Cantera
2.0
|
Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...
#include <IdealSolidSolnPhase.h>
Public Member Functions | |
IdealSolidSolnPhase (int formCG=0) | |
Constructor for IdealSolidSolnPhase. | |
IdealSolidSolnPhase (std::string infile, std::string id="", int formCG=0) | |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file. | |
IdealSolidSolnPhase (XML_Node &root, std::string id="", int formCG=0) | |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database. | |
IdealSolidSolnPhase (const IdealSolidSolnPhase &) | |
IdealSolidSolnPhase & | operator= (const IdealSolidSolnPhase &) |
virtual ThermoPhase * | duplMyselfAsThermoPhase () const |
virtual | ~IdealSolidSolnPhase () |
Destructor. | |
virtual int | eosType () const |
Equation of state flag. | |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. | |
XML_Node & | xml () |
Returns a reference to the XML_Node stored for the phase. | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase Write to vector 'state' the current internal state. | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . | |
doublereal | molarMass (size_t k) const |
Return the Molar mass of species k Alternate name for molecular weight. | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. | |
void | getMolecularWeights (int iwt, doublereal *weights) const |
Copy the vector of molecular weights into array weights. | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. | |
doublereal | size (size_t k) const |
This routine returns the size of species k. | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). | |
virtual void | freezeSpecies () |
Call when finished adding species. | |
bool | speciesFrozen () |
True if freezeSpecies has been called. | |
virtual bool | ready () const |
int | stateMFNumber () const |
Return the State Mole Fraction Number. | |
void | stateMFChangeCalc (bool forceChange=false) |
Every time the mole fractions have changed, this routine will increment the stateMFNumber. | |
Molar Thermodynamic Properties of the Solution ------------------------ | |
virtual doublereal | enthalpy_mole () const |
Molar enthalpy of the solution. | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy of the solution. | |
virtual doublereal | entropy_mole () const |
Molar entropy of the solution. | |
virtual doublereal | gibbs_mole () const |
Molar gibbs free energy of the solution. | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure of the solution. | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume of the solution. | |
Mechanical Equation of State Properties ------------------------------------ | |
In this equation of state implementation, the density is a function only of the mole fractions. Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown. | |
virtual doublereal | pressure () const |
Pressure. | |
virtual void | setPressure (doublereal p) |
Set the pressure at constant temperature. | |
void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. | |
virtual void | setDensity (const doublereal rho) |
Overwritten setDensity() function is necessary because the density is not an independent variable. | |
virtual void | setMolarDensity (const doublereal rho) |
Overwritten setMolarDensity() function is necessary because the density is not an independent variable. | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions. | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions, but don't normalize them to one. | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions, and normalize them to one. | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions, but don't normalize them to one. | |
virtual void | setConcentrations (const doublereal *const c) |
Set the concentration,. | |
Chemical Potentials and Activities ----------------------------------------- | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the standard state chemical potential at unit activity. It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solid solution. The activities are related to the generalized concentrations, \(\tilde C_k\), and standard concentrations, \(C^0_k\), by the following formula: \[ a_k = \frac{\tilde C_k}{C^0_k} \] The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upon the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations. | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns the array of generalized concentrations. | |
virtual doublereal | standardConcentration (size_t k) const |
The standard concentration \( C^0_k \) used to normalize the generalized concentration. | |
virtual doublereal | referenceConcentration (int k) const |
The reference (ie standard) concentration \( C^0_k \) used to normalize the generalized concentration. | |
virtual doublereal | logStandardConc (size_t k) const |
Returns the log of the standard concentration of the kth species. | |
virtual void | getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const |
Returns the units of the standard and general concentrations Note they have the same units, as their divisor is defined to be equal to the activity of the kth species in the solution, which is unitless. | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of species activity coefficients. | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \). | |
Partial Molar Properties of the Solution ----------------------------- | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
returns an array of partial molar volumes of the species in the solution. | |
Properties of the Standard State of the Species in the Solution ------------------------------------- | |
virtual void | getStandardChemPotentials (doublereal *mu0) const |
Get the standard state chemical potentials of the species. | |
void | getEnthalpy_RT (doublereal *hrt) const |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. | |
void | getEntropy_R (doublereal *sr) const |
Get the nondimensional Entropies for the species standard states at the current T and P of the solution. | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional gibbs function for the species standard states at the current T and P of the solution. | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the pure species at the current T and P of the solution. | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. | |
void | getCp_R (doublereal *cpr) const |
Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution. | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of each species in their standard states at the current T and P of the solution. | |
Thermodynamic Values for the Species Reference States ------ | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species. | |
const vector_fp & | enthalpy_RT_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. | |
const vector_fp & | gibbs_RT_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. | |
const vector_fp & | expGibbs_RT_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. | |
const vector_fp & | entropy_R_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. | |
const vector_fp & | cp_R_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. | |
virtual void | setPotentialEnergy (int k, doublereal pe) |
virtual doublereal | potentialEnergy (int k) const |
Utility Functions ----------------------------------------------- | |
void | constructPhaseFile (std::string infile, std::string id="") |
Initialization of an IdealSolidSolnPhase phase using an xml file. | |
void | constructPhaseXML (XML_Node &phaseNode, std::string id="") |
Import and initialize an IdealSolidSolnPhase phase specification in an XML tree into the current object. | |
virtual void | initThermo () |
Initialization of an IdealSolidSolnPhase phase: Note this function is pretty much useless because it doesn't get the xml tree passed to it. | |
virtual void | initThermoXML (XML_Node &phaseNode, std::string id) |
virtual void | setToEquilState (const doublereal *lambda_RT) |
Set mixture to an equilibrium state consistent with specified element potentials and the temperature. | |
double | speciesMolarVolume (int k) const |
Report the molar volume of species k. | |
void | getSpeciesMolarVolumes (doublereal *smv) const |
Fill in a return vector containing the species molar volumes. | |
Information Methods | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. | |
doublereal | Hf298SS (const int k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) | |
virtual void | modifyOneHf298SS (const int k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. | |
Mechanical Properties | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. | |
virtual void | updateDensity () |
Electric Potential | |
The phase may be at some non-zero electrical potential. These methods set or get the value of the electric potential. | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition. The activity is dimensionless. | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. | |
Partial Molar Properties of the Solution | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. | |
virtual void | getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. | |
virtual void | getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. | |
Properties of the Standard State of the Species in the Solution | |
virtual void | getdStandardVolumes_dT (doublereal *d_vol_dT) const |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. | |
virtual void | getdStandardVolumes_dP (doublereal *d_vol_dP) const |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. | |
Thermodynamic Values for the Species Reference States | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. | |
Specific Properties | |
doublereal | enthalpy_mass () const |
Specific enthalpy. | |
doublereal | intEnergy_mass () const |
Specific internal energy. | |
doublereal | entropy_mass () const |
Specific entropy. | |
doublereal | gibbs_mass () const |
Specific Gibbs function. | |
doublereal | cp_mass () const |
Specific heat at constant pressure. | |
doublereal | cv_mass () const |
Specific heat at constant volume. | |
Setting the State | |
These methods set all or part of the thermodynamic state. | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPX (doublereal t, doublereal p, compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TPY (doublereal t, doublereal p, compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) | |
void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. | |
void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. | |
virtual void | setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. | |
virtual void | setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). | |
virtual void | setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and pressure (Pa). | |
virtual void | setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). | |
Chemical Equilibrium | |
Chemical equilibrium. | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. | |
Critical State Properties. | |
These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date. | |
virtual doublereal | critTemperature () const |
Critical temperature (K). | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). | |
Saturation Properties. | |
These methods are only implemented by subclasses that implement full liquid-vapor equations of state. They may be moved out of ThermoPhase at a later date. | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. | |
virtual doublereal | satPressure (doublereal t) const |
Return the saturation pressure given the temperature. | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. | |
Initialization Methods - For Internal Use (ThermoPhase) | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. | |
void | setSpeciesThermo (SpeciesThermo *spthermo) |
Install a species thermodynamic property manager. | |
virtual SpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. | |
virtual void | initThermoFile (std::string inputFile, std::string id) |
virtual void | installSlavePhases (Cantera::XML_Node *phaseNode) |
Add in species from Slave phases. | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. | |
Derivatives of Thermodynamic Variables needed for Applications | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Printing | |
virtual std::string | report (bool show_thermo=true) const |
returns a summary of the state of the phase as a string | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file | |
Name and ID | |
Class Phase contains two strings that identify a phase. The ID is the value of the ID attribute of the XML phase node that is used to initialize a phase when it is read. The name field is also initialized to the value of the ID attribute of the XML phase node. However, the name field may be changed to another value during the course of a calculation. For example, if a phase is located in two places, but has the same constitutive input, the ids of the two phases will be the same, but the names of the two phases may be different. It is an error to have two phases in a single problem with the same name or the same id (or the name from one phase being the same as the id of another phase). Thus, it is expected that there is a 1-1 correspondence between names and unique phases within a Cantera problem. | |
std::string | id () const |
Return the string id for the phase. | |
void | setID (std::string id) |
Set the string id for the phase. | |
std::string | name () const |
Return the name of the phase. | |
void | setName (std::string nm) |
Sets the string name for the phase. | |
Element and Species Information | |
std::string | elementName (size_t m) const |
Name of the element with index m. | |
size_t | elementIndex (std::string name) const |
Return the index of element named 'name'. | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. | |
int | atomicNumber (size_t m) const |
Atomic number of element m. | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. | |
size_t | nElements () const |
Number of elements. | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. | |
size_t | speciesIndex (std::string name) const |
Returns the index of a species named 'name' within the Phase object. | |
std::string | speciesName (size_t k) const |
Name of the species with index k. | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. | |
size_t | nSpecies () const |
Returns the number of species in the phase. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
Set thermodynamic state | |
Set the internal thermodynamic state by setting the internally stored temperature, density and species composition. Note that the composition is always set first. Temperature and density are held constant if not explicitly set. | |
void | setMoleFractionsByName (compositionMap &xMap) |
Set the species mole fractions by name. | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. | |
void | setMassFractionsByName (compositionMap &yMap) |
Set the species mass fractions by name. | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. | |
void | setState_TRX (doublereal t, doublereal dens, compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. | |
void | setState_TRY (doublereal t, doublereal dens, compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. | |
Composition | |
void | getMoleFractionsByName (compositionMap &x) const |
Get the mole fractions by name. | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. | |
doublereal | moleFraction (std::string name) const |
Return the mole fraction of a single species. | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. | |
doublereal | massFraction (std::string name) const |
Return the mass fraction of a single species. | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). | |
doublereal | concentration (const size_t k) const |
Concentration of species k. | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. | |
Thermodynamic Properties | |
doublereal | temperature () const |
Temperature (K). | |
virtual doublereal | density () const |
Density (kg/m^3). | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). | |
virtual void | setTemperature (const doublereal temp) |
Set the internally stored temperature of the phase (K). | |
Mean Properties | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. | |
doublereal | mean_Y (const doublereal *const Q) const |
Evaluate the mass-fraction-weighted mean of an array Q. | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). | |
doublereal | sum_xlogQ (doublereal *const Q) const |
Evaluate \( \sum_k X_k \log Q_k \). | |
Adding Elements and Species | |
These methods are used to add new elements or species. These are not usually called by user programs. Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species. | |
void | addElement (const std::string &symbol, doublereal weight=-12345.0) |
Add an element. | |
void | addElement (const XML_Node &e) |
Add an element from an XML specification. | |
void | addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addUniqueElement (const XML_Node &e) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addElementsFromXML (const XML_Node &phase) |
Add all elements referenced in an XML_Node tree. | |
void | freezeElements () |
Prohibit addition of more elements, and prepare to add species. | |
bool | elementsFrozen () |
True if freezeElements has been called. | |
size_t | addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
void | addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. | |
Protected Member Functions | |
void | init (const vector_fp &mw) |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. | |
Protected Attributes | |
int | m_formGC |
Format for the generalized concentrations 0 = C_k = X_k. | |
size_t | m_mm |
m_mm = Number of distinct elements defined in species in this phase | |
doublereal | m_tmin |
Maximum temperature that this phase can accurately describe the thermodynamics. | |
doublereal | m_tmax |
Minimum temperature that this phase can accurately describe the thermodynamics. | |
doublereal | m_Pref |
Value of the reference pressure for all species in this phase. | |
doublereal | m_Pcurrent |
m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure. | |
vector_fp | m_speciesMolarVolume |
Vector of molar volumes for each species in the solution. | |
doublereal | m_tlast |
Value of the temperature at which the thermodynamics functions for the reference state of the species were last evaluated. | |
vector_fp | m_h0_RT |
Vector containing the species reference enthalpies at T = m_tlast. | |
vector_fp | m_cp0_R |
Vector containing the species reference constant pressure heat capacities at T = m_tlast. | |
vector_fp | m_g0_RT |
Vector containing the species reference Gibbs functions at T = m_tlast. | |
vector_fp | m_s0_R |
Vector containing the species reference entropies at T = m_tlast. | |
vector_fp | m_expg0_RT |
Vector containing the species reference exp(-G/RT) functions at T = m_tlast. | |
vector_fp | m_pe |
Vector of potential energies for the species. | |
vector_fp | m_pp |
Temporary array used in equilibrium calculations. | |
SpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. | |
doublereal | m_phi |
Stored value of the electric potential for this phase. | |
vector_fp | m_lambdaRRT |
Vector of element potentials. | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. | |
int | m_ssConvention |
Contains the standard state convention. | |
std::vector< doublereal > | xMol_Ref |
Reference Mole Fraction Composition. | |
size_t | m_kk |
Number of species in the phase. | |
size_t | m_ndim |
Dimensionality of the phase. | |
vector_fp | m_speciesComp |
Atomic composition of the species. | |
vector_fp | m_speciesSize |
Vector of species sizes. | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. | |
Private Member Functions | |
Utility Functions ------------------------------------------ | |
void | _updateThermo () const |
This function gets called for every call to functions in this class. | |
void | initLengths () |
This internal function adjusts the lengths of arrays. | |
Class IdealSolidSolnPhase represents a condensed phase ideal solution compound.
The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal solution mixtures. File name for the XML datafile containing information for this phase The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and in the XML file.
m_formGC | GeneralizedConc | StandardConc |
0 | X_k | 1.0 |
1 | X_k / V_k | 1.0 / V_k |
2 | X_k / V_N | 1.0 / V_N |
The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.
Definition at line 64 of file IdealSolidSolnPhase.h.
IdealSolidSolnPhase | ( | int | formCG = 0 | ) |
Constructor for IdealSolidSolnPhase.
The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the xml data file.
m_formGC | GeneralizedConc | StandardConc |
0 | X_k | 1.0 |
1 | X_k / V_k | 1.0 / V_k |
2 | X_k / V_N | 1.0 / V_N |
formCG | This parameter initializes the m_formGC variable. The default is a value of 0. |
Definition at line 29 of file IdealSolidSolnPhase.cpp.
Referenced by IdealSolidSolnPhase::duplMyselfAsThermoPhase().
IdealSolidSolnPhase | ( | std::string | infile, |
std::string | id = "" , |
||
int | formCG = 0 |
||
) |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file.
This constructor will also fully initialize the object. The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the xml data file.
<TABLE>
m_formGC
GeneralizedConc
StandardConc
0
X_k
1.0
1
X_k / V_k
1.0 / V_k
2
X_k / V_N
1.0 / V_N
infile | File name for the XML datafile containing information for this phase |
id | The name of this phase. This is used to look up the phase in the XML datafile. |
formCG | This parameter initializes the m_formGC variable. The default is a value of 0. |
Definition at line 45 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::constructPhaseFile().
IdealSolidSolnPhase | ( | XML_Node & | root, |
std::string | id = "" , |
||
int | formCG = 0 |
||
) |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database.
The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and/or read from the data file.
<TABLE>
m_formGC
GeneralizedConc
StandardConc
0
X_k
1.0
1
X_k / V_k
1.0 / V_k
2
X_k / V_N
1.0 / V_N
root | XML tree containing a description of the phase. The tree must be positioned at the XML element named phase with id, "id", on input to this routine. |
id | The name of this phase. This is used to look up the phase in the XML datafile. |
formCG | This parameter initializes the m_formGC variable. The default is a value of 0. |
Definition at line 63 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::constructPhaseXML().
IdealSolidSolnPhase | ( | const IdealSolidSolnPhase & | b | ) |
Copy Constructor
Definition at line 81 of file IdealSolidSolnPhase.cpp.
|
inlinevirtual |
Destructor.
Definition at line 156 of file IdealSolidSolnPhase.h.
IdealSolidSolnPhase & operator= | ( | const IdealSolidSolnPhase & | b | ) |
Assignment operator
Definition at line 88 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_expg0_RT, IdealSolidSolnPhase::m_formGC, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, IdealSolidSolnPhase::m_mm, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_pe, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_s0_R, IdealSolidSolnPhase::m_speciesMolarVolume, IdealSolidSolnPhase::m_tlast, IdealSolidSolnPhase::m_tmax, and IdealSolidSolnPhase::m_tmin.
|
virtual |
Base Class Duplication Function -> given a pointer to ThermoPhase, this function can duplicate the object. (note has to be a separate function not the copy constructor, because it has to be a virtual function)
Reimplemented from ThermoPhase.
Definition at line 119 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::IdealSolidSolnPhase().
|
virtual |
Equation of state flag.
Returns a value depending upon the value of m_formGC, which is defined at instantiation.
Returns the value cIdealGas, defined in mix_defs.h.
Reimplemented from ThermoPhase.
Definition at line 129 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC.
Referenced by IdealSolidSolnPhase::getUnitsStandardConc().
|
virtual |
Molar enthalpy of the solution.
Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:
\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T) + (P - P_{ref}) (\sum_k X_k \hat V^0_k) \]
The reference-state pure-species enthalpies at the reference pressure Pref \( \hat h^0_k(T) \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
Reimplemented from ThermoPhase.
Definition at line 166 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, IdealSolidSolnPhase::m_Pref, Phase::mean_X(), Phase::molarDensity(), IdealSolidSolnPhase::pressure(), and Phase::temperature().
|
virtual |
Molar internal energy of the solution.
Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:
\[ \hat u(T,X) = \hat h(T,P,X) - p \hat V = \sum_k X_k \hat h^0_k(T) - P_{ref} (\sum_k{X_k \hat V^0_k}) \]
and is a function only of temperature. The reference-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.
J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:
\[ \hat u(T) = \hat h(T,P) - p \hat V = \sum_k X_k \hat h^0_k(T) - P_{ref} (\sum_k X_k \hat V^0_k) \]
and is a function only of temperature. The reference-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.
Reimplemented from ThermoPhase.
Definition at line 188 of file IdealSolidSolnPhase.cpp.
References DATA_PTR, IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, IdealSolidSolnPhase::m_Pref, Phase::mean_X(), Phase::molarDensity(), and Phase::temperature().
|
virtual |
Molar entropy of the solution.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]
The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]
The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of temperature since the volume expansivities are equal to zero.
Reimplemented from ThermoPhase.
Definition at line 210 of file IdealSolidSolnPhase.cpp.
References DATA_PTR, IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), and Phase::sum_xlogx().
|
virtual |
Molar gibbs free energy of the solution.
Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]
The reference-state pure-species gibbs free energies \( \hat g^0_k(T) \) are computed by the species thermodynamic property manager, while the standard state gibbs free energies \( \hat g^0_k(T,P) \) are computed by the member function, gibbs_RT().
Reimplemented from ThermoPhase.
Definition at line 229 of file IdealSolidSolnPhase.cpp.
References DATA_PTR, Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::mean_X(), Phase::sum_xlogx(), and Phase::temperature().
|
virtual |
Molar heat capacity at constant pressure of the solution.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]
The heat capacity is independent of pressure. The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.
Reimplemented from ThermoPhase.
Definition at line 250 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::cp_R_ref(), DATA_PTR, Cantera::GasConstant, and Phase::mean_X().
Referenced by IdealSolidSolnPhase::cv_mole().
|
inlinevirtual |
Molar heat capacity at constant volume of the solution.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat c_v(T,P) = \hat c_p(T,P) \]
The two heat capacities are equal.
Reimplemented from ThermoPhase.
Definition at line 255 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::cp_mole().
|
inlinevirtual |
Pressure.
Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.
Reimplemented from ThermoPhase.
Definition at line 276 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::m_Pcurrent.
Referenced by IdealSolidSolnPhase::enthalpy_mole().
|
virtual |
Set the pressure at constant temperature.
Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.
p | Input Pressure (Pa) |
Reimplemented from ThermoPhase.
Definition at line 341 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::m_Pcurrent.
void calcDensity | ( | ) |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.
NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \( X_k \) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified that in this class that the pure species molar volumes are independent of temperature and pressure.
Definition at line 280 of file IdealSolidSolnPhase.cpp.
References Cantera::dot(), IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFractdivMMW(), and Phase::setDensity().
Referenced by IdealSolidSolnPhase::setConcentrations(), IdealSolidSolnPhase::setMassFractions(), IdealSolidSolnPhase::setMassFractions_NoNorm(), IdealSolidSolnPhase::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions_NoNorm(), and IdealSolidSolnPhase::setPressure().
|
virtual |
Overwritten setDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition
May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.
This function will now throw an error condition.
NOTE: This is a virtual function that overwrites the State.h class
rho | Input density |
This function will now throw an error condition
May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.
This function will now throw an error condition.
NOTE: This is a virtual function that overwrites the State.h class
Reimplemented from Phase.
Definition at line 313 of file IdealSolidSolnPhase.cpp.
References Phase::density().
|
virtual |
Overwritten setMolarDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition.
NOTE: This is virtual function that overwrites the State.h class
rho | Input Density |
Reimplemented from Phase.
Definition at line 357 of file IdealSolidSolnPhase.cpp.
|
virtual |
Set the mole fractions.
x | Input vector of mole fractions. Length: m_kk. |
Reimplemented from Phase.
Definition at line 368 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and Phase::setMoleFractions().
|
virtual |
Set the mole fractions, but don't normalize them to one.
setMoleFractions_NoNorm() (virtual from State)
x | Input vector of mole fractions. Length: m_kk. |
Sets the mole fractions and adjusts the internal density.
Reimplemented from Phase.
Definition at line 379 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and Phase::setMoleFractions().
|
virtual |
Set the mass fractions, and normalize them to one.
y | Input vector of mass fractions. Length: m_kk. |
Reimplemented from Phase.
Definition at line 390 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and Phase::setMassFractions().
|
virtual |
Set the mass fractions, but don't normalize them to one.
y | Input vector of mass fractions. Length: m_kk. |
Reimplemented from Phase.
Definition at line 401 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and Phase::setMassFractions_NoNorm().
|
virtual |
Set the concentration,.
c | Input vector of concentrations. Length: m_kk. |
Reimplemented from Phase.
Definition at line 412 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and Phase::setConcentrations().
|
virtual |
This method returns the array of generalized concentrations.
The generalized concentrations are used in the evaluation of the rates of progress for reactions involving species in this phase. The generalized concentration divided by the standard concentration is also equal to the activity of species.
For this implentation the activity is defined to be the mole fraction of the species. The generalized concentration is defined to be equal to the mole fraction divided by the partial molar volume. The generalized concentrations for species in this phase therefore have units of kmol m-3. Rate constants must reflect this fact.
On a general note, the following must be true. For an ideal solution, the generalized concentration must consist of the mole fraction multiplied by a constant. The constant may be fairly arbitrarily chosen, with differences adsorbed into the reaction rate expression. 1/V_N, 1/V_k, or 1 are equally good, as long as the standard concentration is adjusted accordingly. However, it must be a constant (and not the concentration, btw, which is a function of the mole fractions) in order for the ideal solution properties to hold at the same time having the standard concentration to be independent of the mole fractions.
In this implementation the form of the generalized concentrations depend upon the member attribute, m_formGC:
<TABLE>
m_formGC
GeneralizedConc
StandardConc
0
X_k
1.0
1
X_k / V_k
1.0 / V_k
2
X_k / V_N
1.0 / V_N
HKM Note: We have absorbed the pressure dependence of the pure species state into the thermodynamics functions. Therefore the standard state on which the activities are based depend on both temperature and pressure. If we hadn't, it would have appeared in this function in a very awkward exp[] format.
c | Pointer to array of doubles of length m_kk, which on exit will contain the generalized concentrations. |
Reimplemented from ThermoPhase.
Definition at line 471 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::meanMolecularWeight(), and Phase::moleFractdivMMW().
|
virtual |
The standard concentration \( C^0_k \) used to normalize the generalized concentration.
In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. This is the inverse of the species molar volume. Units for the standard concentration are kmol m-3.
k | Species number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter. |
Reimplemented from ThermoPhase.
Definition at line 513 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.
|
virtual |
The reference (ie standard) concentration \( C^0_k \) used to normalize the generalized concentration.
In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. (clone of the standard concentration -> suggest changing the name). This is the inverse of the species molar volume.
k | Species index. |
Definition at line 526 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.
|
virtual |
Returns the log of the standard concentration of the kth species.
k | Species number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter. |
Reimplemented from ThermoPhase.
Definition at line 550 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.
|
virtual |
Returns the units of the standard and general concentrations Note they have the same units, as their divisor is defined to be equal to the activity of the kth species in the solution, which is unitless.
This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.
uA | Output vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0 |
k | species index. Defaults to 0. |
sizeUA | output int containing the size of the vector. Currently, this is equal to 6. |
For EOS types other than cIdealSolidSolnPhase0, the default kmol/m3 holds for standard concentration units. For cIdealSolidSolnPhase0 type, the standard concentration is unitless.
Reimplemented from ThermoPhase.
Definition at line 598 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::eosType(), and Phase::nDim().
|
virtual |
Get the array of species activity coefficients.
ac | output vector of activity coefficients. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 634 of file IdealSolidSolnPhase.cpp.
References Phase::m_kk.
|
virtual |
Get the species chemical potentials.
Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution.
\[ \mu_k = \mu^{ref}_k(T) + V_k * (p - p_o) + R T ln(X_k) \]
or another way to phrase this is
\[ \mu_k = \mu^o_k(T,p) + R T ln(X_k) \]
where \( \mu^o_k(T,p) = \mu^{ref}_k(T) + V_k * (p - p_o)\)
mu | Output vector of chemical potentials. |
Reimplemented from ThermoPhase.
Definition at line 658 of file IdealSolidSolnPhase.cpp.
References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, ckr::max(), Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().
|
virtual |
Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \).
\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k + RT ln(X_k) \]
where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).
mu | Output vector of dimensionless chemical potentials. Length = m_kk. |
Reimplemented from ThermoPhase.
Definition at line 689 of file IdealSolidSolnPhase.cpp.
References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, ckr::max(), Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol) For this phase, the partial molar enthalpies are equal to the pure species enthalpies
\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]
The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
hbar | Output vector containing partial molar enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 721 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Cantera::scale(), and Phase::temperature().
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.
\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]
The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
sbar | Output vector containing partial molar entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 746 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, ckr::max(), Phase::moleFraction(), and Cantera::SmallNumber.
|
virtual |
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.
cpbar | Output vector of partial heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 766 of file IdealSolidSolnPhase.cpp.
References Cantera::GasConstant, IdealSolidSolnPhase::getCp_R(), and Phase::m_kk.
|
virtual |
returns an array of partial molar volumes of the species in the solution.
Units: m^3 kmol-1.
For this solution, thepartial molar volumes are equal to the constant species molar volumes.
vbar | Output vector of partial molar volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 785 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::getStandardVolumes().
|
inlinevirtual |
Get the standard state chemical potentials of the species.
This is the array of chemical potentials at unit activity \( \mu^0_k(T,P) \). We define these here as the chemical potentials of the pure species at the temperature and pressure of the solution. This function is used in the evaluation of the equilibrium constant Kc. Therefore, Kc will also depend on T and P. This is the norm for liquid and solid systems.
units = J / kmol
mu0 | Output vector of standard state chemical potentials. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 659 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::getPureGibbs().
|
virtual |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
We assume an incompressible constant partial molar volume here:
\[ h^0_k(T,P) = h^{ref}_k(T) + (P - P_{ref}) * V_k \]
where \(V_k\) is the molar volume of pure species k. \( h^{ref}_k(T)\) is the enthalpy of the pure species k at the reference pressure, \(P_{ref}\).
hrt | Vector of length m_kk, which on return hrt[k] will contain the nondimensional standard state enthalpy of species k. |
Reimplemented from ThermoPhase.
Definition at line 865 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::temperature().
|
virtual |
Get the nondimensional Entropies for the species standard states at the current T and P of the solution.
Note, this is equal to the reference state entropies due to the zero volume expansivity: i.e., (dS/dP)_T = (dV/dT)_P = 0.0
sr | Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy for species k. |
Note, this is equal to the reference state entropies due to the zero volume expansivity: i.e., (dS/dp)_T = (dV/dT)_P = 0.0
sr | Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy of species k. |
Reimplemented from ThermoPhase.
Definition at line 887 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::entropy_R_ref().
|
virtual |
Get the nondimensional gibbs function for the species standard states at the current T and P of the solution.
\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]
where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).
grt | Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state gibbs function for species k. |
Reimplemented from ThermoPhase.
Definition at line 838 of file IdealSolidSolnPhase.cpp.
References ThermoPhase::_RT(), DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, and IdealSolidSolnPhase::m_speciesMolarVolume.
|
virtual |
Get the Gibbs functions for the pure species at the current T and P of the solution.
We assume an incompressible constant partial molar volume here:
\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]
where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).
gpure | Output vector of Gibbs functions for species Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 811 of file IdealSolidSolnPhase.cpp.
References ThermoPhase::_RT(), DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, and IdealSolidSolnPhase::m_speciesMolarVolume.
Referenced by IdealSolidSolnPhase::getStandardChemPotentials().
|
virtual |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.
urt | Output vector of standard state nondimensional internal energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 905 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::temperature().
|
virtual |
Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.
\[ Cp^0_k(T,P) = Cp^{ref}_k(T) \]
where \(V_k\) is the molar volume of pure species k. \( Cp^{ref}_k(T)\) is the constant pressure heat capacity of species k at the reference pressure, \(p_{ref}\).
cpr | Vector of length m_kk, which on return cpr[k] will contain the nondimensional constant pressure heat capacity for species k. |
Reimplemented from ThermoPhase.
Definition at line 930 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::cp_R_ref().
Referenced by IdealSolidSolnPhase::getPartialMolarCp().
|
virtual |
Get the molar volumes of each species in their standard states at the current T and P of the solution.
units = m^3 / kmol
vol | Output vector of standard state volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 942 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_speciesMolarVolume.
Referenced by IdealSolidSolnPhase::getPartialMolarVolumes().
|
virtual |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
hrt | Output vector containing reference nondimensional enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 958 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_h0_RT, and Phase::m_kk.
|
virtual |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector containing reference nondimensional Gibbs free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 972 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.
|
virtual |
Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
units = J/kmol
g | Output vector containing reference Gibbs free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 986 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), Cantera::GasConstant, IdealSolidSolnPhase::m_g0_RT, Phase::m_kk, and Phase::temperature().
|
virtual |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.
er | Output vector containing reference nondimensional entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 1016 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), Phase::m_kk, and IdealSolidSolnPhase::m_s0_R.
|
virtual |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
urt | Output vector containing reference nondimensional internal energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 1001 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and Phase::temperature().
|
virtual |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.
cprt | Output vector containing reference nondimensional heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 1030 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_cp0_R, and Phase::m_kk.
const vector_fp & enthalpy_RT_ref | ( | ) | const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 1045 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_h0_RT.
Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), and IdealSolidSolnPhase::intEnergy_mole().
|
inline |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 853 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_g0_RT.
Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::gibbs_mole(), and IdealSolidSolnPhase::setToEquilState().
const vector_fp & expGibbs_RT_ref | ( | ) | const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 1058 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_expg0_RT, IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.
const vector_fp & entropy_R_ref | ( | ) | const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 1074 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_s0_R.
Referenced by IdealSolidSolnPhase::entropy_mole(), IdealSolidSolnPhase::getEntropy_R(), and IdealSolidSolnPhase::getPartialMolarEntropies().
|
inline |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 883 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_cp0_R.
Referenced by IdealSolidSolnPhase::cp_mole(), and IdealSolidSolnPhase::getCp_R().
void constructPhaseFile | ( | std::string | infile, |
std::string | id = "" |
||
) |
Initialization of an IdealSolidSolnPhase phase using an xml file.
This routine is a precursor to constructPhaseXML(XML_Node*) routine, which does most of the work.
infile | XML file containing the description of the phase |
id | Optional parameter identifying the name of the phase. If none is given, the first XML phase element will be used. |
Definition at line 1193 of file IdealSolidSolnPhase.cpp.
References XML_Node::build(), IdealSolidSolnPhase::constructPhaseXML(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), and Phase::xml().
Referenced by IdealSolidSolnPhase::IdealSolidSolnPhase().
void constructPhaseXML | ( | XML_Node & | phaseNode, |
std::string | id = "" |
||
) |
Import and initialize an IdealSolidSolnPhase phase specification in an XML tree into the current object.
Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species. This routine calls importPhase() to do most of its work. Then, importPhase() calls initThermoXML() to finish off the work.
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Definition at line 1118 of file IdealSolidSolnPhase.cpp.
References XML_Node::attrib(), XML_Node::child(), XML_Node::hasChild(), XML_Node::id(), Cantera::importPhase(), Cantera::lowercase(), IdealSolidSolnPhase::m_formGC, and Phase::size().
Referenced by IdealSolidSolnPhase::constructPhaseFile(), and IdealSolidSolnPhase::IdealSolidSolnPhase().
|
virtual |
Initialization of an IdealSolidSolnPhase phase: Note this function is pretty much useless because it doesn't get the xml tree passed to it.
Suggest a change.
Reimplemented from ThermoPhase.
Definition at line 1088 of file IdealSolidSolnPhase.cpp.
|
virtual |
Import and initialize a ThermoPhase object using an XML tree. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from ThermoPhase.
Definition at line 1250 of file IdealSolidSolnPhase.cpp.
References XML_Node::attrib(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), ctml::getFloat(), XML_Node::hasChild(), IdealSolidSolnPhase::initLengths(), ThermoPhase::initThermoXML(), Cantera::lowercase(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, XML_Node::root(), and Phase::speciesNames().
|
virtual |
Set mixture to an equilibrium state consistent with specified element potentials and the temperature.
lambda_RT | vector of non-dimensional element potentials \( \lambda_m/RT \). |
Reimplemented from ThermoPhase.
Definition at line 1370 of file IdealSolidSolnPhase.cpp.
References DATA_PTR, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_mm, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, Phase::nAtoms(), and ThermoPhase::setState_PX().
double speciesMolarVolume | ( | int | k | ) | const |
Report the molar volume of species k.
units - \( m^3 kmol^-1 \)
k | species index |
Definition at line 1398 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_speciesMolarVolume.
void getSpeciesMolarVolumes | ( | doublereal * | smv | ) | const |
Fill in a return vector containing the species molar volumes.
units - \( m^3 kmol^-1 \)
smv | output vector containing species molar volumes. Length: m_kk. |
Definition at line 1411 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_speciesMolarVolume.
|
private |
This function gets called for every call to functions in this class.
It checks to see whether the temperature has changed and thus the reference thermodynamics functions for all of the species must be recalculated. If the temperature has changed, the species thermo manager is called to recalculate G, Cp, H, and S at the current temperature.
Definition at line 1428 of file IdealSolidSolnPhase.cpp.
References DATA_PTR, Cantera::GasConstant, IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_pe, IdealSolidSolnPhase::m_s0_R, ThermoPhase::m_spthermo, IdealSolidSolnPhase::m_tlast, Phase::temperature(), and SpeciesThermo::update().
Referenced by IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::entropy_R_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), IdealSolidSolnPhase::getEntropy_R_ref(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT_ref(), IdealSolidSolnPhase::gibbs_RT_ref(), and IdealSolidSolnPhase::logStandardConc().
|
private |
This internal function adjusts the lengths of arrays.
Definition at line 1325 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_expg0_RT, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_mm, IdealSolidSolnPhase::m_pe, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_s0_R, IdealSolidSolnPhase::m_speciesMolarVolume, ThermoPhase::m_spthermo, IdealSolidSolnPhase::m_tmax, IdealSolidSolnPhase::m_tmin, SpeciesThermo::maxTemp(), SpeciesThermo::minTemp(), Phase::nElements(), Phase::nSpecies(), and ThermoPhase::refPressure().
Referenced by IdealSolidSolnPhase::initThermoXML().
|
inlinevirtualinherited |
Returns the reference pressure in Pa.
This function is a wrapper that calls the species thermo refPressure function.
Reimplemented in LatticeSolidPhase.
Definition at line 164 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::refPressure().
Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), RedlichKwongMFTP::getChemPotentials(), RedlichKwongMFTP::getPartialMolarEntropies(), MixtureFugacityTP::getStandardVolumes_ref(), ChemEquil::initialize(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), and RedlichKwongMFTP::setToEquilState().
|
inlinevirtualinherited |
Minimum temperature for which the thermodynamic data for the species or phase are valid.
If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.
k | index of the species. Default is -1, which will return the max of the min value over all species. |
Reimplemented in LatticeSolidPhase.
Definition at line 181 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().
Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | species index |
Definition at line 221 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | Species k |
Hf298New | Specify the new value of the Heat of Formation at 298K and 1 bar |
Definition at line 233 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Maximum temperature for which the thermodynamic data for the species are valid.
If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.
k | index of the species. Default is -1, which will return the min of the max value over all species. |
Reimplemented in LatticeSolidPhase.
Definition at line 250 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().
Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Returns the chargeNeutralityNecessity boolean.
Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.
Definition at line 261 of file ThermoPhase.h.
References ThermoPhase::m_chargeNeutralityNecessary.
|
inlinevirtualinherited |
Returns the isothermal compressibility. Units: 1/Pa.
The isothermal compressibility is defined as
\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]
or
\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]
Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, WaterSSTP, RedlichKwongMFTP, and IdealSolnGasVPSS.
Definition at line 348 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by SingleSpeciesTP::cv_mole().
|
inlinevirtualinherited |
Return the volumetric thermal expansion coefficient. Units: 1/K.
The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, and WaterSSTP.
Definition at line 360 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by SingleSpeciesTP::cv_mole().
|
inlinevirtualinherited |
|
inlineinherited |
Set the electric potential of this phase (V).
This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.
Each phase may have its own electric potential.
v | Input value of the electric potential in Volts |
Definition at line 390 of file ThermoPhase.h.
References ThermoPhase::m_phi.
Referenced by InterfaceKinetics::setElectricPotential(), vcs_VolPhase::setElectricPotential(), and vcs_VolPhase::setState_TP().
|
inlineinherited |
Returns the electric potential of this phase (V).
Units are Volts (which are Joules/coulomb)
Definition at line 398 of file ThermoPhase.h.
References ThermoPhase::m_phi.
Referenced by InterfaceKinetics::_update_rates_phi(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), and vcs_VolPhase::setPtrThermoPhase().
|
virtualinherited |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
Currently, there are two activity conventions:
Reimplemented in MolalityVPSSTP.
Definition at line 143 of file ThermoPhase.cpp.
References Cantera::cAC_CONVENTION_MOLAR.
Referenced by vcs_MultiPhaseEquil::reportCSV(), and LiquidTransport::stefan_maxwell_solve().
|
virtualinherited |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
Currently, there are two standard state conventions:
Reimplemented in PureFluidPhase, LatticeSolidPhase, MixtureFugacityTP, and VPStandardStateTP.
Definition at line 148 of file ThermoPhase.cpp.
References ThermoPhase::m_ssConvention.
Referenced by Cantera::importPhase().
|
virtualinherited |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
Note, for molality based formulations, this returns the molality based activities.
We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.
a | Output vector of activities. Length: m_kk. |
Reimplemented in HMWSoln, DebyeHuckel, MolalityVPSSTP, IdealMolalSoln, GibbsExcessVPSSTP, PureFluidPhase, and SingleSpeciesTP.
Definition at line 158 of file ThermoPhase.cpp.
References ThermoPhase::getActivityConcentrations(), Phase::nSpecies(), and ThermoPhase::standardConcentration().
Referenced by vcs_MultiPhaseEquil::reportCSV(), and ThermoPhase::reportCSV().
|
virtualinherited |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
lnac | Output vector of ln activity coefficients. Length: m_kk. |
Reimplemented in MargulesVPSSTP, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.
Definition at line 166 of file ThermoPhase.cpp.
References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.
Referenced by GibbsExcessVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
inlineinherited |
Get the species electrochemical potentials.
These are partial molar quantities. This method adds a term \( F z_k \phi_p \) to each chemical potential. The electrochemical potential of species k in a phase p, \( \zeta_k \), is related to the chemical potential via the following equation,
\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]
mu | Output vector of species electrochemical potentials. Length: m_kk. Units: J/kmol |
Definition at line 616 of file ThermoPhase.h.
References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.
Referenced by InterfaceKinetics::getDeltaElectrochemPotentials().
|
inlinevirtualinherited |
Return an array of partial molar internal energies for the species in the mixture.
Units: J/kmol.
ubar | Output vector of species partial molar internal energies. Length = m_kk. units are J/kmol. |
Reimplemented in IdealGasPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, and PureFluidPhase.
Definition at line 650 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.
Units: m^3/kmol.
The derivative is at constant pressure
d_vbar_dT | Output vector of derivatives of species partial molar volumes wrt T. Length = m_kk. units are m^3/kmol/K. |
Definition at line 683 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.
Units: m^3/kmol.
The derivative is at constant temperature
d_vbar_dP | Output vector of derivatives of species partial molar volumes wrt P. Length = m_kk. units are m^3/kmol/Pa. |
Definition at line 695 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.
The derivative is at constant pressure units = m^3 / kmol / K
d_vol_dT | Output vector containing derivatives of standard state volumes wrt T Length: m_kk. |
Definition at line 800 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.
The derivative is at constant temperature. units = m^3 / kmol / Pa
d_vol_dP | Output vector containing the derivative of standard state volumes wrt P. Length: m_kk. |
Definition at line 813 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented in IdealGasPhase, MixtureFugacityTP, VPStandardStateTP, and WaterSSTP.
Definition at line 904 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by PDSS_IonsFromNeutral::molarVolume_ref().
|
virtualinherited |
Sets the reference composition.
x | Mole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector. |
Definition at line 992 of file ThermoPhase.cpp.
References DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.
Referenced by ThermoPhase::initThermoXML().
|
virtualinherited |
Gets the reference composition.
The reference mole fraction is a safe mole fraction.
x | Mole fraction vector containing the reference composition. |
Definition at line 1013 of file ThermoPhase.cpp.
References Phase::m_kk, and ThermoPhase::xMol_Ref.
|
inlineinherited |
Specific enthalpy.
Units: J/kg.
Definition at line 937 of file ThermoPhase.h.
References ThermoPhase::enthalpy_mole(), and Phase::meanMolecularWeight().
Referenced by ConstPressureReactor::initialize(), Reactor::initialize(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), ReactorBase::setThermoMgr(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inlineinherited |
Specific internal energy.
Units: J/kg.
Definition at line 944 of file ThermoPhase.h.
References ThermoPhase::intEnergy_mole(), and Phase::meanMolecularWeight().
Referenced by ConstPressureReactor::initialize(), Reactor::initialize(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_UV(), ReactorBase::setThermoMgr(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inlineinherited |
Specific entropy.
Units: J/kg/K.
Definition at line 951 of file ThermoPhase.h.
References ThermoPhase::entropy_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), and SingleSpeciesTP::setState_SV().
|
inlineinherited |
Specific Gibbs function.
Units: J/kg.
Definition at line 958 of file ThermoPhase.h.
References ThermoPhase::gibbs_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlineinherited |
Specific heat at constant pressure.
Units: J/kg/K.
Definition at line 965 of file ThermoPhase.h.
References ThermoPhase::cp_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), and StFlow::updateThermo().
|
inlineinherited |
Specific heat at constant volume.
Units: J/kg/K.
Definition at line 972 of file ThermoPhase.h.
References ThermoPhase::cv_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), and SingleSpeciesTP::setState_UV().
|
inlineinherited |
Return the Gas Constant multiplied by the current temperature.
The units are Joules kmol-1
Definition at line 981 of file ThermoPhase.h.
References Cantera::GasConstant, and Phase::temperature().
Referenced by MixtureFugacityTP::corr0(), RedlichKwongMFTP::enthalpy_mole(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), PureFluidPhase::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT_ref(), WaterSSTP::getGibbs_ref(), MixtureFugacityTP::getGibbs_ref(), IdealGasPhase::getGibbs_ref(), PureFluidPhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealMolalSoln::getPartialMolarEnthalpies(), ConstDensityThermo::getPureGibbs(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), LatticePhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), and MixtureFugacityTP::z().
|
virtualinherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | Vector of mole fractions. Length is equal to m_kk. |
Reimplemented in SingleSpeciesTP, and MixtureFugacityTP.
Definition at line 174 of file ThermoPhase.cpp.
References Phase::setMoleFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().
Referenced by MultiTransport::getMassFluxes(), DustyGasTransport::getMolarFluxes(), MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().
|
inherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | Composition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction |
Definition at line 181 of file ThermoPhase.cpp.
References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | String containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction |
Definition at line 188 of file ThermoPhase.cpp.
References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | Vector of mass fractions. Length is equal to m_kk. |
Definition at line 206 of file ThermoPhase.cpp.
References Phase::setMassFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | Composition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction |
Definition at line 214 of file ThermoPhase.cpp.
References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | String containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction |
Definition at line 222 of file ThermoPhase.cpp.
References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().
|
inherited |
Set the temperature (K) and pressure (Pa)
Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
Definition at line 242 of file ThermoPhase.cpp.
References ThermoPhase::setPressure(), and Phase::setTemperature().
Referenced by StoichSubstance::initThermo(), ImplicitSurfChem::setCommonState_TP(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), vcs_VolPhase::setState_TP(), PDSS_IonsFromNeutral::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), and FlowReactor::updateState().
|
inherited |
Set the pressure (Pa) and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
p | Pressure (Pa) |
x | Vector of mole fractions. Length is equal to m_kk. |
Definition at line 249 of file ThermoPhase.cpp.
References Phase::setMoleFractions(), and ThermoPhase::setPressure().
Referenced by vcs_VolPhase::_updateMoleFractionDependencies(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().
|
inherited |
Set the internally stored pressure (Pa) and mass fractions.
Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
p | Pressure (Pa) |
y | Vector of mass fractions. Length is equal to m_kk. |
Definition at line 256 of file ThermoPhase.cpp.
References Phase::setMassFractions(), and ThermoPhase::setPressure().
|
virtualinherited |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
h | Specific enthalpy (J/kg) |
p | Pressure (Pa) |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 263 of file ThermoPhase.cpp.
References ThermoPhase::setState_HPorUV().
Referenced by FlowReactor::updateState(), and ConstPressureReactor::updateState().
|
virtualinherited |
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.
u | specific internal energy (J/kg) |
v | specific volume (m^3/kg). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 270 of file ThermoPhase.cpp.
References ThermoPhase::setState_HPorUV().
Referenced by Reactor::updateState().
|
virtualinherited |
Set the specific entropy (J/kg/K) and pressure (Pa).
This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.
s | specific entropy (J/kg/K) |
p | specific pressure (Pa). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 546 of file ThermoPhase.cpp.
References ThermoPhase::setState_SPorSV().
|
virtualinherited |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.
s | specific entropy (J/kg/K) |
v | specific volume (m^3/kg). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 553 of file ThermoPhase.cpp.
References ThermoPhase::setState_SPorSV().
|
inherited |
Stores the element potentials in the ThermoPhase object.
Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are stored in their dimensionless forms, calculated by dividing by RT.
lambda | Input vector containing the element potentials. Length = nElements. Units are Joules/kmol. |
Definition at line 1106 of file ThermoPhase.cpp.
References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().
Referenced by Cantera::equilibrate(), ChemEquil::equilibrate(), and Cantera::vcs_equilibrate().
|
inherited |
Returns the element potentials stored in the ThermoPhase object.
Returns the stored element potentials. The element potentials are retrieved from their stored dimensionless forms by multiplying by RT.
lambda | Output vector containing the element potentials. Length = nElements. Units are Joules/kmol. |
Definition at line 1129 of file ThermoPhase.cpp.
References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().
Referenced by ChemEquil::equilibrate().
|
inlinevirtualinherited |
Critical temperature (K).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1236 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::calculatePsat(), MixtureFugacityTP::densityCalc(), MixtureFugacityTP::phaseState(), and MixtureFugacityTP::psatEst().
|
inlinevirtualinherited |
Critical pressure (Pa).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1242 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::calculatePsat(), and MixtureFugacityTP::psatEst().
|
inlinevirtualinherited |
Critical density (kg/m3).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1248 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::densityCalc(), and MixtureFugacityTP::phaseState().
|
inlinevirtualinherited |
Return the saturation temperature given the pressure.
p | Pressure (Pa) |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.
Definition at line 1267 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return the saturation pressure given the temperature.
t | Temperature (Kelvin) |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.
Definition at line 1276 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return the fraction of vapor at the current conditions.
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.
Definition at line 1282 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Set the state to a saturated system at a particular temperature.
t | Temperature (kelvin) |
x | Fraction of vapor |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.
Definition at line 1292 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Set the state to a saturated system at a particular pressure.
p | Pressure (Pa) |
x | Fraction of vapor |
Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.
Definition at line 1301 of file ThermoPhase.h.
References ThermoPhase::err().
|
inherited |
Store a reference pointer to the XML tree containing the species data for this phase.
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.
This is used to access data needed to construct transport manager later.
k | Species index |
data | Pointer to the XML_Node data containing information about the species in the phase. |
Definition at line 1050 of file ThermoPhase.cpp.
References ThermoPhase::m_speciesData.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Return a pointer to the vector of XML nodes containing the species data for this phase.
Definition at line 1060 of file ThermoPhase.cpp.
References Phase::m_kk, and ThermoPhase::m_speciesData.
Referenced by MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::initTransport(), LatticeSolidPhase::installSlavePhases(), and TransportFactory::setupLiquidTransport().
|
inherited |
Install a species thermodynamic property manager.
The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.
spthermo | input pointer to the species thermodynamic property manager. |
Definition at line 886 of file ThermoPhase.cpp.
References ThermoPhase::m_spthermo.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), and VPSSMgrFactory::newVPSSMgr().
|
virtualinherited |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
k | Speices id. The default is -1, meaning return the default |
Reimplemented in LatticeSolidPhase.
Definition at line 904 of file ThermoPhase.cpp.
References ThermoPhase::m_spthermo.
Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().
|
virtualinherited |
Initialization of a ThermoPhase object using an ctml file.
This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.
inputFile | XML file containing the description of the phase |
id | Optional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used. |
Definition at line 928 of file ThermoPhase.cpp.
References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().
|
virtualinherited |
Add in species from Slave phases.
This hook is used for cSS_CONVENTION_SLAVE phases
phaseNode | XML Element for the phase |
Reimplemented in LatticeSolidPhase.
Definition at line 1045 of file ThermoPhase.cpp.
Referenced by Cantera::importPhase().
|
inlinevirtualinherited |
Set the equation of state parameters.
The number and meaning of these depends on the subclass.
n | number of parameters |
c | array of n coefficients |
Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealMolalSoln, SingleSpeciesTP, FixedChemPotSSTP, electrodeElectron, MineralEQ3, MetalSHEelectrons, StoichSubstanceSSTP, StoichSubstance, ConstDensityThermo, and SurfPhase.
Definition at line 1451 of file ThermoPhase.h.
|
inlinevirtualinherited |
Get the equation of state parameters in a vector.
The number and meaning of these depends on the subclass.
n | number of parameters |
c | array of n coefficients |
Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealMolalSoln, SingleSpeciesTP, FixedChemPotSSTP, MineralEQ3, MetalSHEelectrons, StoichSubstanceSSTP, StoichSubstance, and ConstDensityThermo.
Definition at line 1462 of file ThermoPhase.h.
|
inlinevirtualinherited |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.
eosdata | An XML_Node object corresponding to the "thermo" entry for this phase in the input file. |
Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealMolalSoln, SingleSpeciesTP, LatticeSolidPhase, FixedChemPotSSTP, MineralEQ3, electrodeElectron, MetalSHEelectrons, PureFluidPhase, VPStandardStateTP, StoichSubstanceSSTP, WaterSSTP, RedlichKwongMFTP, ConstDensityThermo, StoichSubstance, SurfPhase, IdealSolnGasVPSS, MetalPhase, EdgePhase, and SemiconductorPhase.
Definition at line 1478 of file ThermoPhase.h.
Referenced by Cantera::importPhase(), and RedlichKwongMFTP::setParametersFromXML().
|
virtualinherited |
Set the initial state of the phase to the conditions specified in the state XML element.
This method sets the temperature, pressure, and mole fraction vector to a set default value.
state | AN XML_Node object corresponding to the "state" entry for this phase in the input file. |
Reimplemented in MolalityVPSSTP, MixtureFugacityTP, and SurfPhase.
Definition at line 1072 of file ThermoPhase.cpp.
References ctml::getChildValue(), ctml::getFloat(), XML_Node::hasChild(), Phase::setDensity(), Phase::setMassFractionsByName(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
Referenced by ThermoPhase::initThermoXML(), and MolalityVPSSTP::setStateFromXML().
|
inlinevirtualinherited |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
dTds | Input of temperature change along the path |
dXds | Input vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one. |
dlnActCoeffds | Output vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m. |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 1511 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().
|
inlinevirtualinherited |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnX_diag | Output vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 1533 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().
|
inlinevirtualinherited |
Get the array of log species mole number derivatives of the log activity coefficients.
This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that species mole number variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnN_diag | Output vector of derivatives of the log Activity Coefficients. length = m_kk |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, MixtureFugacityTP, and VPStandardStateTP.
Definition at line 1554 of file ThermoPhase.h.
References ThermoPhase::err().
|
virtualinherited |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.
units = 1 / kmol
dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.
\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]
ld | Number of rows in the matrix |
dlnActCoeffdlnN | Output vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk |
Reimplemented in MolalityVPSSTP, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, and GibbsExcessVPSSTP.
Definition at line 1158 of file ThermoPhase.cpp.
References Phase::m_kk.
Referenced by vcs_VolPhase::_updateLnActCoeffJac().
|
virtualinherited |
returns a summary of the state of the phase as a string
show_thermo | If true, extra information is printed out about the thermodynamic state of the system. |
Reimplemented in MolalityVPSSTP, PureFluidPhase, MolarityIonicVPSSTP, and PseudoBinaryVPSSTP.
Definition at line 1243 of file ThermoPhase.cpp.
References ThermoPhase::cp_mass(), ThermoPhase::cp_mole(), ThermoPhase::cv_mass(), ThermoPhase::cv_mole(), Phase::density(), ThermoPhase::electricPotential(), ThermoPhase::enthalpy_mass(), ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mass(), ThermoPhase::entropy_mole(), ThermoPhase::err(), Cantera::GasConstant, ThermoPhase::getChemPotentials(), Phase::getMassFractions(), Phase::getMoleFractions(), ThermoPhase::gibbs_mass(), ThermoPhase::gibbs_mole(), ThermoPhase::intEnergy_mass(), ThermoPhase::intEnergy_mole(), Phase::meanMolecularWeight(), Phase::name(), Phase::nSpecies(), ThermoPhase::pressure(), CanteraError::save(), Cantera::SmallNumber, Phase::speciesName(), and Phase::temperature().
Referenced by Cantera::operator<<(), and Cantera::report().
|
virtualinherited |
returns a summary of the state of the phase to a comma separated file
csvFile | ofstream file to print comma separated data for the phase |
Reimplemented in MolalityVPSSTP, and PureFluidPhase.
Definition at line 1350 of file ThermoPhase.cpp.
References ThermoPhase::cp_mass(), ThermoPhase::cp_mole(), ThermoPhase::cv_mass(), ThermoPhase::cv_mole(), Phase::density(), ThermoPhase::electricPotential(), ThermoPhase::enthalpy_mass(), ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mass(), ThermoPhase::entropy_mole(), ThermoPhase::err(), ThermoPhase::getActivities(), ThermoPhase::getActivityCoefficients(), ThermoPhase::getChemPotentials(), Phase::getMassFractions(), Phase::getMoleFractions(), ThermoPhase::getPartialMolarCp(), ThermoPhase::getPartialMolarEnthalpies(), ThermoPhase::getPartialMolarEntropies(), ThermoPhase::getPartialMolarIntEnergies(), ThermoPhase::getPartialMolarVolumes(), ThermoPhase::gibbs_mass(), ThermoPhase::gibbs_mole(), ThermoPhase::intEnergy_mass(), ThermoPhase::intEnergy_mole(), Phase::meanMolecularWeight(), Phase::name(), Phase::nSpecies(), ThermoPhase::pressure(), CanteraError::save(), Cantera::SmallNumber, Phase::speciesName(), and Phase::temperature().
|
inherited |
Returns a reference to the XML_Node stored for the phase.
The XML_Node for the phase contains all of the input data used to set up the model for the phase, during its initialization.
Definition at line 125 of file Phase.cpp.
References Phase::m_xml.
Referenced by MolarityIonicVPSSTP::constructPhaseFile(), LatticePhase::constructPhaseFile(), RedlichKisterVPSSTP::constructPhaseFile(), MargulesVPSSTP::constructPhaseFile(), MixedSolventElectrolyte::constructPhaseFile(), WaterSSTP::constructPhaseFile(), PhaseCombo_Interaction::constructPhaseFile(), IonsFromNeutralVPSSTP::constructPhaseFile(), IdealMolalSoln::constructPhaseFile(), IdealSolidSolnPhase::constructPhaseFile(), DebyeHuckel::constructPhaseFile(), Cantera::importPhase(), SimpleTransport::initLiquid(), ThermoPhase::initThermoFile(), TransportFactory::newTransport(), and TransportFactory::setupLiquidTransport().
|
inherited |
Return the string id for the phase.
Definition at line 130 of file Phase.cpp.
References Phase::m_id.
Referenced by Kinetics::assignShallowPointers(), Cantera::equilibrate(), Cantera::getEfficiencies(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesIndex(), MultiPhase::phaseIndex(), MultiPhase::phaseName(), solveProb::print_header(), RedlichKwongMFTP::RedlichKwongMFTP(), Phase::setID(), LatticeSolidPhase::setParametersFromXML(), vcs_VolPhase::transferElementsFM(), and Cantera::vcs_equilibrate().
|
inherited |
Set the string id for the phase.
id | String id of the phase |
Definition at line 135 of file Phase.cpp.
References Phase::id(), and Phase::m_id.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Return the name of the phase.
Definition at line 140 of file Phase.cpp.
References Phase::m_name.
Referenced by Cantera::operator<<(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inherited |
Sets the string name for the phase.
nm | String name of the phase |
Definition at line 145 of file Phase.cpp.
References Phase::m_name.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Name of the element with index m.
m | Element index. |
Definition at line 169 of file Phase.cpp.
References Phase::checkElementIndex(), and Phase::m_elementNames.
Referenced by MultiPhase::addPhase(), Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), ChemEquil::equilibrate(), ChemEquil::equilResidual(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), ChemEquil::initialize(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), ChemEquil::setInitialMoles(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Return the index of element named 'name'.
The index is an integer assigned to each element in the order it was added. Returns npos if the specified element is not found.
name | Name of the element |
Definition at line 175 of file Phase.cpp.
References Phase::m_elementNames, Phase::m_mm, and Cantera::npos.
Referenced by Phase::addUniqueElementAfterFreeze(), MultiPhase::init(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().
|
inherited |
Return a read-only reference to the vector of element names.
Definition at line 185 of file Phase.cpp.
References Phase::m_elementNames.
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), and IonsFromNeutralVPSSTP::initThermoXML().
|
inherited |
Atomic weight of element m.
m | Element index |
Definition at line 190 of file Phase.cpp.
References Phase::m_atomicWeights.
Referenced by ChemEquil::initialize(), and WaterSSTP::initThermoXML().
|
inherited |
Entropy of the element in its standard state at 298 K and 1 bar.
m | Element index |
Definition at line 195 of file Phase.cpp.
References AssertThrowMsg, AssertTrace, ENTROPY298_UNKNOWN, Phase::m_entropy298, and Phase::m_mm.
Referenced by LatticeSolidPhase::installSlavePhases(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().
|
inherited |
Atomic number of element m.
m | Element index |
Definition at line 209 of file Phase.cpp.
References Phase::m_atomicNumbers.
Referenced by MultiPhase::addPhase(), and LatticeSolidPhase::installSlavePhases().
|
inherited |
Return the element constraint type Possible types include:
CT_ELEM_TYPE_TURNEDOFF -1 CT_ELEM_TYPE_ABSPOS 0 CT_ELEM_TYPE_ELECTRONCHARGE 1 CT_ELEM_TYPE_CHARGENEUTRALITY 2 CT_ELEM_TYPE_LATTICERATIO 3 CT_ELEM_TYPE_KINETICFROZEN 4 CT_ELEM_TYPE_SURFACECONSTRAINT 5 CT_ELEM_TYPE_OTHERCONSTRAINT 6
The default is CT_ELEM_TYPE_ABSPOS.
m | Element index |
Definition at line 214 of file Phase.cpp.
References Phase::m_elem_type.
Referenced by LatticeSolidPhase::installSlavePhases(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Change the element type of the mth constraint Reassigns an element type.
m | Element index |
elem_type | New elem type to be assigned |
Definition at line 219 of file Phase.cpp.
References Phase::m_elem_type.
|
inherited |
Return a read-only reference to the vector of atomic weights.
Definition at line 204 of file Phase.cpp.
References Phase::m_atomicWeights.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Number of elements.
Definition at line 150 of file Phase.cpp.
References Phase::m_mm.
Referenced by MultiPhase::addPhase(), Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), ChemEquil::equilibrate(), MolalityVPSSTP::findCLMIndex(), FixedChemPotSSTP::FixedChemPotSSTP(), ThermoPhase::getElementPotentials(), ChemEquil::initialize(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), LatticeSolidPhase::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), ThermoPhase::setElementPotentials(), vcs_VolPhase::setPtrThermoPhase(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.
Definition at line 155 of file Phase.cpp.
References Phase::m_mm.
Referenced by Phase::elementName(), and Phase::nAtoms().
|
inherited |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements().
Used before calls which take an array pointer.
Definition at line 162 of file Phase.cpp.
References Phase::m_mm.
|
inherited |
Number of atoms of element m
in species k
.
k | species index |
m | element index |
Definition at line 226 of file Phase.cpp.
References Phase::checkElementIndex(), Phase::checkSpeciesIndex(), Phase::m_mm, and Phase::m_speciesComp.
Referenced by Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), MolalityVPSSTP::findCLMIndex(), MultiPhase::init(), ChemEquil::initialize(), IonsFromNeutralVPSSTP::initThermoXML(), IdealSolidSolnPhase::setToEquilState(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Get a vector containing the atomic composition of species k.
k | species index |
atomArray | vector containing the atomic number in the species. Length: m_mm |
Definition at line 233 of file Phase.cpp.
References Phase::m_mm, and Phase::m_speciesComp.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Returns the index of a species named 'name' within the Phase object.
The first species in the phase will have an index 0, and the last one will have an index of nSpecies() - 1.
name | String name of the species. It may also be in the form phaseName:speciesName |
Definition at line 240 of file Phase.cpp.
References Phase::m_id, Phase::m_kk, Phase::m_name, Phase::m_speciesNames, Cantera::npos, and Cantera::parseSpeciesName().
Referenced by PDSS_IonsFromNeutral::constructPDSSXML(), TransportFactory::getLiquidInteractionsTransportData(), TransportFactory::getLiquidSpeciesTransportData(), Cantera::getStick(), HMWSoln::HMWSoln(), Cantera::importSolution(), LiquidTranInteraction::init(), DebyeHuckel::initThermoXML(), FlowDevice::install(), Kinetics::kineticsSpeciesIndex(), MargulesVPSSTP::MargulesVPSSTP(), Phase::massFraction(), MixedSolventElectrolyte::MixedSolventElectrolyte(), Phase::moleFraction(), PhaseCombo_Interaction::PhaseCombo_Interaction(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), RedlichKisterVPSSTP::RedlichKisterVPSSTP(), MolalityVPSSTP::report(), MolalityVPSSTP::reportCSV(), and Kinetics::speciesPhase().
|
inherited |
Name of the species with index k.
k | index of the species |
Definition at line 257 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_speciesNames.
Referenced by StFlow::componentName(), ReactingSurf1D::componentName(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), TransportFactory::fitProperties(), AqueousTransport::getLiquidTransportData(), Phase::getMoleFractionsByName(), Cantera::importSolution(), MultiPhase::init(), ChemEquil::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), FlowDevice::install(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesName(), solveProb::print_header(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), StFlow::save(), SurfPhase::setCoveragesByName(), ChemEquil::setInitialMoles(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Inlet1D::showSolution(), ReactingSurf1D::showSolution(), Phase::speciesSPName(), and ChemEquil::update().
|
inherited |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
k | Species index within the phase |
Definition at line 282 of file Phase.cpp.
References Phase::m_name, and Phase::speciesName().
|
inherited |
Return a const reference to the vector of species names.
Definition at line 263 of file Phase.cpp.
References Phase::m_speciesNames.
Referenced by PDSS_ConstVol::constructPDSSFile(), PDSS_HKFT::constructPDSSFile(), PDSS_IonsFromNeutral::constructPDSSFile(), PDSS_SSVol::constructPDSSFile(), VPSSMgr_ConstVol::initThermoXML(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Returns the number of species in the phase.
Definition at line 252 of file Phase.h.
References Phase::m_kk.
Referenced by MultiPhase::addPhase(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::assignShallowPointers(), MultiPhase::calcElemAbundances(), Phase::chargeDensity(), MultiPhaseEquil::computeReactionSteps(), PDSS_IonsFromNeutral::constructPDSSXML(), RedlichKisterVPSSTP::cp_mole(), MargulesVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), PhaseCombo_Interaction::cp_mole(), SolidTransport::electricalConductivity(), RedlichKisterVPSSTP::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MargulesVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), ChemEquil::equilibrate(), vcs_MultiPhaseEquil::equilibrate_TP(), ChemEquil::estimateElementPotentials(), ThermoPhase::getActivities(), MetalPhase::getActivityConcentrations(), MetalPhase::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MetalPhase::getEnthalpy_RT(), MetalPhase::getEntropy_R(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MultiTransport::getMolarFluxes(), Phase::getMoleFractionsByName(), MultiPhase::getMoles(), MetalPhase::getStandardChemPotentials(), ImplicitSurfChem::ImplicitSurfChem(), Cantera::importSolution(), LiquidTranInteraction::init(), MultiPhase::init(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), GasTransport::initGas(), ChemEquil::initialize(), DustyGasTransport::initialize(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), VPSSMgr::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), LatticePhase::initThermo(), FlowDevice::install(), rxninfo::installReaction(), LatticeSolidPhase::installSlavePhases(), Kinetics::nTotalSpecies(), solveProb::print_header(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::restoreState(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), Phase::saveState(), Kinetics::selectPhase(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMoles(), SolidTransport::setParameters(), MultiPhase::setPhaseMoleFractions(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Transport::setThermo(), ReactorBase::setThermoMgr(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), Inlet1D::showSolution(), solveSP::solveSP(), StFlow::StFlow(), vcs_VolPhase::transferElementsFM(), AqueousKinetics::updateKc(), InterfaceKinetics::updateKc(), ConstPressureReactor::updateState(), Reactor::updateState(), and MultiPhase::uploadMoleFractionsFromPhases().
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
Definition at line 268 of file Phase.cpp.
References Phase::m_kk.
Referenced by Phase::concentration(), Phase::massFraction(), Phase::molecularWeight(), Phase::moleFraction(), Phase::nAtoms(), and Phase::speciesName().
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 275 of file Phase.cpp.
References Phase::m_kk.
|
inherited |
Save the current internal state of the phase Write to vector 'state' the current internal state.
state | output vector. Will be resized to nSpecies() + 2. |
Definition at line 288 of file Phase.cpp.
References Phase::nSpecies().
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), TransportFactory::newTransport(), ReactorBase::setThermoMgr(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inherited |
Write to array 'state' the current internal state.
lenstate | length of the state array. Must be >= nSpecies()+2 |
state | output vector. Must be of length nSpecies() + 2 or greater. |
Definition at line 293 of file Phase.cpp.
References Phase::density(), Phase::getMassFractions(), and Phase::temperature().
|
inherited |
Restore a state saved on a previous call to saveState.
state | State vector containing the previously saved state. |
Definition at line 300 of file Phase.cpp.
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiTransport::getMassFluxes(), FlowReactor::initialize(), ConstPressureReactor::initialize(), Reactor::initialize(), and TransportFactory::newTransport().
|
inherited |
Restore the state of the phase from a previously saved state vector.
lenstate | Length of the state vector |
state | Vector of state conditions. |
Definition at line 305 of file Phase.cpp.
References Phase::nSpecies(), Phase::setDensity(), Phase::setMassFractions_NoNorm(), and Phase::setTemperature().
|
inherited |
Set the species mole fractions by name.
@param xMap map from species names to mole fraction values.
Species not listed by name in xMap
are set to zero.
Definition at line 362 of file Phase.cpp.
References Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().
Referenced by Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().
|
inherited |
Set the mole fractions of a group of species by name.
Species which are not listed by name in the composition map are set to zero.
x | string x in the form of a composition map |
Definition at line 376 of file Phase.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Phase::speciesName().
|
inherited |
Set the species mass fractions by name.
@param yMap map from species names to mass fraction values.
Species not listed by name in yMap
are set to zero.
Definition at line 416 of file Phase.cpp.
References Phase::nSpecies(), Phase::setMassFractions(), and Phase::speciesName().
Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().
|
inherited |
Set the species mass fractions by name.
Species not listed by name in x
are set to zero.
x | String containing a composition map |
Definition at line 430 of file Phase.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Phase::speciesName().
|
inherited |
Set the internally stored temperature (K), density, and mole fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 441 of file Phase.cpp.
References Phase::setDensity(), Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mole fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
x | Composition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction. |
Definition at line 455 of file Phase.cpp.
References Phase::setDensity(), Phase::setMoleFractionsByName(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mass fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
y | vector of species mass fractions, length m_kk |
Definition at line 462 of file Phase.cpp.
References Phase::setDensity(), Phase::setMassFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mass fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
y | Composition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction. |
Definition at line 469 of file Phase.cpp.
References Phase::setDensity(), Phase::setMassFractionsByName(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
t | Temperature in kelvin |
n | molar density (kmol/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 448 of file Phase.cpp.
References Phase::setMolarDensity(), Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K) and density (kg/m^3)
t | Temperature in kelvin |
rho | Density (kg/m^3) |
Definition at line 476 of file Phase.cpp.
References Phase::setDensity(), and Phase::setTemperature().
Referenced by PureFluidPhase::setState_HP(), PureFluidPhase::setState_SP(), PureFluidPhase::setState_SV(), PDSS_IonsFromNeutral::setState_TR(), and PureFluidPhase::setState_UV().
|
inherited |
Set the internally stored temperature (K) and mole fractions.
t | Temperature in kelvin |
x | vector of species mole fractions, length m_kk |
Definition at line 482 of file Phase.cpp.
References Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K) and mass fractions.
t | Temperature in kelvin |
y | vector of species mass fractions, length m_kk |
Definition at line 488 of file Phase.cpp.
References Phase::setMassFractions(), and Phase::setTemperature().
|
inherited |
Set the density (kg/m^3) and mole fractions.
rho | Density (kg/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 494 of file Phase.cpp.
References Phase::setDensity(), and Phase::setMoleFractions().
|
inherited |
Set the density (kg/m^3) and mass fractions.
rho | Density (kg/m^3) |
y | vector of species mass fractions, length m_kk |
Definition at line 500 of file Phase.cpp.
References Phase::setDensity(), and Phase::setMassFractions().
|
inherited |
Molecular weight of species k
.
k | index of species k |
k
. Definition at line 506 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_molwts.
Referenced by VPSSMgr_Water_ConstVol::_updateRefStateThermo(), VPSSMgr_Water_HKFT::_updateRefStateThermo(), VPSSMgr_Water_ConstVol::_updateStandardStateThermo(), VPSSMgr_Water_HKFT::_updateStandardStateThermo(), SingleSpeciesTP::cv_mole(), SingleSpeciesTP::getPartialMolarVolumes(), SingleSpeciesTP::getStandardVolumes(), VPSSMgr_Water_ConstVol::getStandardVolumes_ref(), PDSS::initThermo(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), PDSS_ConstVol::initThermoXML(), MineralEQ3::initThermoXML(), PDSS_SSVol::initThermoXML(), Phase::molarMass(), MolalityVPSSTP::setSolvent(), HMWSoln::speciesMolarVolume(), and LiquidTransport::stefan_maxwell_solve().
|
inlineinherited |
Return the Molar mass of species k
Alternate name for molecular weight.
@param k index for species @return Return the molar mass of species k kg/kmol.
Definition at line 388 of file Phase.h.
References Phase::molecularWeight().
|
inherited |
Copy the vector of molecular weights into vector weights.
weights | Output vector of molecular weights (kg/kmol) |
Definition at line 512 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Copy the vector of molecular weights into array weights.
@param iwt Unused. @param weights Output array of molecular weights (kg/kmol)
Definition at line 521 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Copy the vector of molecular weights into array weights.
weights | Output array of molecular weights (kg/kmol) |
Definition at line 527 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Return a const reference to the internal vector of molecular weights.
units = kg / kmol
Definition at line 533 of file Phase.cpp.
References Phase::m_molwts.
Referenced by ReactingSurf1D::eval(), Phase::freezeSpecies(), Phase::getMolecularWeights(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), Cantera::getStick(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), and StFlow::StFlow().
|
inlineinherited |
This routine returns the size of species k.
k | index of the species |
Definition at line 413 of file Phase.h.
References Phase::m_speciesSize.
Referenced by MolarityIonicVPSSTP::constructPhaseXML(), RedlichKisterVPSSTP::constructPhaseXML(), MargulesVPSSTP::constructPhaseXML(), MixedSolventElectrolyte::constructPhaseXML(), PhaseCombo_Interaction::constructPhaseXML(), IonsFromNeutralVPSSTP::constructPhaseXML(), IdealMolalSoln::constructPhaseXML(), IdealSolidSolnPhase::constructPhaseXML(), DebyeHuckel::constructPhaseXML(), ReactingSurf1D::eval(), SurfPhase::getCoverages(), SurfPhase::initThermo(), IdealMolalSoln::initThermoXML(), LatticeSolidPhase::installSlavePhases(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), and SurfPhase::standardConcentration().
|
inherited |
Get the mole fractions by name.
[out] | x | composition map containing the species mole fractions. |
Definition at line 538 of file Phase.cpp.
References Phase::moleFraction(), Phase::nSpecies(), and Phase::speciesName().
|
inherited |
Return the mole fraction of a single species.
k | species index |
Definition at line 552 of file Phase.cpp.
References Phase::checkSpeciesIndex(), Phase::m_mmw, and Phase::m_ym.
Referenced by Phase::chargeDensity(), SolidTransport::electricalConductivity(), ChemEquil::equilibrate(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealMolalSoln::getMolalityActivityCoefficients(), Phase::getMoleFractionsByName(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), Phase::moleFraction(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and ChemEquil::setInitialMoles().
|
inherited |
Return the mole fraction of a single species.
name | String name of the species |
Definition at line 558 of file Phase.cpp.
References Phase::moleFraction(), Cantera::npos, and Phase::speciesIndex().
|
inherited |
Return the mass fraction of a single species.
k | species index |
Definition at line 573 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_y.
|
inherited |
Return the mass fraction of a single species.
name | String name of the species |
Definition at line 579 of file Phase.cpp.
References Phase::massFractions(), Cantera::npos, and Phase::speciesIndex().
|
inherited |
Get the species mole fraction vector.
x | On return, x contains the mole fractions. Must have a length greater than or equal to the number of species. |
Definition at line 547 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::scale().
Referenced by IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::enthalpy_mole(), HMWSoln::enthalpy_mole(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GibbsExcessVPSSTP::getActivities(), LatticePhase::getActivityConcentrations(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), LTI_MoleFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), LatticeSolidPhase::getMoleFractions(), DustyGasTransport::initialize(), GibbsExcessVPSSTP::initThermo(), HMWSoln::printCoeffs(), HMWSoln::relative_molal_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), MixtureFugacityTP::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalitiesByName(), MixtureFugacityTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), MultiPhase::setMoles(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setReferenceComposition(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), AqueousTransport::stefan_maxwell_solve(), ChemEquil::update(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), solveSP::updateMFKinSpecies(), DustyGasTransport::updateTransport_C(), and MultiPhase::uploadMoleFractionsFromPhases().
|
inherited |
Get the species mass fractions.
[out] | y | Array of mass fractions, length nSpecies() |
Definition at line 589 of file Phase.cpp.
References Phase::m_y.
Referenced by LTI_MassFracs::getMixTransProp(), Cantera::importSolution(), PureFluidPhase::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), ThermoPhase::reportCSV(), Phase::saveState(), Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), and LiquidTransport::update_C().
|
inlineinherited |
Return a const pointer to the mass fraction array.
Definition at line 469 of file Phase.h.
References Phase::m_y.
Referenced by MultiTransport::getMassFluxes(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), and Phase::massFraction().
|
inherited |
Get the species concentrations (kmol/m^3).
@param[out] c Array of species concentrations Length must be
greater than or equal to the number of species.
Definition at line 600 of file Phase.cpp.
References Phase::m_dens, Phase::m_ym, and Cantera::scale().
Referenced by ConstDensityThermo::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), SurfPhase::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), SurfPhase::getCoverages(), solveSP::solveSurfProb(), SimpleTransport::update_C(), and LiquidTransport::update_C().
|
inherited |
Concentration of species k.
If k is outside the valid range, an exception will be thrown.
k | Index of species |
Definition at line 594 of file Phase.cpp.
References Phase::checkSpeciesIndex(), Phase::m_dens, Phase::m_rmolwts, and Phase::m_y.
|
inherited |
Returns a const pointer to the start of the moleFraction/MW array.
This array is the array of mole fractions, each divided by the mean molecular weight.
Definition at line 568 of file Phase.cpp.
References Phase::m_ym.
Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().
|
inherited |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
k | species index |
Definition at line 642 of file Phase.cpp.
References Phase::m_speciesCharge.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), HMWSoln::calcMolalitiesCropped(), Phase::chargeDensity(), PDSS_HKFT::constructPDSSXML(), SolidTransport::electricalConductivity(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), InterfaceKinetics::getEquilibriumConstants(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), PDSS_HKFT::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), DebyeHuckel::initThermoXML(), LatticeSolidPhase::installSlavePhases(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::transferElementsFM(), and InterfaceKinetics::updateKc().
|
inherited |
Charge density [C/m^3].
Definition at line 647 of file Phase.cpp.
References Phase::charge(), Phase::moleFraction(), and Phase::nSpecies().
|
inlineinherited |
Returns the number of spatial dimensions (1, 2, or 3)
Definition at line 523 of file Phase.h.
References Phase::m_ndim.
Referenced by Kinetics::addPhase(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), IdealSolnGasVPSS::getUnitsStandardConc(), RedlichKwongMFTP::getUnitsStandardConc(), IdealMolalSoln::getUnitsStandardConc(), MolalityVPSSTP::getUnitsStandardConc(), IdealSolidSolnPhase::getUnitsStandardConc(), ThermoPhase::getUnitsStandardConc(), DebyeHuckel::getUnitsStandardConc(), and HMWSoln::getUnitsStandardConc().
|
inlineinherited |
Set the number of spatial dimensions (1, 2, or 3).
The number of spatial dimensions is used for vector involving directions.
ndim | Input number of dimensions. |
Definition at line 530 of file Phase.h.
References Phase::m_ndim.
Referenced by EdgePhase::EdgePhase(), FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().
|
inlineinherited |
Temperature (K).
Definition at line 539 of file Phase.h.
References Phase::m_temp.
Referenced by ThermoPhase::_RT(), InterfaceKinetics::_update_rates_T(), MixtureFugacityTP::_updateReferenceStateThermo(), VPStandardStateTP::_updateStandardStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), LatticeSolidPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), DebyeHuckel::A_Debye_TP(), HMWSoln::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), IdealSolnGasVPSS::calcDensity(), MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::cv_mole(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), HMWSoln::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), FixedChemPotSSTP::FixedChemPotSSTP(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), StoichSubstance::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), PhaseCombo_Interaction::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), PureFluidPhase::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), PureFluidPhase::getEntropy_R_ref(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), StoichSubstance::getGibbs_ref(), PureFluidPhase::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), StoichSubstance::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), PureFluidPhase::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), LatticePhase::getPureGibbs(), LTPspecies_Arrhenius::getSpeciesTransProp(), LTPspecies_Poly::getSpeciesTransProp(), LTPspecies_ExpT::getSpeciesTransProp(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), ConstDensityThermo::gibbs_mole(), StoichSubstance::gibbs_mole(), RedlichKwongMFTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), ThermoPhase::gibbs_mole(), LatticePhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), RedlichKwongMFTP::hresid(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), RedlichKwongMFTP::pressureDerivatives(), HMWSoln::relative_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), ChemEquil::setInitialMoles(), PureFluidPhase::setPressure(), WaterSSTP::setPressure(), GibbsExcessVPSSTP::setPressure(), IdealMolalSoln::setPressure(), VPStandardStateTP::setPressure(), MixtureFugacityTP::setPressure(), IdealGasPhase::setPressure(), IonsFromNeutralVPSSTP::setPressure(), DebyeHuckel::setPressure(), HMWSoln::setPressure(), vcs_VolPhase::setPtrThermoPhase(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), PureFluidPhase::setTPXState(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), RedlichKwongMFTP::sresid(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), ChemEquil::update(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), RedlichKwongMFTP::updateAB(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), VPStandardStateTP::updateStandardStateThermo(), Reactor::updateState(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_T(), and WaterSSTP::vaporFraction().
|
inlinevirtualinherited |
Density (kg/m^3).
Reimplemented in HMWSoln.
Definition at line 545 of file Phase.h.
References Phase::m_dens.
Referenced by MixtureFugacityTP::calculatePsat(), SingleSpeciesTP::cv_mole(), HMWSoln::density(), WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), MultiTransport::getMassFluxes(), ConstDensityThermo::getParameters(), StoichSubstance::getParameters(), StoichSubstanceSSTP::getParameters(), MetalSHEelectrons::getParameters(), MineralEQ3::getParameters(), SingleSpeciesTP::getPartialMolarVolumes(), MultiTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), SingleSpeciesTP::getStandardVolumes(), WaterSSTP::getStandardVolumes_ref(), RedlichKwongMFTP::hresid(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), WaterSSTP::satPressure(), Phase::saveState(), IdealMolalSoln::setDensity(), IdealSolidSolnPhase::setDensity(), Phase::setDensity(), DebyeHuckel::setDensity(), WaterSSTP::setPressure(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), WaterSSTP::setTemperature(), PureFluidPhase::setTPXState(), RedlichKwongMFTP::sresid(), ChemEquil::update(), SimpleTransport::update_C(), LiquidTransport::update_C(), ConstPressureReactor::updateState(), StFlow::updateThermo(), WaterSSTP::vaporFraction(), and MixtureFugacityTP::z().
|
inherited |
Molar density (kmol/m^3).
Definition at line 627 of file Phase.cpp.
References Phase::density(), and Phase::meanMolecularWeight().
Referenced by solveSP::calc_t(), SolidTransport::electricalConductivity(), ConstDensityThermo::enthalpy_mole(), StoichSubstance::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), ConstDensityThermo::getChemPotentials(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), LatticePhase::getParameters(), PureFluidPhase::getPartialMolarVolumes(), StoichSubstance::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), StoichSubstance::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealSolnGasVPSS::intEnergy_mole(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), RedlichKwongMFTP::intEnergy_mole(), IonsFromNeutralVPSSTP::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), DebyeHuckel::intEnergy_mole(), HMWSoln::intEnergy_mole(), ConstDensityThermo::logStandardConc(), Phase::molarVolume(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), IdealMolalSoln::setMolarDensity(), DebyeHuckel::setMolarDensity(), and ConstDensityThermo::standardConcentration().
|
inherited |
Molar volume (m^3/kmol).
Definition at line 637 of file Phase.cpp.
References Phase::molarDensity().
Referenced by RedlichKwongMFTP::cp_mole(), HMWSoln::cv_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarVolumes(), ThermoPhase::intEnergy_mole(), RedlichKwongMFTP::pressureDerivatives(), MixtureFugacityTP::setState_TR(), and LiquidTransport::stefan_maxwell_solve().
|
inlinevirtualinherited |
Set the internally stored temperature of the phase (K).
temp | Temperature in Kelvin |
Reimplemented in HMWSoln, DebyeHuckel, IonsFromNeutralVPSSTP, WaterSSTP, MixtureFugacityTP, VPStandardStateTP, and RedlichKwongMFTP.
Definition at line 570 of file Phase.h.
References Phase::m_temp.
Referenced by ChemEquil::equilibrate(), ReactingSurf1D::eval(), TransportFactory::fitProperties(), WaterSSTP::initThermoXML(), Phase::restoreState(), StFlow::setGas(), StFlow::setGasAtMidpoint(), ThermoPhase::setState_HPorUV(), PureFluidPhase::setState_Psat(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), Phase::setState_TNX(), VPStandardStateTP::setState_TP(), IdealMolalSoln::setState_TP(), MixtureFugacityTP::setState_TP(), GibbsExcessVPSSTP::setState_TP(), DebyeHuckel::setState_TP(), ThermoPhase::setState_TP(), HMWSoln::setState_TP(), SingleSpeciesTP::setState_TPX(), ThermoPhase::setState_TPX(), SingleSpeciesTP::setState_TPY(), ThermoPhase::setState_TPY(), Phase::setState_TR(), MixtureFugacityTP::setState_TR(), Phase::setState_TRX(), Phase::setState_TRY(), PureFluidPhase::setState_Tsat(), Phase::setState_TX(), Phase::setState_TY(), SingleSpeciesTP::setState_UV(), SurfPhase::setStateFromXML(), ThermoPhase::setStateFromXML(), RedlichKwongMFTP::setTemperature(), PDSS_IonsFromNeutral::setTemperature(), WaterSSTP::setTemperature(), ChemEquil::setToEquilState(), and Reactor::updateState().
|
inherited |
Evaluate the mole-fraction-weighted mean of an array Q.
\[ \sum_k X_k Q_k. \]
Q should contain pure-species molar property values.
[in] | Q | Array of length m_kk that is to be averaged. |
Definition at line 658 of file Phase.cpp.
References Phase::m_mmw, and Phase::m_ym.
Referenced by IdealSolnGasVPSS::cp_mole(), ConstDensityThermo::cp_mole(), RedlichKwongMFTP::cp_mole(), IonsFromNeutralVPSSTP::cp_mole(), IdealSolidSolnPhase::cp_mole(), IdealMolalSoln::cp_mole(), LatticePhase::cp_mole(), IdealGasPhase::cp_mole(), DebyeHuckel::cp_mole(), HMWSoln::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IonsFromNeutralVPSSTP::enthalpy_mole(), IdealMolalSoln::enthalpy_mole(), SurfPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), DebyeHuckel::enthalpy_mole(), HMWSoln::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IonsFromNeutralVPSSTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealMolalSoln::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), DebyeHuckel::entropy_mole(), HMWSoln::entropy_mole(), IonsFromNeutralVPSSTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealMolalSoln::gibbs_mole(), DebyeHuckel::gibbs_mole(), HMWSoln::gibbs_mole(), ConstDensityThermo::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealMolalSoln::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), and HMWSoln::relative_enthalpy().
|
inherited |
Evaluate the mass-fraction-weighted mean of an array Q.
\[ \sum_k Y_k Q_k \]
[in] | Q | Array of species property values in mass units. |
Definition at line 663 of file Phase.cpp.
References Cantera::dot(), and Phase::m_y.
|
inlineinherited |
The mean molecular weight. Units: (kg/kmol)
Definition at line 592 of file Phase.h.
References Phase::m_mmw.
Referenced by IdealSolnGasVPSS::calcDensity(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), LatticePhase::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), MixtureFugacityTP::calculatePsat(), ThermoPhase::cp_mass(), RedlichKwongMFTP::critDensity(), ThermoPhase::cv_mass(), RedlichKwongMFTP::densityCalc(), MixtureFugacityTP::densityCalc(), RedlichKwongMFTP::densSpinodalGas(), RedlichKwongMFTP::densSpinodalLiquid(), ThermoPhase::enthalpy_mass(), ThermoPhase::entropy_mass(), IdealSolidSolnPhase::getActivityConcentrations(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), MultiTransport::getMultiDiffCoeffs(), WaterSSTP::getStandardVolumes_ref(), ThermoPhase::gibbs_mass(), RedlichKwongMFTP::hresid(), ThermoPhase::intEnergy_mass(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::setMolarDensity(), IdealGasPhase::setPressure(), RedlichKwongMFTP::sresid(), SimpleTransport::update_C(), LiquidTransport::update_C(), StFlow::updateThermo(), StFlow::updateTransport(), and MixtureFugacityTP::z().
|
inherited |
Evaluate \( \sum_k X_k \log X_k \).
Definition at line 668 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogx().
Referenced by IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), and IdealSolidSolnPhase::gibbs_mole().
|
inherited |
Evaluate \( \sum_k X_k \log Q_k \).
Q | Vector of length m_kk to take the log average of |
Definition at line 673 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogQ().
|
inherited |
Add an element.
symbol | Atomic symbol std::string. |
weight | Atomic mass in amu. |
Definition at line 678 of file Phase.cpp.
References CT_ELEM_TYPE_ABSPOS, CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, and Phase::m_mm.
Referenced by Phase::addElement().
|
inherited |
Add an element from an XML specification.
e | Reference to the XML_Node where the element is described. |
Definition at line 701 of file Phase.cpp.
References Phase::addElement().
|
inherited |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
symbol | String symbol of the element |
weight | Atomic weight of the element (kg kmol-1). |
atomicNumber | Atomic number of the element (unitless) |
entropy298 | Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error. |
elem_type | Specifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element. |
Definition at line 708 of file Phase.cpp.
References CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicNumbers, Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, Phase::m_entropy298, and Phase::m_mm.
Referenced by Phase::addElementsFromXML(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), and FixedChemPotSSTP::FixedChemPotSSTP().
|
inherited |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
e | Reference to the XML_Node where the element is described. |
Definition at line 755 of file Phase.cpp.
References Phase::addUniqueElement(), Cantera::atofCheck(), XML_Node::child(), ENTROPY298_UNKNOWN, XML_Node::hasAttrib(), XML_Node::hasChild(), and Cantera::stripws().
|
inherited |
Add all elements referenced in an XML_Node tree.
phase | Reference to the root XML_Node of a phase |
Definition at line 780 of file Phase.cpp.
References Phase::addUniqueElement(), XML_Node::child(), XML_Node::findByAttr(), Cantera::get_XML_File(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and XML_Node::root().
Referenced by Cantera::importPhase().
|
inherited |
Prohibit addition of more elements, and prepare to add species.
Definition at line 831 of file Phase.cpp.
References Phase::m_elementsFrozen.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP().
|
inherited |
True if freezeElements has been called.
Definition at line 836 of file Phase.cpp.
References Phase::m_elementsFrozen.
|
inherited |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
symbol | String symbol of the element |
weight | Atomic weight of the element (kg kmol-1). |
atomicNumber | Atomic number of the element (unitless) |
entropy298 | Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which if used will cause Cantera to throw an error. |
elem_type | Specifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element. |
Definition at line 841 of file Phase.cpp.
References Phase::addUniqueElement(), Phase::elementIndex(), Phase::m_elementsFrozen, Phase::m_kk, Phase::m_mm, Phase::m_speciesComp, and Cantera::npos.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.
It only adds the species if it is unique.
name | String name of the species |
comp | Array containing the elemental composition of the species. |
charge | Charge of the species. Defaults to zero. |
size | Size of the species (meters). Defaults to 1 meter. |
Definition at line 919 of file Phase.cpp.
References Phase::m_kk, Phase::m_mm, Phase::m_speciesCharge, Phase::m_speciesComp, Phase::m_speciesNames, and Phase::m_speciesSize.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), LatticeSolidPhase::installSlavePhases(), and Cantera::installSpecies().
|
virtualinherited |
Call when finished adding species.
Prepare to use them for calculation of mixture properties.
Definition at line 952 of file Phase.cpp.
References Phase::init(), Phase::m_speciesFrozen, and Phase::molecularWeights().
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inlineinherited |
True if freezeSpecies has been called.
Definition at line 694 of file Phase.h.
References Phase::m_speciesFrozen.
|
inlineinherited |
Return the State Mole Fraction Number.
Definition at line 701 of file Phase.h.
References Phase::m_stateNum.
Referenced by SimpleTransport::update_C(), and LiquidTransport::update_C().
|
inlineinherited |
Every time the mole fractions have changed, this routine will increment the stateMFNumber.
@param forceChange If this is true then the stateMFNumber always
changes. This defaults to false.
Definition at line 115 of file Phase.cpp.
References Phase::m_stateNum.
Referenced by Phase::setConcentrations(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), Phase::setMoleFractions(), and Phase::setMoleFractions_NoNorm().
|
protectedinherited |
Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size.
mw | Vector of molecular weights of the species. |
Definition at line 958 of file Phase.cpp.
References Cantera::int2str(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Cantera::Tiny.
Referenced by Phase::freezeSpecies().
|
inlineprotectedinherited |
Set the molecular weight of a single species to a given value.
k | id of the species |
mw | Molecular Weight (kg kmol-1) |
Definition at line 722 of file Phase.h.
References Phase::m_molwts, and Phase::m_rmolwts.
Referenced by PureFluidPhase::initThermo(), and WaterSSTP::initThermoXML().
|
protected |
Format for the generalized concentrations 0 = C_k = X_k.
(default)
1 = C_k = X_k / V_k 2 = C_k = X_k / V_N
Definition at line 1021 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::constructPhaseXML(), IdealSolidSolnPhase::eosType(), IdealSolidSolnPhase::getActivityConcentrations(), IdealSolidSolnPhase::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), IdealSolidSolnPhase::operator=(), IdealSolidSolnPhase::referenceConcentration(), and IdealSolidSolnPhase::standardConcentration().
|
protected |
m_mm = Number of distinct elements defined in species in this phase
Definition at line 1026 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().
|
protected |
Maximum temperature that this phase can accurately describe the thermodynamics.
Definition at line 1032 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
protected |
Minimum temperature that this phase can accurately describe the thermodynamics.
Definition at line 1038 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
protected |
Value of the reference pressure for all species in this phase.
The T dependent polynomials are evaluated at the reference pressure. Note, because this is a single value, all species are required to have the same reference pressure.
Definition at line 1045 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::intEnergy_mole(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().
|
protected |
m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.
The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.
Definition at line 1054 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::operator=(), IdealSolidSolnPhase::pressure(), and IdealSolidSolnPhase::setPressure().
|
protected |
Vector of molar volumes for each species in the solution.
Species molar volumes \( m^3 kmol^-1 \)
Definition at line 1060 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::calcDensity(), IdealSolidSolnPhase::getActivityConcentrations(), IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::getSpeciesMolarVolumes(), IdealSolidSolnPhase::getStandardVolumes(), IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), IdealSolidSolnPhase::operator=(), IdealSolidSolnPhase::referenceConcentration(), IdealSolidSolnPhase::speciesMolarVolume(), and IdealSolidSolnPhase::standardConcentration().
|
mutableprotected |
Value of the temperature at which the thermodynamics functions for the reference state of the species were last evaluated.
Definition at line 1066 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Vector containing the species reference enthalpies at T = m_tlast.
Definition at line 1071 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Vector containing the species reference constant pressure heat capacities at T = m_tlast.
Definition at line 1077 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Vector containing the species reference Gibbs functions at T = m_tlast.
Definition at line 1083 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT_ref(), IdealSolidSolnPhase::gibbs_RT_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Vector containing the species reference entropies at T = m_tlast.
Definition at line 1089 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::entropy_R_ref(), IdealSolidSolnPhase::getEntropy_R_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
Definition at line 1095 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Vector of potential energies for the species.
Definition at line 1100 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::initLengths(), and IdealSolidSolnPhase::operator=().
|
mutableprotected |
Temporary array used in equilibrium calculations.
Definition at line 1105 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::initLengths(), IdealSolidSolnPhase::operator=(), and IdealSolidSolnPhase::setToEquilState().
|
protectedinherited |
Pointer to the calculation manager for species reference-state thermodynamic properties.
This class is called when the reference-state thermodynamic properties of all the species in the phase needs to be evaluated.
Definition at line 1611 of file ThermoPhase.h.
Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), ConstDensityThermo::enthalpy_mole(), LatticePhase::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), IdealGasPhase::entropy_mole(), FixedChemPotSSTP::FixedChemPotSSTP(), ConstDensityThermo::getChemPotentials(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), PureFluidPhase::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), PureFluidPhase::getGibbs_RT_ref(), IdealGasPhase::getPartialMolarEntropies(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), ConstDensityThermo::intEnergy_mole(), LatticePhase::intEnergy_mole(), ThermoPhase::maxTemp(), ThermoPhase::minTemp(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), ThermoPhase::refPressure(), ThermoPhase::setSpeciesThermo(), LatticeSolidPhase::speciesThermo(), ThermoPhase::speciesThermo(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Vector of pointers to the species databases.
This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.
Definition at line 1621 of file ThermoPhase.h.
Referenced by LatticeSolidPhase::installSlavePhases(), ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Stored value of the electric potential for this phase.
Units are Volts
Definition at line 1627 of file ThermoPhase.h.
Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().
|
protectedinherited |
Vector of element potentials.
-> length equal to number of elements
Definition at line 1631 of file ThermoPhase.h.
Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().
|
protectedinherited |
Boolean indicating whether there is a valid set of saved element potentials for this phase.
Definition at line 1635 of file ThermoPhase.h.
Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().
|
protectedinherited |
Boolean indicating whether a charge neutrality condition is a necessity.
Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.
Definition at line 1645 of file ThermoPhase.h.
Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().
|
protectedinherited |
Contains the standard state convention.
Definition at line 1648 of file ThermoPhase.h.
Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().
|
protectedinherited |
Reference Mole Fraction Composition.
Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file
Definition at line 1657 of file ThermoPhase.h.
Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().
|
protectedinherited |
Number of species in the phase.
Definition at line 727 of file Phase.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), HMWSoln::applyphScale(), RedlichKwongMFTP::applyStandardMixingRules(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKwongMFTP::calculateAB(), GibbsExcessVPSSTP::checkMFSum(), Phase::checkSpeciesArraySize(), Phase::checkSpeciesIndex(), HMWSoln::counterIJ_setup(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), ConstDensityThermo::expGibbs_RT(), IdealGasPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), GibbsExcessVPSSTP::getActivities(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), ConstDensityThermo::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IonsFromNeutralVPSSTP::getActivityCoefficients(), GibbsExcessVPSSTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityCoefficients(), LatticeSolidPhase::getActivityCoefficients(), MixedSolventElectrolyte::getActivityCoefficients(), PhaseCombo_Interaction::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), ThermoPhase::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), LatticePhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), HMWSoln::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), RedlichKisterVPSSTP::getd2lnActCoeffdT2(), MargulesVPSSTP::getd2lnActCoeffdT2(), MixedSolventElectrolyte::getd2lnActCoeffdT2(), PhaseCombo_Interaction::getd2lnActCoeffdT2(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), PhaseCombo_Interaction::getdlnActCoeffdlnN(), RedlichKisterVPSSTP::getdlnActCoeffdlnN(), MargulesVPSSTP::getdlnActCoeffdlnN(), MixedSolventElectrolyte::getdlnActCoeffdlnN(), ThermoPhase::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnN_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), MargulesVPSSTP::getdlnActCoeffdlnN_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnX_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnX_diag(), MargulesVPSSTP::getdlnActCoeffdlnX_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), LatticePhase::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), MolarityIonicVPSSTP::getLnActivityCoefficients(), RedlichKisterVPSSTP::getLnActivityCoefficients(), MargulesVPSSTP::getLnActivityCoefficients(), ThermoPhase::getLnActivityCoefficients(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), LatticePhase::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), MolarityIonicVPSSTP::getPartialMolarVolumes(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::HMWSoln(), Phase::init(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), RedlichKwongMFTP::initLengths(), VPStandardStateTP::initLengths(), LatticeSolidPhase::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), ConstDensityThermo::initThermo(), SurfPhase::initThermo(), MolarityIonicVPSSTP::initThermo(), StoichSubstanceSSTP::initThermo(), VPStandardStateTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), ThermoPhase::initThermo(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), Phase::nSpecies(), VPStandardStateTP::operator=(), Phase::operator=(), ThermoPhase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::printCoeffs(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), IdealSolidSolnPhase::referenceConcentration(), HMWSoln::relative_enthalpy(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), MolarityIonicVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), Phase::setConcentrations(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), Phase::setMoleFractions(), Phase::setMoleFractions_NoNorm(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), ThermoPhase::speciesData(), Phase::speciesIndex(), IdealSolidSolnPhase::standardConcentration(), RedlichKwongMFTP::updateAB(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Dimensionality of the phase.
Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.
Definition at line 731 of file Phase.h.
Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().
|
protectedinherited |
Atomic composition of the species.
The number of atoms of element i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm
Definition at line 736 of file Phase.h.
Referenced by Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), Phase::getAtoms(), LatticeSolidPhase::installSlavePhases(), Phase::nAtoms(), and Phase::operator=().
|
protectedinherited |
Vector of species sizes.
length m_kk. Used in some equations of state which employ the constant partial molar volume approximation.
Definition at line 740 of file Phase.h.
Referenced by Phase::addUniqueSpecies(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), Phase::operator=(), Phase::size(), HMWSoln::speciesMolarVolume(), and DebyeHuckel::standardConcentration().
|
protectedinherited |
Vector of species charges. length m_kk.
Definition at line 742 of file Phase.h.
Referenced by Phase::addUniqueSpecies(), HMWSoln::applyphScale(), HMWSoln::calcMolalitiesCropped(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), Phase::charge(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), MolarityIonicVPSSTP::initThermo(), DebyeHuckel::initThermoXML(), Phase::operator=(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), and HMWSoln::s_updateScaling_pHScaling_dT2().