Cantera  2.0
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
RedlichKwongMFTP Class Reference

This class can handle either an ideal solution or an ideal gas approximation of a phase. More...

#include <RedlichKwongMFTP.h>

Inheritance diagram for RedlichKwongMFTP:
[legend]
Collaboration diagram for RedlichKwongMFTP:
[legend]

Public Member Functions

virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol.
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol.
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K.
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol.
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K.
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K.
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature.
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase.
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state.
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState.
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector.
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k.
 
doublereal molarMass (size_t k) const
 Return the Molar mass of species k Alternate name for molecular weight.
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights.
 
void getMolecularWeights (int iwt, doublereal *weights) const
 Copy the vector of molecular weights into array weights.
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
doublereal size (size_t k) const
 This routine returns the size of species k.
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
doublereal chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual void freezeSpecies ()
 Call when finished adding species.
 
bool speciesFrozen ()
 True if freezeSpecies has been called.
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
void stateMFChangeCalc (bool forceChange=false)
 Every time the mole fractions have changed, this routine will increment the stateMFNumber.
 

Static Public Attributes

static const doublereal omega_a = 4.27480233540E-01
 Omega constant for a -> value of a in terms of critical properties.
 
static const doublereal omega_b = 8.66403499650E-02
 Omega constant for b.
 
static const doublereal omega_vc = 3.33333333333333E-01
 Omega constant for the critical molar volume.
 

Protected Member Functions

void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 

Protected Attributes

int m_standardMixingRules
 boolean indicating whether standard mixing rules are applied
 
int m_formTempParam
 Form of the temperature parameterization.
 
doublereal m_b_current
 Value of b in the equation of state.
 
doublereal m_a_current
 Value of a in the equation of state.
 
vector_fp a_vec_Curr_
 
vector_fp b_vec_Curr_
 
Array2D a_coeff_vec
 
vector_fp m_pc_Species
 
vector_fp m_tc_Species
 
vector_fp m_vc_Species
 
int NSolns_
 
doublereal Vroot_ [3]
 
vector_fp m_pp
 Temporary storage - length = m_kk.
 
vector_fp m_tmpV
 Temporary storage - length = m_kk.
 
vector_fp m_partialMolarVolumes
 
doublereal dpdV_
 The derivative of the pressure wrt the volume.
 
doublereal dpdT_
 The derivative of the pressure wrt the temperature.
 
vector_fp dpdni_
 Vector of derivatives of pressure wrt mole number.
 
doublereal m_Pcurrent
 Current value of the pressures.
 
std::vector< doublereal > moleFractions_
 Storage for the current values of the mole fractions of the species.
 
int iState_
 Current state of the fluid.
 
int forcedState_
 Force the system to be on a particular side of the spinodal curve.
 
doublereal m_Tlast_ref
 The last temperature at which the reference state thermodynamic properties were calculated at.
 
doublereal m_logc0
 Temporary storage for log of p/rt.
 
vector_fp m_h0_RT
 Temporary storage for dimensionless reference state enthalpies.
 
vector_fp m_cp0_R
 Temporary storage for dimensionless reference state heat capacities.
 
vector_fp m_g0_RT
 Temporary storage for dimensionless reference state gibbs energies.
 
vector_fp m_s0_R
 Temporary storage for dimensionless reference state entropies.
 
spinodalFunc * fdpdv_
 
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases.
 
doublereal m_phi
 Stored value of the electric potential for this phase.
 
vector_fp m_lambdaRRT
 Vector of element potentials.
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase.
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention
 Contains the standard state convention.
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition.
 
size_t m_kk
 Number of species in the phase.
 
size_t m_ndim
 Dimensionality of the phase.
 
vector_fp m_speciesComp
 Atomic composition of the species.
 
vector_fp m_speciesSize
 Vector of species sizes.
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk.
 

Utilities (MixtureFugacityTP)

virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual void setForcedSolutionBranch (int solnBranch)
 Set the solution branch to force the ThermoPhase to exist on one branch or another.
 
virtual int forcedSolutionBranch () const
 Report the solution branch which the solution is restricted to.
 
virtual int reportSolnBranchActual () const
 Report the solution branch which the solution is actually on.
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log concentration-like derivatives of the log activity coefficients.
 

Properties of the Standard State of the Species in the Solution

          (MixtureFugacityTP)

Within MixtureFugacityTP, these properties are calculated via a common routine, _updateStandardStateThermo(), which must be overloaded in inherited objects. The values are cached within this object, and are not recalculated unless the temperature or pressure changes.

virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity.
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Enthalpy functions for the standard state species.
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution.
 
void getPureGibbs (doublereal *gpure) const
 Get the pure Gibbs free energies of each species.
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P.
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution.
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
virtual void setState_TP (doublereal T, doublereal pres)
 Set the temperature and pressure at the same time.
 
virtual void setState_TR (doublereal T, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setMoleFractions_NoState (const doublereal *const x)
 
virtual void _updateReferenceStateThermo () const
 Updates the reference state thermodynamic functions at the current T of the solution.
 

Thermodynamic Values for the Species Reference States (MixtureFugacityTP)

virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getGibbs_ref (doublereal *g) const
 
virtual void getEntropy_R_ref (doublereal *er) const
 
virtual void getCp_R_ref (doublereal *cprt) const
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and reference pressure of the solution.
 
const vector_fpgibbs_RT_ref () const
 Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 

Initialization Methods - For Internal use (VPStandardState)

virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element.
 
int phaseState (bool checkState=false) const
 Returns the Phase State flag for the current state of the object.
 
doublereal calculatePsat (doublereal TKelvin, doublereal &molarVolGas, doublereal &molarVolLiquid)
 Calculate the saturation pressure at the current mixture content for the given temperature.
 
doublereal z () const
 Calculate the value of z.
 
virtual doublereal psatEst (doublereal TKelvin) const
 Estimate for the saturation pressure.
 
int corr0 (doublereal TKelvin, doublereal pres, doublereal &densLiq, doublereal &densGas, doublereal &liqGRT, doublereal &gasGRT)
 Utility routine in the calculation of the saturation pressure.
 

Name and ID

Class Phase contains two strings that identify a phase. The ID is the value of the ID attribute of the XML phase node that is used to initialize a phase when it is read. The name field is also initialized to the value of the ID attribute of the XML phase node.

However, the name field may be changed to another value during the course of a calculation. For example, if a phase is located in two places, but has the same constitutive input, the ids of the two phases will be the same, but the names of the two phases may be different.

It is an error to have two phases in a single problem with the same name or the same id (or the name from one phase being the same as the id of another phase). Thus, it is expected that there is a 1-1 correspondence between names and unique phases within a Cantera problem.

std::string id () const
 Return the string id for the phase.
 
void setID (std::string id)
 Set the string id for the phase.
 
std::string name () const
 Return the name of the phase.
 
void setName (std::string nm)
 Sets the string name for the phase.
 

Element and Species Information

std::string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (std::string name) const
 Return the index of element named 'name'.
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m.
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements().
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
 
size_t speciesIndex (std::string name) const
 Returns the index of a species named 'name' within the Phase object.
 
std::string speciesName (size_t k) const
 Name of the species with index k.
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
 

Set thermodynamic state

Set the internal thermodynamic state by setting the internally stored temperature, density and species composition. Note that the composition is always set first.

Temperature and density are held constant if not explicitly set.

void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name.
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions.
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions.
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions.
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions.
 

Composition

void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name.
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
doublereal moleFraction (std::string name) const
 Return the mole fraction of a single species.
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species.
 
doublereal massFraction (std::string name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector.
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions.
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array.
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3).
 
doublereal concentration (const size_t k) const
 Concentration of species k.
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array.
 

Thermodynamic Properties

doublereal temperature () const
 Temperature (K).
 
virtual doublereal density () const
 Density (kg/m^3).
 
doublereal molarDensity () const
 Molar density (kmol/m^3).
 
doublereal molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const doublereal density)
 Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable.
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase.
 

Mean Properties

doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q.
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \).
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \).
 

Adding Elements and Species

These methods are used to add new elements or species.

These are not usually called by user programs.

Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species.

void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element.
 
void addElement (const XML_Node &e)
 Add an element from an XML specification.
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree.
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species.
 
bool elementsFrozen ()
 True if freezeElements has been called.
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.
 

Constructors and Duplicators for RedlichKwongMFTP

 RedlichKwongMFTP ()
 Base constructor.
 
 RedlichKwongMFTP (std::string infile, std::string id="")
 Construct and initialize a RedlichKwongMFTP ThermoPhase object directly from an ASCII input file.
 
 RedlichKwongMFTP (XML_Node &phaseRef, std::string id="")
 Construct and initialize a RedlichKwongMFTP ThermoPhase object directly from an XML database.
 
 RedlichKwongMFTP (int testProb)
 This is a special constructor, used to replicate test problems during the initial verification of the object.
 
 RedlichKwongMFTP (const RedlichKwongMFTP &right)
 Copy Constructor.
 
RedlichKwongMFTPoperator= (const RedlichKwongMFTP &right)
 Assignment operator.
 
virtual ~RedlichKwongMFTP ()
 Destructor.
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 Duplicator from the ThermoPhase parent class.
 

Utilities (RedlichKwongMFTP)

virtual int eosType () const
 Equation of state type flag.
 

Mechanical Properties

virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa).
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations.
 
virtual doublereal standardConcentration (size_t k=0) const
 Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.
 
virtual doublereal logStandardConc (size_t k=0) const
 Returns the natural logarithm of the standard concentration of the kth species.
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations.
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
 
virtual void calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
 
virtual void setTemperature (const doublereal temp)
 Set the temperature (K)
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0.
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing.
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0.
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing.
 
virtual void setConcentrations (const doublereal *const c)
 Set the concentrations to the specified values within the phase.
 

Partial Molar Properties of the Solution (RedlichKwongMFTP)

void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials.
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol.
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Get the species partial molar enthalpies. Units: J/kmol.
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Get the species partial molar entropies. Units: J/kmol/K.
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Get the species partial molar enthalpies. Units: J/kmol.
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Get the partial molar heat capacities Units: J/kmol/K.
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Get the species partial molar volumes. Units: m^3/kmol.
 

Critical State Properties.

These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date.

Properties of the reference states are delegated to the VPSSMgr object. The values are cached within this object, and are not recalculated unless the temperature or pressure changes.

virtual doublereal critTemperature () const
 Critical temperature (K).
 
virtual doublereal critPressure () const
 Critical pressure (Pa).
 
virtual doublereal critDensity () const
 Critical density (kg/m3).
 

Initialization Methods - For Internal use (VPStandardState)

virtual void setParametersFromXML (const XML_Node &thermoNode)
 Set equation of state parameter values from XML entries.
 
virtual void initThermo ()
 
void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver.
 
virtual void initThermoXML (XML_Node &phaseNode, std::string id)
 Initialize a ThermoPhase object, potentially reading activity coefficient information from an XML database.
 
virtual doublereal liquidVolEst (doublereal TKelvin, doublereal &pres) const
 Estimate for the molar volume of the liquid.
 
virtual doublereal densityCalc (doublereal TKelvin, doublereal pressure, int phase, doublereal rhoguess)
 Calculates the density given the temperature and the pressure and a guess at the density.
 
virtual doublereal densSpinodalLiquid () const
 Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature.
 
virtual doublereal densSpinodalGas () const
 Return the value of the density at the gas spinodal point (on the gas side) for the current temperature.
 
virtual doublereal pressureCalc (doublereal TKelvin, doublereal molarVol) const
 Calculate the pressure given the temperature and the molar volume.
 
virtual doublereal dpdVCalc (doublereal TKelvin, doublereal molarVol, doublereal &presCalc) const
 Calculate the pressure and the pressure derivative given the temperature and the molar volume.
 
void pressureDerivatives () const
 Calculate dpdV and dpdT at the current conditions.
 
virtual void updateMixingExpressions ()
 
void updateAB ()
 Update the a and b parameters.
 
void calculateAB (doublereal temp, doublereal &aCalc, doublereal &bCalc) const
 Calculate the a and the b parameters given the temperature.
 
doublereal da_dt () const
 
void calcCriticalConditions (doublereal a, doublereal b, doublereal a0_coeff, doublereal aT_coeff, doublereal &pc, doublereal &tc, doublereal &vc) const
 
int NicholsSolve (double TKelvin, double pres, doublereal a, doublereal b, doublereal Vroot[3]) const
 
virtual doublereal sresid () const
 Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.
 
virtual doublereal hresid () const
 Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.
 
void readXMLPureFluid (XML_Node &pureFluidParam)
 Read the pure species RedlichKwong input parameters.
 
void applyStandardMixingRules ()
 Apply mixing rules for a coefficients.
 
void readXMLCrossFluid (XML_Node &pureFluidParam)
 Read the cross species RedlichKwong input parameters.
 
void initLengths ()
 

Information Methods

virtual doublereal refPressure () const
 Returns the reference pressure in Pa.
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 

Mechanical Properties

virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
virtual void updateDensity ()
 

Electric Potential

The phase may be at some non-zero electrical potential.

These methods set or get the value of the electric potential.

void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V).
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V).
 

Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition.

The activity is dimensionless.

virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 

Partial Molar Properties of the Solution

void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials.
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.
 

Properties of the Standard State of the Species in the Solution

virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.
 

Thermodynamic Values for the Species Reference States

virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition.
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition.
 

Specific Properties

doublereal enthalpy_mass () const
 Specific enthalpy.
 
doublereal intEnergy_mass () const
 Specific internal energy.
 
doublereal entropy_mass () const
 Specific entropy.
 
doublereal gibbs_mass () const
 Specific Gibbs function.
 
doublereal cp_mass () const
 Specific heat at constant pressure.
 
doublereal cv_mass () const
 Specific heat at constant volume.
 

Setting the State

These methods set all or part of the thermodynamic state.

void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions.
 
void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions.
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 

Chemical Equilibrium

Chemical equilibrium.

void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object.
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object.
 

Saturation Properties.

These methods are only implemented by subclasses that implement full liquid-vapor equations of state.

They may be moved out of ThermoPhase at a later date.

virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure.
 
virtual doublereal satPressure (doublereal t) const
 Return the saturation pressure given the temperature.
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure.
 

Initialization Methods - For Internal Use (ThermoPhase)

void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase.
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase.
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager.
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual void initThermoFile (std::string inputFile, std::string id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases.
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters.
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector.
 

Derivatives of Thermodynamic Variables needed for Applications

virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 

Printing

virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file
 

Detailed Description

This class can handle either an ideal solution or an ideal gas approximation of a phase.

Definition at line 40 of file RedlichKwongMFTP.h.

Constructor & Destructor Documentation

Base constructor.

Definition at line 35 of file RedlichKwongMFTP.cpp.

Referenced by RedlichKwongMFTP::duplMyselfAsThermoPhase().

RedlichKwongMFTP ( std::string  infile,
std::string  id = "" 
)

Construct and initialize a RedlichKwongMFTP ThermoPhase object directly from an ASCII input file.

Working constructors

The two constructors below are the normal way the phase initializes itself. They are shells that call the routine initThermo(), with a reference to the XML database to get the info for the phase.

Parameters
infileName of the input file containing the phase XML data to set up the object
idID of the phase in the input file. Defaults to the empty string.

Definition at line 60 of file RedlichKwongMFTP.cpp.

References Cantera::get_XML_File(), Cantera::get_XML_NameID(), and Cantera::importPhase().

RedlichKwongMFTP ( XML_Node phaseRef,
std::string  id = "" 
)

Construct and initialize a RedlichKwongMFTP ThermoPhase object directly from an XML database.

Parameters
phaseRefXML phase node containing the description of the phase
idid attribute containing the name of the phase. (default is the empty string)

Definition at line 95 of file RedlichKwongMFTP.cpp.

References Cantera::get_XML_NameID(), and Cantera::importPhase().

RedlichKwongMFTP ( int  testProb)

This is a special constructor, used to replicate test problems during the initial verification of the object.

test problems: 1: Pure CO2 problem input file = CO2_RedlickKwongMFTP.xml

Parameters
testProbHard -coded test problem to instantiate. Current valid values are 1.

Definition at line 126 of file RedlichKwongMFTP.cpp.

References Cantera::get_XML_File(), Cantera::get_XML_NameID(), Phase::id(), and Cantera::importPhase().

RedlichKwongMFTP ( const RedlichKwongMFTP right)

Copy Constructor.

Copy constructor for the object. Constructed object will be a clone of this object, but will also own all of its data. This is a wrapper around the assignment operator

Parameters
rightObject to be copied.

Definition at line 174 of file RedlichKwongMFTP.cpp.

~RedlichKwongMFTP ( )
virtual

Destructor.

Definition at line 245 of file RedlichKwongMFTP.cpp.

Member Function Documentation

RedlichKwongMFTP & operator= ( const RedlichKwongMFTP right)

Assignment operator.

Assignment operator for the object. Constructed object will be a clone of this object, but will also own all of its data.

Parameters
rightObject to be copied.

Definition at line 205 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::dpdni_, RedlichKwongMFTP::dpdT_, RedlichKwongMFTP::dpdV_, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::m_formTempParam, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_standardMixingRules, RedlichKwongMFTP::m_tmpV, and MixtureFugacityTP::operator=().

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplicator from the ThermoPhase parent class.

Given a pointer to a ThermoPhase object, this function will duplicate the ThermoPhase object and all underlying structures. This is basically a wrapper around the copy constructor.

Returns
returns a pointer to a ThermoPhase

Reimplemented from MixtureFugacityTP.

Definition at line 253 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::RedlichKwongMFTP().

int eosType ( ) const
virtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Reimplemented from MixtureFugacityTP.

Definition at line 259 of file RedlichKwongMFTP.cpp.

doublereal enthalpy_mole ( ) const
virtual
doublereal intEnergy_mole ( ) const
virtual

Molar internal energy. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 280 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::enthalpy_mole(), Phase::molarDensity(), and RedlichKwongMFTP::pressure().

doublereal entropy_mole ( ) const
virtual
doublereal gibbs_mole ( ) const
virtual

Molar Gibbs function. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 298 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), and Phase::temperature().

doublereal cp_mole ( ) const
virtual
doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 322 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::cp_mole(), and Cantera::GasConstant.

doublereal pressure ( ) const
virtual

Return the thermodynamic pressure (Pa).

Since the mass density, temperature, and mass fractions are stored, this method uses these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \).

\[ P = \frac{RT}{v-b_{mix}} - \frac{a_{mix}}{T^{0.5} v \left( v + b_{mix} \right) } \]

Reimplemented from MixtureFugacityTP.

Definition at line 339 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::density(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, MixtureFugacityTP::m_Pcurrent, Phase::meanMolecularWeight(), and Phase::temperature().

Referenced by RedlichKwongMFTP::entropy_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), and RedlichKwongMFTP::intEnergy_mole().

doublereal isothermalCompressibility ( ) const
virtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 419 of file RedlichKwongMFTP.cpp.

void calcDensity ( )
protectedvirtual

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the species standard state molar volumes. The species molar volumes may be functions of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

Reimplemented from MixtureFugacityTP.

Definition at line 362 of file RedlichKwongMFTP.cpp.

References DATA_PTR, Cantera::dot(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKwongMFTP::m_tmpV, Phase::moleFractdivMMW(), and Phase::setDensity().

void setTemperature ( const doublereal  temp)
protectedvirtual

Set the temperature (K)

Overwritten setTemperature(double) from State.h. This function sets the temperature, and makes sure that the value propagates to underlying objects

Todo:
Make Phase::setTemperature a virtual function
Parameters
tempTemperature in kelvin

Reimplemented from MixtureFugacityTP.

Definition at line 381 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::setTemperature(), and RedlichKwongMFTP::updateAB().

Referenced by RedlichKwongMFTP::densityCalc().

void setMassFractions ( const doublereal *const  y)
protectedvirtual

Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0.

Parameters
yArray of unnormalized mass fraction values (input). Must have a length greater than or equal to the number of species.

Reimplemented from MixtureFugacityTP.

Definition at line 388 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMassFractions(), and RedlichKwongMFTP::updateAB().

void setMassFractions_NoNorm ( const doublereal *const  y)
protectedvirtual

Set the mass fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
yInput vector of mass fractions. Length is m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 394 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMassFractions_NoNorm(), and RedlichKwongMFTP::updateAB().

void setMoleFractions ( const doublereal *const  x)
protectedvirtual

Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0.

Parameters
xArray of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species.

Reimplemented from MixtureFugacityTP.

Definition at line 400 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMoleFractions(), and RedlichKwongMFTP::updateAB().

void setMoleFractions_NoNorm ( const doublereal *const  x)
protectedvirtual

Set the mole fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set ofequations.

Parameters
xInput vector of mole fractions. Length is m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 406 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setMoleFractions(), and RedlichKwongMFTP::updateAB().

void setConcentrations ( const doublereal *const  c)
protectedvirtual

Set the concentrations to the specified values within the phase.

Parameters
cThe input vector to this routine is in dimensional units. For volumetric phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase.

Reimplemented from MixtureFugacityTP.

Definition at line 412 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::setConcentrations(), and RedlichKwongMFTP::updateAB().

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 429 of file RedlichKwongMFTP.cpp.

References DATA_PTR, RedlichKwongMFTP::getPartialMolarVolumes(), Phase::m_kk, and Phase::moleFraction().

doublereal standardConcentration ( size_t  k = 0) const
virtual

Returns the standard concentration \( C^0_k \), which is used to normalize the generalized concentration.

This is defined as the concentration by which the generalized concentration is normalized to produce the activity. In many cases, this quantity will be the same for all species in a phase. Since the activity for an ideal gas mixture is simply the mole fraction, for an ideal gas \( C^0_k = P/\hat R T \).

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.

Reimplemented from ThermoPhase.

Definition at line 441 of file RedlichKwongMFTP.cpp.

References DATA_PTR, MixtureFugacityTP::getStandardVolumes(), and RedlichKwongMFTP::m_tmpV.

Referenced by RedlichKwongMFTP::logStandardConc().

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species. (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 456 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::standardConcentration().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtual

Returns the units of the standard and generalized concentrations.

Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.

Parameters
uAOutput vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.

Reimplemented from ThermoPhase.

Definition at line 489 of file RedlichKwongMFTP.cpp.

References Phase::nDim().

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution. The activities are based on this standard state.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

For ideal gases, the activity coefficients are all equal to one.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 524 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), and Phase::temperature().

void getChemPotentials_RT ( doublereal *  mu) const
virtual

Get the array of non-dimensional species chemical potentials.

These are partial molar Gibbs free energies.

\( \mu_k / \hat R T \). Units: unitless

We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.

Parameters
muOutput vector of non-dimensional species chemical potentials Length: m_kk.

Reimplemented from MixtureFugacityTP.

Definition at line 569 of file RedlichKwongMFTP.cpp.

References ThermoPhase::_RT(), RedlichKwongMFTP::getChemPotentials(), and Phase::m_kk.

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 578 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getGibbs_ref(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, RedlichKwongMFTP::m_pp, ckr::max(), Phase::molarVolume(), Phase::moleFraction(), MixtureFugacityTP::moleFractions_, RedlichKwongMFTP::pressure(), ThermoPhase::refPressure(), Cantera::SmallNumber, and Phase::temperature().

Referenced by RedlichKwongMFTP::getChemPotentials_RT().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual
void getPartialMolarEntropies ( doublereal *  sbar) const
virtual
void getPartialMolarIntEnergies ( doublereal *  ubar) const
virtual

Get the species partial molar enthalpies. Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 731 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getIntEnergy_RT(), Phase::m_kk, Cantera::scale(), and Phase::temperature().

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Get the partial molar heat capacities Units: J/kmol/K.

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented from ThermoPhase.

Definition at line 738 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::getCp_R(), Phase::m_kk, and Cantera::scale().

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Get the species partial molar volumes. Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 745 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, MixtureFugacityTP::m_Pcurrent, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, Phase::molarVolume(), MixtureFugacityTP::moleFractions_, and Phase::temperature().

Referenced by RedlichKwongMFTP::calcDensity(), RedlichKwongMFTP::getActivityConcentrations(), and RedlichKwongMFTP::getPartialMolarEntropies().

doublereal critTemperature ( ) const
virtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 791 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::densityCalc().

doublereal critPressure ( ) const
virtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 807 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::liquidVolEst().

doublereal critDensity ( ) const
virtual
void setParametersFromXML ( const XML_Node thermoNode)
virtual

Set equation of state parameter values from XML entries.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This method is called by function importPhase in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model.

Parameters
thermoNodeAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 1173 of file RedlichKwongMFTP.cpp.

References ThermoPhase::setParametersFromXML().

void initThermo ( )
virtual

Initialize the object

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase().

See Also
importCTML.cpp

Reimplemented from MixtureFugacityTP.

Definition at line 854 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::initLengths(), and MixtureFugacityTP::initThermo().

void setToEquilState ( const doublereal *  lambda_RT)
virtual

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented from ThermoPhase.

Definition at line 861 of file RedlichKwongMFTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), DATA_PTR, MixtureFugacityTP::getGibbs_RT_ref(), Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, ThermoPhase::refPressure(), and ThermoPhase::setState_PX().

void initThermoXML ( XML_Node phaseNode,
std::string  id 
)
virtual

Initialize a ThermoPhase object, potentially reading activity coefficient information from an XML database.

This routine initializes the lengths in the current object and then calls the parent routine. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from MixtureFugacityTP.

Definition at line 938 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::applyStandardMixingRules(), XML_Node::child(), XML_Node::hasChild(), RedlichKwongMFTP::initLengths(), MixtureFugacityTP::initThermoXML(), Cantera::lowercase(), Phase::m_kk, RedlichKwongMFTP::m_standardMixingRules, XML_Node::name(), XML_Node::nChildren(), RedlichKwongMFTP::readXMLCrossFluid(), and RedlichKwongMFTP::readXMLPureFluid().

void readXMLPureFluid ( XML_Node pureFluidParam)
private

Read the pure species RedlichKwong input parameters.

Parameters
pureFluidParamXML_Node for the pure fluid parameters

Definition at line 1024 of file RedlichKwongMFTP.cpp.

References XML_Node::attrib(), XML_Node::child(), ctml::getFloatArray(), Cantera::lowercase(), RedlichKwongMFTP::m_formTempParam, Phase::m_kk, XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and Phase::speciesIndex().

Referenced by RedlichKwongMFTP::initThermoXML().

void applyStandardMixingRules ( )
private

Apply mixing rules for a coefficients.

Definition at line 1088 of file RedlichKwongMFTP.cpp.

References Phase::m_kk.

Referenced by RedlichKwongMFTP::initThermoXML().

void readXMLCrossFluid ( XML_Node pureFluidParam)
private

Read the cross species RedlichKwong input parameters.

Parameters
pureFluidParamXML_Node for the cross fluid parameters

Definition at line 1106 of file RedlichKwongMFTP.cpp.

References XML_Node::attrib(), XML_Node::child(), ctml::getFloatArray(), Cantera::lowercase(), RedlichKwongMFTP::m_formTempParam, Phase::m_kk, XML_Node::name(), XML_Node::nChildren(), Cantera::npos, and Phase::speciesIndex().

Referenced by RedlichKwongMFTP::initThermoXML().

void initLengths ( )
private

Initialize the internal lengths in this object.

Note this is not a virtual function and only handles this object

Definition at line 900 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::dpdni_, Phase::m_kk, RedlichKwongMFTP::m_pp, RedlichKwongMFTP::m_tmpV, and Array2D::resize().

Referenced by RedlichKwongMFTP::initThermo(), and RedlichKwongMFTP::initThermoXML().

doublereal sresid ( ) const
protectedvirtual

Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.

Here we use the current state conditions

Returns
Returns the change in entropy in units of J kmol-1 K-1.

Reimplemented from MixtureFugacityTP.

Definition at line 1188 of file RedlichKwongMFTP.cpp.

References Phase::density(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), Phase::temperature(), and MixtureFugacityTP::z().

Referenced by RedlichKwongMFTP::entropy_mole().

doublereal hresid ( ) const
protectedvirtual

Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.

Reimplemented from MixtureFugacityTP.

Definition at line 1212 of file RedlichKwongMFTP.cpp.

References Phase::density(), Cantera::GasConstant, RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), Phase::temperature(), and MixtureFugacityTP::z().

Referenced by RedlichKwongMFTP::enthalpy_mole().

doublereal liquidVolEst ( doublereal  TKelvin,
doublereal &  pres 
) const
virtual

Estimate for the molar volume of the liquid.

Note: this is only used as a starting guess for later routines that actually calculate an accurate value for the liquid molar volume. This routine doesn't change the state of the system.

Parameters
TKelvintemperature in kelvin
presPressure in Pa. This is used as an initial guess. If the routine needs to change the pressure to find a stable liquid state, the new pressure is returned in this variable.
Returns
Returns the estimate of the liquid volume.

Reimplemented from MixtureFugacityTP.

Definition at line 1242 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::m_b_current, and MixtureFugacityTP::psatEst().

Referenced by RedlichKwongMFTP::densityCalc().

doublereal densityCalc ( doublereal  TKelvin,
doublereal  pressure,
int  phase,
doublereal  rhoguess 
)
virtual

Calculates the density given the temperature and the pressure and a guess at the density.

Note, below T_c, this is a multivalued function. We do not cross the vapor dome in this. This is protected because it is called during setState_TP() routines. Infinite loops would result if it were not protected.

-> why is this not const?

parameters:

Parameters
TKelvinTemperature in Kelvin
pressurePressure in Pascals (Newton/m**2)
phaseint representing the phase whose density we are requesting. If we put a gas or liquid phase here, we will attempt to find a volume in that part of the volume space, only, in this routine. A value of FLUID_UNDEFINED means that we will accept anything.
rhoguessGuessed density of the fluid. A value of -1.0 indicates that there is no guessed density
Returns
We return the density of the fluid at the requested phase. If we have not found any acceptable density we return a -1. If we have found an accectable density at a different phase, we return a -2.

Reimplemented from MixtureFugacityTP.

Definition at line 1311 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critTemperature(), Cantera::GasConstant, RedlichKwongMFTP::liquidVolEst(), RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, Phase::meanMolecularWeight(), and RedlichKwongMFTP::setTemperature().

doublereal densSpinodalLiquid ( ) const
virtual

Return the value of the density at the liquid spinodal point (on the liquid side) for the current temperature.

Returns
returns the density with units of kg m-3

Reimplemented from MixtureFugacityTP.

Definition at line 1392 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critDensity(), Phase::meanMolecularWeight(), ROOTFIND_SUCCESS, RootFind::setFuncIsGenerallyDecreasing(), RootFind::setPrintLvl(), RootFind::setTol(), and RootFind::solve().

doublereal densSpinodalGas ( ) const
virtual

Return the value of the density at the gas spinodal point (on the gas side) for the current temperature.

Returns
returns the density with units of kg m-3

Reimplemented from MixtureFugacityTP.

Definition at line 1422 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::critDensity(), Phase::meanMolecularWeight(), ROOTFIND_SUCCESS, RootFind::setFuncIsGenerallyIncreasing(), RootFind::setPrintLvl(), RootFind::setTol(), and RootFind::solve().

doublereal pressureCalc ( doublereal  TKelvin,
doublereal  molarVol 
) const
virtual

Calculate the pressure given the temperature and the molar volume.

Calculate the pressure given the temperature and the molar volume

Parameters
TKelvintemperature in kelvin
molarVolmolar volume ( m3/kmol)
Returns
Returns the pressure.

Reimplemented from MixtureFugacityTP.

Definition at line 1456 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.

doublereal dpdVCalc ( doublereal  TKelvin,
doublereal  molarVol,
doublereal &  presCalc 
) const
virtual

Calculate the pressure and the pressure derivative given the temperature and the molar volume.

Temperature and mole number are held constant

Parameters
TKelvintemperature in kelvin
molarVolmolar volume ( m3/kmol)
presCalcReturns the pressure.
Returns
Returns the derivative of the pressure wrt the molar volume

Reimplemented from MixtureFugacityTP.

Definition at line 1475 of file RedlichKwongMFTP.cpp.

References Cantera::GasConstant, RedlichKwongMFTP::m_a_current, and RedlichKwongMFTP::m_b_current.

Referenced by RedlichKwongMFTP::pressureDerivatives().

void pressureDerivatives ( ) const
void updateAB ( )

Update the a and b parameters.

The a and the b parameters depend on the mole fraction and the temperature. This function updates the internal numbers based on the state of the object.

Definition at line 1511 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_a_current, RedlichKwongMFTP::m_b_current, RedlichKwongMFTP::m_formTempParam, Phase::m_kk, MixtureFugacityTP::moleFractions_, and Phase::temperature().

Referenced by RedlichKwongMFTP::setConcentrations(), RedlichKwongMFTP::setMassFractions(), RedlichKwongMFTP::setMassFractions_NoNorm(), RedlichKwongMFTP::setMoleFractions(), RedlichKwongMFTP::setMoleFractions_NoNorm(), and RedlichKwongMFTP::setTemperature().

void calculateAB ( doublereal  temp,
doublereal &  aCalc,
doublereal &  bCalc 
) const

Calculate the a and the b parameters given the temperature.

This function doesn't change the internal state of the object, so it is a const function. It does use the stored mole fractions in the object.

Parameters
tempTemperature (TKelvin)
aCalc(output) Returns the a value
bCalc(output) Returns the b value.

Definition at line 1533 of file RedlichKwongMFTP.cpp.

References RedlichKwongMFTP::m_formTempParam, Phase::m_kk, and MixtureFugacityTP::moleFractions_.

Referenced by RedlichKwongMFTP::liquidVolEst().

int standardStateConvention ( ) const
virtualinherited

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

Currently, there are two standard state conventions:

  • Temperature-based activities cSS_CONVENTION_TEMPERATURE 0
    • default
  • Variable Pressure and Temperature -based activities cSS_CONVENTION_VPSS 1

Reimplemented from ThermoPhase.

Definition at line 149 of file MixtureFugacityTP.cpp.

References Cantera::cSS_CONVENTION_TEMPERATURE.

void setForcedSolutionBranch ( int  solnBranch)
virtualinherited

Set the solution branch to force the ThermoPhase to exist on one branch or another.

Parameters
solnBranchBranch that the solution is restricted to. the value -1 means gas. The value -2 means unrestricted. Values of zero or greater refer to species dominated condensed phases.

Definition at line 160 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::forcedState_.

int forcedSolutionBranch ( ) const
virtualinherited

Report the solution branch which the solution is restricted to.

Returns
Branch that the solution is restricted to. the value -1 means gas. The value -2 means unrestricted. Values of zero or greater refer to species dominated condensed phases.

Definition at line 171 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::forcedState_.

int reportSolnBranchActual ( ) const
virtualinherited

Report the solution branch which the solution is actually on.

Returns
Branch that the solution is restricted to. the value -1 means gas. The value -2 means superfluid.. Values of zero or greater refer to species dominated condensed phases.

Definition at line 182 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::iState_.

virtual void getdlnActCoeffdlnN_diag ( doublereal *  dlnActCoeffdlnN_diag) const
inlinevirtualinherited

Get the array of log concentration-like derivatives of the log activity coefficients.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that concentration-like variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnN_diagOutput vector of derivatives of the log Activity Coefficients. length = m_kk

Reimplemented from ThermoPhase.

Definition at line 187 of file MixtureFugacityTP.h.

References MixtureFugacityTP::err().

void getStandardChemPotentials ( doublereal *  mu) const
virtualinherited

Get the array of chemical potentials at unit activity.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

Parameters
muOutput vector of standard state chemical potentials. length = m_kk. units are J / kmol.

Reimplemented from ThermoPhase.

Definition at line 225 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::_updateReferenceStateThermo(), MixtureFugacityTP::m_g0_RT, Phase::m_kk, ThermoPhase::m_spthermo, MixtureFugacityTP::pressure(), and SpeciesThermo::refPressure().

void getEnthalpy_RT ( doublereal *  hrt) const
virtualinherited

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

Parameters
hrtOutput vector of standard state enthalpies. length = m_kk. units are unitless.

Reimplemented from ThermoPhase.

Definition at line 236 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::getEnthalpy_RT_ref().

void getEntropy_R ( doublereal *  sr) const
virtualinherited

Get the array of nondimensional Enthalpy functions for the standard state species.

at the current T and P of the solution. For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 262 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), Phase::m_kk, MixtureFugacityTP::m_s0_R, ThermoPhase::m_spthermo, MixtureFugacityTP::pressure(), and SpeciesThermo::refPressure().

void getGibbs_RT ( doublereal *  grt) const
virtualinherited

Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 276 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), MixtureFugacityTP::m_g0_RT, Phase::m_kk, ThermoPhase::m_spthermo, MixtureFugacityTP::pressure(), and SpeciesThermo::refPressure().

void getPureGibbs ( doublereal *  gpure) const
virtualinherited

Get the pure Gibbs free energies of each species.

Species are assumed to be in their standard states. This is the same as getStandardChemPotentials().

Parameters
[out]gpureArray of standard state Gibbs free energies. length = m_kk. units are J/kmol.

Reimplemented from ThermoPhase.

Definition at line 291 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::_updateReferenceStateThermo(), MixtureFugacityTP::m_g0_RT, Phase::m_kk, ThermoPhase::m_spthermo, MixtureFugacityTP::pressure(), SpeciesThermo::refPressure(), and Cantera::scale().

void getIntEnergy_RT ( doublereal *  urt) const
virtualinherited

Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

\[ u^{ss}_k(T,P) = h^{ss}_k(T) - P * V^{ss}_k \]

Parameters
urtOutput vector of nondimensional standard state internal energies. length = m_kk.

Reimplemented from ThermoPhase.

Definition at line 307 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::_updateReferenceStateThermo(), MixtureFugacityTP::m_h0_RT, Phase::m_kk, and MixtureFugacityTP::pressure().

Referenced by RedlichKwongMFTP::getPartialMolarIntEnergies().

void getCp_R ( doublereal *  cpr) const
virtualinherited

Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

Parameters
cprOutput vector containing the the nondimensional Heat Capacities at constant pressure for the standard state of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 324 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::m_cp0_R.

Referenced by RedlichKwongMFTP::getPartialMolarCp().

void getStandardVolumes ( doublereal *  vol) const
virtualinherited

Get the molar volumes of each species in their standard states at the current T and P of the solution.

For all objects with the Mixture Fugacity approximation, we define the standard state as an ideal gas at the current temperature and pressure of the solution.

units = m^3 / kmol

Parameters
volOutput vector of species volumes. length = m_kk. units = m^3 / kmol

Reimplemented from ThermoPhase.

Definition at line 338 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::_updateReferenceStateThermo(), Phase::m_kk, and MixtureFugacityTP::pressure().

Referenced by RedlichKwongMFTP::standardConcentration().

void setPressure ( doublereal  p)
virtualinherited

Set the internally stored pressure (Pa) at constant temperature and composition.

Currently this passes down to setState_TP(). It does not make sense to calculate the standard state without first setting T and P.

Parameters
pinput Pressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 508 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::setState_TP(), and Phase::temperature().

void setState_TP ( doublereal  T,
doublereal  pres 
)
virtualinherited
void setState_TR ( doublereal  T,
doublereal  rho 
)
virtualinherited
void setState_TPX ( doublereal  t,
doublereal  p,
const doublereal *  x 
)
virtualinherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Reimplemented from ThermoPhase.

Definition at line 687 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::setState_TP().

void setState_TPX ( doublereal  t,
doublereal  p,
compositionMap x 
)
inherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xComposition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 181 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPX ( doublereal  t,
doublereal  p,
const std::string &  x 
)
inherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xString containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 188 of file ThermoPhase.cpp.

References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().

void _updateReferenceStateThermo ( ) const
protectedvirtualinherited

Updates the reference state thermodynamic functions at the current T of the solution.

If m_useTmpStandardStateStorage is true, this function must be called for every call to functions in this class. It checks to see whether the temperature or pressure has changed and thus the ss thermodynamics functions for all of the species must be recalculated.

This function is responsible for updating the following internal members, when m_useTmpStandardStateStorage is true.

  • m_hss_RT;
  • m_cpss_R;
  • m_gss_RT;
  • m_sss_R;
  • m_Vss

If m_useTmpStandardStateStorage is not true, this function may be required to be called by child classes to update internal member data.

Definition at line 1354 of file MixtureFugacityTP.cpp.

References Cantera::GasConstant, MixtureFugacityTP::m_cp0_R, MixtureFugacityTP::m_g0_RT, MixtureFugacityTP::m_h0_RT, Phase::m_kk, MixtureFugacityTP::m_logc0, MixtureFugacityTP::m_s0_R, ThermoPhase::m_spthermo, MixtureFugacityTP::m_Tlast_ref, ThermoPhase::refPressure(), Phase::temperature(), and SpeciesThermo::update().

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), MixtureFugacityTP::getCp_R(), MixtureFugacityTP::getCp_R_ref(), MixtureFugacityTP::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), MixtureFugacityTP::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), MixtureFugacityTP::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), MixtureFugacityTP::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), MixtureFugacityTP::gibbs_RT_ref(), RedlichKwongMFTP::pressure(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), RedlichKwongMFTP::setTemperature(), MixtureFugacityTP::setTemperature(), and RedlichKwongMFTP::setToEquilState().

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtualinherited

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

There are also temporary variables for holding the species reference-state values of Cp, H, S, and V at the last temperature and reference pressure called. These functions are not recalculated if a new call is made using the previous temperature. All calculations are done within the routine _updateRefStateThermo().

Parameters
hrtOutput vector contains the nondimensional enthalpies of the reference state of the species length = m_kk, units = dimensionless.

Reimplemented from ThermoPhase.

Definition at line 356 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::m_h0_RT.

Referenced by MixtureFugacityTP::getEnthalpy_RT(), and RedlichKwongMFTP::getPartialMolarEnthalpies().

void getGibbs_RT_ref ( doublereal *  grt) const
virtualinherited

Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector contains the nondimensional Gibbs free energies of the reference state of the species length = m_kk, units = dimensionless.

Reimplemented from ThermoPhase.

Definition at line 367 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::m_g0_RT.

Referenced by RedlichKwongMFTP::setToEquilState().

const vector_fp & gibbs_RT_ref ( ) const
protectedinherited

Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Returns
Output vector contains the nondimensional Gibbs free energies of the reference state of the species length = m_kk, units = dimensionless.

Definition at line 388 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::m_g0_RT.

Referenced by MixtureFugacityTP::getGibbs_ref().

void getGibbs_ref ( doublereal *  g) const
virtualinherited

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. units = J/kmol

Parameters
gOutput vector contain the Gibbs free energies of the reference state of the species length = m_kk, units = J/kmol.

Reimplemented from ThermoPhase.

Definition at line 382 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::gibbs_RT_ref(), and Cantera::scale().

Referenced by RedlichKwongMFTP::getChemPotentials().

void getEntropy_R_ref ( doublereal *  er) const
virtualinherited

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
erOutput vector contain the nondimensional entropies of the species in their reference states length: m_kk, units: dimensionless.

Reimplemented from ThermoPhase.

Definition at line 399 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::m_s0_R.

Referenced by RedlichKwongMFTP::getPartialMolarEntropies().

void getCp_R_ref ( doublereal *  cprt) const
virtualinherited

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.

Parameters
cprtOutput vector contains the nondimensional heat capacities of the species in their reference states length: m_kk, units: dimensionless.

Reimplemented from ThermoPhase.

Definition at line 412 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::m_cp0_R.

void getStandardVolumes_ref ( doublereal *  vol) const
virtualinherited

Get the molar volumes of the species reference states at the current T and reference pressure of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 424 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::_updateReferenceStateThermo(), Phase::m_kk, and ThermoPhase::refPressure().

void setStateFromXML ( const XML_Node state)
virtualinherited

Set the initial state of the phase to the conditions specified in the state XML element.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This method sets the temperature, pressure, and mole fraction vector to a set default value.

Parameters
stateAN XML_Node object corresponding to the "state" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 444 of file MixtureFugacityTP.cpp.

References Phase::density(), ctml::getChildValue(), ctml::getFloat(), XML_Node::hasChild(), Phase::setMassFractionsByName(), Phase::setMoleFractionsByName(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), and Phase::temperature().

doublereal z ( ) const
protectedinherited

Calculate the value of z.

\[ z = \frac{P v}{ R T} \]

returns the value of z

Definition at line 720 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), Phase::density(), Phase::meanMolecularWeight(), and MixtureFugacityTP::pressure().

Referenced by RedlichKwongMFTP::hresid(), and RedlichKwongMFTP::sresid().

doublereal psatEst ( doublereal  TKelvin) const
protectedvirtualinherited

Estimate for the saturation pressure.

Note: this is only used as a starting guess for later routines that actually calculate an accurate value for the saturation pressure.

Parameters
TKelvintemperature in kelvin
Returns
returns the estimated saturation pressure at the given temperature

Definition at line 743 of file MixtureFugacityTP.cpp.

References ThermoPhase::critPressure(), and ThermoPhase::critTemperature().

Referenced by MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::liquidVolEst(), and MixtureFugacityTP::phaseState().

int corr0 ( doublereal  TKelvin,
doublereal  pres,
doublereal &  densLiq,
doublereal &  densGas,
doublereal &  liqGRT,
doublereal &  gasGRT 
)
protectedinherited

Utility routine in the calculation of the saturation pressure.

Private routine

Parameters
TKelvintemperature (kelvin)
prespressure (Pascal)
densLiqOutput density of liquid
densGasoutput density of gas
gasGRToutput delGRT

Definition at line 985 of file MixtureFugacityTP.cpp.

References ThermoPhase::_RT(), MixtureFugacityTP::densityCalc(), Cantera::fp2str(), ThermoPhase::gibbs_mole(), and MixtureFugacityTP::setState_TR().

Referenced by MixtureFugacityTP::calculatePsat().

int phaseState ( bool  checkState = false) const
inherited

Returns the Phase State flag for the current state of the object.

Parameters
checkStateIf true, this function does a complete check to see where in parameters space we are

There are three values: WATER_GAS below the critical temperature but below the critical density WATER_LIQUID below the critical temperature but above the critical density WATER_SUPERCRIT above the critical temperature

Definition at line 1032 of file MixtureFugacityTP.cpp.

References ThermoPhase::critDensity(), ThermoPhase::critTemperature(), Phase::density(), MixtureFugacityTP::dpdVCalc(), FLUID_UNSTABLE, Cantera::GasConstant, MixtureFugacityTP::iState_, MixtureFugacityTP::liquidVolEst(), Phase::meanMolecularWeight(), MixtureFugacityTP::psatEst(), and Phase::temperature().

Referenced by MixtureFugacityTP::setState_TP(), and MixtureFugacityTP::setState_TR().

doublereal calculatePsat ( doublereal  TKelvin,
doublereal &  molarVolGas,
doublereal &  molarVolLiquid 
)
inherited

Calculate the saturation pressure at the current mixture content for the given temperature.

Parameters
TKelvin(input) Temperature (Kelvin)
molarVolGas(return) Molar volume of the gas
molarVolLiquid(return) Molar volume of the liquid
Returns
Returns the saturation pressure at the given temperature

Definition at line 1127 of file MixtureFugacityTP.cpp.

References MixtureFugacityTP::corr0(), ThermoPhase::critPressure(), ThermoPhase::critTemperature(), Phase::density(), MixtureFugacityTP::densityCalc(), Cantera::GasConstant, MixtureFugacityTP::liquidVolEst(), Phase::meanMolecularWeight(), MixtureFugacityTP::psatEst(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), MixtureFugacityTP::setTemperature(), and Phase::temperature().

virtual doublereal refPressure ( ) const
inlinevirtualinherited
virtual doublereal minTemp ( size_t  k = npos) const
inlinevirtualinherited

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 181 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().

doublereal Hf298SS ( const int  k) const
inlineinherited

Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)

The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kspecies index
Returns
Returns the current value of the Heat of Formation at 298K and 1 bar

Definition at line 221 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void modifyOneHf298SS ( const int  k,
const doublereal  Hf298New 
)
inlinevirtualinherited

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kSpecies k
Hf298NewSpecify the new value of the Heat of Formation at 298K and 1 bar

Definition at line 233 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal maxTemp ( size_t  k = npos) const
inlinevirtualinherited

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 250 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().

bool chargeNeutralityNecessary ( ) const
inlineinherited

Returns the chargeNeutralityNecessity boolean.

Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.

Definition at line 261 of file ThermoPhase.h.

References ThermoPhase::m_chargeNeutralityNecessary.

virtual doublereal thermalExpansionCoeff ( ) const
inlinevirtualinherited

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, and WaterSSTP.

Definition at line 360 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by SingleSpeciesTP::cv_mole().

virtual void updateDensity ( )
inlinevirtualinherited
Deprecated:

Definition at line 366 of file ThermoPhase.h.

References Cantera::deprecatedMethod().

void setElectricPotential ( doublereal  v)
inlineinherited

Set the electric potential of this phase (V).

This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.

Each phase may have its own electric potential.

Parameters
vInput value of the electric potential in Volts

Definition at line 390 of file ThermoPhase.h.

References ThermoPhase::m_phi.

Referenced by InterfaceKinetics::setElectricPotential(), vcs_VolPhase::setElectricPotential(), and vcs_VolPhase::setState_TP().

doublereal electricPotential ( ) const
inlineinherited
int activityConvention ( ) const
virtualinherited

This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.

Currently, there are two activity conventions:

  • Molar-based activities Unit activity of species at either a hypothetical pure solution of the species or at a hypothetical pure ideal solution at infinite dilution cAC_CONVENTION_MOLAR 0
    • default
  • Molality-based activities (unit activity of solutes at a hypothetical 1 molal solution referenced to infinite dilution at all pressures and temperatures). cAC_CONVENTION_MOLALITY 1

Reimplemented in MolalityVPSSTP.

Definition at line 143 of file ThermoPhase.cpp.

References Cantera::cAC_CONVENTION_MOLAR.

Referenced by vcs_MultiPhaseEquil::reportCSV(), and LiquidTransport::stefan_maxwell_solve().

void getActivities ( doublereal *  a) const
virtualinherited

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

Note, for molality based formulations, this returns the molality based activities.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

Parameters
aOutput vector of activities. Length: m_kk.

Reimplemented in HMWSoln, DebyeHuckel, MolalityVPSSTP, IdealMolalSoln, GibbsExcessVPSSTP, PureFluidPhase, and SingleSpeciesTP.

Definition at line 158 of file ThermoPhase.cpp.

References ThermoPhase::getActivityConcentrations(), Phase::nSpecies(), and ThermoPhase::standardConcentration().

Referenced by vcs_MultiPhaseEquil::reportCSV(), and ThermoPhase::reportCSV().

void getLnActivityCoefficients ( doublereal *  lnac) const
virtualinherited

Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
lnacOutput vector of ln activity coefficients. Length: m_kk.

Reimplemented in MargulesVPSSTP, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.

Definition at line 166 of file ThermoPhase.cpp.

References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.

Referenced by GibbsExcessVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

void getElectrochemPotentials ( doublereal *  mu) const
inlineinherited

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term \( F z_k \phi_p \) to each chemical potential. The electrochemical potential of species k in a phase p, \( \zeta_k \), is related to the chemical potential via the following equation,

\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]

Parameters
muOutput vector of species electrochemical potentials. Length: m_kk. Units: J/kmol

Definition at line 616 of file ThermoPhase.h.

References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

Referenced by InterfaceKinetics::getDeltaElectrochemPotentials().

virtual void getdPartialMolarVolumes_dT ( doublereal *  d_vbar_dT) const
inlinevirtualinherited

Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.

Units: m^3/kmol.

The derivative is at constant pressure

Parameters
d_vbar_dTOutput vector of derivatives of species partial molar volumes wrt T. Length = m_kk. units are m^3/kmol/K.

Definition at line 683 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdPartialMolarVolumes_dP ( doublereal *  d_vbar_dP) const
inlinevirtualinherited

Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.

Units: m^3/kmol.

The derivative is at constant temperature

Parameters
d_vbar_dPOutput vector of derivatives of species partial molar volumes wrt P. Length = m_kk. units are m^3/kmol/Pa.

Definition at line 695 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdStandardVolumes_dT ( doublereal *  d_vol_dT) const
inlinevirtualinherited

Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.

The derivative is at constant pressure units = m^3 / kmol / K

Parameters
d_vol_dTOutput vector containing derivatives of standard state volumes wrt T Length: m_kk.

Definition at line 800 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdStandardVolumes_dP ( doublereal *  d_vol_dP) const
inlinevirtualinherited

Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.

The derivative is at constant temperature. units = m^3 / kmol / Pa

Parameters
d_vol_dPOutput vector containing the derivative of standard state volumes wrt P. Length: m_kk.

Definition at line 813 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getIntEnergy_RT_ref ( doublereal *  urt) const
inlinevirtualinherited

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, FixedChemPotSSTP, MetalSHEelectrons, MineralEQ3, and StoichSubstanceSSTP.

Definition at line 879 of file ThermoPhase.h.

References ThermoPhase::err().

void setReferenceComposition ( const doublereal *const  x)
virtualinherited

Sets the reference composition.

Parameters
xMole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector.

Definition at line 992 of file ThermoPhase.cpp.

References DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.

Referenced by ThermoPhase::initThermoXML().

void getReferenceComposition ( doublereal *const  x) const
virtualinherited

Gets the reference composition.

The reference mole fraction is a safe mole fraction.

Parameters
xMole fraction vector containing the reference composition.

Definition at line 1013 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::xMol_Ref.

doublereal enthalpy_mass ( ) const
inlineinherited
doublereal intEnergy_mass ( ) const
inlineinherited
doublereal entropy_mass ( ) const
inlineinherited
doublereal gibbs_mass ( ) const
inlineinherited
doublereal cp_mass ( ) const
inlineinherited
doublereal cv_mass ( ) const
inlineinherited
doublereal _RT ( ) const
inlineinherited
void setState_TPY ( doublereal  t,
doublereal  p,
const doublereal *  y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 206 of file ThermoPhase.cpp.

References Phase::setMassFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
compositionMap y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yComposition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 214 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
const std::string &  y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yString containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 222 of file ThermoPhase.cpp.

References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().

void setState_PX ( doublereal  p,
doublereal *  x 
)
inherited

Set the pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Definition at line 249 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), and ThermoPhase::setPressure().

Referenced by vcs_VolPhase::_updateMoleFractionDependencies(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().

void setState_PY ( doublereal  p,
doublereal *  y 
)
inherited

Set the internally stored pressure (Pa) and mass fractions.

Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 256 of file ThermoPhase.cpp.

References Phase::setMassFractions(), and ThermoPhase::setPressure().

void setState_HP ( doublereal  h,
doublereal  p,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 263 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by FlowReactor::updateState(), and ConstPressureReactor::updateState().

void setState_UV ( doublereal  u,
doublereal  v,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 270 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by Reactor::updateState().

void setState_SP ( doublereal  s,
doublereal  p,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 546 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setState_SV ( doublereal  s,
doublereal  v,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 553 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setElementPotentials ( const vector_fp lambda)
inherited

Stores the element potentials in the ThermoPhase object.

Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are stored in their dimensionless forms, calculated by dividing by RT.

Parameters
lambdaInput vector containing the element potentials. Length = nElements. Units are Joules/kmol.

Definition at line 1106 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().

Referenced by Cantera::equilibrate(), ChemEquil::equilibrate(), and Cantera::vcs_equilibrate().

bool getElementPotentials ( doublereal *  lambda) const
inherited

Returns the element potentials stored in the ThermoPhase object.

Returns the stored element potentials. The element potentials are retrieved from their stored dimensionless forms by multiplying by RT.

Parameters
lambdaOutput vector containing the element potentials. Length = nElements. Units are Joules/kmol.
Returns
bool indicating whether there are any valid stored element potentials. The calling routine should check this bool. In the case that there aren't any, lambda is not touched.

Definition at line 1129 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().

Referenced by ChemEquil::equilibrate().

virtual doublereal satTemperature ( doublereal  p) const
inlinevirtualinherited

Return the saturation temperature given the pressure.

Parameters
pPressure (Pa)

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.

Definition at line 1267 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal satPressure ( doublereal  t) const
inlinevirtualinherited

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.

Definition at line 1276 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal vaporFraction ( ) const
inlinevirtualinherited

Return the fraction of vapor at the current conditions.

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.

Definition at line 1282 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void setState_Tsat ( doublereal  t,
doublereal  x 
)
inlinevirtualinherited

Set the state to a saturated system at a particular temperature.

Parameters
tTemperature (kelvin)
xFraction of vapor

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.

Definition at line 1292 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void setState_Psat ( doublereal  p,
doublereal  x 
)
inlinevirtualinherited

Set the state to a saturated system at a particular pressure.

Parameters
pPressure (Pa)
xFraction of vapor

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.

Definition at line 1301 of file ThermoPhase.h.

References ThermoPhase::err().

void saveSpeciesData ( const size_t  k,
const XML_Node *const  data 
)
inherited

Store a reference pointer to the XML tree containing the species data for this phase.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This is used to access data needed to construct transport manager later.

Parameters
kSpecies index
dataPointer to the XML_Node data containing information about the species in the phase.

Definition at line 1050 of file ThermoPhase.cpp.

References ThermoPhase::m_speciesData.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

const std::vector< const XML_Node * > & speciesData ( ) const
inherited

Return a pointer to the vector of XML nodes containing the species data for this phase.

Definition at line 1060 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::m_speciesData.

Referenced by MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::initTransport(), LatticeSolidPhase::installSlavePhases(), and TransportFactory::setupLiquidTransport().

void setSpeciesThermo ( SpeciesThermo spthermo)
inherited

Install a species thermodynamic property manager.

The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.

Parameters
spthermoinput pointer to the species thermodynamic property manager.

Definition at line 886 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), and VPSSMgrFactory::newVPSSMgr().

SpeciesThermo & speciesThermo ( int  k = -1)
virtualinherited

Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.

Parameters
kSpeices id. The default is -1, meaning return the default

Reimplemented in LatticeSolidPhase.

Definition at line 904 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().

void initThermoFile ( std::string  inputFile,
std::string  id 
)
virtualinherited

Initialization of a ThermoPhase object using an ctml file.

This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used.

Definition at line 928 of file ThermoPhase.cpp.

References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().

void installSlavePhases ( Cantera::XML_Node phaseNode)
virtualinherited

Add in species from Slave phases.

This hook is used for cSS_CONVENTION_SLAVE phases

Parameters
phaseNodeXML Element for the phase

Reimplemented in LatticeSolidPhase.

Definition at line 1045 of file ThermoPhase.cpp.

Referenced by Cantera::importPhase().

virtual void setParameters ( int  n,
doublereal *const  c 
)
inlinevirtualinherited

Set the equation of state parameters.

The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients

Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealMolalSoln, SingleSpeciesTP, FixedChemPotSSTP, electrodeElectron, MineralEQ3, MetalSHEelectrons, StoichSubstanceSSTP, StoichSubstance, ConstDensityThermo, and SurfPhase.

Definition at line 1451 of file ThermoPhase.h.

virtual void getParameters ( int &  n,
doublereal *const  c 
) const
inlinevirtualinherited

Get the equation of state parameters in a vector.

The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients

Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealMolalSoln, SingleSpeciesTP, FixedChemPotSSTP, MineralEQ3, MetalSHEelectrons, StoichSubstanceSSTP, StoichSubstance, and ConstDensityThermo.

Definition at line 1462 of file ThermoPhase.h.

virtual void getdlnActCoeffds ( const doublereal  dTds,
const doublereal *const  dXds,
doublereal *  dlnActCoeffds 
) const
inlinevirtualinherited

Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.

Parameters
dTdsInput of temperature change along the path
dXdsInput vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one.
dlnActCoeffdsOutput vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m.

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 1511 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().

virtual void getdlnActCoeffdlnX_diag ( doublereal *  dlnActCoeffdlnX_diag) const
inlinevirtualinherited

Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnX_diagOutput vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 1533 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().

void getdlnActCoeffdlnN ( const size_t  ld,
doublereal *const  dlnActCoeffdlnN 
)
virtualinherited

Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.

Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.

units = 1 / kmol

dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.

\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]

Parameters
ldNumber of rows in the matrix
dlnActCoeffdlnNOutput vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk

Reimplemented in MolalityVPSSTP, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, and GibbsExcessVPSSTP.

Definition at line 1158 of file ThermoPhase.cpp.

References Phase::m_kk.

Referenced by vcs_VolPhase::_updateLnActCoeffJac().

std::string report ( bool  show_thermo = true) const
virtualinherited
void reportCSV ( std::ofstream &  csvFile) const
virtualinherited
XML_Node & xml ( )
inherited
std::string id ( ) const
inherited
void setID ( std::string  id)
inherited

Set the string id for the phase.

Parameters
idString id of the phase

Definition at line 135 of file Phase.cpp.

References Phase::id(), and Phase::m_id.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

std::string name ( ) const
inherited
void setName ( std::string  nm)
inherited

Sets the string name for the phase.

Parameters
nmString name of the phase

Definition at line 145 of file Phase.cpp.

References Phase::m_name.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

string elementName ( size_t  m) const
inherited
size_t elementIndex ( std::string  name) const
inherited

Return the index of element named 'name'.

The index is an integer assigned to each element in the order it was added. Returns npos if the specified element is not found.

Parameters
nameName of the element

Definition at line 175 of file Phase.cpp.

References Phase::m_elementNames, Phase::m_mm, and Cantera::npos.

Referenced by Phase::addUniqueElementAfterFreeze(), MultiPhase::init(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().

const vector< string > & elementNames ( ) const
inherited

Return a read-only reference to the vector of element names.

Definition at line 185 of file Phase.cpp.

References Phase::m_elementNames.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), and IonsFromNeutralVPSSTP::initThermoXML().

doublereal atomicWeight ( size_t  m) const
inherited

Atomic weight of element m.

Parameters
mElement index

Definition at line 190 of file Phase.cpp.

References Phase::m_atomicWeights.

Referenced by ChemEquil::initialize(), and WaterSSTP::initThermoXML().

doublereal entropyElement298 ( size_t  m) const
inherited

Entropy of the element in its standard state at 298 K and 1 bar.

Parameters
mElement index

Definition at line 195 of file Phase.cpp.

References AssertThrowMsg, AssertTrace, ENTROPY298_UNKNOWN, Phase::m_entropy298, and Phase::m_mm.

Referenced by LatticeSolidPhase::installSlavePhases(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().

int atomicNumber ( size_t  m) const
inherited

Atomic number of element m.

Parameters
mElement index

Definition at line 209 of file Phase.cpp.

References Phase::m_atomicNumbers.

Referenced by MultiPhase::addPhase(), and LatticeSolidPhase::installSlavePhases().

int elementType ( size_t  m) const
inherited

Return the element constraint type Possible types include:

CT_ELEM_TYPE_TURNEDOFF -1 CT_ELEM_TYPE_ABSPOS 0 CT_ELEM_TYPE_ELECTRONCHARGE 1 CT_ELEM_TYPE_CHARGENEUTRALITY 2 CT_ELEM_TYPE_LATTICERATIO 3 CT_ELEM_TYPE_KINETICFROZEN 4 CT_ELEM_TYPE_SURFACECONSTRAINT 5 CT_ELEM_TYPE_OTHERCONSTRAINT 6

The default is CT_ELEM_TYPE_ABSPOS.

Parameters
mElement index
Returns
Returns the element type

Definition at line 214 of file Phase.cpp.

References Phase::m_elem_type.

Referenced by LatticeSolidPhase::installSlavePhases(), and vcs_VolPhase::transferElementsFM().

int changeElementType ( int  m,
int  elem_type 
)
inherited

Change the element type of the mth constraint Reassigns an element type.

Parameters
mElement index
elem_typeNew elem type to be assigned
Returns
Returns the old element type

Definition at line 219 of file Phase.cpp.

References Phase::m_elem_type.

const vector_fp & atomicWeights ( ) const
inherited

Return a read-only reference to the vector of atomic weights.

Definition at line 204 of file Phase.cpp.

References Phase::m_atomicWeights.

Referenced by LatticeSolidPhase::installSlavePhases().

size_t nElements ( ) const
inherited
void checkElementIndex ( size_t  m) const
inherited

Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.

Definition at line 155 of file Phase.cpp.

References Phase::m_mm.

Referenced by Phase::elementName(), and Phase::nAtoms().

void checkElementArraySize ( size_t  mm) const
inherited

Check that an array size is at least nElements() Throws an exception if mm is less than nElements().

Used before calls which take an array pointer.

Definition at line 162 of file Phase.cpp.

References Phase::m_mm.

doublereal nAtoms ( size_t  k,
size_t  m 
) const
inherited
void getAtoms ( size_t  k,
double *  atomArray 
) const
inherited

Get a vector containing the atomic composition of species k.

Parameters
kspecies index
atomArrayvector containing the atomic number in the species. Length: m_mm

Definition at line 233 of file Phase.cpp.

References Phase::m_mm, and Phase::m_speciesComp.

Referenced by LatticeSolidPhase::installSlavePhases().

size_t speciesIndex ( std::string  name) const
inherited
string speciesName ( size_t  k) const
inherited

Name of the species with index k.

Parameters
kindex of the species

Definition at line 257 of file Phase.cpp.

References Phase::checkSpeciesIndex(), and Phase::m_speciesNames.

Referenced by StFlow::componentName(), ReactingSurf1D::componentName(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), TransportFactory::fitProperties(), AqueousTransport::getLiquidTransportData(), Phase::getMoleFractionsByName(), Cantera::importSolution(), MultiPhase::init(), ChemEquil::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), FlowDevice::install(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesName(), solveProb::print_header(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), StFlow::save(), SurfPhase::setCoveragesByName(), ChemEquil::setInitialMoles(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Inlet1D::showSolution(), ReactingSurf1D::showSolution(), Phase::speciesSPName(), and ChemEquil::update().

std::string speciesSPName ( int  k) const
inherited

Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.

Parameters
kSpecies index within the phase
Returns
The "phaseName:speciesName" string

Definition at line 282 of file Phase.cpp.

References Phase::m_name, and Phase::speciesName().

const vector< string > & speciesNames ( ) const
inherited
size_t nSpecies ( ) const
inlineinherited

Returns the number of species in the phase.

Definition at line 252 of file Phase.h.

References Phase::m_kk.

Referenced by MultiPhase::addPhase(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::assignShallowPointers(), MultiPhase::calcElemAbundances(), Phase::chargeDensity(), MultiPhaseEquil::computeReactionSteps(), PDSS_IonsFromNeutral::constructPDSSXML(), RedlichKisterVPSSTP::cp_mole(), MargulesVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), PhaseCombo_Interaction::cp_mole(), SolidTransport::electricalConductivity(), RedlichKisterVPSSTP::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MargulesVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), ChemEquil::equilibrate(), vcs_MultiPhaseEquil::equilibrate_TP(), ChemEquil::estimateElementPotentials(), ThermoPhase::getActivities(), MetalPhase::getActivityConcentrations(), MetalPhase::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MetalPhase::getEnthalpy_RT(), MetalPhase::getEntropy_R(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MultiTransport::getMolarFluxes(), Phase::getMoleFractionsByName(), MultiPhase::getMoles(), MetalPhase::getStandardChemPotentials(), ImplicitSurfChem::ImplicitSurfChem(), Cantera::importSolution(), LiquidTranInteraction::init(), MultiPhase::init(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), GasTransport::initGas(), ChemEquil::initialize(), DustyGasTransport::initialize(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), VPSSMgr::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), LatticePhase::initThermo(), FlowDevice::install(), rxninfo::installReaction(), LatticeSolidPhase::installSlavePhases(), Kinetics::nTotalSpecies(), solveProb::print_header(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::restoreState(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), Phase::saveState(), Kinetics::selectPhase(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMoles(), SolidTransport::setParameters(), MultiPhase::setPhaseMoleFractions(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Transport::setThermo(), ReactorBase::setThermoMgr(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), Inlet1D::showSolution(), solveSP::solveSP(), StFlow::StFlow(), vcs_VolPhase::transferElementsFM(), AqueousKinetics::updateKc(), InterfaceKinetics::updateKc(), ConstPressureReactor::updateState(), Reactor::updateState(), and MultiPhase::uploadMoleFractionsFromPhases().

void checkSpeciesIndex ( size_t  k) const
inherited

Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.

Definition at line 268 of file Phase.cpp.

References Phase::m_kk.

Referenced by Phase::concentration(), Phase::massFraction(), Phase::molecularWeight(), Phase::moleFraction(), Phase::nAtoms(), and Phase::speciesName().

void checkSpeciesArraySize ( size_t  kk) const
inherited

Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().

Used before calls which take an array pointer.

Definition at line 275 of file Phase.cpp.

References Phase::m_kk.

void saveState ( vector_fp state) const
inherited

Save the current internal state of the phase Write to vector 'state' the current internal state.

Parameters
stateoutput vector. Will be resized to nSpecies() + 2.

Definition at line 288 of file Phase.cpp.

References Phase::nSpecies().

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), TransportFactory::newTransport(), ReactorBase::setThermoMgr(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().

void saveState ( size_t  lenstate,
doublereal *  state 
) const
inherited

Write to array 'state' the current internal state.

Parameters
lenstatelength of the state array. Must be >= nSpecies()+2
stateoutput vector. Must be of length nSpecies() + 2 or greater.

Definition at line 293 of file Phase.cpp.

References Phase::density(), Phase::getMassFractions(), and Phase::temperature().

void restoreState ( const vector_fp state)
inherited

Restore a state saved on a previous call to saveState.

Parameters
stateState vector containing the previously saved state.

Definition at line 300 of file Phase.cpp.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiTransport::getMassFluxes(), FlowReactor::initialize(), ConstPressureReactor::initialize(), Reactor::initialize(), and TransportFactory::newTransport().

void restoreState ( size_t  lenstate,
const doublereal *  state 
)
inherited

Restore the state of the phase from a previously saved state vector.

Parameters
lenstateLength of the state vector
stateVector of state conditions.

Definition at line 305 of file Phase.cpp.

References Phase::nSpecies(), Phase::setDensity(), Phase::setMassFractions_NoNorm(), and Phase::setTemperature().

void setMoleFractionsByName ( compositionMap xMap)
inherited

Set the species mole fractions by name.

@param xMap map from species names to mole fraction values.

Species not listed by name in xMap are set to zero.

Definition at line 362 of file Phase.cpp.

References Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().

Referenced by Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void setMoleFractionsByName ( const std::string &  x)
inherited

Set the mole fractions of a group of species by name.

Species which are not listed by name in the composition map are set to zero.

Parameters
xstring x in the form of a composition map

Definition at line 376 of file Phase.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Phase::speciesName().

void setMassFractionsByName ( compositionMap yMap)
inherited

Set the species mass fractions by name.

@param yMap map from species names to mass fraction values.

Species not listed by name in yMap are set to zero.

Definition at line 416 of file Phase.cpp.

References Phase::nSpecies(), Phase::setMassFractions(), and Phase::speciesName().

Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void setMassFractionsByName ( const std::string &  x)
inherited

Set the species mass fractions by name.

Species not listed by name in x are set to zero.

Parameters
xString containing a composition map

Definition at line 430 of file Phase.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Phase::speciesName().

void setState_TRX ( doublereal  t,
doublereal  dens,
const doublereal *  x 
)
inherited

Set the internally stored temperature (K), density, and mole fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
xvector of species mole fractions, length m_kk

Definition at line 441 of file Phase.cpp.

References Phase::setDensity(), Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TRX ( doublereal  t,
doublereal  dens,
compositionMap x 
)
inherited

Set the internally stored temperature (K), density, and mole fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
xComposition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction.

Definition at line 455 of file Phase.cpp.

References Phase::setDensity(), Phase::setMoleFractionsByName(), and Phase::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
const doublereal *  y 
)
inherited

Set the internally stored temperature (K), density, and mass fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
yvector of species mass fractions, length m_kk

Definition at line 462 of file Phase.cpp.

References Phase::setDensity(), Phase::setMassFractions(), and Phase::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
compositionMap y 
)
inherited

Set the internally stored temperature (K), density, and mass fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
yComposition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction.

Definition at line 469 of file Phase.cpp.

References Phase::setDensity(), Phase::setMassFractionsByName(), and Phase::setTemperature().

void setState_TNX ( doublereal  t,
doublereal  n,
const doublereal *  x 
)
inherited

Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.

Parameters
tTemperature in kelvin
nmolar density (kmol/m^3)
xvector of species mole fractions, length m_kk

Definition at line 448 of file Phase.cpp.

References Phase::setMolarDensity(), Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TX ( doublereal  t,
doublereal *  x 
)
inherited

Set the internally stored temperature (K) and mole fractions.

Parameters
tTemperature in kelvin
xvector of species mole fractions, length m_kk

Definition at line 482 of file Phase.cpp.

References Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TY ( doublereal  t,
doublereal *  y 
)
inherited

Set the internally stored temperature (K) and mass fractions.

Parameters
tTemperature in kelvin
yvector of species mass fractions, length m_kk

Definition at line 488 of file Phase.cpp.

References Phase::setMassFractions(), and Phase::setTemperature().

void setState_RX ( doublereal  rho,
doublereal *  x 
)
inherited

Set the density (kg/m^3) and mole fractions.

Parameters
rhoDensity (kg/m^3)
xvector of species mole fractions, length m_kk

Definition at line 494 of file Phase.cpp.

References Phase::setDensity(), and Phase::setMoleFractions().

void setState_RY ( doublereal  rho,
doublereal *  y 
)
inherited

Set the density (kg/m^3) and mass fractions.

Parameters
rhoDensity (kg/m^3)
yvector of species mass fractions, length m_kk

Definition at line 500 of file Phase.cpp.

References Phase::setDensity(), and Phase::setMassFractions().

doublereal molecularWeight ( size_t  k) const
inherited
doublereal molarMass ( size_t  k) const
inlineinherited

Return the Molar mass of species k Alternate name for molecular weight.

@param k  index for species
@return   Return the molar mass of species k kg/kmol.
Deprecated:
use molecularWeight instead

Definition at line 388 of file Phase.h.

References Phase::molecularWeight().

void getMolecularWeights ( vector_fp weights) const
inherited

Copy the vector of molecular weights into vector weights.

Parameters
weightsOutput vector of molecular weights (kg/kmol)

Definition at line 512 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( int  iwt,
doublereal *  weights 
) const
inherited

Copy the vector of molecular weights into array weights.

@param iwt      Unused.
@param weights  Output array of molecular weights (kg/kmol)
Deprecated:

Definition at line 521 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( doublereal *  weights) const
inherited

Copy the vector of molecular weights into array weights.

Parameters
weightsOutput array of molecular weights (kg/kmol)

Definition at line 527 of file Phase.cpp.

References Phase::molecularWeights().

const vector_fp & molecularWeights ( ) const
inherited
doublereal size ( size_t  k) const
inlineinherited
void getMoleFractionsByName ( compositionMap x) const
inherited

Get the mole fractions by name.

Parameters
[out]xcomposition map containing the species mole fractions.

Definition at line 538 of file Phase.cpp.

References Phase::moleFraction(), Phase::nSpecies(), and Phase::speciesName().

doublereal moleFraction ( size_t  k) const
inherited

Return the mole fraction of a single species.

Parameters
kspecies index
Returns
Mole fraction of the species

Definition at line 552 of file Phase.cpp.

References Phase::checkSpeciesIndex(), Phase::m_mmw, and Phase::m_ym.

Referenced by Phase::chargeDensity(), SolidTransport::electricalConductivity(), ChemEquil::equilibrate(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealMolalSoln::getMolalityActivityCoefficients(), Phase::getMoleFractionsByName(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), Phase::moleFraction(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and ChemEquil::setInitialMoles().

doublereal moleFraction ( std::string  name) const
inherited

Return the mole fraction of a single species.

Parameters
nameString name of the species
Returns
Mole fraction of the species

Definition at line 558 of file Phase.cpp.

References Phase::moleFraction(), Cantera::npos, and Phase::speciesIndex().

doublereal massFraction ( size_t  k) const
inherited

Return the mass fraction of a single species.

Parameters
kspecies index
Returns
Mass fraction of the species

Definition at line 573 of file Phase.cpp.

References Phase::checkSpeciesIndex(), and Phase::m_y.

doublereal massFraction ( std::string  name) const
inherited

Return the mass fraction of a single species.

Parameters
nameString name of the species
Returns
Mass Fraction of the species

Definition at line 579 of file Phase.cpp.

References Phase::massFractions(), Cantera::npos, and Phase::speciesIndex().

void getMoleFractions ( doublereal *const  x) const
inherited

Get the species mole fraction vector.

Parameters
xOn return, x contains the mole fractions. Must have a length greater than or equal to the number of species.

Definition at line 547 of file Phase.cpp.

References Phase::m_mmw, Phase::m_ym, and Cantera::scale().

Referenced by IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::enthalpy_mole(), HMWSoln::enthalpy_mole(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GibbsExcessVPSSTP::getActivities(), LatticePhase::getActivityConcentrations(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), LTI_MoleFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), LatticeSolidPhase::getMoleFractions(), DustyGasTransport::initialize(), GibbsExcessVPSSTP::initThermo(), HMWSoln::printCoeffs(), HMWSoln::relative_molal_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), MixtureFugacityTP::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalitiesByName(), MixtureFugacityTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), MultiPhase::setMoles(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setReferenceComposition(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), AqueousTransport::stefan_maxwell_solve(), ChemEquil::update(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), solveSP::updateMFKinSpecies(), DustyGasTransport::updateTransport_C(), and MultiPhase::uploadMoleFractionsFromPhases().

void getMassFractions ( doublereal *const  y) const
inherited
const doublereal* massFractions ( ) const
inlineinherited
void getConcentrations ( doublereal *const  c) const
inherited

Get the species concentrations (kmol/m^3).

@param[out] c Array of species concentrations Length must be

greater than or equal to the number of species.

Definition at line 600 of file Phase.cpp.

References Phase::m_dens, Phase::m_ym, and Cantera::scale().

Referenced by ConstDensityThermo::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), SurfPhase::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), SurfPhase::getCoverages(), solveSP::solveSurfProb(), SimpleTransport::update_C(), and LiquidTransport::update_C().

doublereal concentration ( const size_t  k) const
inherited

Concentration of species k.

If k is outside the valid range, an exception will be thrown.

Parameters
kIndex of species

Definition at line 594 of file Phase.cpp.

References Phase::checkSpeciesIndex(), Phase::m_dens, Phase::m_rmolwts, and Phase::m_y.

const doublereal * moleFractdivMMW ( ) const
inherited

Returns a const pointer to the start of the moleFraction/MW array.

This array is the array of mole fractions, each divided by the mean molecular weight.

Definition at line 568 of file Phase.cpp.

References Phase::m_ym.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().

doublereal charge ( size_t  k) const
inherited

Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.

Parameters
kspecies index

Definition at line 642 of file Phase.cpp.

References Phase::m_speciesCharge.

Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), HMWSoln::calcMolalitiesCropped(), Phase::chargeDensity(), PDSS_HKFT::constructPDSSXML(), SolidTransport::electricalConductivity(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), InterfaceKinetics::getEquilibriumConstants(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), PDSS_HKFT::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), DebyeHuckel::initThermoXML(), LatticeSolidPhase::installSlavePhases(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::transferElementsFM(), and InterfaceKinetics::updateKc().

doublereal chargeDensity ( ) const
inherited

Charge density [C/m^3].

Definition at line 647 of file Phase.cpp.

References Phase::charge(), Phase::moleFraction(), and Phase::nSpecies().

size_t nDim ( ) const
inlineinherited
void setNDim ( size_t  ndim)
inlineinherited

Set the number of spatial dimensions (1, 2, or 3).

The number of spatial dimensions is used for vector involving directions.

Parameters
ndimInput number of dimensions.

Definition at line 530 of file Phase.h.

References Phase::m_ndim.

Referenced by EdgePhase::EdgePhase(), FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().

doublereal temperature ( ) const
inlineinherited

Temperature (K).

Returns
The temperature of the phase

Definition at line 539 of file Phase.h.

References Phase::m_temp.

Referenced by ThermoPhase::_RT(), InterfaceKinetics::_update_rates_T(), MixtureFugacityTP::_updateReferenceStateThermo(), VPStandardStateTP::_updateStandardStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), LatticeSolidPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), DebyeHuckel::A_Debye_TP(), HMWSoln::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), IdealSolnGasVPSS::calcDensity(), MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::cv_mole(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), HMWSoln::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), FixedChemPotSSTP::FixedChemPotSSTP(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), StoichSubstance::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), PhaseCombo_Interaction::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), PureFluidPhase::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), PureFluidPhase::getEntropy_R_ref(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), StoichSubstance::getGibbs_ref(), PureFluidPhase::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), StoichSubstance::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), PureFluidPhase::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), LatticePhase::getPureGibbs(), LTPspecies_Arrhenius::getSpeciesTransProp(), LTPspecies_Poly::getSpeciesTransProp(), LTPspecies_ExpT::getSpeciesTransProp(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), ConstDensityThermo::gibbs_mole(), StoichSubstance::gibbs_mole(), RedlichKwongMFTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), ThermoPhase::gibbs_mole(), LatticePhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), RedlichKwongMFTP::hresid(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), RedlichKwongMFTP::pressureDerivatives(), HMWSoln::relative_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), ChemEquil::setInitialMoles(), PureFluidPhase::setPressure(), WaterSSTP::setPressure(), GibbsExcessVPSSTP::setPressure(), IdealMolalSoln::setPressure(), VPStandardStateTP::setPressure(), MixtureFugacityTP::setPressure(), IdealGasPhase::setPressure(), IonsFromNeutralVPSSTP::setPressure(), DebyeHuckel::setPressure(), HMWSoln::setPressure(), vcs_VolPhase::setPtrThermoPhase(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), PureFluidPhase::setTPXState(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), RedlichKwongMFTP::sresid(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), ChemEquil::update(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), RedlichKwongMFTP::updateAB(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), VPStandardStateTP::updateStandardStateThermo(), Reactor::updateState(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_T(), and WaterSSTP::vaporFraction().

virtual doublereal density ( ) const
inlinevirtualinherited

Density (kg/m^3).

Returns
The density of the phase

Reimplemented in HMWSoln.

Definition at line 545 of file Phase.h.

References Phase::m_dens.

Referenced by MixtureFugacityTP::calculatePsat(), SingleSpeciesTP::cv_mole(), HMWSoln::density(), WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), MultiTransport::getMassFluxes(), ConstDensityThermo::getParameters(), StoichSubstance::getParameters(), StoichSubstanceSSTP::getParameters(), MetalSHEelectrons::getParameters(), MineralEQ3::getParameters(), SingleSpeciesTP::getPartialMolarVolumes(), MultiTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), SingleSpeciesTP::getStandardVolumes(), WaterSSTP::getStandardVolumes_ref(), RedlichKwongMFTP::hresid(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), WaterSSTP::satPressure(), Phase::saveState(), IdealMolalSoln::setDensity(), IdealSolidSolnPhase::setDensity(), Phase::setDensity(), DebyeHuckel::setDensity(), WaterSSTP::setPressure(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), WaterSSTP::setTemperature(), PureFluidPhase::setTPXState(), RedlichKwongMFTP::sresid(), ChemEquil::update(), SimpleTransport::update_C(), LiquidTransport::update_C(), ConstPressureReactor::updateState(), StFlow::updateThermo(), WaterSSTP::vaporFraction(), and MixtureFugacityTP::z().

doublereal molarDensity ( ) const
inherited

Molar density (kmol/m^3).

Returns
The molar density of the phase

Definition at line 627 of file Phase.cpp.

References Phase::density(), and Phase::meanMolecularWeight().

Referenced by solveSP::calc_t(), SolidTransport::electricalConductivity(), ConstDensityThermo::enthalpy_mole(), StoichSubstance::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), ConstDensityThermo::getChemPotentials(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), LatticePhase::getParameters(), PureFluidPhase::getPartialMolarVolumes(), StoichSubstance::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), StoichSubstance::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealSolnGasVPSS::intEnergy_mole(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), RedlichKwongMFTP::intEnergy_mole(), IonsFromNeutralVPSSTP::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), DebyeHuckel::intEnergy_mole(), HMWSoln::intEnergy_mole(), ConstDensityThermo::logStandardConc(), Phase::molarVolume(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), IdealMolalSoln::setMolarDensity(), DebyeHuckel::setMolarDensity(), and ConstDensityThermo::standardConcentration().

doublereal molarVolume ( ) const
inherited
virtual void setDensity ( const doublereal  density)
inlinevirtualinherited

Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable.

Parameters
[in]densitydensity (kg/m^3).

Reimplemented in HMWSoln, DebyeHuckel, WaterSSTP, IdealSolidSolnPhase, and IdealMolalSoln.

Definition at line 560 of file Phase.h.

References Phase::density(), and Phase::m_dens.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), IdealSolidSolnPhase::calcDensity(), LatticeSolidPhase::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), StoichSubstanceSSTP::initThermoXML(), WaterSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), MineralEQ3::initThermoXML(), electrodeElectron::initThermoXML(), Phase::restoreState(), Phase::setConcentrations(), WaterSSTP::setDensity(), ConstDensityThermo::setParameters(), StoichSubstance::setParameters(), StoichSubstanceSSTP::setParameters(), MetalSHEelectrons::setParameters(), MineralEQ3::setParameters(), electrodeElectron::setParameters(), SemiconductorPhase::setParametersFromXML(), MetalPhase::setParametersFromXML(), StoichSubstance::setParametersFromXML(), ConstDensityThermo::setParametersFromXML(), StoichSubstanceSSTP::setParametersFromXML(), MetalSHEelectrons::setParametersFromXML(), PureFluidPhase::setPressure(), IdealGasPhase::setPressure(), ThermoPhase::setState_HPorUV(), PureFluidPhase::setState_Psat(), Phase::setState_RX(), Phase::setState_RY(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), Phase::setState_TR(), MixtureFugacityTP::setState_TR(), Phase::setState_TRX(), Phase::setState_TRY(), PureFluidPhase::setState_Tsat(), SingleSpeciesTP::setState_UV(), ThermoPhase::setStateFromXML(), and Reactor::updateState().

void setMolarDensity ( const doublereal  molarDensity)
virtualinherited

Set the internally stored molar density (kmol/m^3) of the phase.

Parameters
[in]molarDensityInput molar density (kmol/m^3).

Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, and IdealMolalSoln.

Definition at line 632 of file Phase.cpp.

References Phase::m_dens, and Phase::meanMolecularWeight().

Referenced by LatticePhase::calcDensity(), LatticePhase::setParameters(), and Phase::setState_TNX().

doublereal mean_X ( const doublereal *const  Q) const
inherited

Evaluate the mole-fraction-weighted mean of an array Q.

\[ \sum_k X_k Q_k. \]

Q should contain pure-species molar property values.

Parameters
[in]QArray of length m_kk that is to be averaged.
Returns
mole-fraction-weighted mean of Q

Definition at line 658 of file Phase.cpp.

References Phase::m_mmw, and Phase::m_ym.

Referenced by IdealSolnGasVPSS::cp_mole(), ConstDensityThermo::cp_mole(), RedlichKwongMFTP::cp_mole(), IonsFromNeutralVPSSTP::cp_mole(), IdealSolidSolnPhase::cp_mole(), IdealMolalSoln::cp_mole(), LatticePhase::cp_mole(), IdealGasPhase::cp_mole(), DebyeHuckel::cp_mole(), HMWSoln::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IonsFromNeutralVPSSTP::enthalpy_mole(), IdealMolalSoln::enthalpy_mole(), SurfPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), DebyeHuckel::enthalpy_mole(), HMWSoln::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IonsFromNeutralVPSSTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealMolalSoln::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), DebyeHuckel::entropy_mole(), HMWSoln::entropy_mole(), IonsFromNeutralVPSSTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealMolalSoln::gibbs_mole(), DebyeHuckel::gibbs_mole(), HMWSoln::gibbs_mole(), ConstDensityThermo::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealMolalSoln::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), and HMWSoln::relative_enthalpy().

doublereal mean_Y ( const doublereal *const  Q) const
inherited

Evaluate the mass-fraction-weighted mean of an array Q.

\[ \sum_k Y_k Q_k \]

Parameters
[in]QArray of species property values in mass units.
Returns
The mass-fraction-weighted mean of Q.

Definition at line 663 of file Phase.cpp.

References Cantera::dot(), and Phase::m_y.

doublereal meanMolecularWeight ( ) const
inlineinherited
doublereal sum_xlogx ( ) const
inherited
doublereal sum_xlogQ ( doublereal *const  Q) const
inherited

Evaluate \( \sum_k X_k \log Q_k \).

Parameters
QVector of length m_kk to take the log average of
Returns
The indicated sum.

Definition at line 673 of file Phase.cpp.

References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogQ().

void addElement ( const std::string &  symbol,
doublereal  weight = -12345.0 
)
inherited

Add an element.

Parameters
symbolAtomic symbol std::string.
weightAtomic mass in amu.

Definition at line 678 of file Phase.cpp.

References CT_ELEM_TYPE_ABSPOS, CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, and Phase::m_mm.

Referenced by Phase::addElement().

void addElement ( const XML_Node e)
inherited

Add an element from an XML specification.

Parameters
eReference to the XML_Node where the element is described.

Definition at line 701 of file Phase.cpp.

References Phase::addElement().

void addUniqueElement ( const std::string &  symbol,
doublereal  weight = -12345.0,
int  atomicNumber = 0,
doublereal  entropy298 = ENTROPY298_UNKNOWN,
int  elem_type = CT_ELEM_TYPE_ABSPOS 
)
inherited

Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
symbolString symbol of the element
weightAtomic weight of the element (kg kmol-1).
atomicNumberAtomic number of the element (unitless)
entropy298Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error.
elem_typeSpecifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element.

Definition at line 708 of file Phase.cpp.

References CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicNumbers, Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, Phase::m_entropy298, and Phase::m_mm.

Referenced by Phase::addElementsFromXML(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), and FixedChemPotSSTP::FixedChemPotSSTP().

void addUniqueElement ( const XML_Node e)
inherited

Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
eReference to the XML_Node where the element is described.

Definition at line 755 of file Phase.cpp.

References Phase::addUniqueElement(), Cantera::atofCheck(), XML_Node::child(), ENTROPY298_UNKNOWN, XML_Node::hasAttrib(), XML_Node::hasChild(), and Cantera::stripws().

void addElementsFromXML ( const XML_Node phase)
inherited

Add all elements referenced in an XML_Node tree.

Parameters
phaseReference to the root XML_Node of a phase

Definition at line 780 of file Phase.cpp.

References Phase::addUniqueElement(), XML_Node::child(), XML_Node::findByAttr(), Cantera::get_XML_File(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and XML_Node::root().

Referenced by Cantera::importPhase().

void freezeElements ( )
inherited

Prohibit addition of more elements, and prepare to add species.

Definition at line 831 of file Phase.cpp.

References Phase::m_elementsFrozen.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP().

bool elementsFrozen ( )
inherited

True if freezeElements has been called.

Definition at line 836 of file Phase.cpp.

References Phase::m_elementsFrozen.

size_t addUniqueElementAfterFreeze ( const std::string &  symbol,
doublereal  weight,
int  atomicNumber,
doublereal  entropy298 = ENTROPY298_UNKNOWN,
int  elem_type = CT_ELEM_TYPE_ABSPOS 
)
inherited

Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
symbolString symbol of the element
weightAtomic weight of the element (kg kmol-1).
atomicNumberAtomic number of the element (unitless)
entropy298Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which if used will cause Cantera to throw an error.
elem_typeSpecifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element.

Definition at line 841 of file Phase.cpp.

References Phase::addUniqueElement(), Phase::elementIndex(), Phase::m_elementsFrozen, Phase::m_kk, Phase::m_mm, Phase::m_speciesComp, and Cantera::npos.

Referenced by LatticeSolidPhase::installSlavePhases().

void addUniqueSpecies ( const std::string &  name,
const doublereal *  comp,
doublereal  charge = 0.0,
doublereal  size = 1.0 
)
inherited

Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.

It only adds the species if it is unique.

Parameters
nameString name of the species
compArray containing the elemental composition of the species.
chargeCharge of the species. Defaults to zero.
sizeSize of the species (meters). Defaults to 1 meter.

Definition at line 919 of file Phase.cpp.

References Phase::m_kk, Phase::m_mm, Phase::m_speciesCharge, Phase::m_speciesComp, Phase::m_speciesNames, and Phase::m_speciesSize.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), LatticeSolidPhase::installSlavePhases(), and Cantera::installSpecies().

void freezeSpecies ( )
virtualinherited

Call when finished adding species.

Prepare to use them for calculation of mixture properties.

Definition at line 952 of file Phase.cpp.

References Phase::init(), Phase::m_speciesFrozen, and Phase::molecularWeights().

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

bool speciesFrozen ( )
inlineinherited

True if freezeSpecies has been called.

Definition at line 694 of file Phase.h.

References Phase::m_speciesFrozen.

int stateMFNumber ( ) const
inlineinherited

Return the State Mole Fraction Number.

Definition at line 701 of file Phase.h.

References Phase::m_stateNum.

Referenced by SimpleTransport::update_C(), and LiquidTransport::update_C().

void stateMFChangeCalc ( bool  forceChange = false)
inlineinherited

Every time the mole fractions have changed, this routine will increment the stateMFNumber.

@param forceChange If this is true then the stateMFNumber always

changes. This defaults to false.

Deprecated:

Definition at line 115 of file Phase.cpp.

References Phase::m_stateNum.

Referenced by Phase::setConcentrations(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), Phase::setMoleFractions(), and Phase::setMoleFractions_NoNorm().

void init ( const vector_fp mw)
protectedinherited

Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size.

Parameters
mwVector of molecular weights of the species.

Definition at line 958 of file Phase.cpp.

References Cantera::int2str(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Cantera::Tiny.

Referenced by Phase::freezeSpecies().

void setMolecularWeight ( const int  k,
const double  mw 
)
inlineprotectedinherited

Set the molecular weight of a single species to a given value.

Parameters
kid of the species
mwMolecular Weight (kg kmol-1)

Definition at line 722 of file Phase.h.

References Phase::m_molwts, and Phase::m_rmolwts.

Referenced by PureFluidPhase::initThermo(), and WaterSSTP::initThermoXML().

Member Data Documentation

int m_standardMixingRules
protected

boolean indicating whether standard mixing rules are applied

  • 1 = Yes, there are standard cross terms in the a coefficient matrices.
  • 0 = No, there are nonstaandard cross terms in the a coefficient matrices.

Definition at line 748 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::initThermoXML(), and RedlichKwongMFTP::operator=().

int m_formTempParam
protected

Form of the temperature parameterization.

  • 0 = There is no temperature parameterization of a or b
  • 1 = The a_ij parameter is a linear function of the temperature

Definition at line 755 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::calculateAB(), RedlichKwongMFTP::operator=(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), and RedlichKwongMFTP::updateAB().

doublereal m_b_current
protected
doublereal m_a_current
protected
vector_fp m_pp
mutableprotected
vector_fp m_tmpV
mutableprotected
doublereal dpdV_
mutableprotected

The derivative of the pressure wrt the volume.

Calculated at the current conditions temperature and mole number kept constant

Definition at line 805 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::operator=(), and RedlichKwongMFTP::pressureDerivatives().

doublereal dpdT_
mutableprotected

The derivative of the pressure wrt the temperature.

Calculated at the current conditions Total volume and mole number kept constant

Definition at line 812 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::cp_mole(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::operator=(), and RedlichKwongMFTP::pressureDerivatives().

vector_fp dpdni_
mutableprotected

Vector of derivatives of pressure wrt mole number.

Calculated at the current conditions Total volume, temperature and other mole number kept constant

Definition at line 819 of file RedlichKwongMFTP.h.

Referenced by RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::initLengths(), and RedlichKwongMFTP::operator=().

const doublereal omega_a = 4.27480233540E-01
static

Omega constant for a -> value of a in terms of critical properties.

this was calculated from a small nonlinear solve

Definition at line 826 of file RedlichKwongMFTP.h.

const doublereal omega_b = 8.66403499650E-02
static

Omega constant for b.

Definition at line 829 of file RedlichKwongMFTP.h.

const doublereal omega_vc = 3.33333333333333E-01
static

Omega constant for the critical molar volume.

Definition at line 832 of file RedlichKwongMFTP.h.

doublereal m_Pcurrent
protectedinherited

Current value of the pressures.

Because the pressure is now a calculation, we store the result of the calculation whenever it is recalculated.

units = Pascals

Definition at line 897 of file MixtureFugacityTP.h.

Referenced by RedlichKwongMFTP::getPartialMolarVolumes(), MixtureFugacityTP::operator=(), RedlichKwongMFTP::pressure(), MixtureFugacityTP::pressure(), MixtureFugacityTP::setState_TP(), and MixtureFugacityTP::setState_TR().

std::vector<doublereal> moleFractions_
protectedinherited
int iState_
protectedinherited

Current state of the fluid.

There are three possible states of the fluid FLUID_GAS FLUID_LIQUID FLUID_SUPERCRIT

Definition at line 919 of file MixtureFugacityTP.h.

Referenced by MixtureFugacityTP::operator=(), MixtureFugacityTP::phaseState(), MixtureFugacityTP::reportSolnBranchActual(), MixtureFugacityTP::setState_TP(), and MixtureFugacityTP::setState_TR().

int forcedState_
protectedinherited

Force the system to be on a particular side of the spinodal curve.

Definition at line 923 of file MixtureFugacityTP.h.

Referenced by MixtureFugacityTP::forcedSolutionBranch(), MixtureFugacityTP::operator=(), MixtureFugacityTP::setForcedSolutionBranch(), and MixtureFugacityTP::setState_TP().

doublereal m_Tlast_ref
mutableprotectedinherited

The last temperature at which the reference state thermodynamic properties were calculated at.

Definition at line 926 of file MixtureFugacityTP.h.

Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::operator=().

doublereal m_logc0
mutableprotectedinherited

Temporary storage for log of p/rt.

Definition at line 929 of file MixtureFugacityTP.h.

Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), and MixtureFugacityTP::operator=().

vector_fp m_h0_RT
mutableprotectedinherited
vector_fp m_cp0_R
mutableprotectedinherited
vector_fp m_g0_RT
mutableprotectedinherited
vector_fp m_s0_R
mutableprotectedinherited
SpeciesThermo* m_spthermo
protectedinherited

Pointer to the calculation manager for species reference-state thermodynamic properties.

This class is called when the reference-state thermodynamic properties of all the species in the phase needs to be evaluated.

Definition at line 1611 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), ConstDensityThermo::enthalpy_mole(), LatticePhase::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), IdealGasPhase::entropy_mole(), FixedChemPotSSTP::FixedChemPotSSTP(), ConstDensityThermo::getChemPotentials(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), PureFluidPhase::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), PureFluidPhase::getGibbs_RT_ref(), IdealGasPhase::getPartialMolarEntropies(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), ConstDensityThermo::intEnergy_mole(), LatticePhase::intEnergy_mole(), ThermoPhase::maxTemp(), ThermoPhase::minTemp(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), ThermoPhase::refPressure(), ThermoPhase::setSpeciesThermo(), LatticeSolidPhase::speciesThermo(), ThermoPhase::speciesThermo(), and ThermoPhase::~ThermoPhase().

std::vector<const XML_Node*> m_speciesData
protectedinherited

Vector of pointers to the species databases.

This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.

Definition at line 1621 of file ThermoPhase.h.

Referenced by LatticeSolidPhase::installSlavePhases(), ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().

doublereal m_phi
protectedinherited

Stored value of the electric potential for this phase.

Units are Volts

Definition at line 1627 of file ThermoPhase.h.

Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().

vector_fp m_lambdaRRT
protectedinherited

Vector of element potentials.

-> length equal to number of elements

Definition at line 1631 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

bool m_hasElementPotentials
protectedinherited

Boolean indicating whether there is a valid set of saved element potentials for this phase.

Definition at line 1635 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

bool m_chargeNeutralityNecessary
protectedinherited

Boolean indicating whether a charge neutrality condition is a necessity.

Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.

Definition at line 1645 of file ThermoPhase.h.

Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().

int m_ssConvention
protectedinherited

Contains the standard state convention.

Definition at line 1648 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().

std::vector<doublereal> xMol_Ref
protectedinherited

Reference Mole Fraction Composition.

Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file

Definition at line 1657 of file ThermoPhase.h.

Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().

size_t m_kk
protectedinherited

Number of species in the phase.

Definition at line 727 of file Phase.h.

Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), HMWSoln::applyphScale(), RedlichKwongMFTP::applyStandardMixingRules(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKwongMFTP::calculateAB(), GibbsExcessVPSSTP::checkMFSum(), Phase::checkSpeciesArraySize(), Phase::checkSpeciesIndex(), HMWSoln::counterIJ_setup(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), ConstDensityThermo::expGibbs_RT(), IdealGasPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), GibbsExcessVPSSTP::getActivities(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), ConstDensityThermo::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IonsFromNeutralVPSSTP::getActivityCoefficients(), GibbsExcessVPSSTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityCoefficients(), LatticeSolidPhase::getActivityCoefficients(), MixedSolventElectrolyte::getActivityCoefficients(), PhaseCombo_Interaction::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), ThermoPhase::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), LatticePhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), HMWSoln::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), RedlichKisterVPSSTP::getd2lnActCoeffdT2(), MargulesVPSSTP::getd2lnActCoeffdT2(), MixedSolventElectrolyte::getd2lnActCoeffdT2(), PhaseCombo_Interaction::getd2lnActCoeffdT2(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), PhaseCombo_Interaction::getdlnActCoeffdlnN(), RedlichKisterVPSSTP::getdlnActCoeffdlnN(), MargulesVPSSTP::getdlnActCoeffdlnN(), MixedSolventElectrolyte::getdlnActCoeffdlnN(), ThermoPhase::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnN_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), MargulesVPSSTP::getdlnActCoeffdlnN_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnX_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnX_diag(), MargulesVPSSTP::getdlnActCoeffdlnX_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), LatticePhase::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), MolarityIonicVPSSTP::getLnActivityCoefficients(), RedlichKisterVPSSTP::getLnActivityCoefficients(), MargulesVPSSTP::getLnActivityCoefficients(), ThermoPhase::getLnActivityCoefficients(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), LatticePhase::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), MolarityIonicVPSSTP::getPartialMolarVolumes(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::HMWSoln(), Phase::init(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), RedlichKwongMFTP::initLengths(), VPStandardStateTP::initLengths(), LatticeSolidPhase::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), ConstDensityThermo::initThermo(), SurfPhase::initThermo(), MolarityIonicVPSSTP::initThermo(), StoichSubstanceSSTP::initThermo(), VPStandardStateTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), ThermoPhase::initThermo(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), Phase::nSpecies(), VPStandardStateTP::operator=(), Phase::operator=(), ThermoPhase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::printCoeffs(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), IdealSolidSolnPhase::referenceConcentration(), HMWSoln::relative_enthalpy(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), MolarityIonicVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), Phase::setConcentrations(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), Phase::setMoleFractions(), Phase::setMoleFractions_NoNorm(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), ThermoPhase::speciesData(), Phase::speciesIndex(), IdealSolidSolnPhase::standardConcentration(), RedlichKwongMFTP::updateAB(), and ThermoPhase::~ThermoPhase().

size_t m_ndim
protectedinherited

Dimensionality of the phase.

Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.

Definition at line 731 of file Phase.h.

Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().

vector_fp m_speciesComp
protectedinherited

Atomic composition of the species.

The number of atoms of element i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm

Definition at line 736 of file Phase.h.

Referenced by Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), Phase::getAtoms(), LatticeSolidPhase::installSlavePhases(), Phase::nAtoms(), and Phase::operator=().

vector_fp m_speciesSize
protectedinherited

Vector of species sizes.

length m_kk. Used in some equations of state which employ the constant partial molar volume approximation.

Definition at line 740 of file Phase.h.

Referenced by Phase::addUniqueSpecies(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), Phase::operator=(), Phase::size(), HMWSoln::speciesMolarVolume(), and DebyeHuckel::standardConcentration().

vector_fp m_speciesCharge
protectedinherited

The documentation for this class was generated from the following files: