mnaught (kg solvent / gmol solvent). The solvent standard concentration is just equal to its standard state concentration.

This means that the kinetics operator essentially works on an generalized concentration basis (kmol / m3), with units for the kinetic rate constant specified as if all reactants (solvent or solute) are on a concentration basis (kmol /m3). The concentration will be modified by the activity coefficients.

For example, a bulk-phase binary reaction between liquid solute species j and k, producing a new liquid solute species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 (C^o_o \tilde{M}_o a_j) (C^o_o \tilde{M}_o a_k) \]

where

\[ C_j^a = C^o_o \tilde{M}_o a_j \quad and \quad C_k^a = C^o_o \tilde{M}_o a_k \]

\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C^o_o \) is the concentration of water at 298 K and 1 atm. \( \tilde{M}_o \) has units of kg solvent per gmol solvent and is equal to

\[ \tilde{M}_o = \frac{M_o}{1000} \]

\( a_j \) is the activity of species j at the current temperature and pressure and concentration of the liquid phase is given by the molality based activity coefficient multiplied by the molality of the jth species.

\[ a_j = \gamma_j^\triangle m_j = \gamma_j^\triangle \frac{n_j}{\tilde{M}_o n_o} \]

\(k^1 \) has units of m3 kmol-1 s-1.

Therefore the generalized activity concentration of a solute species has the following form

\[ C_j^a = C^o_o \frac{\gamma_j^\triangle n_j}{n_o} \]

The generalized activity concentration of the solvent has the same units, but it's a simpler form

\[ C_o^a = C^o_o a_o \]

The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.

\[ \frac{a_j a_k}{ a_l} = K^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]

\( K^{o,1} \) is the dimensionless form of the equilibrium constant.

\[ R^{-1} = k^{-1} C_l^a = k^{-1} (C_o \tilde{M}_o a_l) \]

where

\[ k^{-1} = k^1 K^{o,1} C_o \tilde{M}_o \]

\( k^{-1} \) has units of s-1.

Note, this treatment may be modified in the future, as events dictate.


Instantiation of the Class


The constructor for this phase is now located in the default ThermoFactory for Cantera. The following code snippet may be used to initialize the phase using the default construction technique within Cantera.

ThermoPhase *HMW = newPhase("HMW_NaCl.xml", "NaCl_electrolyte");

A new HMWSoln object may be created by the following code snippets:

HMWSoln *HMW = new HMWSoln("HMW_NaCl.xml", "NaCl_electrolyte");

or

char iFile[80], file_ID[80];
strcpy(iFile, "HMW_NaCl.xml");
sprintf(file_ID,"%s#NaCl_electrolyte", iFile);
XML_Node *xm = get_XML_NameID("phase", file_ID, 0);
HMWSoln *dh = new HMWSoln(*xm);

or by the following call to importPhase():

char iFile[80], file_ID[80];
strcpy(iFile, "HMW_NaCl.xml");
sprintf(file_ID,"%s#NaCl_electrolyte", iFile);
XML_Node *xm = get_XML_NameID("phase", file_ID, 0);
HMWSoln dhphase;
importPhase(*xm, &dhphase);

XML Example


The phase model name for this is called StoichSubstance. It must be supplied as the model attribute of the thermo XML element entry. Within the phase XML block, the density of the phase must be specified. An example of an XML file this phase is given below.

 <phase id="NaCl_electrolyte" dim="3">
  <speciesArray datasrc="#species_waterSolution">
             H2O(L) Na+ Cl- H+ OH-
  </speciesArray>
  <state>
    <temperature units="K"> 300  </temperature>
    <pressure units="Pa">101325.0</pressure>
    <soluteMolalities>
           Na+:3.0
           Cl-:3.0
           H+:1.0499E-8
           OH-:1.3765E-6
    </soluteMolalities>
  </state>
  <!-- thermo model identifies the inherited class
       from ThermoPhase that will handle the thermodynamics.
    -->
  <thermo model="HMW">
     <standardConc model="solvent_volume" />
   <activityCoefficients model="Pitzer" TempModel="complex1">
              <!-- Pitzer Coefficients
                   These coefficients are from Pitzer's main
                   paper, in his book.
                -->
              <A_Debye model="water" />
              <ionicRadius default="3.042843"  units="Angstroms">
              </ionicRadius>
              <binarySaltParameters cation="Na+" anion="Cl-">
                <beta0> 0.0765, 0.008946, -3.3158E-6,
                        -777.03, -4.4706
                </beta0>
                <beta1> 0.2664, 6.1608E-5, 1.0715E-6 </beta1>
                <beta2> 0.0    </beta2>
                <Cphi> 0.00127, -4.655E-5, 0.0,
                       33.317, 0.09421
                </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="H+" anion="Cl-">
                <beta0> 0.1775, 0.0, 0.0, 0.0, 0.0</beta0>
                <beta1> 0.2945, 0.0, 0.0 </beta1>
                <beta2> 0.0    </beta2>
                <Cphi> 0.0008, 0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <binarySaltParameters cation="Na+" anion="OH-">
                <beta0> 0.0864, 0.0, 0.0, 0.0, 0.0 </beta0>
                <beta1> 0.253, 0.0, 0.0 </beta1>
                <beta2> 0.0    </beta2>
                <Cphi> 0.0044, 0.0, 0.0, 0.0, 0.0 </Cphi>
                <Alpha1> 2.0 </Alpha1>
              </binarySaltParameters>

              <thetaAnion anion1="Cl-" anion2="OH-">
                <Theta> -0.05 </Theta>
              </thetaAnion>

              <psiCommonCation cation="Na+" anion1="Cl-" anion2="OH-">
                <Theta> -0.05 </Theta>
                <Psi> -0.006 </Psi>
              </psiCommonCation>

              <thetaCation cation1="Na+" cation2="H+">
                <Theta> 0.036 </Theta>
              </thetaCation>

              <psiCommonAnion anion="Cl-" cation1="Na+" cation2="H+">
                <Theta> 0.036 </Theta>
                <Psi> -0.004 </Psi>
              </psiCommonAnion>

     </activityCoefficients>

     <solvent> H2O(L) </solvent>
  </thermo>
  <elementArray datasrc="elements.xml"> O H Na Cl </elementArray>
  <kinetics model="none" >
  </kinetics>
</phase>

Definition at line 1240 of file HMWSoln.h.

Constructor & Destructor Documentation

HMWSoln ( )

Default Constructor.

Definition at line 37 of file HMWSoln.cpp.

References HMWSoln::elambda, and HMWSoln::elambda1.

Referenced by HMWSoln::duplMyselfAsThermoPhase().

HMWSoln ( std::string  inputFile,
std::string  id = "" 
)

Construct and initialize an HMWSoln ThermoPhase object directly from an ASCII input file.

Working constructors

The two constructors below are the normal way the phase initializes itself. They are shells that call the routine initThermo(), with a reference to the XML database to get the info for the phase.

Parameters
inputFileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.

Definition at line 94 of file HMWSoln.cpp.

References HMWSoln::constructPhaseFile(), HMWSoln::elambda, and HMWSoln::elambda1.

HMWSoln ( XML_Node phaseRef,
std::string  id = "" 
)

Construct and initialize an HMWSoln ThermoPhase object directly from an XML database.

Parameters
phaseRefXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)

Definition at line 145 of file HMWSoln.cpp.

References HMWSoln::constructPhaseXML(), HMWSoln::elambda, and HMWSoln::elambda1.

HMWSoln ( const HMWSoln right)

Copy Constructor.

Copy constructor for the object. Constructed object will be a clone of this object, but will also own all of its data. This is a wrapper around the assignment operator

Parameters
rightObject to be copied.

Definition at line 202 of file HMWSoln.cpp.

HMWSoln ( int  testProb)

This is a special constructor, used to replicate test problems during the initial verification of the object.

test problems: 1 = NaCl problem - 5 species - the thermo is read in from an XML file

speci molality charge Cl- 6.0954 6.0997E+00 -1 H+ 1.0000E-08 2.1628E-09 1 Na+ 6.0954E+00 6.0997E+00 1 OH- 7.5982E-07 1.3977E-06 -1 HMW_params____beta0MX__beta1MX__beta2MX__CphiMX_____alphaMX__thetaij 10 1 2 0.1775 0.2945 0.0 0.00080 2.0 0.0 1 3 0.0765 0.2664 0.0 0.00127 2.0 0.0 1 4 0.0 0.0 0.0 0.0 0.0 -0.050 2 3 0.0 0.0 0.0 0.0 0.0 0.036 2 4 0.0 0.0 0.0 0.0 0.0 0.0 3 4 0.0864 0.253 0.0 0.0044 2.0 0.0 Triplet_interaction_parameters_psiaa'_or_psicc' 2 1 2 3 -0.004 1 3 4 -0.006

Parameters
testProbHard -coded test problem to instantiate. Current valid values are 1.

Definition at line 437 of file HMWSoln.cpp.

References HMWSoln::constructPhaseFile(), HMWSoln::m_Alpha1MX_ij, HMWSoln::m_Beta0MX_ij, HMWSoln::m_Beta1MX_ij, HMWSoln::m_CounterIJ, HMWSoln::m_CphiMX_ij, Phase::m_kk, HMWSoln::m_Psi_ijk, HMWSoln::m_Psi_ijk_coeff, HMWSoln::m_Theta_ij, HMWSoln::printCoeffs(), and Phase::speciesIndex().

~HMWSoln ( )
virtual

Destructor.

Definition at line 583 of file HMWSoln.cpp.

References HMWSoln::m_waterProps.

Member Function Documentation

HMWSoln & operator= ( const HMWSoln right)

Assignment operator.

Assignment operator for the object. Constructed object will be a clone of this object, but will also own all of its data.

Parameters
rightObject to be copied.

Definition at line 260 of file HMWSoln.cpp.

References HMWSoln::CROP_ln_gamma_k_max, HMWSoln::CROP_ln_gamma_k_min, HMWSoln::CROP_ln_gamma_o_max, HMWSoln::CROP_ln_gamma_o_min, HMWSoln::CROP_speciesCropped_, HMWSoln::IMS_afCut_, HMWSoln::IMS_agCut_, HMWSoln::IMS_bfCut_, HMWSoln::IMS_bgCut_, HMWSoln::IMS_cCut_, HMWSoln::IMS_dfCut_, HMWSoln::IMS_dgCut_, HMWSoln::IMS_efCut_, HMWSoln::IMS_egCut_, HMWSoln::IMS_gamma_k_min_, HMWSoln::IMS_gamma_o_min_, HMWSoln::IMS_lnActCoeffMolal_, HMWSoln::IMS_slopefCut_, HMWSoln::IMS_slopegCut_, HMWSoln::IMS_typeCutoff_, HMWSoln::IMS_X_o_cutoff_, HMWSoln::m_A_Debye, HMWSoln::m_Aionic, HMWSoln::m_Alpha1MX_ij, HMWSoln::m_Alpha2MX_ij, HMWSoln::m_Beta0MX_ij, HMWSoln::m_Beta0MX_ij_coeff, HMWSoln::m_Beta0MX_ij_L, HMWSoln::m_Beta0MX_ij_LL, HMWSoln::m_Beta0MX_ij_P, HMWSoln::m_Beta1MX_ij, HMWSoln::m_Beta1MX_ij_coeff, HMWSoln::m_Beta1MX_ij_L, HMWSoln::m_Beta1MX_ij_LL, HMWSoln::m_Beta1MX_ij_P, HMWSoln::m_Beta2MX_ij, HMWSoln::m_Beta2MX_ij_coeff, HMWSoln::m_Beta2MX_ij_L, HMWSoln::m_Beta2MX_ij_LL, HMWSoln::m_Beta2MX_ij_P, HMWSoln::m_BMX_IJ, HMWSoln::m_BMX_IJ_L, HMWSoln::m_BMX_IJ_LL, HMWSoln::m_BMX_IJ_P, HMWSoln::m_BphiMX_IJ, HMWSoln::m_BphiMX_IJ_L, HMWSoln::m_BphiMX_IJ_LL, HMWSoln::m_BphiMX_IJ_P, HMWSoln::m_BprimeMX_IJ, HMWSoln::m_BprimeMX_IJ_L, HMWSoln::m_BprimeMX_IJ_LL, HMWSoln::m_BprimeMX_IJ_P, HMWSoln::m_CMX_IJ, HMWSoln::m_CMX_IJ_L, HMWSoln::m_CMX_IJ_LL, HMWSoln::m_CMX_IJ_P, HMWSoln::m_CounterIJ, HMWSoln::m_CphiMX_ij, HMWSoln::m_CphiMX_ij_coeff, HMWSoln::m_CphiMX_ij_L, HMWSoln::m_CphiMX_ij_LL, HMWSoln::m_CphiMX_ij_P, HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, HMWSoln::m_debugCalc, HMWSoln::m_densWaterSS, HMWSoln::m_dlnActCoeffMolaldP_Scaled, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, HMWSoln::m_dlnActCoeffMolaldT_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, HMWSoln::m_expg0_RT, HMWSoln::m_form_A_Debye, HMWSoln::m_formGC, HMWSoln::m_formPitzer, HMWSoln::m_formPitzerTemp, HMWSoln::m_g2func_IJ, HMWSoln::m_gamma_tmp, HMWSoln::m_gfunc_IJ, HMWSoln::m_h2func_IJ, HMWSoln::m_hfunc_IJ, HMWSoln::m_IionicMolality, HMWSoln::m_IionicMolalityStoich, HMWSoln::m_Lambda_nj, HMWSoln::m_Lambda_nj_coeff, HMWSoln::m_Lambda_nj_L, HMWSoln::m_Lambda_nj_LL, HMWSoln::m_Lambda_nj_P, HMWSoln::m_lnActCoeffMolal_Scaled, HMWSoln::m_lnActCoeffMolal_Unscaled, HMWSoln::m_maxIionicStrength, HMWSoln::m_molalitiesAreCropped, HMWSoln::m_molalitiesCropped, HMWSoln::m_pe, HMWSoln::m_Phi_IJ, HMWSoln::m_Phi_IJ_L, HMWSoln::m_Phi_IJ_LL, HMWSoln::m_Phi_IJ_P, HMWSoln::m_PhiPhi_IJ, HMWSoln::m_PhiPhi_IJ_L, HMWSoln::m_PhiPhi_IJ_LL, HMWSoln::m_PhiPhi_IJ_P, HMWSoln::m_Phiprime_IJ, HMWSoln::m_pp, HMWSoln::m_Psi_ijk, HMWSoln::m_Psi_ijk_coeff, HMWSoln::m_Psi_ijk_L, HMWSoln::m_Psi_ijk_LL, HMWSoln::m_Psi_ijk_P, HMWSoln::m_speciesCharge_Stoich, HMWSoln::m_TempPitzerRef, HMWSoln::m_Theta_ij, HMWSoln::m_Theta_ij_coeff, HMWSoln::m_Theta_ij_L, HMWSoln::m_Theta_ij_LL, HMWSoln::m_Theta_ij_P, HMWSoln::m_tmpV, HMWSoln::m_waterProps, HMWSoln::m_waterSS, HMWSoln::MC_apCut_, HMWSoln::MC_bpCut_, HMWSoln::MC_cpCut_, HMWSoln::MC_dpCut_, HMWSoln::MC_epCut_, HMWSoln::MC_slopepCut_, HMWSoln::MC_X_o_cutoff_, HMWSoln::MC_X_o_min_, and MolalityVPSSTP::operator=().

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplicator from the ThermoPhase parent class.

Given a pointer to a ThermoPhase object, this function will duplicate the ThermoPhase object and all underlying structures. This is basically a wrapper around the copy constructor.

Returns
returns a pointer to a ThermoPhase

Reimplemented from MolalityVPSSTP.

Definition at line 598 of file HMWSoln.cpp.

References HMWSoln::HMWSoln().

int eosType ( ) const
virtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Reimplemented from MolalityVPSSTP.

Definition at line 610 of file HMWSoln.cpp.

References Cantera::cHMWSoln0, and HMWSoln::m_formGC.

doublereal enthalpy_mole ( ) const
virtual

Molar enthalpy. Units: J/kmol.

Molar enthalpy of the solution. Units: J/kmol. (HKM -> Bump up to Parent object)

Reimplemented from ThermoPhase.

Definition at line 635 of file HMWSoln.cpp.

References DATA_PTR, Phase::getMoleFractions(), HMWSoln::getPartialMolarEnthalpies(), HMWSoln::m_pp, HMWSoln::m_tmpV, and Phase::mean_X().

Referenced by HMWSoln::intEnergy_mole().

doublereal relative_enthalpy ( ) const
virtual

Excess molar enthalpy of the solution from the mixing process.

Units: J/ kmol.

Note this is kmol of the total solution.

Definition at line 643 of file HMWSoln.cpp.

References DATA_PTR, Cantera::GasConstant, VPStandardStateTP::getEnthalpy_RT(), HMWSoln::getPartialMolarEnthalpies(), HMWSoln::m_gamma_tmp, Phase::m_kk, HMWSoln::m_tmpV, Phase::mean_X(), and Phase::temperature().

Referenced by HMWSoln::relative_molal_enthalpy().

doublereal relative_molal_enthalpy ( ) const
virtual

Excess molar enthalpy of the solution from the mixing process on a molality basis.

Units: J/ (kmol add salt).

Note this is kmol of the guessed at salt composition

Definition at line 658 of file HMWSoln.cpp.

References Phase::charge(), DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, Phase::m_speciesCharge, HMWSoln::m_tmpV, Cantera::npos, and HMWSoln::relative_enthalpy().

doublereal intEnergy_mole ( ) const
virtual

Molar internal energy. Units: J/kmol.

Molar internal energy of the solution. Units: J/kmol. (HKM -> Bump up to Parent object)

Reimplemented from ThermoPhase.

Definition at line 706 of file HMWSoln.cpp.

References HMWSoln::enthalpy_mole(), Phase::molarDensity(), and HMWSoln::pressure().

doublereal entropy_mole ( ) const
virtual

Molar entropy. Units: J/kmol/K.

Molar entropy of the solution. Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of temperature since the volume expansivities are equal to zero.

See Also
SpeciesThermo
 (HKM -> Bump up to Parent object)

Reimplemented from ThermoPhase.

Definition at line 720 of file HMWSoln.cpp.

References DATA_PTR, HMWSoln::getPartialMolarEntropies(), HMWSoln::m_tmpV, and Phase::mean_X().

doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 727 of file HMWSoln.cpp.

References DATA_PTR, HMWSoln::getChemPotentials(), HMWSoln::m_tmpV, and Phase::mean_X().

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 738 of file HMWSoln.cpp.

References DATA_PTR, HMWSoln::getPartialMolarCp(), HMWSoln::m_tmpV, and Phase::mean_X().

Referenced by HMWSoln::cv_mole().

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 746 of file HMWSoln.cpp.

References ckr::cp(), HMWSoln::cp_mole(), HMWSoln::isothermalCompressibility(), Phase::molarVolume(), Phase::temperature(), and HMWSoln::thermalExpansionCoeff().

doublereal pressure ( ) const
virtual

In this equation of state implementation, the density is a function only of the mole fractions.

Pressure.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown. Pressure. Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.

Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.

Reimplemented from ThermoPhase.

Definition at line 766 of file HMWSoln.cpp.

References VPStandardStateTP::m_Pcurrent.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), HMWSoln::intEnergy_mole(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), and HMWSoln::satPressure().

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method sets the pressure within the object. The water model is a completely compressible model. Also, the dielectric constant is pressure dependent.

Parameters
pinput Pressure (Pa)
Todo:
Implement a variable pressure capability

Reimplemented from VPStandardStateTP.

Definition at line 776 of file HMWSoln.cpp.

References HMWSoln::setState_TP(), and Phase::temperature().

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

Reimplemented from VPStandardStateTP.

Definition at line 781 of file HMWSoln.cpp.

References Phase::getMoleFractions(), HMWSoln::getPartialMolarVolumes(), Phase::m_kk, HMWSoln::m_pp, HMWSoln::m_tmpV, Phase::meanMolecularWeight(), and Phase::setDensity().

Referenced by HMWSoln::setState_TP().

double density ( ) const
virtual

Returns the current value of the density.

Returns
value of the density. Units: kg/m^3

Reimplemented from Phase.

Definition at line 830 of file HMWSoln.cpp.

References Phase::density().

Referenced by HMWSoln::setDensity().

void setDensity ( const doublereal  rho)
virtual

Set the internally stored density (kg/m^3) of the phase.

Overwritten setDensity() function is necessary because of the underlying water model.

Todo:
Now have a compressible ss equation for liquid water. Therefore, this phase is compressible. May still want to change the independent variable however.

NOTE: This is an overwritten function from the State.h class

Parameters
rhoInput density (kg/m^3).

Reimplemented from Phase.

Definition at line 856 of file HMWSoln.cpp.

References HMWSoln::density().

void setMolarDensity ( const doublereal  conc)
virtual

Set the internally stored molar density (kmol/m^3) for the phase.

Overwritten setMolarDensity() function is necessary because of the underlying water model.

This function will now throw an error condition if the input isn't exactly equal to the current molar density.

NOTE: This is a virtual function overwritten from the State.h class

Parameters
concInput molar density (kmol/m^3).

Reimplemented from Phase.

Definition at line 875 of file HMWSoln.cpp.

void setTemperature ( const doublereal  temp)
virtual

Set the temperature (K)

Overwritten setTemperature(double) from State.h. This function sets the temperature, and makes sure that the value propagates to underlying objects, such as the water standard state model.

Todo:
Make Phase::setTemperature a virtual function
Parameters
tempTemperature in kelvin

Reimplemented from VPStandardStateTP.

Definition at line 886 of file HMWSoln.cpp.

References VPStandardStateTP::m_Pcurrent, and HMWSoln::setState_TP().

void setState_TP ( doublereal  t,
doublereal  p 
)
virtual

Set the temperature (K) and pressure (Pa)

Set the temperature and pressure.

Parameters
tTemperature (K)
pPressure (Pa)

Reimplemented from VPStandardStateTP.

Definition at line 896 of file HMWSoln.cpp.

References HMWSoln::calcDensity(), PDSS::density(), HMWSoln::m_densWaterSS, VPStandardStateTP::m_Pcurrent, HMWSoln::m_waterSS, Phase::setTemperature(), and VPStandardStateTP::updateStandardStateThermo().

Referenced by HMWSoln::setPressure(), and HMWSoln::setTemperature().

doublereal isothermalCompressibility ( ) const
virtual

The isothermal compressibility.

Units: 1/Pa. The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 805 of file HMWSoln.cpp.

Referenced by HMWSoln::cv_mole().

doublereal thermalExpansionCoeff ( ) const
virtual

The thermal expansion coefficient.

Units: 1/K. The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 823 of file HMWSoln.cpp.

Referenced by HMWSoln::cv_mole().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized activity concentrations.

The generalized activity concentrations, \( C_k^a\), are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below. These generalized concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.

The generalized activity concentration of a solute species has the following form

\[ C_j^a = C^o_o \frac{\gamma_j^\triangle n_j}{n_o} \]

The generalized activity concentration of the solvent has the same units, but it's a simpler form

\[ C_o^a = C^o_o a_o \]

Parameters
cArray of generalized concentrations. The units are kmol m-3 for both the solvent and the solute species

Reimplemented from MolalityVPSSTP.

Definition at line 939 of file HMWSoln.cpp.

References HMWSoln::getActivities(), Phase::m_kk, and HMWSoln::standardConcentration().

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration for use

We have set the standard concentration for all solute species in this phase equal to the default concentration of the solvent at the system temperature and pressure multiplied by Mnaught (kg solvent / gmol solvent). The solvent standard concentration is just equal to its standard state concentration.

\[ C_j^0 = C^o_o \tilde{M}_o \quad and C_o^0 = C^o_o \]

The consequence of this is that the standard concentrations have unequal units between the solvent and the solute. However, both the solvent and the solute activity concentrations will have the same units of kmol kg-3.

This means that the kinetics operator essentially works on an generalized concentration basis (kmol / m3), with units for the kinetic rate constant specified as if all reactants (solvent or solute) are on a concentration basis (kmol /m3). The concentration will be modified by the activity coefficients.

For example, a bulk-phase binary reaction between liquid solute species j and k, producing a new liquid solute species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 (C^o_o \tilde{M}_o a_j) (C^o_o \tilde{M}_o a_k) \]

where

\[ C_j^a = C^o_o \tilde{M}_o a_j \quad and \quad C_k^a = C^o_o \tilde{M}_o a_k \]

\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C^o_o \) is the concentration of water at 298 K and 1 atm. \( \tilde{M}_o \) has units of kg solvent per gmol solvent and is equal to

\[ \tilde{M}_o = \frac{M_o}{1000} \]

\( a_j \) is the activity of species j at the current temperature and pressure and concentration of the liquid phase is given by the molality based activity coefficient multiplied by the molality of the jth species.

\[ a_j = \gamma_j^\triangle m_j = \gamma_j^\triangle \frac{n_j}{\tilde{M}_o n_o} \]

\(k^1 \) has units of m3 kmol-1 s-1.

Therefore the generalized activity concentration of a solute species has the following form

\[ C_j^a = C^o_o \frac{\gamma_j^\triangle n_j}{n_o} \]

The generalized activity concentration of the solvent has the same units, but it's a simpler form

\[ C_o^a = C^o_o a_o \]

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.
Parameters
kSpecies index

Reimplemented from MolalityVPSSTP.

Definition at line 974 of file HMWSoln.cpp.

References DATA_PTR, VPStandardStateTP::getStandardVolumes(), MolalityVPSSTP::m_indexSolvent, MolalityVPSSTP::m_Mnaught, and HMWSoln::m_tmpV.

Referenced by HMWSoln::getActivityConcentrations(), and HMWSoln::logStandardConc().

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species.

Parameters
kSpecies index

Reimplemented from MolalityVPSSTP.

Definition at line 988 of file HMWSoln.cpp.

References HMWSoln::standardConcentration().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and generalized concentrations.

Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.

Parameters
uAOutput vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.

Reimplemented from MolalityVPSSTP.

Definition at line 1016 of file HMWSoln.cpp.

References Phase::nDim().

void getActivities ( doublereal *  ac) const
virtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

(note solvent is on molar scale).

Parameters
acOutput vector of activities. Length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 1047 of file HMWSoln.cpp.

References MolalityVPSSTP::m_indexSolvent, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, MolalityVPSSTP::m_molalities, Phase::moleFraction(), HMWSoln::s_update_lnMolalityActCoeff(), and VPStandardStateTP::updateStandardStateThermo().

Referenced by HMWSoln::getActivityConcentrations().

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution.

\[ \mu_k = \mu^{\triangle}_k(T,P) + R T ln(\gamma_k^{\triangle} m_k) \]

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 1113 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getStandardChemPotentials(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, MolalityVPSSTP::m_molalities, ckr::max(), Phase::moleFraction(), HMWSoln::s_update_lnMolalityActCoeff(), Phase::temperature(), and Cantera::xxSmall.

Referenced by HMWSoln::gibbs_mole().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the molality-based activity coefficient wrt temperature

\[ \bar h_k(T,P) = h^{\triangle}_k(T,P) - R T^2 \frac{d \ln(\gamma_k^\triangle)}{dT} \]

The solvent partial molar enthalpy is equal to

\[ \bar h_o(T,P) = h^{o}_o(T,P) - R T^2 \frac{d \ln(a_o)}{dT} = h^{o}_o(T,P) + R T^2 (\sum_{k \neq o} m_k) \tilde{M_o} (\frac{d \phi}{dT}) \]

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 1162 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getEnthalpy_RT(), HMWSoln::m_dlnActCoeffMolaldT_Scaled, Phase::m_kk, HMWSoln::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_lnMolalityActCoeff(), and Phase::temperature().

Referenced by HMWSoln::enthalpy_mole(), and HMWSoln::relative_enthalpy().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Maxwell's equations provide an answer for how calculate this (p.215 Smith and Van Ness)

d(chemPot_i)/dT = -sbar_i

For this phase, the partial molar entropies are equal to the SS species entropies plus the ideal solution contribution plus complicated functions of the temperature derivative of the activity coefficients.

\[ \bar s_k(T,P) = s^{\triangle}_k(T,P) - R \ln( \gamma^{\triangle}_k \frac{m_k}{m^{\triangle}})) - R T \frac{d \ln(\gamma^{\triangle}_k) }{dT} \]

\[ \bar s_o(T,P) = s^o_o(T,P) - R \ln(a_o) - R T \frac{d \ln(a_o)}{dT} \]

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 1218 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), HMWSoln::m_dlnActCoeffMolaldT_Scaled, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Scaled, MolalityVPSSTP::m_molalities, ckr::max(), Phase::moleFraction(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_lnMolalityActCoeff(), Cantera::SmallNumber, and Phase::temperature().

Referenced by HMWSoln::entropy_mole().

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

For this solution, the partial molar volumes are functions of the pressure derivatives of the activity coefficients.

\[ \bar V_k(T,P) = V^{\triangle}_k(T,P) + R T \frac{d \ln(\gamma^{\triangle}_k) }{dP} \]

\[ \bar V_o(T,P) = V^o_o(T,P) + R T \frac{d \ln(a_o)}{dP} \]

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 1281 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getStandardVolumes(), HMWSoln::m_dlnActCoeffMolaldP_Scaled, Phase::m_kk, HMWSoln::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_lnMolalityActCoeff(), and Phase::temperature().

Referenced by HMWSoln::calcDensity().

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

The following formulas are implemented within the code.

\[ \bar C_{p,k}(T,P) = C^{\triangle}_{p,k}(T,P) - 2 R T \frac{d \ln( \gamma^{\triangle}_k)}{dT} - R T^2 \frac{d^2 \ln(\gamma^{\triangle}_k) }{{dT}^2} \]

\[ \bar C_{p,o}(T,P) = C^o_{p,o}(T,P) - 2 R T \frac{d \ln(a_o)}{dT} - R T^2 \frac{d^2 \ln(a_o)}{{dT}^2} \]

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 1317 of file HMWSoln.cpp.

References Cantera::GasConstant, VPStandardStateTP::getCp_R(), HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Scaled, Phase::m_kk, HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_lnMolalityActCoeff(), and Phase::temperature().

Referenced by HMWSoln::cp_mole().

virtual void setToEquilState ( const doublereal *  lambda_RT)
inlinevirtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented from MolalityVPSSTP.

Definition at line 1937 of file HMWSoln.h.

References HMWSoln::err(), and VPStandardStateTP::updateStandardStateThermo().

void setParameters ( int  n,
doublereal *const  c 
)
virtual

Set the equation of state parameters.

The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients

Reimplemented from ThermoPhase.

Definition at line 1383 of file HMWSoln.cpp.

void getParameters ( int &  n,
doublereal *const  c 
) const
virtual

Get the equation of state parameters in a vector.

The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients

Reimplemented from ThermoPhase.

Definition at line 1387 of file HMWSoln.cpp.

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from VPStandardStateTP.

Definition at line 1404 of file HMWSoln.cpp.

virtual doublereal critTemperature ( ) const
inlinevirtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 1986 of file HMWSoln.h.

References HMWSoln::err().

virtual doublereal critPressure ( ) const
inlinevirtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 1992 of file HMWSoln.h.

References HMWSoln::err().

virtual doublereal critDensity ( ) const
inlinevirtual

Critical density (kg/m3).

Reimplemented from ThermoPhase.

Definition at line 1998 of file HMWSoln.h.

References HMWSoln::err().

virtual doublereal satTemperature ( doublereal  p) const
inlinevirtual

Return the saturation temperature given the pressure.

Parameters
pPressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 2009 of file HMWSoln.h.

References HMWSoln::err().

doublereal satPressure ( doublereal  T) const
virtual

Get the saturation pressure for a given temperature.

Note the limitations of this function. Stability considerations concerning multiphase equilibrium are ignored in this calculation. Therefore, the call is made directly to the SS of water underneath. The object is put back into its original state at the end of the call.

Todo:
This is probably not implemented correctly. The stability of the salt should be added into this calculation. The underlying water model may be called to get the stability of the pure water solution, if needed.
Parameters
TTemperature (kelvin)

Reimplemented from ThermoPhase.

Definition at line 1416 of file HMWSoln.cpp.

References HMWSoln::m_waterSS, HMWSoln::pressure(), PDSS::satPressure(), PDSS::setState_TP(), and Phase::temperature().

virtual doublereal vaporFraction ( ) const
inlinevirtual

Return the fraction of vapor at the current conditions.

Reimplemented from ThermoPhase.

Definition at line 2031 of file HMWSoln.h.

References HMWSoln::err().

virtual void setState_Tsat ( doublereal  t,
doublereal  x 
)
inlinevirtual

Set the state to a saturated system at a particular temperature.

Parameters
tTemperature (kelvin)
xFraction of vapor

Reimplemented from ThermoPhase.

Definition at line 2036 of file HMWSoln.h.

References HMWSoln::err().

virtual void setState_Psat ( doublereal  p,
doublereal  x 
)
inlinevirtual

Set the state to a saturated system at a particular pressure.

Parameters
pPressure (Pa)
xFraction of vapor

Reimplemented from ThermoPhase.

Definition at line 2040 of file HMWSoln.h.

References HMWSoln::err().

void constructPhaseFile ( std::string  inputFile,
std::string  id 
)

Initialization of a HMWSoln phase using an xml file.

This routine is a precursor to initThermo(XML_Node*) routine, which does most of the work.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If none is given, the first XML phase element will be used.

Definition at line 1064 of file HMWSoln_input.cpp.

References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), and Cantera::findXMLPhase().

Referenced by HMWSoln::HMWSoln().

void constructPhaseXML ( XML_Node phaseNode,
std::string  id 
)

Import and initialize a HMWSoln phase specification in an XML tree into the current object.

Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species.

Then, we read the species molar volumes from the xml tree to finish the initialization.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Definition at line 1122 of file HMWSoln_input.cpp.

References Cantera::atofCheck(), XML_Node::attrib(), XML_Node::child(), ctml::getStringArray(), XML_Node::hasChild(), XML_Node::id(), Cantera::importPhase(), Cantera::lowercase(), and PITZERFORM_BASE.

Referenced by HMWSoln::HMWSoln(), and Cantera::newPhase().

void initThermo ( )
virtual

Internal initialization required after all species have been added.

Initialize. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase.

See Also
importCTML.cpp

Reimplemented from MolalityVPSSTP.

Definition at line 1044 of file HMWSoln_input.cpp.

void initThermoXML ( XML_Node phaseNode,
std::string  id 
)
virtual

Initialize the phase parameters from an XML file.

Process the XML file after species are set up.

initThermoXML() (virtual from ThermoPhase)

This gets called from importPhase(). It processes the XML file after the species are set up. This is the main routine for reading in activity coefficient parameters.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

This gets called from importPhase(). It processes the XML file after the species are set up. This is the main routine for reading in activity coefficient parameters.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from VPStandardStateTP.

Definition at line 1270 of file HMWSoln_input.cpp.

References XML_Node::attrib(), Cantera::cEST_solvent, XML_Node::child(), DATA_PTR, XML_Node::findByAttr(), XML_Node::findByName(), ctml::fpValue(), Cantera::get_XML_NameID(), ctml::getChildValue(), ctml::getFloat(), ctml::getMap(), ctml::getOptionalFloat(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), Cantera::interp_est(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, Cantera::OneAtm, XML_Node::root(), and Cantera::toSI().

double speciesMolarVolume ( int  k) const

Report the molar volume of species k.

units - \( m^3 kmol^-1 \)

Parameters
kspecies index
Deprecated:
The getPartialMolarVolumes() expression is more precise.

Definition at line 1433 of file HMWSoln.cpp.

References PDSS::density(), Phase::m_speciesSize, HMWSoln::m_waterSS, and Phase::molecularWeight().

double A_Debye_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the Debye Huckel constant as a function of temperature and pressure.

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

       Units = sqrt(kg/gmol)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1463 of file HMWSoln.cpp.

References WaterProps::ADebye(), HMWSoln::m_A_Debye, HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), and Phase::temperature().

Referenced by HMWSoln::getUnscaledMolalityActivityCoefficients().

double dA_DebyedT_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

       Units = sqrt(kg/gmol)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1500 of file HMWSoln.cpp.

References WaterProps::ADebye(), HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), and Phase::temperature().

Referenced by HMWSoln::ADebye_L(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

double dA_DebyedP_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the derivative of the Debye Huckel constant with respect to pressure, as a function of temperature and pressure.

 A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

Units = sqrt(kg/gmol)

Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1536 of file HMWSoln.cpp.

References WaterProps::ADebye(), HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), and Phase::temperature().

Referenced by HMWSoln::ADebye_V(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dP(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

double ADebye_L ( double  temperature = -1.0,
double  pressure = -1.0 
) const

Return Pitzer's definition of A_L.

This is basically the derivative of the A_phi multiplied by 4 R T**2

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
       dA_phidT = d(A_Debye)/dT / 3.0
       A_L = dA_phidT * (4 * R * T * T)

       Units = sqrt(kg/gmol) (RT)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1572 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedT_TP(), Cantera::GasConstant, and Phase::temperature().

Referenced by HMWSoln::ADebye_J().

double ADebye_J ( double  temperature = -1.0,
double  pressure = -1.0 
) const

Return Pitzer's definition of A_J.

This is basically the temperature derivative of A_L, and the second derivative of A_phi

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
       dA_phidT = d(A_Debye)/dT / 3.0
       A_J = 2 A_L/T + 4 * R * T * T * d2(A_phi)/dT2

       Units = sqrt(kg/gmol) (R)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1624 of file HMWSoln.cpp.

References HMWSoln::ADebye_L(), HMWSoln::d2A_DebyedT2_TP(), Cantera::GasConstant, and Phase::temperature().

double ADebye_V ( double  temperature = -1.0,
double  pressure = -1.0 
) const

Return Pitzer's definition of A_V.

This is the derivative wrt pressure of A_phi multiplied by - 4 R T

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
       dA_phidT = d(A_Debye)/dP / 3.0
       A_V = - dA_phidP * (4 * R * T)

       Units = sqrt(kg/gmol) (RT) / Pascal
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1594 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedP_TP(), Cantera::GasConstant, and Phase::temperature().

double d2A_DebyedT2_TP ( double  temperature = -1.0,
double  pressure = -1.0 
) const
virtual

Value of the 2nd derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.

       A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

       Units = sqrt(kg/gmol)
Parameters
temperatureTemperature of the derivative calculation or -1 to indicate the current temperature
pressurePressure of the derivative calculation or -1 to indicate the current pressure

Definition at line 1647 of file HMWSoln.cpp.

References WaterProps::ADebye(), HMWSoln::m_form_A_Debye, HMWSoln::m_waterProps, HMWSoln::pressure(), and Phase::temperature().

Referenced by HMWSoln::ADebye_J(), HMWSoln::s_NBS_CLM_d2lnMolalityActCoeff_dT2(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

double AionicRadius ( int  k = 0) const

Reports the ionic radius of the kth species.

Parameters
kSpecies index

Definition at line 1679 of file HMWSoln.cpp.

References HMWSoln::m_Aionic.

int formPitzer ( ) const
inline

formPitzer():

Returns the form of the Pitzer parameterization used

Definition at line 2285 of file HMWSoln.h.

References HMWSoln::m_formPitzer.

void printCoeffs ( ) const
void getUnscaledMolalityActivityCoefficients ( doublereal *  acMolality) const
virtual

Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.

See Denbigh p. 278 for a thorough discussion. This class must be overwritten in classes which derive from MolalityVPSSTP. This function takes over from the molar-based activity coefficient calculation, getActivityCoefficients(), in derived classes.

Parameters
acMolalityOutput vector containing the molality based activity coefficients. length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 1084 of file HMWSoln.cpp.

References HMWSoln::A_Debye_TP(), Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Unscaled, HMWSoln::s_update_lnMolalityActCoeff(), and VPStandardStateTP::updateStandardStateThermo().

void s_updateScaling_pHScaling ( ) const
private
void s_updateScaling_pHScaling_dT ( ) const
private

Apply the current phScale to a set of derivatives of the activity Coefficients wrt temperature.

See the Eq3/6 Manual for a thorough discussion of the need

Definition at line 6455 of file HMWSoln.cpp.

References AssertTrace, HMWSoln::m_dlnActCoeffMolaldT_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, MolalityVPSSTP::m_indexCLM, Phase::m_kk, MolalityVPSSTP::m_pHScalingType, Phase::m_speciesCharge, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dT().

Referenced by HMWSoln::s_update_dlnMolalityActCoeff_dT().

void s_updateScaling_pHScaling_dT2 ( ) const
private

Apply the current phScale to a set of 2nd derivatives of the activity Coefficients wrt temperature.

See the Eq3/6 Manual for a thorough discussion of the need

Definition at line 6476 of file HMWSoln.cpp.

References AssertTrace, HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, MolalityVPSSTP::m_indexCLM, Phase::m_kk, MolalityVPSSTP::m_pHScalingType, Phase::m_speciesCharge, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_d2lnMolalityActCoeff_dT2().

Referenced by HMWSoln::s_update_d2lnMolalityActCoeff_dT2().

void s_updateScaling_pHScaling_dP ( ) const
private

Apply the current phScale to a set of derivatives of the activity Coefficients wrt pressure.

See the Eq3/6 Manual for a thorough discussion of the need

Definition at line 6496 of file HMWSoln.cpp.

References AssertTrace, HMWSoln::m_dlnActCoeffMolaldP_Scaled, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, MolalityVPSSTP::m_indexCLM, Phase::m_kk, MolalityVPSSTP::m_pHScalingType, Phase::m_speciesCharge, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dP().

Referenced by HMWSoln::s_update_dlnMolalityActCoeff_dP().

doublereal s_NBS_CLM_lnMolalityActCoeff ( ) const
private

Calculate the Chlorine activity coefficient on the NBS scale.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 6515 of file HMWSoln.cpp.

References HMWSoln::m_A_Debye, and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::applyphScale(), and HMWSoln::s_updateScaling_pHScaling().

doublereal s_NBS_CLM_dlnMolalityActCoeff_dT ( ) const
private

Calculate the temperature derivative of the Chlorine activity coefficient on the NBS scale.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 6527 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedT_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::s_updateScaling_pHScaling_dT().

doublereal s_NBS_CLM_d2lnMolalityActCoeff_dT2 ( ) const
private

Calculate the second temperature derivative of the Chlorine activity coefficient on the NBS scale.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 6539 of file HMWSoln.cpp.

References HMWSoln::d2A_DebyedT2_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::s_updateScaling_pHScaling_dT2().

doublereal s_NBS_CLM_dlnMolalityActCoeff_dP ( ) const
private

Calculate the pressure derivative of the Chlorine activity coefficient.

We assume here that the m_IionicMolality variable is up to date.

Definition at line 6551 of file HMWSoln.cpp.

References HMWSoln::dA_DebyedP_TP(), and HMWSoln::m_IionicMolality.

Referenced by HMWSoln::s_updateScaling_pHScaling_dP().

doublereal err ( std::string  msg) const
private

Local error routine.

Bail out of functions with an error exit if they are not implemented.

Parameters
msgprint out a message and error exit

Definition at line 1692 of file HMWSoln.cpp.

Referenced by HMWSoln::critDensity(), HMWSoln::critPressure(), HMWSoln::critTemperature(), HMWSoln::satTemperature(), HMWSoln::setState_Psat(), HMWSoln::setState_Tsat(), HMWSoln::setToEquilState(), and HMWSoln::vaporFraction().

void initLengths ( )
private

Initialize all of the species - dependent lengths in the object.

Definition at line 1708 of file HMWSoln.cpp.

References HMWSoln::counterIJ_setup(), HMWSoln::CROP_speciesCropped_, HMWSoln::IMS_lnActCoeffMolal_, HMWSoln::m_Aionic, HMWSoln::m_Alpha1MX_ij, HMWSoln::m_Alpha2MX_ij, HMWSoln::m_Beta0MX_ij, HMWSoln::m_Beta0MX_ij_coeff, HMWSoln::m_Beta0MX_ij_L, HMWSoln::m_Beta0MX_ij_LL, HMWSoln::m_Beta0MX_ij_P, HMWSoln::m_Beta1MX_ij, HMWSoln::m_Beta1MX_ij_coeff, HMWSoln::m_Beta1MX_ij_L, HMWSoln::m_Beta1MX_ij_LL, HMWSoln::m_Beta1MX_ij_P, HMWSoln::m_Beta2MX_ij, HMWSoln::m_Beta2MX_ij_coeff, HMWSoln::m_Beta2MX_ij_L, HMWSoln::m_Beta2MX_ij_LL, HMWSoln::m_Beta2MX_ij_P, HMWSoln::m_BMX_IJ, HMWSoln::m_BMX_IJ_L, HMWSoln::m_BMX_IJ_LL, HMWSoln::m_BMX_IJ_P, HMWSoln::m_BphiMX_IJ, HMWSoln::m_BphiMX_IJ_L, HMWSoln::m_BphiMX_IJ_LL, HMWSoln::m_BphiMX_IJ_P, HMWSoln::m_BprimeMX_IJ, HMWSoln::m_BprimeMX_IJ_L, HMWSoln::m_BprimeMX_IJ_LL, HMWSoln::m_BprimeMX_IJ_P, HMWSoln::m_CMX_IJ, HMWSoln::m_CMX_IJ_L, HMWSoln::m_CMX_IJ_LL, HMWSoln::m_CMX_IJ_P, HMWSoln::m_CounterIJ, HMWSoln::m_CphiMX_ij, HMWSoln::m_CphiMX_ij_coeff, HMWSoln::m_CphiMX_ij_L, HMWSoln::m_CphiMX_ij_LL, HMWSoln::m_CphiMX_ij_P, HMWSoln::m_d2lnActCoeffMolaldT2_Scaled, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, HMWSoln::m_dlnActCoeffMolaldP_Scaled, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, HMWSoln::m_dlnActCoeffMolaldT_Scaled, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, HMWSoln::m_electrolyteSpeciesType, HMWSoln::m_expg0_RT, HMWSoln::m_formPitzerTemp, HMWSoln::m_g2func_IJ, HMWSoln::m_gamma_tmp, HMWSoln::m_gfunc_IJ, HMWSoln::m_h2func_IJ, HMWSoln::m_hfunc_IJ, Phase::m_kk, HMWSoln::m_Lambda_nj, HMWSoln::m_Lambda_nj_coeff, HMWSoln::m_Lambda_nj_L, HMWSoln::m_Lambda_nj_LL, HMWSoln::m_Lambda_nj_P, HMWSoln::m_lnActCoeffMolal_Scaled, HMWSoln::m_lnActCoeffMolal_Unscaled, HMWSoln::m_molalitiesCropped, HMWSoln::m_Mu_nnn, HMWSoln::m_Mu_nnn_coeff, HMWSoln::m_Mu_nnn_L, HMWSoln::m_Mu_nnn_LL, HMWSoln::m_Mu_nnn_P, HMWSoln::m_pe, HMWSoln::m_Phi_IJ, HMWSoln::m_Phi_IJ_L, HMWSoln::m_Phi_IJ_LL, HMWSoln::m_Phi_IJ_P, HMWSoln::m_PhiPhi_IJ, HMWSoln::m_PhiPhi_IJ_L, HMWSoln::m_PhiPhi_IJ_LL, HMWSoln::m_PhiPhi_IJ_P, HMWSoln::m_Phiprime_IJ, HMWSoln::m_pp, HMWSoln::m_Psi_ijk, HMWSoln::m_Psi_ijk_coeff, HMWSoln::m_Psi_ijk_L, HMWSoln::m_Psi_ijk_LL, HMWSoln::m_Psi_ijk_P, HMWSoln::m_speciesCharge_Stoich, Phase::m_speciesSize, HMWSoln::m_Theta_ij, HMWSoln::m_Theta_ij_coeff, HMWSoln::m_Theta_ij_L, HMWSoln::m_Theta_ij_LL, HMWSoln::m_Theta_ij_P, HMWSoln::m_tmpV, Phase::nSpecies(), and Array2D::resize().

void applyphScale ( doublereal *  acMolality) const
privatevirtual

Apply the current phScale to a set of activity Coefficients or activities.

See the Eq3/6 Manual for a thorough discussion.

Parameters
acMolalityinput/Output vector containing the molality based activity coefficients. length: m_kk.

Reimplemented from MolalityVPSSTP.

Definition at line 6413 of file HMWSoln.cpp.

References AssertTrace, MolalityVPSSTP::m_indexCLM, Phase::m_kk, HMWSoln::m_lnActCoeffMolal_Unscaled, MolalityVPSSTP::m_pHScalingType, Phase::m_speciesCharge, Cantera::PHSCALE_NBS, Cantera::PHSCALE_PITZER, and HMWSoln::s_NBS_CLM_lnMolalityActCoeff().

void s_update_lnMolalityActCoeff ( ) const
private
void s_update_dlnMolalityActCoeff_dT ( ) const
private

This function calculates the temperature derivative of the natural logarithm of the molality activity coefficients.

s_update_dlnMolalityActCoeff_dT() (private, const )

This is the private function. It does all of the direct work.

Using internally stored values, this function calculates the temperature derivative of the logarithm of the activity coefficient for all species in the mechanism.

We assume that the activity coefficients are current.

solvent activity coefficient is on the molality scale. It's derivative is too.

Definition at line 3476 of file HMWSoln.cpp.

References HMWSoln::CROP_speciesCropped_, HMWSoln::m_dlnActCoeffMolaldT_Unscaled, Phase::m_kk, HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updateScaling_pHScaling_dT().

Referenced by HMWSoln::getPartialMolarCp(), HMWSoln::getPartialMolarEnthalpies(), and HMWSoln::getPartialMolarEntropies().

void s_update_d2lnMolalityActCoeff_dT2 ( ) const
private

This function calculates the temperature second derivative of the natural logarithm of the molality activity coefficients.

Definition at line 4340 of file HMWSoln.cpp.

References HMWSoln::CROP_speciesCropped_, HMWSoln::m_d2lnActCoeffMolaldT2_Unscaled, Phase::m_kk, HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), and HMWSoln::s_updateScaling_pHScaling_dT2().

Referenced by HMWSoln::getPartialMolarCp().

void s_update_dlnMolalityActCoeff_dP ( ) const
private

This function calculates the pressure derivative of the natural logarithm of the molality activity coefficients.

Definition at line 5233 of file HMWSoln.cpp.

References HMWSoln::CROP_speciesCropped_, HMWSoln::m_dlnActCoeffMolaldP_Unscaled, Phase::m_kk, HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), and HMWSoln::s_updateScaling_pHScaling_dP().

Referenced by HMWSoln::getPartialMolarVolumes().

void s_updateIMS_lnMolalityActCoeff ( ) const
private
void s_updatePitzer_lnMolalityActCoeff ( ) const
private
void s_updatePitzer_dlnMolalityActCoeff_dT ( ) const
private
void s_updatePitzer_d2lnMolalityActCoeff_dT2 ( ) const
private
void s_updatePitzer_dlnMolalityActCoeff_dP ( ) const
private
void s_updatePitzer_CoeffWRTemp ( int  doDerivs = 2) const
private
void calc_lambdas ( double  is) const
private

Calculate the lambda interactions.

Calculate E-lambda terms for charge combinations of like sign, using method of Pitzer (1975).

Parameters
isIonic strength

Definition at line 6107 of file HMWSoln.cpp.

References HMWSoln::elambda, HMWSoln::elambda1, and HMWSoln::m_debugCalc.

Referenced by HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

void calc_thetas ( int  z1,
int  z2,
double *  etheta,
double *  etheta_prime 
) const
private

Calculate etheta and etheta_prime.

This interaction will be nonzero for species with the same charge. this routine is not to be called for neutral species; it core dumps or error exits.

MEC implementation routine.

Parameters
z1charge of the first molecule
z2charge of the second molecule
ethetareturn pointer containing etheta
etheta_primeReturn pointer containing etheta_prime.

This routine uses the internal variables, elambda[] and elambda1[].

There is no prohibition against calling

Definition at line 6177 of file HMWSoln.cpp.

References HMWSoln::elambda, and HMWSoln::elambda1.

Referenced by HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

void counterIJ_setup ( void  ) const
private

Set up a counter variable for keeping track of symmetric binary interactions amongst the solute species.

The purpose of this is to squeeze the ij parameters into a compressed single counter.

n = m_kk*i + j m_Counter[n] = counter

Definition at line 2110 of file HMWSoln.cpp.

References HMWSoln::m_CounterIJ, and Phase::m_kk.

Referenced by HMWSoln::initLengths(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

void calcMolalitiesCropped ( ) const
private
void readXMLBinarySalt ( XML_Node BinSalt)
private

Process an XML node called "binarySaltParameters".

This node contains all of the parameters necessary to describe the Pitzer model for that particular binary salt. This function reads the XML file and writes the coefficients it finds to an internal data structures.

Parameters
BinSaltreference to the XML_Node named binarySaltParameters containing the anion - cation interaction

Definition at line 70 of file HMWSoln_input.cpp.

References Cantera::atofCheck(), XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and XML_Node::value().

void readXMLThetaAnion ( XML_Node BinSalt)
private

Process an XML node called "thetaAnion".

This node contains all of the parameters necessary to describe the binary interactions between two anions.

Parameters
BinSaltreference to the XML_Node named thetaAnion containing the anion - anion interaction

This node contains all of the parameters necessary to describe the binary interactions between two anions.

Definition at line 276 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLThetaCation ( XML_Node BinSalt)
private

Process an XML node called "thetaCation".

This node contains all of the parameters necessary to describe the binary interactions between two cations.

Parameters
BinSaltreference to the XML_Node named thetaCation containing the cation - cation interaction

This node contains all of the parameters necessary to describe the binary interactions between two cation.

Definition at line 363 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLPsiCommonAnion ( XML_Node BinSalt)
private

Process an XML node called "psiCommonAnion".

Process an XML node called "PsiCommonAnion".

This node contains all of the parameters necessary to describe the ternary interactions between one anion and two cations.

Parameters
BinSaltreference to the XML_Node named psiCommonAnion containing the anion - cation1 - cation2 interaction

This node contains all of the parameters necessary to describe the binary interactions between two cations and one common anion.

Definition at line 596 of file HMWSoln_input.cpp.

References Cantera::atofCheck(), XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and XML_Node::value().

void readXMLPsiCommonCation ( XML_Node BinSalt)
private

Process an XML node called "psiCommonCation".

This node contains all of the parameters necessary to describe the ternary interactions between one cation and two anions.

Parameters
BinSaltreference to the XML_Node named psiCommonCation containing the cation - anion1 - anion2 interaction

Definition at line 450 of file HMWSoln_input.cpp.

References Cantera::atofCheck(), XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and XML_Node::value().

void readXMLLambdaNeutral ( XML_Node BinSalt)
private

Process an XML node called "lambdaNeutral".

Process an XML node called "LambdaNeutral".

This node contains all of the parameters necessary to describe the binary interactions between one neutral species and any other species (neutral or otherwise) in the mechanism.

Parameters
BinSaltreference to the XML_Node named lambdaNeutral containing multiple Neutral - species interactions

This node contains all of the parameters necessary to describe the binary interactions between one neutral species and any other species (neutral or otherwise) in the mechanism.

Definition at line 746 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLMunnnNeutral ( XML_Node BinSalt)
private

Process an XML node called "MunnnNeutral".

This node contains all of the parameters necessary to describe the self-ternary interactions for one neutral species.

Parameters
BinSaltreference to the XML_Node named Munnn containing the self-ternary interaction

This node contains all of the parameters necessary to describe the self-ternary interactions for one neutral species.

Definition at line 832 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLZetaCation ( const XML_Node BinSalt)
private

Process an XML node called "zetaCation".

This node contains all of the parameters necessary to describe the ternary interactions between one neutral, one cation, and one anion.

Parameters
BinSaltreference to the XML_Node named psiCommonCation containing the neutral - cation - anion interaction

Definition at line 907 of file HMWSoln_input.cpp.

References XML_Node::attrib(), XML_Node::child(), DATA_PTR, ctml::getFloatArray(), Cantera::lowercase(), XML_Node::name(), XML_Node::nChildren(), and Cantera::npos.

void readXMLCroppingCoefficients ( const XML_Node acNode)
private

Process an XML node called "croppingCoefficients" for the cropping coefficients values.

Parameters
acNodeActivity Coefficient XML Node

Definition at line 1012 of file HMWSoln_input.cpp.

References XML_Node::child(), ctml::getOptionalFloat(), and XML_Node::hasChild().

void calcIMSCutoffParams_ ( )
private

Precalculate the IMS Cutoff parameters for typeCutoff = 2.

Definition at line 1740 of file HMWSoln_input.cpp.

void calcMCCutoffParams_ ( )
private

Calculate molality cut-off parameters.

Definition at line 1791 of file HMWSoln_input.cpp.

int interp_est ( std::string  estString)
staticprivate

Utility function to assign an integer value from a string for the ElectrolyteSpeciesType field.

utility function to assign an integer value from a string for the ElectrolyteSpeciesType field.

Parameters
estStringstring name of the electrolyte species type

Definition at line 38 of file HMWSoln_input.cpp.

References Cantera::cEST_solvent, and Cantera::lowercase().

int debugPrinting ( )

Return int specifying the amount of debug printing.

This will return 0 if DEBUG_MODE is not turned on

Definition at line 6559 of file HMWSoln.cpp.

References HMWSoln::m_debugCalc.

void setpHScale ( const int  pHscaleType)
inherited

Set the pH scale, which determines the scale for single-ion activity coefficients.

Single ion activity coefficients are not unique in terms of the representing actual measurable quantities.

Parameters
pHscaleTypeInteger representing the pHscale

Definition at line 143 of file MolalityVPSSTP.cpp.

References Cantera::int2str(), MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, and Cantera::PHSCALE_PITZER.

int pHScale ( ) const
inherited

Reports the pH scale, which determines the scale for single-ion activity coefficients.

Single ion activity coefficients are not unique in terms of the representing actual measurable quantities.

Returns
Return the pHscale type

Definition at line 158 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::m_pHScalingType.

void setSolvent ( size_t  k)
inherited

This routine sets the index number of the solvent for the phase.

Note, having a solvent is a precursor to many things having to do with molality.

Parameters
kthe solvent index number

Definition at line 170 of file MolalityVPSSTP.cpp.

References AssertThrowMsg, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_weightSolvent, and Phase::molecularWeight().

Referenced by MolalityVPSSTP::initThermo(), and MolalityVPSSTP::initThermoXML().

void setMoleFSolventMin ( doublereal  xmolSolventMIN)
inherited

Sets the minimum mole fraction in the molality formulation.

Note the molality formulation is singular in the limit that the solvent mole fraction goes to zero. Numerically, how this limit is treated and resolved is an ongoing issue within Cantera.

Parameters
xmolSolventMINInput double containing the minimum mole fraction

Definition at line 196 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::m_xmolSolventMIN.

Referenced by IdealMolalSoln::initThermoXML().

size_t solventIndex ( ) const
inherited

Returns the solvent index.

Definition at line 186 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::m_indexSolvent.

doublereal moleFSolventMin ( ) const
inherited

Returns the minimum mole fraction in the molality formulation.

Definition at line 209 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::m_xmolSolventMIN.

void calcMolalities ( ) const
inherited

Calculates the molality of all species and stores the result internally.

We calculate the vector of molalities of the species in the phase and store the result internally:

\[ m_i = \frac{X_i}{1000 * M_o * X_{o,p}} \]

where

  • \( M_o \) is the molecular weight of the solvent
  • \( X_o \) is the mole fraction of the solvent
  • \( X_i \) is the mole fraction of the solute.
  • \( X_{o,p} = max (X_{o}^{min}, X_o) \)
  • \( X_{o}^{min} \) = minimum mole fraction of solvent allowed in the denominator.

Definition at line 229 of file MolalityVPSSTP.cpp.

References DATA_PTR, Phase::getMoleFractions(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and MolalityVPSSTP::m_xmolSolventMIN.

Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getPartialMolarEntropies(), HMWSoln::printCoeffs(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), MolalityVPSSTP::setMolalities(), and MolalityVPSSTP::setMolalitiesByName().

void getMolalities ( doublereal *const  molal) const
inherited

This function will return the molalities of the species.

We calculate the vector of molalities of the species in the phase

\[ m_i = \frac{X_i}{1000 * M_o * X_{o,p}} \]

where

  • \( M_o \) is the molecular weight of the solvent
  • \( X_o \) is the mole fraction of the solvent
  • \( X_i \) is the mole fraction of the solute.
  • \( X_{o,p} = \max (X_{o}^{min}, X_o) \)
  • \( X_{o}^{min} \) = minimum mole fraction of solvent allowed in the denominator.
Parameters
molalOutput vector of molalities. Length: m_kk.

Definition at line 257 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::calcMolalities(), Phase::m_kk, and MolalityVPSSTP::m_molalities.

Referenced by MolalityVPSSTP::report(), vcs_MultiPhaseEquil::reportCSV(), and MolalityVPSSTP::reportCSV().

void setMolalities ( const doublereal *const  molal)
inherited

Set the molalities of the solutes in a phase.

Note, the entry for the solvent is not used. We are supplied with the molalities of all of the solute species. We then calculate the mole fractions of all species and update the ThermoPhase object.

\[ m_i = \frac{X_i}{M_o/1000 * X_{o,p}} \]

where

  • \(M_o\) is the molecular weight of the solvent
  • \(X_o\) is the mole fraction of the solvent
  • \(X_i\) is the mole fraction of the solute.
  • \(X_{o,p} = \max(X_o^{min}, X_o)\)
  • \(X_o^{min}\) = minimum mole fraction of solvent allowed in the denominator.

The formulas for calculating mole fractions are

\[ L^{sum} = \frac{1}{\tilde{M}_o X_o} = \frac{1}{\tilde{M}_o} + \sum_{i\ne o} m_i \]

Then,

\[ X_o = \frac{1}{\tilde{M}_o L^{sum}} \]

\[ X_i = \frac{m_i}{L^{sum}} \]

It is currently an error if the solvent mole fraction is attempted to be set to a value lower than \(X_o^{min}\).

Parameters
molalInput vector of molalities. Length: m_kk.

Definition at line 280 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::calcMolalities(), DATA_PTR, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and Phase::setMoleFractions().

Referenced by MolalityVPSSTP::setState_TPM().

void setMolalitiesByName ( compositionMap xMap)
inherited

Set the molalities of a phase.

Set the molalities of the solutes in a phase. Note, the entry for the solvent is not used.

Parameters
xMapComposition Map containing the molalities.

Definition at line 318 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::calcMolalities(), Phase::charge(), DATA_PTR, Phase::getMoleFractions(), MolalityVPSSTP::m_indexSolvent, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_xmolSolventMIN, ckr::max(), Cantera::npos, Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().

Referenced by MolalityVPSSTP::setMolalitiesByName(), MolalityVPSSTP::setState_TPM(), and MolalityVPSSTP::setStateFromXML().

void setMolalitiesByName ( const std::string &  name)
inherited

Set the molalities of a phase.

Set the molalities of the solutes in a phase. Note, the entry for the solvent is not used.

Parameters
nameString containing the information for a composition map.

Definition at line 405 of file MolalityVPSSTP.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), MolalityVPSSTP::setMolalitiesByName(), and Phase::speciesName().

int activityConvention ( ) const
virtualinherited

This method returns the activity convention.

Currently, there are two activity conventions Molar-based activities Unit activity of species at either a hypothetical pure solution of the species or at a hypothetical pure ideal solution at infinite dilution cAC_CONVENTION_MOLAR 0

  • default

Molality based activities (unit activity of solutes at a hypothetical 1 molal solution referenced to infinite dilution at all pressures and temperatures). cAC_CONVENTION_MOLALITY 1

We set the convention to molality here.

Reimplemented from ThermoPhase.

Definition at line 444 of file MolalityVPSSTP.cpp.

References Cantera::cAC_CONVENTION_MOLALITY.

void getActivityCoefficients ( doublereal *  ac) const
virtualinherited

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

These are mole-fraction based activity coefficients. In this object, their calculation is based on translating the values of the molality-based activity coefficients. See Denbigh p. 278 for a thorough discussion.

The molar-based activity coefficients \( \gamma_k \) may be calculated from the molality-based activity coefficients, \( \gamma_k^\triangle \) by the following formula.

\[ \gamma_k = \frac{\gamma_k^\triangle}{X_o} \]

For purposes of establishing a convention, the molar activity coefficient of the solvent is set equal to the molality-based activity coefficient of the solvent:

\[ \gamma_o = \gamma_o^\triangle \]

Derived classes don't need to overload this function. This function is handled at this level.

Parameters
acOutput vector containing the mole-fraction based activity coefficients. length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 484 of file MolalityVPSSTP.cpp.

References AssertThrow, MolalityVPSSTP::getMolalityActivityCoefficients(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, and Phase::moleFraction().

void getMolalityActivityCoefficients ( doublereal *  acMolality) const
virtualinherited

Get the array of non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.

See Denbigh p. 278 for a thorough discussion. This class must be overwritten in classes which derive from MolalityVPSSTP. This function takes over from the molar-based activity coefficient calculation, getActivityCoefficients(), in derived classes.

These molality based activity coefficients are scaled according to the current pH scale. See the Eq3/6 manual for details.

Activity coefficients for species k may be altered between scales s1 to s2 using the following formula

\[ ln(\gamma_k^{s2}) = ln(\gamma_k^{s1}) + \frac{z_k}{z_j} \left( ln(\gamma_j^{s2}) - ln(\gamma_j^{s1}) \right) \]

where j is any one species. For the NBS scale, j is equal to the Cl- species and

\[ ln(\gamma_{Cl-}^{s2}) = \frac{-A_{\phi} \sqrt{I}}{1.0 + 1.5 \sqrt{I}} \]

Parameters
acMolalityOutput vector containing the molality based activity coefficients. length: m_kk.

Reimplemented in DebyeHuckel, and IdealMolalSoln.

Definition at line 511 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::applyphScale(), and MolalityVPSSTP::getUnscaledMolalityActivityCoefficients().

Referenced by MolalityVPSSTP::getActivityCoefficients(), MolalityVPSSTP::report(), and MolalityVPSSTP::reportCSV().

doublereal osmoticCoefficient ( ) const
virtualinherited

Calculate the osmotic coefficient.

\[ \phi = \frac{- ln(a_o)}{\tilde{M}_o \sum_{i \ne o} m_i} \]

Note there are a few of definitions of the osmotic coefficient floating around. We use the one defined in (Activity Coefficients in Electrolyte Solutions, K. S. Pitzer CRC Press, Boca Raton, 1991, p. 85, Eqn. 28). This definition is most clearly related to theoretical calculation.

units = dimensionless

Definition at line 529 of file MolalityVPSSTP.cpp.

References DATA_PTR, MolalityVPSSTP::getActivities(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and ckr::max().

void getElectrochemPotentials ( doublereal *  mu) const
inherited

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term \( Fz_k \phi_k \) to the to each chemical potential.

Units: J/kmol

Parameters
muoutput vector containing the species electrochemical potentials. Length: m_kk.

Definition at line 552 of file MolalityVPSSTP.cpp.

References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

void setStateFromXML ( const XML_Node state)
virtualinherited

Set equation of state parameter values from XML entries.

This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model.

The MolalityVPSSTP object defines a new method for setting the concentrations of a phase. The new method is defined by a block called "soluteMolalities". If this block is found, the concentrations within that phase are set to the "name":"molalities pairs found within that XML block. The solvent concentration is then set to everything else.

The function first calls the overloaded function , VPStandardStateTP::setStateFromXML(), to pick up the parent class behavior.

usage: Overloaded functions should call this function before carrying out their own behavior.

Parameters
stateAn XML_Node object corresponding to the "state" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 628 of file MolalityVPSSTP.cpp.

References ctml::getChildValue(), ctml::getFloat(), XML_Node::hasChild(), MolalityVPSSTP::setMolalitiesByName(), VPStandardStateTP::setPressure(), and ThermoPhase::setStateFromXML().

Referenced by IdealMolalSoln::initThermoXML(), and DebyeHuckel::initThermoXML().

void setState_TPM ( doublereal  t,
doublereal  p,
const doublereal *const  molalities 
)
inherited

Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes.

Parameters
tTemperature (K)
pPressure (Pa)
molalitiesInput vector of molalities of the solutes. Length: m_kk.

Definition at line 645 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::setMolalities(), and VPStandardStateTP::setState_TP().

void setState_TPM ( doublereal  t,
doublereal  p,
compositionMap m 
)
inherited

Set the temperature (K), pressure (Pa), and molalities.

Parameters
tTemperature (K)
pPressure (Pa)
mcompositionMap containing the molalities

Definition at line 655 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::setMolalitiesByName(), and VPStandardStateTP::setState_TP().

void setState_TPM ( doublereal  t,
doublereal  p,
const std::string &  m 
)
inherited

Set the temperature (K), pressure (Pa), and molalities.

Parameters
tTemperature (K)
pPressure (Pa)
mString which gets translated into a composition map for the molalities of the solutes.

Definition at line 664 of file MolalityVPSSTP.cpp.

References MolalityVPSSTP::setMolalitiesByName(), and VPStandardStateTP::setState_TP().

virtual void getdlnActCoeffdlnN ( const size_t  ld,
doublereal *const  dlnActCoeffdlnN 
)
inlinevirtualinherited

Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.

Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.

units = 1 / kmol

dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.

\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]

Parameters
ldNumber of rows in the matrix
dlnActCoeffdlnNOutput vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk

Reimplemented from ThermoPhase.

Definition at line 813 of file MolalityVPSSTP.h.

std::string report ( bool  show_thermo = true) const
virtualinherited
void reportCSV ( std::ofstream &  csvFile) const
virtualinherited
int standardStateConvention ( ) const
virtualinherited

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

Currently, there are two standard state conventions:

  • Temperature-based activities cSS_CONVENTION_TEMPERATURE 0
    • default
  • Variable Pressure and Temperature -based activities cSS_CONVENTION_VPSS 1

Reimplemented from ThermoPhase.

Definition at line 163 of file VPStandardStateTP.cpp.

References Cantera::cSS_CONVENTION_VPSS.

virtual void getdlnActCoeffdlnN_diag ( doublereal *  dlnActCoeffdlnN_diag) const
inlinevirtualinherited

Get the array of log concentration-like derivatives of the log activity coefficients.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that concentration-like variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnN_diagOutput vector of derivatives of the log Activity Coefficients. length = m_kk

Reimplemented from ThermoPhase.

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 140 of file VPStandardStateTP.h.

References VPStandardStateTP::err().

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag().

void getChemPotentials_RT ( doublereal *  mu) const
virtualinherited

Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.

\( \mu_k / \hat R T \). Units: unitless

We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.

Parameters
muOutput vector of non-dimensional species chemical potentials Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 194 of file VPStandardStateTP.cpp.

References ThermoPhase::_RT(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

void getStandardChemPotentials ( doublereal *  mu) const
virtualinherited

Get the array of chemical potentials at unit activity.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure.

Parameters
muOutput vector of standard state chemical potentials. length = m_kk. units are J / kmol.

Reimplemented from ThermoPhase.

Definition at line 206 of file VPStandardStateTP.cpp.

References ThermoPhase::_RT(), VPStandardStateTP::getGibbs_RT(), and Phase::m_kk.

Referenced by MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealMolalSoln::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), MolalityVPSSTP::report(), and MolalityVPSSTP::reportCSV().

void getEnthalpy_RT ( doublereal *  hrt) const
inlinevirtualinherited
void getEntropy_R ( doublereal *  sr) const
virtualinherited
void getGibbs_RT ( doublereal *  grt) const
inlinevirtualinherited

Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 246 of file VPStandardStateTP.cpp.

References VPSSMgr::getGibbs_RT(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

Referenced by VPStandardStateTP::getStandardChemPotentials().

void getPureGibbs ( doublereal *  gpure) const
inlinevirtualinherited

Get the standard state Gibbs functions for each species at the current T and P.

(Note resolved at this level)

Parameters
gpureOutput vector of standard state Gibbs free energies. length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 253 of file VPStandardStateTP.cpp.

References VPSSMgr::getStandardChemPotentials(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void getIntEnergy_RT ( doublereal *  urt) const
virtualinherited

Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.

\[ u^{ss}_k(T,P) = h^{ss}_k(T) - P * V^{ss}_k \]

Parameters
urtOutput vector of nondimensional standard state internal energies. length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 259 of file VPStandardStateTP.cpp.

References VPSSMgr::getIntEnergy_RT(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

Referenced by IdealSolnGasVPSS::getPartialMolarIntEnergies().

void getCp_R ( doublereal *  cpr) const
virtualinherited

Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P.

This is redefined here to call the internal function, _updateStandardStateThermo(), which calculates all standard state properties at the same time.

Parameters
cprOutput vector containing the the nondimensional Heat Capacities at constant pressure for the standard state of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 265 of file VPStandardStateTP.cpp.

References VPSSMgr::getCp_R(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

Referenced by IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), and HMWSoln::getPartialMolarCp().

void getStandardVolumes ( doublereal *  vol) const
virtualinherited

Get the molar volumes of each species in their standard states at the current T and P of the solution.

units = m^3 / kmol

This is redefined here to call the internal function, _updateStandardStateThermo(), which calculates all standard state properties at the same time.

Parameters
volOutput vector of species volumes. length = m_kk. units = m^3 / kmol

Reimplemented from ThermoPhase.

Definition at line 271 of file VPStandardStateTP.cpp.

References VPSSMgr::getStandardVolumes(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

Referenced by IdealSolnGasVPSS::getPartialMolarVolumes(), MolarityIonicVPSSTP::getPartialMolarVolumes(), GibbsExcessVPSSTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealMolalSoln::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), and HMWSoln::standardConcentration().

void _updateStandardStateThermo ( ) const
protectedvirtualinherited

Updates the standard state thermodynamic functions at the current T and P of the solution.

If m_useTmpStandardStateStorage is true, this function must be called for every call to functions in this class.

This function is responsible for updating the following internal members, when m_useTmpStandardStateStorage is true.

  • m_hss_RT;
  • m_cpss_R;
  • m_gss_RT;
  • m_sss_R;
  • m_Vss

This function doesn't check to see if the temperature or pressure has changed. It automatically assumes that it has changed. If m_useTmpStandardStateStorage is not true, this function may be required to be called by child classes to update internal member data..

Definition at line 517 of file VPStandardStateTP.cpp.

References AssertThrowMsg, VPStandardStateTP::m_Pcurrent, VPStandardStateTP::m_Plast_ss, VPStandardStateTP::m_Tlast_ss, VPStandardStateTP::m_VPSS_ptr, VPSSMgr::setState_TP(), and Phase::temperature().

Referenced by IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), DebyeHuckel::getMolalityActivityCoefficients(), DebyeHuckel::setState_TP(), and VPStandardStateTP::updateStandardStateThermo().

void updateStandardStateThermo ( ) const
virtualinherited

Updates the standard state thermodynamic functions at the current T and P of the solution.

If m_useTmpStandardStateStorage is true, this function must be called for every call to functions in this class. It checks to see whether the temperature or pressure has changed and thus the ss thermodynamics functions for all of the species must be recalculated.

This function is responsible for updating the following internal members, when m_useTmpStandardStateStorage is true.

  • m_hss_RT;
  • m_cpss_R;
  • m_gss_RT;
  • m_sss_R;
  • m_Vss

If m_useTmpStandardStateStorage is not true, this function may be required to be called by child classes to update internal member data.

Definition at line 527 of file VPStandardStateTP.cpp.

References VPStandardStateTP::_updateStandardStateThermo(), VPStandardStateTP::m_Pcurrent, VPStandardStateTP::m_Plast_ss, VPStandardStateTP::m_Tlast_ss, and Phase::temperature().

Referenced by IdealSolnGasVPSS::cp_mole(), IdealSolnGasVPSS::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), HMWSoln::getActivities(), VPStandardStateTP::getCp_R(), VPStandardStateTP::getCp_R_ref(), VPStandardStateTP::getEnthalpy_RT(), VPStandardStateTP::getEnthalpy_RT_ref(), VPStandardStateTP::getEntropy_R(), VPStandardStateTP::getEntropy_R_ref(), VPStandardStateTP::getGibbs_ref(), VPStandardStateTP::getGibbs_RT(), VPStandardStateTP::getGibbs_RT_ref(), VPStandardStateTP::getIntEnergy_RT(), VPStandardStateTP::getPureGibbs(), VPStandardStateTP::getStandardVolumes(), VPStandardStateTP::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), IdealSolnGasVPSS::setPressure(), VPStandardStateTP::setPressure(), VPStandardStateTP::setState_TP(), IdealMolalSoln::setState_TP(), GibbsExcessVPSSTP::setState_TP(), HMWSoln::setState_TP(), VPStandardStateTP::setTemperature(), IdealSolnGasVPSS::setToEquilState(), MolalityVPSSTP::setToEquilState(), and HMWSoln::setToEquilState().

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtualinherited

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

There are also temporary variables for holding the species reference-state values of Cp, H, S, and V at the last temperature and reference pressure called. These functions are not recalculated if a new call is made using the previous temperature. All calculations are done within the routine _updateRefStateThermo().

Parameters
hrtOutput vector contains the nondimensional enthalpies of the reference state of the species length = m_kk, units = dimensionless.

Reimplemented from ThermoPhase.

Definition at line 286 of file VPStandardStateTP.cpp.

References VPSSMgr::getEnthalpy_RT_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void getGibbs_RT_ref ( doublereal *  grt) const
virtualinherited

Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector contains the nondimensional Gibbs free energies of the reference state of the species length = m_kk, units = dimensionless.

Reimplemented from ThermoPhase.

Definition at line 297 of file VPStandardStateTP.cpp.

References VPSSMgr::getGibbs_RT_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void getGibbs_ref ( doublereal *  g) const
virtualinherited

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. units = J/kmol

Parameters
gOutput vector contain the Gibbs free energies of the reference state of the species length = m_kk, units = J/kmol.

Reimplemented from ThermoPhase.

Definition at line 312 of file VPStandardStateTP.cpp.

References VPSSMgr::getGibbs_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void getEntropy_R_ref ( doublereal *  er) const
virtualinherited

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
erOutput vector contain the nondimensional entropies of the species in their reference states length: m_kk, units: dimensionless.

Reimplemented from ThermoPhase.

Definition at line 329 of file VPStandardStateTP.cpp.

References VPSSMgr::getEntropy_R_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void getCp_R_ref ( doublereal *  cprt) const
virtualinherited

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.

Parameters
cprtOutput vector contains the nondimensional heat capacities of the species in their reference states length: m_kk, units: dimensionless.

Reimplemented from ThermoPhase.

Definition at line 341 of file VPStandardStateTP.cpp.

References VPSSMgr::getCp_R_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void getStandardVolumes_ref ( doublereal *  vol) const
virtualinherited

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 353 of file VPStandardStateTP.cpp.

References VPSSMgr::getStandardVolumes_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().

void setVPSSMgr ( VPSSMgr vp_ptr)
inherited

set the VPSS Mgr

Parameters
vp_ptrPointer to the manager

Definition at line 376 of file VPStandardStateTP.cpp.

References VPStandardStateTP::m_VPSS_ptr.

Referenced by Cantera::importPhase().

VPSSMgr * provideVPSSMgr ( )
inherited

Return a pointer to the VPSSMgr for this phase.

Returns
Returns a pointer to the VPSSMgr for this phase

Definition at line 498 of file VPStandardStateTP.cpp.

References VPStandardStateTP::m_VPSS_ptr.

Referenced by PDSS::initThermo(), and PDSS::PDSS().

virtual doublereal refPressure ( ) const
inlinevirtualinherited
virtual doublereal minTemp ( size_t  k = npos) const
inlinevirtualinherited

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 181 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().

doublereal Hf298SS ( const int  k) const
inlineinherited

Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)

The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kspecies index
Returns
Returns the current value of the Heat of Formation at 298K and 1 bar

Definition at line 221 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void modifyOneHf298SS ( const int  k,
const doublereal  Hf298New 
)
inlinevirtualinherited

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kSpecies k
Hf298NewSpecify the new value of the Heat of Formation at 298K and 1 bar

Definition at line 233 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal maxTemp ( size_t  k = npos) const
inlinevirtualinherited

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 250 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().

bool chargeNeutralityNecessary ( ) const
inlineinherited

Returns the chargeNeutralityNecessity boolean.

Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.

Definition at line 261 of file ThermoPhase.h.

References ThermoPhase::m_chargeNeutralityNecessary.

virtual void updateDensity ( )
inlinevirtualinherited
Deprecated:

Definition at line 366 of file ThermoPhase.h.

References Cantera::deprecatedMethod().

void setElectricPotential ( doublereal  v)
inlineinherited

Set the electric potential of this phase (V).

This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.

Each phase may have its own electric potential.

Parameters
vInput value of the electric potential in Volts

Definition at line 390 of file ThermoPhase.h.

References ThermoPhase::m_phi.

Referenced by InterfaceKinetics::setElectricPotential(), vcs_VolPhase::setElectricPotential(), and vcs_VolPhase::setState_TP().

doublereal electricPotential ( ) const
inlineinherited
void getLnActivityCoefficients ( doublereal *  lnac) const
virtualinherited

Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
lnacOutput vector of ln activity coefficients. Length: m_kk.

Reimplemented in MargulesVPSSTP, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.

Definition at line 166 of file ThermoPhase.cpp.

References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.

Referenced by GibbsExcessVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

virtual void getPartialMolarIntEnergies ( doublereal *  ubar) const
inlinevirtualinherited

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented in IdealGasPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, and PureFluidPhase.

Definition at line 650 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().

virtual void getdPartialMolarVolumes_dT ( doublereal *  d_vbar_dT) const
inlinevirtualinherited

Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.

Units: m^3/kmol.

The derivative is at constant pressure

Parameters
d_vbar_dTOutput vector of derivatives of species partial molar volumes wrt T. Length = m_kk. units are m^3/kmol/K.

Definition at line 683 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdPartialMolarVolumes_dP ( doublereal *  d_vbar_dP) const
inlinevirtualinherited

Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.

Units: m^3/kmol.

The derivative is at constant temperature

Parameters
d_vbar_dPOutput vector of derivatives of species partial molar volumes wrt P. Length = m_kk. units are m^3/kmol/Pa.

Definition at line 695 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdStandardVolumes_dT ( doublereal *  d_vol_dT) const
inlinevirtualinherited

Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.

The derivative is at constant pressure units = m^3 / kmol / K

Parameters
d_vol_dTOutput vector containing derivatives of standard state volumes wrt T Length: m_kk.

Definition at line 800 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdStandardVolumes_dP ( doublereal *  d_vol_dP) const
inlinevirtualinherited

Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.

The derivative is at constant temperature. units = m^3 / kmol / Pa

Parameters
d_vol_dPOutput vector containing the derivative of standard state volumes wrt P. Length: m_kk.

Definition at line 813 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getIntEnergy_RT_ref ( doublereal *  urt) const
inlinevirtualinherited

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, FixedChemPotSSTP, MetalSHEelectrons, MineralEQ3, and StoichSubstanceSSTP.

Definition at line 879 of file ThermoPhase.h.

References ThermoPhase::err().

void setReferenceComposition ( const doublereal *const  x)
virtualinherited

Sets the reference composition.

Parameters
xMole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector.

Definition at line 992 of file ThermoPhase.cpp.

References DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.

Referenced by ThermoPhase::initThermoXML().

void getReferenceComposition ( doublereal *const  x) const
virtualinherited

Gets the reference composition.

The reference mole fraction is a safe mole fraction.

Parameters
xMole fraction vector containing the reference composition.

Definition at line 1013 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::xMol_Ref.

doublereal enthalpy_mass ( ) const
inlineinherited
doublereal intEnergy_mass ( ) const
inlineinherited
doublereal entropy_mass ( ) const
inlineinherited
doublereal gibbs_mass ( ) const
inlineinherited
doublereal cp_mass ( ) const
inlineinherited
doublereal cv_mass ( ) const
inlineinherited
doublereal _RT ( ) const
inlineinherited
void setState_TPX ( doublereal  t,
doublereal  p,
const doublereal *  x 
)
virtualinherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Reimplemented in SingleSpeciesTP, and MixtureFugacityTP.

Definition at line 174 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().

Referenced by MultiTransport::getMassFluxes(), DustyGasTransport::getMolarFluxes(), MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().

void setState_TPX ( doublereal  t,
doublereal  p,
compositionMap x 
)
inherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xComposition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 181 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPX ( doublereal  t,
doublereal  p,
const std::string &  x 
)
inherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xString containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 188 of file ThermoPhase.cpp.

References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().

void setState_TPY ( doublereal  t,
doublereal  p,
const doublereal *  y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 206 of file ThermoPhase.cpp.

References Phase::setMassFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
compositionMap y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yComposition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 214 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
const std::string &  y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yString containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 222 of file ThermoPhase.cpp.

References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().

void setState_PX ( doublereal  p,
doublereal *  x 
)
inherited

Set the pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Definition at line 249 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), and ThermoPhase::setPressure().

Referenced by vcs_VolPhase::_updateMoleFractionDependencies(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().

void setState_PY ( doublereal  p,
doublereal *  y 
)
inherited

Set the internally stored pressure (Pa) and mass fractions.

Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 256 of file ThermoPhase.cpp.

References Phase::setMassFractions(), and ThermoPhase::setPressure().

void setState_HP ( doublereal  h,
doublereal  p,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 263 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by FlowReactor::updateState(), and ConstPressureReactor::updateState().

void setState_UV ( doublereal  u,
doublereal  v,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 270 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by Reactor::updateState().

void setState_SP ( doublereal  s,
doublereal  p,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 546 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setState_SV ( doublereal  s,
doublereal  v,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 553 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setElementPotentials ( const vector_fp lambda)
inherited

Stores the element potentials in the ThermoPhase object.

Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are stored in their dimensionless forms, calculated by dividing by RT.

Parameters
lambdaInput vector containing the element potentials. Length = nElements. Units are Joules/kmol.

Definition at line 1106 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().

Referenced by Cantera::equilibrate(), ChemEquil::equilibrate(), and Cantera::vcs_equilibrate().

bool getElementPotentials ( doublereal *  lambda) const
inherited

Returns the element potentials stored in the ThermoPhase object.

Returns the stored element potentials. The element potentials are retrieved from their stored dimensionless forms by multiplying by RT.

Parameters
lambdaOutput vector containing the element potentials. Length = nElements. Units are Joules/kmol.
Returns
bool indicating whether there are any valid stored element potentials. The calling routine should check this bool. In the case that there aren't any, lambda is not touched.

Definition at line 1129 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().

Referenced by ChemEquil::equilibrate().

void saveSpeciesData ( const size_t  k,
const XML_Node *const  data 
)
inherited

Store a reference pointer to the XML tree containing the species data for this phase.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This is used to access data needed to construct transport manager later.

Parameters
kSpecies index
dataPointer to the XML_Node data containing information about the species in the phase.

Definition at line 1050 of file ThermoPhase.cpp.

References ThermoPhase::m_speciesData.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

const std::vector< const XML_Node * > & speciesData ( ) const
inherited

Return a pointer to the vector of XML nodes containing the species data for this phase.

Definition at line 1060 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::m_speciesData.

Referenced by MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::initTransport(), LatticeSolidPhase::installSlavePhases(), and TransportFactory::setupLiquidTransport().

void setSpeciesThermo ( SpeciesThermo spthermo)
inherited

Install a species thermodynamic property manager.

The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.

Parameters
spthermoinput pointer to the species thermodynamic property manager.

Definition at line 886 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), and VPSSMgrFactory::newVPSSMgr().

SpeciesThermo & speciesThermo ( int  k = -1)
virtualinherited

Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.

Parameters
kSpeices id. The default is -1, meaning return the default

Reimplemented in LatticeSolidPhase.

Definition at line 904 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().

void initThermoFile ( std::string  inputFile,
std::string  id 
)
virtualinherited

Initialization of a ThermoPhase object using an ctml file.

This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used.

Definition at line 928 of file ThermoPhase.cpp.

References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().

void installSlavePhases ( Cantera::XML_Node phaseNode)
virtualinherited

Add in species from Slave phases.

This hook is used for cSS_CONVENTION_SLAVE phases

Parameters
phaseNodeXML Element for the phase

Reimplemented in LatticeSolidPhase.

Definition at line 1045 of file ThermoPhase.cpp.

Referenced by Cantera::importPhase().

virtual void getdlnActCoeffds ( const doublereal  dTds,
const doublereal *const  dXds,
doublereal *  dlnActCoeffds 
) const
inlinevirtualinherited

Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.

Parameters
dTdsInput of temperature change along the path
dXdsInput vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one.
dlnActCoeffdsOutput vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m.

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 1511 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().

virtual void getdlnActCoeffdlnX_diag ( doublereal *  dlnActCoeffdlnX_diag) const
inlinevirtualinherited

Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnX_diagOutput vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 1533 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().

XML_Node & xml ( )
inherited
std::string id ( ) const
inherited
void setID ( std::string  id)
inherited

Set the string id for the phase.

Parameters
idString id of the phase

Definition at line 135 of file Phase.cpp.

References Phase::id(), and Phase::m_id.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

std::string name ( ) const
inherited
void setName ( std::string  nm)
inherited

Sets the string name for the phase.

Parameters
nmString name of the phase

Definition at line 145 of file Phase.cpp.

References Phase::m_name.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

string elementName ( size_t  m) const
inherited
size_t elementIndex ( std::string  name) const
inherited

Return the index of element named 'name'.

The index is an integer assigned to each element in the order it was added. Returns npos if the specified element is not found.

Parameters
nameName of the element

Definition at line 175 of file Phase.cpp.

References Phase::m_elementNames, Phase::m_mm, and Cantera::npos.

Referenced by Phase::addUniqueElementAfterFreeze(), MultiPhase::init(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().

const vector< string > & elementNames ( ) const
inherited

Return a read-only reference to the vector of element names.

Definition at line 185 of file Phase.cpp.

References Phase::m_elementNames.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), and IonsFromNeutralVPSSTP::initThermoXML().

doublereal atomicWeight ( size_t  m) const
inherited

Atomic weight of element m.

Parameters
mElement index

Definition at line 190 of file Phase.cpp.

References Phase::m_atomicWeights.

Referenced by ChemEquil::initialize(), and WaterSSTP::initThermoXML().

doublereal entropyElement298 ( size_t  m) const
inherited

Entropy of the element in its standard state at 298 K and 1 bar.

Parameters
mElement index

Definition at line 195 of file Phase.cpp.

References AssertThrowMsg, AssertTrace, ENTROPY298_UNKNOWN, Phase::m_entropy298, and Phase::m_mm.

Referenced by LatticeSolidPhase::installSlavePhases(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().

int atomicNumber ( size_t  m) const
inherited

Atomic number of element m.

Parameters
mElement index

Definition at line 209 of file Phase.cpp.

References Phase::m_atomicNumbers.

Referenced by MultiPhase::addPhase(), and LatticeSolidPhase::installSlavePhases().

int elementType ( size_t  m) const
inherited

Return the element constraint type Possible types include:

CT_ELEM_TYPE_TURNEDOFF -1 CT_ELEM_TYPE_ABSPOS 0 CT_ELEM_TYPE_ELECTRONCHARGE 1 CT_ELEM_TYPE_CHARGENEUTRALITY 2 CT_ELEM_TYPE_LATTICERATIO 3 CT_ELEM_TYPE_KINETICFROZEN 4 CT_ELEM_TYPE_SURFACECONSTRAINT 5 CT_ELEM_TYPE_OTHERCONSTRAINT 6

The default is CT_ELEM_TYPE_ABSPOS.

Parameters
mElement index
Returns
Returns the element type

Definition at line 214 of file Phase.cpp.

References Phase::m_elem_type.

Referenced by LatticeSolidPhase::installSlavePhases(), and vcs_VolPhase::transferElementsFM().

int changeElementType ( int  m,
int  elem_type 
)
inherited

Change the element type of the mth constraint Reassigns an element type.

Parameters
mElement index
elem_typeNew elem type to be assigned
Returns
Returns the old element type

Definition at line 219 of file Phase.cpp.

References Phase::m_elem_type.

const vector_fp & atomicWeights ( ) const
inherited

Return a read-only reference to the vector of atomic weights.

Definition at line 204 of file Phase.cpp.

References Phase::m_atomicWeights.

Referenced by LatticeSolidPhase::installSlavePhases().

size_t nElements ( ) const
inherited
void checkElementIndex ( size_t  m) const
inherited

Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.

Definition at line 155 of file Phase.cpp.

References Phase::m_mm.

Referenced by Phase::elementName(), and Phase::nAtoms().

void checkElementArraySize ( size_t  mm) const
inherited

Check that an array size is at least nElements() Throws an exception if mm is less than nElements().

Used before calls which take an array pointer.

Definition at line 162 of file Phase.cpp.

References Phase::m_mm.

doublereal nAtoms ( size_t  k,
size_t  m 
) const
inherited
void getAtoms ( size_t  k,
double *  atomArray 
) const
inherited

Get a vector containing the atomic composition of species k.

Parameters
kspecies index
atomArrayvector containing the atomic number in the species. Length: m_mm

Definition at line 233 of file Phase.cpp.

References Phase::m_mm, and Phase::m_speciesComp.

Referenced by LatticeSolidPhase::installSlavePhases().

size_t speciesIndex ( std::string  name) const
inherited
string speciesName ( size_t  k) const
inherited

Name of the species with index k.

Parameters
kindex of the species

Definition at line 257 of file Phase.cpp.

References Phase::checkSpeciesIndex(), and Phase::m_speciesNames.

Referenced by StFlow::componentName(), ReactingSurf1D::componentName(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), TransportFactory::fitProperties(), AqueousTransport::getLiquidTransportData(), Phase::getMoleFractionsByName(), Cantera::importSolution(), MultiPhase::init(), ChemEquil::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), FlowDevice::install(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesName(), solveProb::print_header(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), StFlow::save(), SurfPhase::setCoveragesByName(), ChemEquil::setInitialMoles(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Inlet1D::showSolution(), ReactingSurf1D::showSolution(), Phase::speciesSPName(), and ChemEquil::update().

std::string speciesSPName ( int  k) const
inherited

Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.

Parameters
kSpecies index within the phase
Returns
The "phaseName:speciesName" string

Definition at line 282 of file Phase.cpp.

References Phase::m_name, and Phase::speciesName().

const vector< string > & speciesNames ( ) const
inherited
size_t nSpecies ( ) const
inlineinherited

Returns the number of species in the phase.

Definition at line 252 of file Phase.h.

References Phase::m_kk.

Referenced by MultiPhase::addPhase(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::assignShallowPointers(), MultiPhase::calcElemAbundances(), Phase::chargeDensity(), MultiPhaseEquil::computeReactionSteps(), PDSS_IonsFromNeutral::constructPDSSXML(), RedlichKisterVPSSTP::cp_mole(), MargulesVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), PhaseCombo_Interaction::cp_mole(), SolidTransport::electricalConductivity(), RedlichKisterVPSSTP::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MargulesVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), ChemEquil::equilibrate(), vcs_MultiPhaseEquil::equilibrate_TP(), ChemEquil::estimateElementPotentials(), ThermoPhase::getActivities(), MetalPhase::getActivityConcentrations(), MetalPhase::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MetalPhase::getEnthalpy_RT(), MetalPhase::getEntropy_R(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MultiTransport::getMolarFluxes(), Phase::getMoleFractionsByName(), MultiPhase::getMoles(), MetalPhase::getStandardChemPotentials(), ImplicitSurfChem::ImplicitSurfChem(), Cantera::importSolution(), LiquidTranInteraction::init(), MultiPhase::init(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), GasTransport::initGas(), ChemEquil::initialize(), DustyGasTransport::initialize(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), VPSSMgr::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), LatticePhase::initThermo(), FlowDevice::install(), rxninfo::installReaction(), LatticeSolidPhase::installSlavePhases(), Kinetics::nTotalSpecies(), solveProb::print_header(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::restoreState(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), Phase::saveState(), Kinetics::selectPhase(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMoles(), SolidTransport::setParameters(), MultiPhase::setPhaseMoleFractions(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Transport::setThermo(), ReactorBase::setThermoMgr(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), Inlet1D::showSolution(), solveSP::solveSP(), StFlow::StFlow(), vcs_VolPhase::transferElementsFM(), AqueousKinetics::updateKc(), InterfaceKinetics::updateKc(), ConstPressureReactor::updateState(), Reactor::updateState(), and MultiPhase::uploadMoleFractionsFromPhases().

void checkSpeciesIndex ( size_t  k) const
inherited

Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.

Definition at line 268 of file Phase.cpp.

References Phase::m_kk.

Referenced by Phase::concentration(), Phase::massFraction(), Phase::molecularWeight(), Phase::moleFraction(), Phase::nAtoms(), and Phase::speciesName().

void checkSpeciesArraySize ( size_t  kk) const
inherited

Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().

Used before calls which take an array pointer.

Definition at line 275 of file Phase.cpp.

References Phase::m_kk.

void saveState ( vector_fp state) const
inherited

Save the current internal state of the phase Write to vector 'state' the current internal state.

Parameters
stateoutput vector. Will be resized to nSpecies() + 2.

Definition at line 288 of file Phase.cpp.

References Phase::nSpecies().

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), TransportFactory::newTransport(), ReactorBase::setThermoMgr(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().

void saveState ( size_t  lenstate,
doublereal *  state 
) const
inherited

Write to array 'state' the current internal state.

Parameters
lenstatelength of the state array. Must be >= nSpecies()+2
stateoutput vector. Must be of length nSpecies() + 2 or greater.

Definition at line 293 of file Phase.cpp.

References Phase::density(), Phase::getMassFractions(), and Phase::temperature().

void restoreState ( const vector_fp state)
inherited

Restore a state saved on a previous call to saveState.

Parameters
stateState vector containing the previously saved state.

Definition at line 300 of file Phase.cpp.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiTransport::getMassFluxes(), FlowReactor::initialize(), ConstPressureReactor::initialize(), Reactor::initialize(), and TransportFactory::newTransport().

void restoreState ( size_t  lenstate,
const doublereal *  state 
)
inherited

Restore the state of the phase from a previously saved state vector.

Parameters
lenstateLength of the state vector
stateVector of state conditions.

Definition at line 305 of file Phase.cpp.

References Phase::nSpecies(), Phase::setDensity(), Phase::setMassFractions_NoNorm(), and Phase::setTemperature().

void setMoleFractionsByName ( compositionMap xMap)
inherited

Set the species mole fractions by name.

@param xMap map from species names to mole fraction values.

Species not listed by name in xMap are set to zero.

Definition at line 362 of file Phase.cpp.

References Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().

Referenced by Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void setMoleFractionsByName ( const std::string &  x)
inherited

Set the mole fractions of a group of species by name.

Species which are not listed by name in the composition map are set to zero.

Parameters
xstring x in the form of a composition map

Definition at line 376 of file Phase.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Phase::speciesName().

void setMassFractionsByName ( compositionMap yMap)
inherited

Set the species mass fractions by name.

@param yMap map from species names to mass fraction values.

Species not listed by name in yMap are set to zero.

Definition at line 416 of file Phase.cpp.

References Phase::nSpecies(), Phase::setMassFractions(), and Phase::speciesName().

Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void setMassFractionsByName ( const std::string &  x)
inherited

Set the species mass fractions by name.

Species not listed by name in x are set to zero.

Parameters
xString containing a composition map

Definition at line 430 of file Phase.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Phase::speciesName().

void setState_TRX ( doublereal  t,
doublereal  dens,
const doublereal *  x 
)
inherited

Set the internally stored temperature (K), density, and mole fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
xvector of species mole fractions, length m_kk

Definition at line 441 of file Phase.cpp.

References Phase::setDensity(), Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TRX ( doublereal  t,
doublereal  dens,
compositionMap x 
)
inherited

Set the internally stored temperature (K), density, and mole fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
xComposition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction.

Definition at line 455 of file Phase.cpp.

References Phase::setDensity(), Phase::setMoleFractionsByName(), and Phase::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
const doublereal *  y 
)
inherited

Set the internally stored temperature (K), density, and mass fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
yvector of species mass fractions, length m_kk

Definition at line 462 of file Phase.cpp.

References Phase::setDensity(), Phase::setMassFractions(), and Phase::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
compositionMap y 
)
inherited

Set the internally stored temperature (K), density, and mass fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
yComposition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction.

Definition at line 469 of file Phase.cpp.

References Phase::setDensity(), Phase::setMassFractionsByName(), and Phase::setTemperature().

void setState_TNX ( doublereal  t,
doublereal  n,
const doublereal *  x 
)
inherited

Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.

Parameters
tTemperature in kelvin
nmolar density (kmol/m^3)
xvector of species mole fractions, length m_kk

Definition at line 448 of file Phase.cpp.

References Phase::setMolarDensity(), Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TR ( doublereal  t,
doublereal  rho 
)
inherited

Set the internally stored temperature (K) and density (kg/m^3)

Parameters
tTemperature in kelvin
rhoDensity (kg/m^3)

Definition at line 476 of file Phase.cpp.

References Phase::setDensity(), and Phase::setTemperature().

Referenced by PureFluidPhase::setState_HP(), PureFluidPhase::setState_SP(), PureFluidPhase::setState_SV(), PDSS_IonsFromNeutral::setState_TR(), and PureFluidPhase::setState_UV().

void setState_TX ( doublereal  t,
doublereal *  x 
)
inherited

Set the internally stored temperature (K) and mole fractions.

Parameters
tTemperature in kelvin
xvector of species mole fractions, length m_kk

Definition at line 482 of file Phase.cpp.

References Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TY ( doublereal  t,
doublereal *  y 
)
inherited

Set the internally stored temperature (K) and mass fractions.

Parameters
tTemperature in kelvin
yvector of species mass fractions, length m_kk

Definition at line 488 of file Phase.cpp.

References Phase::setMassFractions(), and Phase::setTemperature().

void setState_RX ( doublereal  rho,
doublereal *  x 
)
inherited

Set the density (kg/m^3) and mole fractions.

Parameters
rhoDensity (kg/m^3)
xvector of species mole fractions, length m_kk

Definition at line 494 of file Phase.cpp.

References Phase::setDensity(), and Phase::setMoleFractions().

void setState_RY ( doublereal  rho,
doublereal *  y 
)
inherited

Set the density (kg/m^3) and mass fractions.

Parameters
rhoDensity (kg/m^3)
yvector of species mass fractions, length m_kk

Definition at line 500 of file Phase.cpp.

References Phase::setDensity(), and Phase::setMassFractions().

doublereal molecularWeight ( size_t  k) const
inherited
doublereal molarMass ( size_t  k) const
inlineinherited

Return the Molar mass of species k Alternate name for molecular weight.

@param k  index for species
@return   Return the molar mass of species k kg/kmol.
Deprecated:
use molecularWeight instead

Definition at line 388 of file Phase.h.

References Phase::molecularWeight().

void getMolecularWeights ( vector_fp weights) const
inherited

Copy the vector of molecular weights into vector weights.

Parameters
weightsOutput vector of molecular weights (kg/kmol)

Definition at line 512 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( int  iwt,
doublereal *  weights 
) const
inherited

Copy the vector of molecular weights into array weights.

@param iwt      Unused.
@param weights  Output array of molecular weights (kg/kmol)
Deprecated:

Definition at line 521 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( doublereal *  weights) const
inherited

Copy the vector of molecular weights into array weights.

Parameters
weightsOutput array of molecular weights (kg/kmol)

Definition at line 527 of file Phase.cpp.

References Phase::molecularWeights().

const vector_fp & molecularWeights ( ) const
inherited
doublereal size ( size_t  k) const
inlineinherited
void getMoleFractionsByName ( compositionMap x) const
inherited

Get the mole fractions by name.

Parameters
[out]xcomposition map containing the species mole fractions.

Definition at line 538 of file Phase.cpp.

References Phase::moleFraction(), Phase::nSpecies(), and Phase::speciesName().

doublereal moleFraction ( size_t  k) const
inherited

Return the mole fraction of a single species.

Parameters
kspecies index
Returns
Mole fraction of the species

Definition at line 552 of file Phase.cpp.

References Phase::checkSpeciesIndex(), Phase::m_mmw, and Phase::m_ym.

Referenced by Phase::chargeDensity(), SolidTransport::electricalConductivity(), ChemEquil::equilibrate(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealMolalSoln::getMolalityActivityCoefficients(), Phase::getMoleFractionsByName(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), Phase::moleFraction(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and ChemEquil::setInitialMoles().

doublereal moleFraction ( std::string  name) const
inherited

Return the mole fraction of a single species.

Parameters
nameString name of the species
Returns
Mole fraction of the species

Definition at line 558 of file Phase.cpp.

References Phase::moleFraction(), Cantera::npos, and Phase::speciesIndex().

doublereal massFraction ( size_t  k) const
inherited

Return the mass fraction of a single species.

Parameters
kspecies index
Returns
Mass fraction of the species

Definition at line 573 of file Phase.cpp.

References Phase::checkSpeciesIndex(), and Phase::m_y.

doublereal massFraction ( std::string  name) const
inherited

Return the mass fraction of a single species.

Parameters
nameString name of the species
Returns
Mass Fraction of the species

Definition at line 579 of file Phase.cpp.

References Phase::massFractions(), Cantera::npos, and Phase::speciesIndex().

void getMoleFractions ( doublereal *const  x) const
inherited

Get the species mole fraction vector.

Parameters
xOn return, x contains the mole fractions. Must have a length greater than or equal to the number of species.

Definition at line 547 of file Phase.cpp.

References Phase::m_mmw, Phase::m_ym, and Cantera::scale().

Referenced by IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::enthalpy_mole(), HMWSoln::enthalpy_mole(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GibbsExcessVPSSTP::getActivities(), LatticePhase::getActivityConcentrations(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), LTI_MoleFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), LatticeSolidPhase::getMoleFractions(), DustyGasTransport::initialize(), GibbsExcessVPSSTP::initThermo(), HMWSoln::printCoeffs(), HMWSoln::relative_molal_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), MixtureFugacityTP::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalitiesByName(), MixtureFugacityTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), MultiPhase::setMoles(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setReferenceComposition(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), AqueousTransport::stefan_maxwell_solve(), ChemEquil::update(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), solveSP::updateMFKinSpecies(), DustyGasTransport::updateTransport_C(), and MultiPhase::uploadMoleFractionsFromPhases().

void setMoleFractions ( const doublereal *const  x)
virtualinherited

Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector.

Internally, the Phase object will normalize this vector before storing its contents.

Parameters
xArray of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species, m_kk.

Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, IdealSolidSolnPhase, LatticeSolidPhase, and RedlichKwongMFTP.

Definition at line 317 of file Phase.cpp.

References Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, ckr::max(), and Phase::stateMFChangeCalc().

Referenced by ChemEquil::calcEmoles(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), WaterSSTP::initThermoXML(), IonsFromNeutralVPSSTP::setConcentrations(), IonsFromNeutralVPSSTP::setMassFractions(), IonsFromNeutralVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), MolalityVPSSTP::setMolalitiesByName(), Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), LatticeSolidPhase::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions(), MixtureFugacityTP::setMoleFractions(), LatticePhase::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), IonsFromNeutralVPSSTP::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions_NoNorm(), LatticePhase::setMoleFractions_NoNorm(), Phase::setMoleFractionsByName(), ThermoPhase::setState_PX(), Phase::setState_RX(), Phase::setState_TNX(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), and Phase::setState_TX().

void setMoleFractions_NoNorm ( const doublereal *const  x)
virtualinherited

Set the mole fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
xInput vector of mole fractions. Length is m_kk.

Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, IdealSolidSolnPhase, and RedlichKwongMFTP.

Definition at line 350 of file Phase.cpp.

References Cantera::dot(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, and Phase::stateMFChangeCalc().

Referenced by MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), and IonsFromNeutralVPSSTP::setMoleFractions_NoNorm().

void getMassFractions ( doublereal *const  y) const
inherited
const doublereal* massFractions ( ) const
inlineinherited
void setMassFractions ( const doublereal *const  y)
virtualinherited
void setMassFractions_NoNorm ( const doublereal *const  y)
virtualinherited

Set the mass fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
yInput vector of mass fractions. Length is m_kk.

Reimplemented in IonsFromNeutralVPSSTP, LatticePhase, GibbsExcessVPSSTP, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.

Definition at line 403 of file Phase.cpp.

References Phase::m_kk, Phase::m_mmw, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Phase::stateMFChangeCalc().

Referenced by Phase::restoreState(), StFlow::setGas(), StFlow::setGasAtMidpoint(), IdealSolidSolnPhase::setMassFractions_NoNorm(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), and LatticePhase::setMassFractions_NoNorm().

void getConcentrations ( doublereal *const  c) const
inherited

Get the species concentrations (kmol/m^3).

@param[out] c Array of species concentrations Length must be

greater than or equal to the number of species.

Definition at line 600 of file Phase.cpp.

References Phase::m_dens, Phase::m_ym, and Cantera::scale().

Referenced by ConstDensityThermo::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), SurfPhase::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), SurfPhase::getCoverages(), solveSP::solveSurfProb(), SimpleTransport::update_C(), and LiquidTransport::update_C().

doublereal concentration ( const size_t  k) const
inherited

Concentration of species k.

If k is outside the valid range, an exception will be thrown.

Parameters
kIndex of species

Definition at line 594 of file Phase.cpp.

References Phase::checkSpeciesIndex(), Phase::m_dens, Phase::m_rmolwts, and Phase::m_y.

void setConcentrations ( const doublereal *const  conc)
virtualinherited

Set the concentrations to the specified values within the phase.

We set the concentrations here and therefore we set the overall density of the phase. We hold the temperature constant during this operation. Therefore, we have possibly changed the pressure of the phase by calling this routine.

Parameters
[in]concArray of concentrations in dimensional units. For bulk phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the numberof species in the phase.

Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.

Definition at line 605 of file Phase.cpp.

References Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, ckr::max(), Phase::setDensity(), and Phase::stateMFChangeCalc().

Referenced by IdealSolidSolnPhase::setConcentrations(), MixtureFugacityTP::setConcentrations(), LatticePhase::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoverages(), and SurfPhase::setCoveragesNoNorm().

const doublereal * moleFractdivMMW ( ) const
inherited

Returns a const pointer to the start of the moleFraction/MW array.

This array is the array of mole fractions, each divided by the mean molecular weight.

Definition at line 568 of file Phase.cpp.

References Phase::m_ym.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().

doublereal charge ( size_t  k) const
inherited

Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.

Parameters
kspecies index

Definition at line 642 of file Phase.cpp.

References Phase::m_speciesCharge.

Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), HMWSoln::calcMolalitiesCropped(), Phase::chargeDensity(), PDSS_HKFT::constructPDSSXML(), SolidTransport::electricalConductivity(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), InterfaceKinetics::getEquilibriumConstants(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), PDSS_HKFT::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), DebyeHuckel::initThermoXML(), LatticeSolidPhase::installSlavePhases(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::transferElementsFM(), and InterfaceKinetics::updateKc().

doublereal chargeDensity ( ) const
inherited

Charge density [C/m^3].

Definition at line 647 of file Phase.cpp.

References Phase::charge(), Phase::moleFraction(), and Phase::nSpecies().

size_t nDim ( ) const
inlineinherited
void setNDim ( size_t  ndim)
inlineinherited

Set the number of spatial dimensions (1, 2, or 3).

The number of spatial dimensions is used for vector involving directions.

Parameters
ndimInput number of dimensions.

Definition at line 530 of file Phase.h.

References Phase::m_ndim.

Referenced by EdgePhase::EdgePhase(), FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().

doublereal temperature ( ) const
inlineinherited

Temperature (K).

Returns
The temperature of the phase

Definition at line 539 of file Phase.h.

References Phase::m_temp.

Referenced by ThermoPhase::_RT(), InterfaceKinetics::_update_rates_T(), MixtureFugacityTP::_updateReferenceStateThermo(), VPStandardStateTP::_updateStandardStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), LatticeSolidPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), DebyeHuckel::A_Debye_TP(), HMWSoln::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), IdealSolnGasVPSS::calcDensity(), MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::cv_mole(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), HMWSoln::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), FixedChemPotSSTP::FixedChemPotSSTP(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), StoichSubstance::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), PhaseCombo_Interaction::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), PureFluidPhase::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), PureFluidPhase::getEntropy_R_ref(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), StoichSubstance::getGibbs_ref(), PureFluidPhase::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), StoichSubstance::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), PureFluidPhase::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), LatticePhase::getPureGibbs(), LTPspecies_Arrhenius::getSpeciesTransProp(), LTPspecies_Poly::getSpeciesTransProp(), LTPspecies_ExpT::getSpeciesTransProp(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), ConstDensityThermo::gibbs_mole(), StoichSubstance::gibbs_mole(), RedlichKwongMFTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), ThermoPhase::gibbs_mole(), LatticePhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), RedlichKwongMFTP::hresid(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), RedlichKwongMFTP::pressureDerivatives(), HMWSoln::relative_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), ChemEquil::setInitialMoles(), PureFluidPhase::setPressure(), WaterSSTP::setPressure(), GibbsExcessVPSSTP::setPressure(), IdealMolalSoln::setPressure(), VPStandardStateTP::setPressure(), MixtureFugacityTP::setPressure(), IdealGasPhase::setPressure(), IonsFromNeutralVPSSTP::setPressure(), DebyeHuckel::setPressure(), HMWSoln::setPressure(), vcs_VolPhase::setPtrThermoPhase(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), PureFluidPhase::setTPXState(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), RedlichKwongMFTP::sresid(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), ChemEquil::update(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), RedlichKwongMFTP::updateAB(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), VPStandardStateTP::updateStandardStateThermo(), Reactor::updateState(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_T(), and WaterSSTP::vaporFraction().

doublereal molarDensity ( ) const
inherited

Molar density (kmol/m^3).

Returns
The molar density of the phase

Definition at line 627 of file Phase.cpp.

References Phase::density(), and Phase::meanMolecularWeight().

Referenced by solveSP::calc_t(), SolidTransport::electricalConductivity(), ConstDensityThermo::enthalpy_mole(), StoichSubstance::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), ConstDensityThermo::getChemPotentials(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), LatticePhase::getParameters(), PureFluidPhase::getPartialMolarVolumes(), StoichSubstance::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), StoichSubstance::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealSolnGasVPSS::intEnergy_mole(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), RedlichKwongMFTP::intEnergy_mole(), IonsFromNeutralVPSSTP::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), DebyeHuckel::intEnergy_mole(), HMWSoln::intEnergy_mole(), ConstDensityThermo::logStandardConc(), Phase::molarVolume(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), IdealMolalSoln::setMolarDensity(), DebyeHuckel::setMolarDensity(), and ConstDensityThermo::standardConcentration().

doublereal molarVolume ( ) const
inherited
doublereal mean_X ( const doublereal *const  Q) const
inherited

Evaluate the mole-fraction-weighted mean of an array Q.

\[ \sum_k X_k Q_k. \]

Q should contain pure-species molar property values.

Parameters
[in]QArray of length m_kk that is to be averaged.
Returns
mole-fraction-weighted mean of Q

Definition at line 658 of file Phase.cpp.

References Phase::m_mmw, and Phase::m_ym.

Referenced by IdealSolnGasVPSS::cp_mole(), ConstDensityThermo::cp_mole(), RedlichKwongMFTP::cp_mole(), IonsFromNeutralVPSSTP::cp_mole(), IdealSolidSolnPhase::cp_mole(), IdealMolalSoln::cp_mole(), LatticePhase::cp_mole(), IdealGasPhase::cp_mole(), DebyeHuckel::cp_mole(), HMWSoln::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IonsFromNeutralVPSSTP::enthalpy_mole(), IdealMolalSoln::enthalpy_mole(), SurfPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), DebyeHuckel::enthalpy_mole(), HMWSoln::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IonsFromNeutralVPSSTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealMolalSoln::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), DebyeHuckel::entropy_mole(), HMWSoln::entropy_mole(), IonsFromNeutralVPSSTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealMolalSoln::gibbs_mole(), DebyeHuckel::gibbs_mole(), HMWSoln::gibbs_mole(), ConstDensityThermo::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealMolalSoln::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), and HMWSoln::relative_enthalpy().

doublereal mean_Y ( const doublereal *const  Q) const
inherited

Evaluate the mass-fraction-weighted mean of an array Q.

\[ \sum_k Y_k Q_k \]

Parameters
[in]QArray of species property values in mass units.
Returns
The mass-fraction-weighted mean of Q.

Definition at line 663 of file Phase.cpp.

References Cantera::dot(), and Phase::m_y.

doublereal meanMolecularWeight ( ) const
inlineinherited
doublereal sum_xlogx ( ) const
inherited
doublereal sum_xlogQ ( doublereal *const  Q) const
inherited

Evaluate \( \sum_k X_k \log Q_k \).

Parameters
QVector of length m_kk to take the log average of
Returns
The indicated sum.

Definition at line 673 of file Phase.cpp.

References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogQ().

void addElement ( const std::string &  symbol,
doublereal  weight = -12345.0 
)
inherited

Add an element.

Parameters
symbolAtomic symbol std::string.
weightAtomic mass in amu.

Definition at line 678 of file Phase.cpp.

References CT_ELEM_TYPE_ABSPOS, CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, and Phase::m_mm.

Referenced by Phase::addElement().

void addElement ( const XML_Node e)
inherited

Add an element from an XML specification.

Parameters
eReference to the XML_Node where the element is described.

Definition at line 701 of file Phase.cpp.

References Phase::addElement().

void addUniqueElement ( const std::string &  symbol,
doublereal  weight = -12345.0,
int  atomicNumber = 0,
doublereal  entropy298 = ENTROPY298_UNKNOWN,
int  elem_type = CT_ELEM_TYPE_ABSPOS 
)
inherited

Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
symbolString symbol of the element
weightAtomic weight of the element (kg kmol-1).
atomicNumberAtomic number of the element (unitless)
entropy298Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error.
elem_typeSpecifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element.

Definition at line 708 of file Phase.cpp.

References CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicNumbers, Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, Phase::m_entropy298, and Phase::m_mm.

Referenced by Phase::addElementsFromXML(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), and FixedChemPotSSTP::FixedChemPotSSTP().

void addUniqueElement ( const XML_Node e)
inherited

Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
eReference to the XML_Node where the element is described.

Definition at line 755 of file Phase.cpp.

References Phase::addUniqueElement(), Cantera::atofCheck(), XML_Node::child(), ENTROPY298_UNKNOWN, XML_Node::hasAttrib(), XML_Node::hasChild(), and Cantera::stripws().

void addElementsFromXML ( const XML_Node phase)
inherited

Add all elements referenced in an XML_Node tree.

Parameters
phaseReference to the root XML_Node of a phase

Definition at line 780 of file Phase.cpp.

References Phase::addUniqueElement(), XML_Node::child(), XML_Node::findByAttr(), Cantera::get_XML_File(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and XML_Node::root().

Referenced by Cantera::importPhase().

void freezeElements ( )
inherited

Prohibit addition of more elements, and prepare to add species.

Definition at line 831 of file Phase.cpp.

References Phase::m_elementsFrozen.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP().

bool elementsFrozen ( )
inherited

True if freezeElements has been called.

Definition at line 836 of file Phase.cpp.

References Phase::m_elementsFrozen.

size_t addUniqueElementAfterFreeze ( const std::string &  symbol,
doublereal  weight,
int  atomicNumber,
doublereal  entropy298 = ENTROPY298_UNKNOWN,
int  elem_type = CT_ELEM_TYPE_ABSPOS 
)
inherited

Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
symbolString symbol of the element
weightAtomic weight of the element (kg kmol-1).
atomicNumberAtomic number of the element (unitless)
entropy298Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which if used will cause Cantera to throw an error.
elem_typeSpecifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element.

Definition at line 841 of file Phase.cpp.

References Phase::addUniqueElement(), Phase::elementIndex(), Phase::m_elementsFrozen, Phase::m_kk, Phase::m_mm, Phase::m_speciesComp, and Cantera::npos.

Referenced by LatticeSolidPhase::installSlavePhases().

void addUniqueSpecies ( const std::string &  name,
const doublereal *  comp,
doublereal  charge = 0.0,
doublereal  size = 1.0 
)
inherited

Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.

It only adds the species if it is unique.

Parameters
nameString name of the species
compArray containing the elemental composition of the species.
chargeCharge of the species. Defaults to zero.
sizeSize of the species (meters). Defaults to 1 meter.

Definition at line 919 of file Phase.cpp.

References Phase::m_kk, Phase::m_mm, Phase::m_speciesCharge, Phase::m_speciesComp, Phase::m_speciesNames, and Phase::m_speciesSize.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), LatticeSolidPhase::installSlavePhases(), and Cantera::installSpecies().

void freezeSpecies ( )
virtualinherited

Call when finished adding species.

Prepare to use them for calculation of mixture properties.

Definition at line 952 of file Phase.cpp.

References Phase::init(), Phase::m_speciesFrozen, and Phase::molecularWeights().

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

bool speciesFrozen ( )
inlineinherited

True if freezeSpecies has been called.

Definition at line 694 of file Phase.h.

References Phase::m_speciesFrozen.

int stateMFNumber ( ) const
inlineinherited

Return the State Mole Fraction Number.

Definition at line 701 of file Phase.h.

References Phase::m_stateNum.

Referenced by SimpleTransport::update_C(), and LiquidTransport::update_C().

void stateMFChangeCalc ( bool  forceChange = false)
inlineinherited

Every time the mole fractions have changed, this routine will increment the stateMFNumber.

@param forceChange If this is true then the stateMFNumber always

changes. This defaults to false.

Deprecated:

Definition at line 115 of file Phase.cpp.

References Phase::m_stateNum.

Referenced by Phase::setConcentrations(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), Phase::setMoleFractions(), and Phase::setMoleFractions_NoNorm().

void init ( const vector_fp mw)
protectedinherited

Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size.

Parameters
mwVector of molecular weights of the species.

Definition at line 958 of file Phase.cpp.

References Cantera::int2str(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Cantera::Tiny.

Referenced by Phase::freezeSpecies().

void setMolecularWeight ( const int  k,
const double  mw 
)
inlineprotectedinherited

Set the molecular weight of a single species to a given value.

Parameters
kid of the species
mwMolecular Weight (kg kmol-1)

Definition at line 722 of file Phase.h.

References Phase::m_molwts, and Phase::m_rmolwts.

Referenced by PureFluidPhase::initThermo(), and WaterSSTP::initThermoXML().

Member Data Documentation

int m_formPitzer
private

This is the form of the Pitzer parameterization used in this model.

The options are described at the top of this document, and in the general documentation. The list is repeated here:

PITZERFORM_BASE = 0 (only one supported atm)

Definition at line 2379 of file HMWSoln.h.

Referenced by HMWSoln::formPitzer(), and HMWSoln::operator=().

int m_formPitzerTemp
private

This is the form of the temperature dependence of Pitzer parameterization used in the model.

PITZER_TEMP_CONSTANT 0 PITZER_TEMP_LINEAR 1 PITZER_TEMP_COMPLEX1 2

Definition at line 2389 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

int m_formGC
private

Format for the generalized concentration:

0 = unity 1 = molar_volume 2 = solvent_volume (default)

The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor.

m_formGC GeneralizedConc StandardConc
0 X_k 1.0
1 X_k / V_k 1.0 / V_k
2 X_k / V_N 1.0 / V_N

The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.

(HKM Note: Using option #1 may lead to spurious results and has been included only with warnings. The reason is that it molar volumes of electrolytes may often be negative. The molar volume of H+ is defined to be zero too. Either options 0 or 2 are the appropriate choice. Option 0 leads to bulk reaction rate constants which have units of s-1. Option 2 leads to bulk reaction rate constants for bimolecular rxns which have units of m-3 kmol-1 s-1.)

Definition at line 2420 of file HMWSoln.h.

Referenced by HMWSoln::eosType(), and HMWSoln::operator=().

vector_int m_electrolyteSpeciesType
private

Vector containing the electrolyte species type.

The possible types are:

  • solvent
  • Charged Species
  • weakAcidAssociated
  • strongAcidAssociated
  • polarNeutral
  • nonpolarNeutral .

Definition at line 2432 of file HMWSoln.h.

Referenced by HMWSoln::initLengths().

vector_fp m_Aionic
private

a_k = Size of the ionic species in the DH formulation units = meters

Definition at line 2438 of file HMWSoln.h.

Referenced by HMWSoln::AionicRadius(), HMWSoln::initLengths(), and HMWSoln::operator=().

double m_IionicMolality
mutableprivate

Current value of the ionic strength on the molality scale Associated Salts, if present in the mechanism, don't contribute to the value of the ionic strength in this version of the Ionic strength.

Definition at line 2446 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), HMWSoln::s_NBS_CLM_d2lnMolalityActCoeff_dT2(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dP(), HMWSoln::s_NBS_CLM_dlnMolalityActCoeff_dT(), HMWSoln::s_NBS_CLM_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

double m_maxIionicStrength
private

Maximum value of the ionic strength allowed in the calculation of the activity coefficients.

Definition at line 2452 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

double m_TempPitzerRef
private

Reference Temperature for the Pitzer formulations.

Definition at line 2457 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

double m_IionicMolalityStoich
mutableprivate

Stoichiometric ionic strength on the molality scale.

This differs from m_IionicMolality in the sense that associated salts are treated as unassociated salts, when calculating the Ionic strength by this method.

Definition at line 2465 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_update_lnMolalityActCoeff().

int m_form_A_Debye

Form of the constant outside the Debye-Huckel term called A.

It's normally a function of temperature and pressure. However, it can be set from the input file in order to aid in numerical comparisons. Acceptable forms:

  A_DEBYE_CONST  0
  A_DEBYE_WATER  1

The A_DEBYE_WATER form may be used for water solvents with needs to cover varying temperatures and pressures. Note, the dielectric constant of water is a relatively strong function of T, and its variability must be accounted for,

Definition at line 2484 of file HMWSoln.h.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), and HMWSoln::operator=().

double m_A_Debye
mutableprivate

A_Debye -> this expression appears on the top of the ln actCoeff term in the general Debye-Huckel expression It depends on temperature.

And, therefore, most be recalculated whenever T or P changes. This variable is a local copy of the calculation.

A_Debye = (F e B_Debye) / (8 Pi epsilon R T)

 where B_Debye = F / sqrt(epsilon R T/2)
                 (dw/1000)^(1/2)

A_Debye = (1/ (8 Pi)) (2 Na * dw/1000)^(1/2) (e * e / (epsilon * kb * T))^(3/2)

Units = sqrt(kg/gmol)

Nominal value = 1.172576 sqrt(kg/gmol) based on: epsilon/epsilon_0 = 78.54 (water at 25C) epsilon_0 = 8.854187817E-12 C2 N-1 m-2 e = 1.60217653 E-19 C F = 9.6485309E7 C kmol-1 R = 8.314472E3 kg m2 s-2 kmol-1 K-1 T = 298.15 K B_Debye = 3.28640E9 sqrt(kg/gmol)/m dw = C_0 * M_0 (density of water) (kg/m3) = 1.0E3 at 25C

Definition at line 2518 of file HMWSoln.h.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::operator=(), HMWSoln::s_NBS_CLM_lnMolalityActCoeff(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

PDSS* m_waterSS
private

Water standard state calculator.

derived from the equation of state for water.

Definition at line 2524 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), HMWSoln::satPressure(), HMWSoln::setState_TP(), and HMWSoln::speciesMolarVolume().

double m_densWaterSS
private

density of standard-state water

internal temporary variable

Definition at line 2530 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::setState_TP().

WaterProps* m_waterProps
private

Pointer to the water property calculator.

Definition at line 2535 of file HMWSoln.h.

Referenced by HMWSoln::A_Debye_TP(), HMWSoln::d2A_DebyedT2_TP(), HMWSoln::dA_DebyedP_TP(), HMWSoln::dA_DebyedT_TP(), HMWSoln::operator=(), and HMWSoln::~HMWSoln().

vector_fp m_expg0_RT
mutableprivate

Vector containing the species reference exp(-G/RT) functions at T = m_tlast.

Definition at line 2541 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), and HMWSoln::operator=().

vector_fp m_pe
mutableprivate

Vector of potential energies for the species.

Definition at line 2546 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), and HMWSoln::operator=().

vector_fp m_pp
mutableprivate

Temporary array used in equilibrium calculations.

Definition at line 2551 of file HMWSoln.h.

Referenced by HMWSoln::calcDensity(), HMWSoln::enthalpy_mole(), HMWSoln::initLengths(), and HMWSoln::operator=().

vector_fp m_tmpV
mutableprivate
vector_fp m_speciesCharge_Stoich
private

Stoichiometric species charge -> This is for calculations of the ionic strength which ignore ion-ion pairing into neutral molecules.

The Stoichiometric species charge is the charge of one of the ion that would occur if the species broke into two charged ion pairs. NaCl -> m_speciesCharge_Stoich = -1; HSO4- -> H+ + SO42- = -2 -> The other charge is calculated. For species that aren't ion pairs, its equal to the m_speciesCharge[] value.

Definition at line 2570 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_update_lnMolalityActCoeff().

vector_fp m_Beta0MX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation.

Beta0_ij[i][j] is the value of the Beta0 coefficient for the ij salt. It will be nonzero iff i and j are both charged and have opposite sign. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2581 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Beta0MX_ij_L
mutableprivate

Derivative of Beta0_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2587 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Beta0MX_ij_LL
mutableprivate

Derivative of Beta0_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2593 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Beta0MX_ij_P
mutableprivate

Derivative of Beta0_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2599 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Beta0MX_ij_coeff
mutableprivate

Array of coefficients for Beta0, a variable in Pitzer's papers.

column index is counterIJ m_Beta0MX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2607 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Beta1MX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation. Beta1_ij[i][j] is the value of the Beta1 coefficient for the ij salt. It will be nonzero iff i and j are both charged and have opposite sign. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2618 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Beta1MX_ij_L
mutableprivate

Derivative of Beta1_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2624 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Beta1MX_ij_LL
mutableprivate

Derivative of Beta1_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2630 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Beta1MX_ij_P
mutableprivate

Derivative of Beta1_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2636 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Beta1MX_ij_coeff
mutableprivate

Array of coefficients for Beta1, a variable in Pitzer's papers.

column index is counterIJ m_Beta1MX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2644 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Beta2MX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation.

Beta2_ij[i][j] is the value of the Beta2 coefficient for the ij salt. It will be nonzero iff i and j are both charged and have opposite sign, and i and j both have charges of 2 or more. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2656 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Beta2MX_ij_L
mutableprivate

Derivative of Beta2_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2662 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Beta2MX_ij_LL
mutableprivate

Derivative of Beta2_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2668 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Beta2MX_ij_P
mutableprivate

Derivative of Beta2_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2674 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Beta2MX_ij_coeff
mutableprivate

Array of coefficients for Beta2, a variable in Pitzer's papers.

column index is counterIJ m_Beta2MX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction. This was added for the YMP database version of the code since it contains temperature-dependent parameters for some 2-2 electrolytes.

Definition at line 2684 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Alpha1MX_ij
private

Array of 2D data used in the Pitzer/HMW formulation.

Alpha1MX_ij[i][j] is the value of the alpha1 coefficient for the ij interaction. It will be nonzero iff i and j are both charged and have opposite sign. It is symmetric wrt i, j. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2695 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Alpha2MX_ij
private

Array of 2D data used in the Pitzer/HMW formulation.

Alpha2MX_ij[i][j] is the value of the alpha2 coefficient for the ij interaction. It will be nonzero iff i and j are both charged and have opposite sign, and i and j both have charges of 2 or more, usually. It is symmetric wrt i, j. counterIJ, where counterIJ = m_counterIJ[i][j], is used to access this array.

Definition at line 2707 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_CphiMX_ij
mutableprivate

Array of 2D data used in the Pitzer/HMW formulation.

CphiMX_ij[i][j] is the value of the Cphi coefficient for the ij interaction. It will be nonzero iff i and j are both charged and have opposite sign, and i and j both have charges of 2 or more. The array is also symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

Definition at line 2719 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_CphiMX_ij_L
mutableprivate

Derivative of Cphi_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2725 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_CphiMX_ij_LL
mutableprivate

Derivative of Cphi_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2731 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_CphiMX_ij_P
mutableprivate

Derivative of Cphi_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2737 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_CphiMX_ij_coeff
mutableprivate

Array of coefficients for CphiMX, a parameter in the activity coefficient formulation.

Column index is counterIJ m_CphiMX_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2746 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Theta_ij
mutableprivate

Array of 2D data for Theta_ij[i][j] in the Pitzer/HMW formulation.

Array of 2D data used in the Pitzer/HMW formulation. Theta_ij[i][j] is the value of the theta coefficient for the ij interaction. It will be nonzero for charged ions with the same sign. It is symmetric. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

HKM Recent Pitzer papers have used a functional form for Theta_ij, which depends on the ionic strength.

Definition at line 2760 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Theta_ij_L
mutableprivate

Derivative of Theta_ij[i][j] wrt T.

vector index is counterIJ

Definition at line 2766 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Theta_ij_LL
mutableprivate

Derivative of Theta_ij[i][j] wrt TT.

vector index is counterIJ

Definition at line 2772 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Theta_ij_P
mutableprivate

Derivative of Theta_ij[i][j] wrt P.

vector index is counterIJ

Definition at line 2778 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Theta_ij_coeff
private

Array of coefficients for Theta_ij[i][j] in the Pitzer/HMW formulation.

Theta_ij[i][j] is the value of the theta coefficient for the ij interaction. It will be nonzero for charged ions with the same sign. It is symmetric. Column index is counterIJ. counterIJ where counterIJ = m_counterIJ[i][j] is used to access this array.

m_Theta_ij_coeff.ptrColumn(counterIJ) is a double* containing the vector of coefficients for the counterIJ interaction.

Definition at line 2792 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Psi_ijk
mutableprivate

Array of 3D data used in the Pitzer/HMW formulation.

Psi_ijk[n] is the value of the psi coefficient for the ijk interaction where

n = k + j * m_kk + i * m_kk * m_kk;

It is potentially nonzero everywhere. The first two coordinates are symmetric wrt cations, and the last two coordinates are symmetric wrt anions.

Definition at line 2805 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::printCoeffs(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Psi_ijk_L
mutableprivate

Derivative of Psi_ijk[n] wrt T.

see m_Psi_ijk for reference on the indexing into this variable.

Definition at line 2811 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Psi_ijk_LL
mutableprivate

Derivative of Psi_ijk[n] wrt TT.

see m_Psi_ijk for reference on the indexing into this variable.

Definition at line 2817 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Psi_ijk_P
mutableprivate

Derivative of Psi_ijk[n] wrt P.

see m_Psi_ijk for reference on the indexing into this variable.

Definition at line 2823 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Psi_ijk_coeff
private

Array of coefficients for Psi_ijk[n] in the Pitzer/HMW formulation.

Psi_ijk[n] is the value of the psi coefficient for the ijk interaction where

n = k + j * m_kk + i * m_kk * m_kk;

It is potentially nonzero everywhere. The first two coordinates are symmetric wrt cations, and the last two coordinates are symmetric wrt anions.

m_Psi_ijk_coeff.ptrColumn(n) is a double* containing the vector of coefficients for the n interaction.

Definition at line 2840 of file HMWSoln.h.

Referenced by HMWSoln::HMWSoln(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

Array2D m_Lambda_nj
mutableprivate

Lambda coefficient for the ij interaction.

Array of 2D data used in the Pitzer/HMW formulation. Lambda_nj[n][j] represents the lambda coefficient for the ij interaction. This is a general interaction representing neutral species. The neutral species occupy the first index, i.e., n. The charged species occupy the j coordinate. neutral, neutral interactions are also included here.

Definition at line 2851 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

Array2D m_Lambda_nj_L
mutableprivate

Derivative of Lambda_nj[i][j] wrt T. see m_Lambda_ij.

Definition at line 2854 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

Array2D m_Lambda_nj_LL
mutableprivate

Derivative of Lambda_nj[i][j] wrt TT.

Definition at line 2857 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

Array2D m_Lambda_nj_P
mutableprivate

Derivative of Lambda_nj[i][j] wrt P.

Definition at line 2860 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Lambda_nj_coeff
private

Array of coefficients for Lambda_nj[i][j] in the Pitzer/HMW formulation.

Lambda_ij[i][j] is the value of the theta coefficient for the ij interaction. Array of 2D data used in the Pitzer/HMW formulation. Lambda_ij[i][j] represents the lambda coefficient for the ij interaction. This is a general interaction representing neutral species. The neutral species occupy the first index, i.e., i. The charged species occupy the j coordinate. Neutral, neutral interactions are also included here.

n = j + m_kk * i

m_Lambda_ij_coeff.ptrColumn(n) is a double* containing the vector of coefficients for the (i,j) interaction.

Definition at line 2878 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_Mu_nnn
mutableprivate

Mu coefficient for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn[i] represents the Mu coefficient for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2888 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Mu_nnn_L
mutableprivate

Mu coefficient temperature derivative for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn_L[i] represents the Mu coefficient temperature derivative for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2897 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Mu_nnn_LL
mutableprivate

Mu coefficient 2nd temperature derivative for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn_L[i] represents the Mu coefficient 2nd temperature derivative for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2906 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::s_updatePitzer_CoeffWRTemp(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Mu_nnn_P
mutableprivate

Mu coefficient pressure derivative for the self-ternary neutral coefficient.

Array of 2D data used in the Pitzer/HMW formulation. Mu_nnn_L[i] represents the Mu coefficient pressure derivative for the nnn interaction. This is a general interaction representing neutral species interacting with itself.

Definition at line 2915 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

Array2D m_Mu_nnn_coeff
private

Array of coefficients form_Mu_nnn term.

Definition at line 2921 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), and HMWSoln::s_updatePitzer_CoeffWRTemp().

vector_fp m_lnActCoeffMolal_Scaled
mutableprivate

Logarithm of the activity coefficients on the molality scale.

 mutable because we change this if the composition
 or temperature or pressure changes.

index is the species index

Definition at line 2932 of file HMWSoln.h.

Referenced by HMWSoln::getActivities(), HMWSoln::getChemPotentials(), HMWSoln::getPartialMolarEntropies(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling().

vector_fp m_lnActCoeffMolal_Unscaled
mutableprivate

Logarithm of the activity coefficients on the molality scale.

 mutable because we change this if the composition
 or temperature or pressure changes.

index is the species index

Definition at line 2942 of file HMWSoln.h.

Referenced by HMWSoln::applyphScale(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and HMWSoln::s_updateScaling_pHScaling().

vector_fp m_dlnActCoeffMolaldT_Scaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt T.

index is the species index

Definition at line 2949 of file HMWSoln.h.

Referenced by HMWSoln::getPartialMolarCp(), HMWSoln::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEntropies(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling_dT().

vector_fp m_dlnActCoeffMolaldT_Unscaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt T.

index is the species index

Definition at line 2956 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updateScaling_pHScaling_dT().

vector_fp m_d2lnActCoeffMolaldT2_Scaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT.

index is the species index

Definition at line 2963 of file HMWSoln.h.

Referenced by HMWSoln::getPartialMolarCp(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling_dT2().

vector_fp m_d2lnActCoeffMolaldT2_Unscaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt TT.

index is the species index

Definition at line 2970 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), and HMWSoln::s_updateScaling_pHScaling_dT2().

vector_fp m_dlnActCoeffMolaldP_Scaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt P.

index is the species index

Definition at line 2977 of file HMWSoln.h.

Referenced by HMWSoln::getPartialMolarVolumes(), HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updateScaling_pHScaling_dP().

vector_fp m_dlnActCoeffMolaldP_Unscaled
mutableprivate

Derivative of the Logarithm of the activity coefficients on the molality scale wrt P.

index is the species index

Definition at line 2984 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), and HMWSoln::s_updateScaling_pHScaling_dP().

vector_fp m_molalitiesCropped
mutableprivate
bool m_molalitiesAreCropped
mutableprivate

Boolean indicating whether the molalities are cropped or are modified.

Definition at line 2995 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

vector_int m_CounterIJ
mutableprivate
double elambda[17]
mutableprivate

This is elambda, MEC.

Definition at line 3008 of file HMWSoln.h.

Referenced by HMWSoln::calc_lambdas(), HMWSoln::calc_thetas(), and HMWSoln::HMWSoln().

double elambda1[17]
mutableprivate

This is elambda1, MEC.

Definition at line 3013 of file HMWSoln.h.

Referenced by HMWSoln::calc_lambdas(), HMWSoln::calc_thetas(), and HMWSoln::HMWSoln().

vector_fp m_gfunc_IJ
mutableprivate

Various temporary arrays used in the calculation of the Pitzer activity coefficients.

The subscript, L, denotes the same quantity's derivative wrt temperatureThis is the value of g(x) in Pitzer's papers

vector index is counterIJ

Definition at line 3026 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_g2func_IJ
mutableprivate
vector_fp m_hfunc_IJ
mutableprivate

hfunc, was called gprime in Pitzer's paper.

However, it's not the derivative of gfunc(x), so I renamed it.

vector index is counterIJ

Definition at line 3039 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_h2func_IJ
mutableprivate

hfunc2, was called gprime in Pitzer's paper.

However, it's not the derivative of gfunc(x), so I renamed it.

vector index is counterIJ

Definition at line 3046 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BMX_IJ
mutableprivate

Intermediate variable called BMX in Pitzer's paper This is the basic cation - anion interaction.

vector index is counterIJ

Definition at line 3053 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BMX_IJ_L
mutableprivate

Derivative of BMX_IJ wrt T.

vector index is counterIJ

Definition at line 3059 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_BMX_IJ_LL
mutableprivate

Derivative of BMX_IJ wrt TT.

vector index is counterIJ

Definition at line 3065 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_BMX_IJ_P
mutableprivate

Derivative of BMX_IJ wrt P.

vector index is counterIJ

Definition at line 3071 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_BprimeMX_IJ
mutableprivate

Intermediate variable called BprimeMX in Pitzer's paper.

vector index is counterIJ

Definition at line 3077 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BprimeMX_IJ_L
mutableprivate

Derivative of BprimeMX wrt T.

vector index is counterIJ

Definition at line 3083 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_BprimeMX_IJ_LL
mutableprivate

Derivative of BprimeMX wrt TT.

vector index is counterIJ

Definition at line 3089 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_BprimeMX_IJ_P
mutableprivate

Derivative of BprimeMX wrt P.

vector index is counterIJ

Definition at line 3095 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_BphiMX_IJ
mutableprivate

Intermediate variable called BphiMX in Pitzer's paper.

vector index is counterIJ

Definition at line 3101 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_BphiMX_IJ_L
mutableprivate

Derivative of BphiMX_IJ wrt T.

vector index is counterIJ

Definition at line 3107 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_BphiMX_IJ_LL
mutableprivate

Derivative of BphiMX_IJ wrt TT.

vector index is counterIJ

Definition at line 3113 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_BphiMX_IJ_P
mutableprivate

Derivative of BphiMX_IJ wrt P.

vector index is counterIJ

Definition at line 3119 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_Phi_IJ
mutableprivate

Intermediate variable called Phi in Pitzer's paper.

vector index is counterIJ

Definition at line 3125 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_Phi_IJ_L
mutableprivate

Derivative of m_Phi_IJ wrt T.

vector index is counterIJ

Definition at line 3131 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_Phi_IJ_LL
mutableprivate

Derivative of m_Phi_IJ wrt TT.

vector index is counterIJ

Definition at line 3137 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_Phi_IJ_P
mutableprivate

Derivative of m_Phi_IJ wrt P.

vector index is counterIJ

Definition at line 3143 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_Phiprime_IJ
mutableprivate
vector_fp m_PhiPhi_IJ
mutableprivate

Intermediate variable called PhiPhi in Pitzer's paper.

vector index is counterIJ

Definition at line 3155 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_PhiPhi_IJ_L
mutableprivate

Derivative of m_PhiPhi_IJ wrt T.

vector index is counterIJ

Definition at line 3161 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_PhiPhi_IJ_LL
mutableprivate

Derivative of m_PhiPhi_IJ wrt TT.

vector index is counterIJ

Definition at line 3167 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_PhiPhi_IJ_P
mutableprivate

Derivative of m_PhiPhi_IJ wrt P.

vector index is counterIJ

Definition at line 3173 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_CMX_IJ
mutableprivate

Intermediate variable called CMX in Pitzer's paper.

vector index is counterIJ

Definition at line 3179 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp m_CMX_IJ_L
mutableprivate

Derivative of m_CMX_IJ wrt T.

vector index is counterIJ

Definition at line 3185 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT().

vector_fp m_CMX_IJ_LL
mutableprivate

Derivative of m_CMX_IJ wrt TT.

vector index is counterIJ

Definition at line 3191 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2().

vector_fp m_CMX_IJ_P
mutableprivate

Derivative of m_CMX_IJ wrt P.

vector index is counterIJ

Definition at line 3197 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), and HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP().

vector_fp m_gamma_tmp
mutableprivate

Intermediate storage of the activity coefficient itself.

vector index is the species index

Definition at line 3203 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::relative_enthalpy(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), and HMWSoln::s_updatePitzer_lnMolalityActCoeff().

vector_fp IMS_lnActCoeffMolal_
mutableprivate

Logarithm of the molal activity coefficients.

Normally these are all one. However, stability schemes will change that

Definition at line 3209 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_lnMolalityActCoeff(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

int IMS_typeCutoff_
private

IMS Cutoff type.

Definition at line 3212 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_X_o_cutoff_
private

value of the solute mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 3216 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_gamma_o_min_
private

gamma_o value for the cutoff process at the zero solvent point

Definition at line 3219 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_gamma_k_min_
private

gamma_k minimum for the cutoff process at the zero solvent point

Definition at line 3222 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_cCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3225 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_slopefCut_
private

Parameter in the polyExp cutoff treatment.

This is the slope of the f function at the zero solvent point Default value is 0.6

Definition at line 3232 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal IMS_dfCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3235 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_efCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3238 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_afCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3241 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_bfCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3244 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_slopegCut_
private

Parameter in the polyExp cutoff treatment.

This is the slope of the g function at the zero solvent point Default value is 0.0

Definition at line 3251 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal IMS_dgCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3255 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_egCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3258 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_agCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3261 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal IMS_bgCut_
private

Parameter in the polyExp cutoff treatment having to do with rate of exp decay.

Definition at line 3264 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_updateIMS_lnMolalityActCoeff().

doublereal MC_X_o_cutoff_
private

value of the solvent mole fraction that centers the cutoff polynomials for the cutoff =1 process;

Definition at line 3268 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal MC_X_o_min_
private

gamma_o value for the cutoff process at the zero solvent point

Definition at line 3271 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal MC_slopepCut_
private

Parameter in the Molality Exp cutoff treatment.

This is the slope of the p function at the zero solvent point Default value is 0.0

Definition at line 3278 of file HMWSoln.h.

Referenced by HMWSoln::operator=().

doublereal MC_dpCut_
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3281 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal MC_epCut_
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3284 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal MC_apCut_
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3287 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal MC_bpCut_
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3290 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal MC_cpCut_
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3293 of file HMWSoln.h.

Referenced by HMWSoln::calcMolalitiesCropped(), and HMWSoln::operator=().

doublereal CROP_ln_gamma_o_min
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3296 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_update_lnMolalityActCoeff().

doublereal CROP_ln_gamma_o_max
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3299 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_update_lnMolalityActCoeff().

doublereal CROP_ln_gamma_k_min
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3302 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_update_lnMolalityActCoeff().

doublereal CROP_ln_gamma_k_max
private

Parameter in the Molality Exp cutoff treatment.

Definition at line 3305 of file HMWSoln.h.

Referenced by HMWSoln::operator=(), and HMWSoln::s_update_lnMolalityActCoeff().

std::vector<int> CROP_speciesCropped_
mutableprivate

This is a boolean-type vector indicating whether a species's activity coefficient is in the cropped regime.

0 = Not in cropped regime 1 = In a transition regime where it is altered but there still may be a temperature or pressure dependence 2 = In a cropped regime where there is no temperature or pressure dependence

Definition at line 3317 of file HMWSoln.h.

Referenced by HMWSoln::initLengths(), HMWSoln::operator=(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), and HMWSoln::s_update_lnMolalityActCoeff().

int m_debugCalc
mutable
size_t m_indexSolvent
protectedinherited

Index of the solvent.

Currently the index of the solvent is hard-coded to the value 0

Definition at line 883 of file MolalityVPSSTP.h.

Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealMolalSoln::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), IdealMolalSoln::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), MolalityVPSSTP::operator=(), MolalityVPSSTP::osmoticCoefficient(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalities(), MolalityVPSSTP::setMolalitiesByName(), MolalityVPSSTP::setSolvent(), MolalityVPSSTP::solventIndex(), IdealMolalSoln::standardConcentration(), DebyeHuckel::standardConcentration(), and HMWSoln::standardConcentration().

int m_pHScalingType
protectedinherited

Scaling to be used for output of single-ion species activity coefficients.

Index of the species to be used in the single-ion scaling law. This is the identity of the Cl- species for the PHSCALE_NBS scaling. Either PHSCALE_PITZER or PHSCALE_NBS

Definition at line 893 of file MolalityVPSSTP.h.

Referenced by HMWSoln::applyphScale(), MolalityVPSSTP::operator=(), MolalityVPSSTP::pHScale(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), and MolalityVPSSTP::setpHScale().

size_t m_indexCLM
protectedinherited

Index of the phScale species.

Index of the species to be used in the single-ion scaling law. This is the identity of the Cl- species for the PHSCALE_NBS scaling

Definition at line 901 of file MolalityVPSSTP.h.

Referenced by HMWSoln::applyphScale(), MolalityVPSSTP::initThermo(), MolalityVPSSTP::operator=(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), and HMWSoln::s_updateScaling_pHScaling_dT2().

doublereal m_weightSolvent
protectedinherited
doublereal m_xmolSolventMIN
protectedinherited

In any molality implementation, it makes sense to have a minimum solvent mole fraction requirement, since the implementation becomes singular in the xmolSolvent=0 limit. The default is to set it to 0.01. We then modify the molality definition to ensure that molal_solvent = 0 when xmol_solvent = 0.

Definition at line 914 of file MolalityVPSSTP.h.

Referenced by MolalityVPSSTP::calcMolalities(), IdealMolalSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealMolalSoln::getMolalityActivityCoefficients(), MolalityVPSSTP::moleFSolventMin(), MolalityVPSSTP::operator=(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), and MolalityVPSSTP::setMoleFSolventMin().

doublereal m_Mnaught
protectedinherited
vector_fp m_molalities
mutableprotectedinherited
doublereal m_Pcurrent
protectedinherited
doublereal m_Tlast_ss
mutableprotectedinherited

The last temperature at which the standard statethermodynamic properties were calculated at.

Definition at line 609 of file VPStandardStateTP.h.

Referenced by VPStandardStateTP::_updateStandardStateThermo(), VPStandardStateTP::operator=(), and VPStandardStateTP::updateStandardStateThermo().

doublereal m_Plast_ss
mutableprotectedinherited

The last pressure at which the Standard State thermodynamic properties were calculated at.

Definition at line 613 of file VPStandardStateTP.h.

Referenced by VPStandardStateTP::_updateStandardStateThermo(), VPStandardStateTP::operator=(), and VPStandardStateTP::updateStandardStateThermo().

doublereal m_P0
protectedinherited

Reference pressure (Pa) must be the same for all species

  • defaults to OneAtm

Definition at line 619 of file VPStandardStateTP.h.

Referenced by VPStandardStateTP::operator=().

VPSSMgr* m_VPSS_ptr
mutableprotectedinherited
std::vector<PDSS*> m_PDSS_storage
protectedinherited

Storage for the PDSS objects for the species.

Storage is in species index order. VPStandardStateTp owns each of the objects. Copy operations are deep.

Definition at line 634 of file VPStandardStateTP.h.

Referenced by VPStandardStateTP::initThermo(), VPStandardStateTP::initThermoXML(), VPStandardStateTP::operator=(), and VPStandardStateTP::~VPStandardStateTP().

SpeciesThermo* m_spthermo
protectedinherited

Pointer to the calculation manager for species reference-state thermodynamic properties.

This class is called when the reference-state thermodynamic properties of all the species in the phase needs to be evaluated.

Definition at line 1611 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), ConstDensityThermo::enthalpy_mole(), LatticePhase::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), IdealGasPhase::entropy_mole(), FixedChemPotSSTP::FixedChemPotSSTP(), ConstDensityThermo::getChemPotentials(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), PureFluidPhase::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), PureFluidPhase::getGibbs_RT_ref(), IdealGasPhase::getPartialMolarEntropies(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), ConstDensityThermo::intEnergy_mole(), LatticePhase::intEnergy_mole(), ThermoPhase::maxTemp(), ThermoPhase::minTemp(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), ThermoPhase::refPressure(), ThermoPhase::setSpeciesThermo(), LatticeSolidPhase::speciesThermo(), ThermoPhase::speciesThermo(), and ThermoPhase::~ThermoPhase().

std::vector<const XML_Node*> m_speciesData
protectedinherited

Vector of pointers to the species databases.

This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.

Definition at line 1621 of file ThermoPhase.h.

Referenced by LatticeSolidPhase::installSlavePhases(), ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().

doublereal m_phi
protectedinherited

Stored value of the electric potential for this phase.

Units are Volts

Definition at line 1627 of file ThermoPhase.h.

Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().

vector_fp m_lambdaRRT
protectedinherited

Vector of element potentials.

-> length equal to number of elements

Definition at line 1631 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

bool m_hasElementPotentials
protectedinherited

Boolean indicating whether there is a valid set of saved element potentials for this phase.

Definition at line 1635 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

bool m_chargeNeutralityNecessary
protectedinherited

Boolean indicating whether a charge neutrality condition is a necessity.

Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.

Definition at line 1645 of file ThermoPhase.h.

Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().

int m_ssConvention
protectedinherited

Contains the standard state convention.

Definition at line 1648 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().

std::vector<doublereal> xMol_Ref
protectedinherited

Reference Mole Fraction Composition.

Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file

Definition at line 1657 of file ThermoPhase.h.

Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().

size_t m_kk
protectedinherited

Number of species in the phase.

Definition at line 727 of file Phase.h.

Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), HMWSoln::applyphScale(), RedlichKwongMFTP::applyStandardMixingRules(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKwongMFTP::calculateAB(), GibbsExcessVPSSTP::checkMFSum(), Phase::checkSpeciesArraySize(), Phase::checkSpeciesIndex(), HMWSoln::counterIJ_setup(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), ConstDensityThermo::expGibbs_RT(), IdealGasPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), GibbsExcessVPSSTP::getActivities(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), ConstDensityThermo::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IonsFromNeutralVPSSTP::getActivityCoefficients(), GibbsExcessVPSSTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityCoefficients(), LatticeSolidPhase::getActivityCoefficients(), MixedSolventElectrolyte::getActivityCoefficients(), PhaseCombo_Interaction::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), ThermoPhase::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), LatticePhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), HMWSoln::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), RedlichKisterVPSSTP::getd2lnActCoeffdT2(), MargulesVPSSTP::getd2lnActCoeffdT2(), MixedSolventElectrolyte::getd2lnActCoeffdT2(), PhaseCombo_Interaction::getd2lnActCoeffdT2(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), PhaseCombo_Interaction::getdlnActCoeffdlnN(), RedlichKisterVPSSTP::getdlnActCoeffdlnN(), MargulesVPSSTP::getdlnActCoeffdlnN(), MixedSolventElectrolyte::getdlnActCoeffdlnN(), ThermoPhase::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnN_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), MargulesVPSSTP::getdlnActCoeffdlnN_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnX_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnX_diag(), MargulesVPSSTP::getdlnActCoeffdlnX_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), LatticePhase::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), MolarityIonicVPSSTP::getLnActivityCoefficients(), RedlichKisterVPSSTP::getLnActivityCoefficients(), MargulesVPSSTP::getLnActivityCoefficients(), ThermoPhase::getLnActivityCoefficients(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), LatticePhase::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), MolarityIonicVPSSTP::getPartialMolarVolumes(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::HMWSoln(), Phase::init(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), RedlichKwongMFTP::initLengths(), VPStandardStateTP::initLengths(), LatticeSolidPhase::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), ConstDensityThermo::initThermo(), SurfPhase::initThermo(), MolarityIonicVPSSTP::initThermo(), StoichSubstanceSSTP::initThermo(), VPStandardStateTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), ThermoPhase::initThermo(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), Phase::nSpecies(), VPStandardStateTP::operator=(), Phase::operator=(), ThermoPhase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::printCoeffs(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), IdealSolidSolnPhase::referenceConcentration(), HMWSoln::relative_enthalpy(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), MolarityIonicVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), Phase::setConcentrations(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), Phase::setMoleFractions(), Phase::setMoleFractions_NoNorm(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), ThermoPhase::speciesData(), Phase::speciesIndex(), IdealSolidSolnPhase::standardConcentration(), RedlichKwongMFTP::updateAB(), and ThermoPhase::~ThermoPhase().

size_t m_ndim
protectedinherited

Dimensionality of the phase.

Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.

Definition at line 731 of file Phase.h.

Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().

vector_fp m_speciesComp
protectedinherited

Atomic composition of the species.

The number of atoms of element i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm

Definition at line 736 of file Phase.h.

Referenced by Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), Phase::getAtoms(), LatticeSolidPhase::installSlavePhases(), Phase::nAtoms(), and Phase::operator=().

vector_fp m_speciesSize
protectedinherited

Vector of species sizes.

length m_kk. Used in some equations of state which employ the constant partial molar volume approximation.

Definition at line 740 of file Phase.h.

Referenced by Phase::addUniqueSpecies(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), Phase::operator=(), Phase::size(), HMWSoln::speciesMolarVolume(), and DebyeHuckel::standardConcentration().

vector_fp m_speciesCharge
protectedinherited

The documentation for this class was generated from the following files: