Cantera
2.0
|
Class DebyeHuckel represents a dilute liquid electrolyte phase which obeys the Debye Huckel formulation for nonideality. More...
#include <DebyeHuckel.h>
Public Member Functions | |
DebyeHuckel () | |
Empty Constructor. | |
DebyeHuckel (const DebyeHuckel &) | |
Copy constructor. | |
DebyeHuckel & | operator= (const DebyeHuckel &) |
Assignment operator. | |
DebyeHuckel (std::string inputFile, std::string id="") | |
Full constructor for creating the phase. | |
DebyeHuckel (XML_Node &phaseRef, std::string id="") | |
Full constructor for creating the phase. | |
virtual | ~DebyeHuckel () |
Destructor. | |
ThermoPhase * | duplMyselfAsThermoPhase () const |
Duplicator from the ThermoPhase parent class. | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. | |
virtual void | initThermo () |
Initialize the object's internal lengths after species are set. | |
void | constructPhaseFile (std::string infile, std::string id="") |
Initialization of a DebyeHuckel phase using an xml file. | |
void | constructPhaseXML (XML_Node &phaseNode, std::string id="") |
Import and initialize a DebyeHuckel phase specification in an XML tree into the current object. | |
virtual void | initThermoXML (XML_Node &phaseNode, std::string id) |
Process the XML file after species are set up. | |
virtual double | A_Debye_TP (double temperature=-1.0, double pressure=-1.0) const |
Return the Debye Huckel constant as a function of temperature and pressure (Units = sqrt(kg/gmol)) | |
virtual double | dA_DebyedT_TP (double temperature=-1.0, double pressure=-1.0) const |
Value of the derivative of the Debye Huckel constant with respect to temperature. | |
virtual double | d2A_DebyedT2_TP (double temperature=-1.0, double pressure=-1.0) const |
Value of the 2nd derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure. | |
virtual double | dA_DebyedP_TP (double temperature=-1.0, double pressure=-1.0) const |
Value of the derivative of the Debye Huckel constant with respect to pressure, as a function of temperature and pressure. | |
double | AionicRadius (int k=0) const |
Reports the ionic radius of the kth species. | |
int | formDH () const |
Returns the form of the Debye-Huckel parameterization used. | |
Array2D & | get_Beta_ij () |
Returns a reference to M_Beta_ij. | |
virtual void | setStateFromXML (const XML_Node &state) |
Set equation of state parameter values from XML entries. | |
void | setState_TPM (doublereal t, doublereal p, const doublereal *const molalities) |
Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes. | |
void | setState_TPM (doublereal t, doublereal p, compositionMap &m) |
Set the temperature (K), pressure (Pa), and molalities. | |
void | setState_TPM (doublereal t, doublereal p, const std::string &m) |
Set the temperature (K), pressure (Pa), and molalities. | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. | |
virtual std::string | report (bool show_thermo=true) const |
returns a summary of the state of the phase as a string | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to specified comma separated files | |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. | |
XML_Node & | xml () |
Returns a reference to the XML_Node stored for the phase. | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase Write to vector 'state' the current internal state. | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . | |
doublereal | molarMass (size_t k) const |
Return the Molar mass of species k Alternate name for molecular weight. | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. | |
void | getMolecularWeights (int iwt, doublereal *weights) const |
Copy the vector of molecular weights into array weights. | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. | |
doublereal | size (size_t k) const |
This routine returns the size of species k. | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). | |
virtual void | freezeSpecies () |
Call when finished adding species. | |
bool | speciesFrozen () |
True if freezeSpecies has been called. | |
virtual bool | ready () const |
int | stateMFNumber () const |
Return the State Mole Fraction Number. | |
void | stateMFChangeCalc (bool forceChange=false) |
Every time the mole fractions have changed, this routine will increment the stateMFNumber. | |
Utilities | |
virtual int | eosType () const |
Equation of state type flag. | |
Molar Thermodynamic Properties of the Solution -------------- | |
virtual doublereal | enthalpy_mole () const |
Molar enthalpy. Units: J/kmol. | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. | |
virtual doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs function. Units: J/kmol. | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure. Activity is assumed to be molality-based here. | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. | |
virtual void | getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const |
Returns the units of the standard and generalized concentrations. | |
virtual void | getActivities (doublereal *ac) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. | |
virtual void | getMolalityActivityCoefficients (doublereal *acMolality) const |
Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration. | |
Partial Molar Properties of the Solution ----------------- | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. | |
Chemical Equilibrium | |
Chemical equilibrium. | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. | |
Saturation properties. | |
These methods are only implemented by subclasses that implement full liquid-vapor equations of state. | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. | |
virtual doublereal | satPressure (doublereal T) const |
Get the saturation pressure for a given temperature. | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. | |
Utilities | |
void | setpHScale (const int pHscaleType) |
Set the pH scale, which determines the scale for single-ion activity coefficients. | |
int | pHScale () const |
Reports the pH scale, which determines the scale for single-ion activity coefficients. | |
Utilities for Solvent ID and Molality | |
void | setSolvent (size_t k) |
This routine sets the index number of the solvent for the phase. | |
void | setMoleFSolventMin (doublereal xmolSolventMIN) |
Sets the minimum mole fraction in the molality formulation. | |
size_t | solventIndex () const |
Returns the solvent index. | |
doublereal | moleFSolventMin () const |
Returns the minimum mole fraction in the molality formulation. | |
void | calcMolalities () const |
Calculates the molality of all species and stores the result internally. | |
void | getMolalities (doublereal *const molal) const |
This function will return the molalities of the species. | |
void | setMolalities (const doublereal *const molal) |
Set the molalities of the solutes in a phase. | |
void | setMolalitiesByName (compositionMap &xMap) |
Set the molalities of a phase. | |
void | setMolalitiesByName (const std::string &name) |
Set the molalities of a phase. | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and pressure. | |
int | activityConvention () const |
This method returns the activity convention. | |
void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration. | |
virtual double | osmoticCoefficient () const |
Calculate the osmotic coefficient. | |
Partial Molar Properties of the Solution | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. | |
Utilities (VPStandardStateTP) | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log concentration-like derivatives of the log activity coefficients. | |
Partial Molar Properties of the Solution (VPStandardStateTP) | |
void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. | |
Initialization Methods - For Internal use (VPStandardState) | |
void | setVPSSMgr (VPSSMgr *vp_ptr) |
set the VPSS Mgr | |
VPSSMgr * | provideVPSSMgr () |
Return a pointer to the VPSSMgr for this phase. | |
void | createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr) |
PDSS * | providePDSS (size_t k) |
const PDSS * | providePDSS (size_t k) const |
Information Methods | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. | |
doublereal | Hf298SS (const int k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) | |
virtual void | modifyOneHf298SS (const int k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. | |
Mechanical Properties | |
virtual void | updateDensity () |
Electric Potential | |
The phase may be at some non-zero electrical potential. These methods set or get the value of the electric potential. | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition. The activity is dimensionless. | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. | |
Partial Molar Properties of the Solution | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. | |
virtual void | getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. | |
virtual void | getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. | |
Properties of the Standard State of the Species in the Solution | |
virtual void | getdStandardVolumes_dT (doublereal *d_vol_dT) const |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. | |
virtual void | getdStandardVolumes_dP (doublereal *d_vol_dP) const |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. | |
Thermodynamic Values for the Species Reference States | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. | |
Specific Properties | |
doublereal | enthalpy_mass () const |
Specific enthalpy. | |
doublereal | intEnergy_mass () const |
Specific internal energy. | |
doublereal | entropy_mass () const |
Specific entropy. | |
doublereal | gibbs_mass () const |
Specific Gibbs function. | |
doublereal | cp_mass () const |
Specific heat at constant pressure. | |
doublereal | cv_mass () const |
Specific heat at constant volume. | |
Setting the State | |
These methods set all or part of the thermodynamic state. | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPX (doublereal t, doublereal p, compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. | |
void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TPY (doublereal t, doublereal p, compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. | |
void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. | |
void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. | |
virtual void | setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. | |
virtual void | setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). | |
virtual void | setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and pressure (Pa). | |
virtual void | setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). | |
Chemical Equilibrium | |
Chemical equilibrium. | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. | |
Critical State Properties. | |
These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date. | |
virtual doublereal | critTemperature () const |
Critical temperature (K). | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). | |
Initialization Methods - For Internal Use (ThermoPhase) | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. | |
void | setSpeciesThermo (SpeciesThermo *spthermo) |
Install a species thermodynamic property manager. | |
virtual SpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. | |
virtual void | initThermoFile (std::string inputFile, std::string id) |
virtual void | installSlavePhases (Cantera::XML_Node *phaseNode) |
Add in species from Slave phases. | |
Derivatives of Thermodynamic Variables needed for Applications | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Name and ID | |
Class Phase contains two strings that identify a phase. The ID is the value of the ID attribute of the XML phase node that is used to initialize a phase when it is read. The name field is also initialized to the value of the ID attribute of the XML phase node. However, the name field may be changed to another value during the course of a calculation. For example, if a phase is located in two places, but has the same constitutive input, the ids of the two phases will be the same, but the names of the two phases may be different. It is an error to have two phases in a single problem with the same name or the same id (or the name from one phase being the same as the id of another phase). Thus, it is expected that there is a 1-1 correspondence between names and unique phases within a Cantera problem. | |
std::string | id () const |
Return the string id for the phase. | |
void | setID (std::string id) |
Set the string id for the phase. | |
std::string | name () const |
Return the name of the phase. | |
void | setName (std::string nm) |
Sets the string name for the phase. | |
Element and Species Information | |
std::string | elementName (size_t m) const |
Name of the element with index m. | |
size_t | elementIndex (std::string name) const |
Return the index of element named 'name'. | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. | |
int | atomicNumber (size_t m) const |
Atomic number of element m. | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. | |
size_t | nElements () const |
Number of elements. | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. | |
size_t | speciesIndex (std::string name) const |
Returns the index of a species named 'name' within the Phase object. | |
std::string | speciesName (size_t k) const |
Name of the species with index k. | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. | |
size_t | nSpecies () const |
Returns the number of species in the phase. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
Set thermodynamic state | |
Set the internal thermodynamic state by setting the internally stored temperature, density and species composition. Note that the composition is always set first. Temperature and density are held constant if not explicitly set. | |
void | setMoleFractionsByName (compositionMap &xMap) |
Set the species mole fractions by name. | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. | |
void | setMassFractionsByName (compositionMap &yMap) |
Set the species mass fractions by name. | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. | |
void | setState_TRX (doublereal t, doublereal dens, compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. | |
void | setState_TRY (doublereal t, doublereal dens, compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. | |
Composition | |
void | getMoleFractionsByName (compositionMap &x) const |
Get the mole fractions by name. | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. | |
doublereal | moleFraction (std::string name) const |
Return the mole fraction of a single species. | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. | |
doublereal | massFraction (std::string name) const |
Return the mass fraction of a single species. | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector. | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values and normalize them. | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). | |
doublereal | concentration (const size_t k) const |
Concentration of species k. | |
virtual void | setConcentrations (const doublereal *const conc) |
Set the concentrations to the specified values within the phase. | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. | |
Thermodynamic Properties | |
doublereal | temperature () const |
Temperature (K). | |
virtual doublereal | density () const |
Density (kg/m^3). | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). | |
Mean Properties | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. | |
doublereal | mean_Y (const doublereal *const Q) const |
Evaluate the mass-fraction-weighted mean of an array Q. | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). | |
doublereal | sum_xlogQ (doublereal *const Q) const |
Evaluate \( \sum_k X_k \log Q_k \). | |
Adding Elements and Species | |
These methods are used to add new elements or species. These are not usually called by user programs. Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species. | |
void | addElement (const std::string &symbol, doublereal weight=-12345.0) |
Add an element. | |
void | addElement (const XML_Node &e) |
Add an element from an XML specification. | |
void | addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addUniqueElement (const XML_Node &e) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addElementsFromXML (const XML_Node &phase) |
Add all elements referenced in an XML_Node tree. | |
void | freezeElements () |
Prohibit addition of more elements, and prepare to add species. | |
bool | elementsFrozen () |
True if freezeElements has been called. | |
size_t | addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. | |
void | addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
void | addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. | |
Public Attributes | |
bool | m_useHelgesonFixedForm |
If true, then the fixed for of Helgeson's activity for water is used instead of the rigorous form obtained from Gibbs-Duhem relation. | |
int | m_form_A_Debye |
Form of the constant outside the Debye-Huckel term called A. | |
Protected Member Functions | |
virtual void | getUnscaledMolalityActivityCoefficients (doublereal *acMolality) const |
Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration. | |
virtual void | applyphScale (doublereal *acMolality) const |
Apply the current phScale to a set of activity Coefficients or activities. | |
void | init (const vector_fp &mw) |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. | |
Protected Attributes | |
int | m_formDH |
form of the Debye-Huckel parameterization used in the model. | |
int | m_formGC |
Format for the generalized concentration: | |
vector_int | m_electrolyteSpeciesType |
Vector containing the electrolyte species type. | |
vector_fp | m_Aionic |
a_k = Size of the ionic species in the DH formulation units = meters | |
double | m_IionicMolality |
Current value of the ionic strength on the molality scale. | |
double | m_maxIionicStrength |
Maximum value of the ionic strength allowed in the calculation of the activity coefficients. | |
double | m_IionicMolalityStoich |
Stoichiometric ionic strength on the molality scale. | |
double | m_A_Debye |
Current value of the Debye Constant, A_Debye. | |
double | m_B_Debye |
Current value of the constant that appears in the denominator. | |
vector_fp | m_B_Dot |
Array of B_Dot values. | |
vector_fp | m_npActCoeff |
m_npActCoeff -> These are coefficients to describe the increase in activity coeff for non-polar molecules due to the electrolyte becoming stronger (the so-called salt-out effect) | |
PDSS_Water * | m_waterSS |
Pointer to the Water standard state object. | |
double | m_densWaterSS |
Storage for the density of water's standard state. | |
WaterProps * | m_waterProps |
Pointer to the water property calculator. | |
vector_fp | m_expg0_RT |
Vector containing the species reference exp(-G/RT) functions at T = m_tlast. | |
vector_fp | m_pe |
Vector of potential energies for the species. | |
vector_fp | m_pp |
Temporary array used in equilibrium calculations. | |
vector_fp | m_tmpV |
vector of size m_kk, used as a temporary holding area. | |
vector_fp | m_speciesCharge_Stoich |
Stoichiometric species charge -> This is for calculations of the ionic strength which ignore ion-ion pairing into neutral molecules. | |
Array2D | m_Beta_ij |
Array of 2D data used in the DHFORM_BETAIJ formulation Beta_ij.value(i,j) is the coefficient of the jth species for the specification of the chemical potential of the ith species. | |
vector_fp | m_lnActCoeffMolal |
Logarithm of the activity coefficients on the molality scale. | |
vector_fp | m_dlnActCoeffMolaldT |
Derivative of log act coeff wrt T. | |
vector_fp | m_d2lnActCoeffMolaldT2 |
2nd Derivative of log act coeff wrt T | |
vector_fp | m_dlnActCoeffMolaldP |
Derivative of log act coeff wrt P. | |
size_t | m_indexSolvent |
Index of the solvent. | |
int | m_pHScalingType |
Scaling to be used for output of single-ion species activity coefficients. | |
size_t | m_indexCLM |
Index of the phScale species. | |
doublereal | m_weightSolvent |
Molecular weight of the Solvent. | |
doublereal | m_xmolSolventMIN |
doublereal | m_Mnaught |
This is the multiplication factor that goes inside log expressions involving the molalities of species. | |
vector_fp | m_molalities |
Current value of the molalities of the species in the phase. | |
doublereal | m_Pcurrent |
Current value of the pressure - state variable. | |
doublereal | m_Tlast_ss |
The last temperature at which the standard statethermodynamic properties were calculated at. | |
doublereal | m_Plast_ss |
The last pressure at which the Standard State thermodynamic properties were calculated at. | |
doublereal | m_P0 |
VPSSMgr * | m_VPSS_ptr |
Pointer to the VPSS manager that calculates all of the standard state info efficiently. | |
std::vector< PDSS * > | m_PDSS_storage |
Storage for the PDSS objects for the species. | |
SpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. | |
doublereal | m_phi |
Stored value of the electric potential for this phase. | |
vector_fp | m_lambdaRRT |
Vector of element potentials. | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. | |
int | m_ssConvention |
Contains the standard state convention. | |
std::vector< doublereal > | xMol_Ref |
Reference Mole Fraction Composition. | |
size_t | m_kk |
Number of species in the phase. | |
size_t | m_ndim |
Dimensionality of the phase. | |
vector_fp | m_speciesComp |
Atomic composition of the species. | |
vector_fp | m_speciesSize |
Vector of species sizes. | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. | |
Private Member Functions | |
double | _nonpolarActCoeff (double IionicMolality) const |
Static function that implements the non-polar species salt-out modifications. | |
double | _osmoticCoeffHelgesonFixedForm () const |
Formula for the osmotic coefficient that occurs in the GWB. | |
double | _lnactivityWaterHelgesonFixedForm () const |
Formula for the log of the water activity that occurs in the GWB. | |
doublereal | err (std::string msg) const |
void | initLengths () |
Initialize the internal lengths. | |
void | s_update_lnMolalityActCoeff () const |
Calculate the log activity coefficients. | |
void | s_update_dlnMolalityActCoeff_dT () const |
Calculation of temperature derivative of activity coefficient. | |
void | s_update_d2lnMolalityActCoeff_dT2 () const |
Calculate the temperature 2nd derivative of the activity coefficient. | |
void | s_update_dlnMolalityActCoeff_dP () const |
Calculate the pressure derivative of the activity coefficient. | |
Mechanical Equation of State Properties ------------------------- | |
In this equation of state implementation, the density is a function only of the mole fractions. Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown. | |
virtual doublereal | pressure () const |
Return the thermodynamic pressure (Pa). | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. | |
void | setDensity (const doublereal rho) |
Set the internally stored density (gm/m^3) of the phase. | |
virtual void | setMolarDensity (const doublereal conc) |
Set the internally stored molar density (kmol/m^3) of the phase. | |
virtual void | setTemperature (const doublereal temp) |
Set the temperature (K) | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) | |
virtual doublereal | isothermalCompressibility () const |
The isothermal compressibility. | |
virtual doublereal | thermalExpansionCoeff () const |
The thermal expansion coefficient. | |
virtual void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. | |
Properties of the Standard State of the Species in the Solution | |
(VPStandardStateTP) Within VPStandardStateTP, these properties are calculated via a common routine, _updateStandardStateThermo(), which must be overloaded in inherited objects. The values are cached within this object, and are not recalculated unless the temperature or pressure changes. | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity. | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. | |
void | getPureGibbs (doublereal *gpure) const |
Get the standard state Gibbs functions for each species at the current T and P. | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of each species in their standard states at the current T and P of the solution. | |
virtual void | updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. | |
virtual void | _updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. | |
Thermodynamic Values for the Species Reference States (VPStandardStateTP) | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. | |
virtual void | getGibbs_ref (doublereal *g) const |
virtual void | getEntropy_R_ref (doublereal *er) const |
virtual void | getCp_R_ref (doublereal *cprt) const |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. | |
const vector_fp & | Gibbs_RT_ref () const |
Class DebyeHuckel represents a dilute liquid electrolyte phase which obeys the Debye Huckel formulation for nonideality.
The concentrations of the ionic species are assumed to obey the electroneutrality condition.
The standard states are on the unit molality basis. Therefore, in the documentation below, the normal \( o \) superscript is replaced with the \( \triangle \) symbol. The reference state symbol is now \( \triangle, ref \).
It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.
For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_0 \hat v\) is subtracted from the specified molar enthalpy to compute the molar internal energy. The entropy is assumed to be independent of the pressure.
The enthalpy function is given by the following relation.
\[ \raggedright h^\triangle_k(T,P) = h^{\triangle,ref}_k(T) + \tilde v \left( P - P_{ref} \right) \]
For an incompressible, stoichiometric substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( P_{ref} \tilde v\) is subtracted from the specified reference molar enthalpy to compute the molar internal energy.
\[ u^\triangle_k(T,P) = h^{\triangle,ref}_k(T) - P_{ref} \tilde v \]
The standard state heat capacity and entropy are independent of pressure. The standard state gibbs free energy is obtained from the enthalpy and entropy functions.
The vector Phase::m_speciesSize[] is used to hold the base values of species sizes. These are defined as the molar volumes of species at infinite dilution at 300 K and 1 atm of water. m_speciesSize are calculated during the initialization of the DebyeHuckel object and are then not touched.
The current model assumes that an incompressible molar volume for all solutes. The molar volume for the water solvent, however, is obtained from a pure water equation of state, waterSS. Therefore, the water standard state varies with both T and P. It is an error to request standard state water properties at a T and P where the water phase is not a stable phase, i.e., beyond its spinodal curve.
Chemical potentials of the solutes, \( \mu_k \), and the solvent, \( \mu_o \), which are based on the molality form, have the following general format:
\[ \mu_k = \mu^{\triangle}_k(T,P) + R T ln(\gamma_k^{\triangle} \frac{m_k}{m^\triangle}) \]
\[ \mu_o = \mu^o_o(T,P) + RT ln(a_o) \]
where \( \gamma_k^{\triangle} \) is the molality based activity coefficient for species \(k\).
Individual activity coefficients of ions can not be independently measured. Instead, only binary pairs forming electroneutral solutions can be measured.
Most of the parameterizations within the model use the ionic strength as a key variable. The ionic strength, \( I\) is defined as follows
\[ I = \frac{1}{2} \sum_k{m_k z_k^2} \]
\( m_k \) is the molality of the kth species. \( z_k \) is the charge of the kth species. Note, the ionic strength is a defined units quantity. The molality has defined units of gmol kg-1, and therefore the ionic strength has units of sqrt( gmol kg-1).
In some instances, from some authors, a different formulation is used for the ionic strength in the equations below. The different formulation is due to the possibility of the existence of weak acids and how association wrt to the weak acid equilibrium relation affects the calculation of the activity coefficients via the assumed value of the ionic strength.
If we are to assume that the association reaction doesn't have an effect on the ionic strength, then we will want to consider the associated weak acid as in effect being fully dissociated, when we calculate an effective value for the ionic strength. We will call this calculated value, the stoichiometric ionic strength, \( I_s \), putting a subscript s to denote it from the more straightforward calculation of \( I \).
\[ I_s = \frac{1}{2} \sum_k{m_k^s z_k^2} \]
Here, \( m_k^s \) is the value of the molalities calculated assuming that all weak acid-base pairs are in their fully dissociated states. This calculation may be simplified by considering that the weakly associated acid may be made up of two charged species, k1 and k2, each with their own charges, obeying the following relationship:
\[ z_k = z_{k1} + z_{k2} \]
Then, we may only need to specify one charge value, say, \( z_{k1}\), the cation charge number, in order to get both numbers, since we have already specified \( z_k \) in the definition of original species. Then, the stoichiometric ionic strength may be calculated via the following formula.
\[ I_s = \frac{1}{2} \left(\sum_{k,ions}{m_k z_k^2}+ \sum_{k,weak_assoc}(m_k z_{k1}^2 + m_k z_{k2}^2) \right) \]
The specification of which species are weakly associated acids is made in the input file via the stoichIsMods
XML block, where the charge for k1 is also specified. An example is given below:
Because we need the concept of a weakly associated acid in order to calculated \( I_s \) we need to catalog all species in the phase. This is done using the following categories:
Polar and non-polar neutral species are differentiated, because some additions to the activity coefficient expressions distinguish between these two types of solutes. This is the so-called salt-out effect.
The type of species is specified in the electrolyteSpeciesType
XML block. Note, this is not considered a part of the specification of the standard state for the species, at this time. Therefore, this information is put under the activityCoefficient
XML block. An example is given below
Much of the species electrolyte type information is inferred from other information in the input file. For example, as species which is charged is given the "chargedSpecies" default category. A neutral solute species is put into the "nonpolarNeutral" category by default.
The specification of solute activity coefficients depends on the model assumed for the Debye-Huckel term. The model is set by the internal parameter m_formDH. We will now describe each category in its own section.
DHFORM_DILUTE_LIMIT = 0
This form assumes a dilute limit to DH, and is mainly for informational purposes:
\[ \ln(\gamma_k^\triangle) = - z_k^2 A_{Debye} \sqrt{I} \]
where \( I\) is the ionic strength
\[ I = \frac{1}{2} \sum_k{m_k z_k^2} \]
The activity for the solvent water, \( a_o \), is not independent and must be determined from the Gibbs-Duhem relation.
\[ \ln(a_o) = \frac{X_o - 1.0}{X_o} + \frac{ 2 A_{Debye} \tilde{M}_o}{3} (I)^{3/2} \]
DHFORM_BDOT_AK = 1
This form assumes Bethke's format for the Debye Huckel activity coefficient:
\[ \ln(\gamma_k^\triangle) = -z_k^2 \frac{A_{Debye} \sqrt{I}}{ 1 + B_{Debye} a_k \sqrt{I}} + \log(10) B^{dot}_k I \]
Note, this particular form where \form#188 can differ in multielectrolyte solutions has problems with respect to a Gibbs-Duhem analysis. However, we include it here because there is a lot of data fit to it.
The activity for the solvent water, \( a_o \), is not independent and must be determined from the Gibbs-Duhem relation. Here, we use:
\[ \ln(a_o) = \frac{X_o - 1.0}{X_o} + \frac{ 2 A_{Debye} \tilde{M}_o}{3} (I)^{1/2} \left[ \sum_k{\frac{1}{2} m_k z_k^2 \sigma( B_{Debye} a_k \sqrt{I} ) } \right] - \frac{\log(10)}{2} \tilde{M}_o I \sum_k{ B^{dot}_k m_k} \]
where
\[ \sigma (y) = \frac{3}{y^3} \left[ (1+y) - 2 \ln(1 + y) - \frac{1}{1+y} \right] \]
Additionally, Helgeson's formulation for the water activity is offered as an alternative.
DHFORM_BDOT_AUNIFORM = 2
This form assumes Bethke's format for the Debye-Huckel activity coefficient
\[ \ln(\gamma_k^\triangle) = -z_k^2 \frac{A_{Debye} \sqrt{I}}{ 1 + B_{Debye} a \sqrt{I}} + \log(10) B^{dot}_k I \]
The value of a is determined at the beginning of the calculation, and not changed.
\[ \ln(a_o) = \frac{X_o - 1.0}{X_o} + \frac{ 2 A_{Debye} \tilde{M}_o}{3} (I)^{3/2} \sigma( B_{Debye} a \sqrt{I} ) - \frac{\log(10)}{2} \tilde{M}_o I \sum_k{ B^{dot}_k m_k} \]
DHFORM_BETAIJ = 3
This form assumes a linear expansion in a virial coefficient form It is used extensively in the book by Newmann, "Electrochemistry Systems", and is the beginning of more complex treatments for stronger electrolytes, fom Pitzer and from Harvey, Moller, and Weire.
\[ \ln(\gamma_k^\triangle) = -z_k^2 \frac{A_{Debye} \sqrt{I}}{ 1 + B_{Debye} a \sqrt{I}} + 2 \sum_j \beta_{j,k} m_j \]
In the current treatment the binary interaction coefficients, \form#226, are independent of temperature and pressure.
\[ \ln(a_o) = \frac{X_o - 1.0}{X_o} + \frac{ 2 A_{Debye} \tilde{M}_o}{3} (I)^{3/2} \sigma( B_{Debye} a \sqrt{I} ) - \tilde{M}_o \sum_j \sum_k \beta_{j,k} m_j m_k \]
In this formulation the ionic radius, \( a \), is a constant. This must be supplied to the model, in an ionicRadius
XML block.
The \( \beta_{j,k} \) parameters are binary interaction parameters. They are supplied to the object in an DHBetaMatrix
XML block. There are in principle \( N (N-1) /2 \) different, symmetric interaction parameters, where \( N \) are the number of solute species in the mechanism. An example is given below.
An example activityCoefficients
XML block for this formulation is supplied below
DHFORM_PITZER_BETAIJ = 4
This form assumes an activity coefficient formulation consistent with a truncated form of Pitzer's formulation. Pitzer's formulation is equivalent to the formulations above in the dilute limit, where rigorous theory may be applied.
\[ \ln(\gamma_k^\triangle) = -z_k^2 \frac{A_{Debye}}{3} \frac{\sqrt{I}}{ 1 + B_{Debye} a \sqrt{I}} -2 z_k^2 \frac{A_{Debye}}{3} \frac{\ln(1 + B_{Debye} a \sqrt{I})}{ B_{Debye} a} + 2 \sum_j \beta_{j,k} m_j \]
\[ \ln(a_o) = \frac{X_o - 1.0}{X_o} + \frac{ 2 A_{Debye} \tilde{M}_o}{3} \frac{(I)^{3/2} }{1 + B_{Debye} a \sqrt{I} } - \tilde{M}_o \sum_j \sum_k \beta_{j,k} m_j m_k \]
In the equations above, the formulas for \( A_{Debye} \) and \( B_{Debye} \) are needed. The DebyeHuckel object uses two methods for specifying these quantities. The default method is to assume that \( A_{Debye} \) is a constant, given in the initialization process, and stored in the member double, m_A_Debye. Optionally, a full water treatment may be employed that makes \( A_{Debye} \) a full function of T and P.
\[ A_{Debye} = \frac{F e B_{Debye}}{8 \pi \epsilon R T} {\left( C_o \tilde{M}_o \right)}^{1/2} \]
where
\[ B_{Debye} = \frac{F} {{(\frac{\epsilon R T}{2})}^{1/2}} \]
Therefore:
\[ A_{Debye} = \frac{1}{8 \pi} {\left(\frac{2 N_a \rho_o}{1000}\right)}^{1/2} {\left(\frac{N_a e^2}{\epsilon R T }\right)}^{3/2} \]
Units = sqrt(kg/gmol) where - \form#238 is Avogadro's number - \form#239 is the density of water - \form#240 is the electronic charge - \form#241 is the permittivity of water where \form#242 is the dielectric constant of water, and \form#243 is the permittivity of free space. - \form#244 is the density of the solvent in its standard state. Nominal value at 298 K and 1 atm = 1.172576 (kg/gmol)<SUP>1/2</SUP> based on: - \form#245 = 78.54 (water at 25C) - T = 298.15 K - B_Debye = 3.28640E9 (kg/gmol)<SUP>1/2</SUP> m<SUP>-1</SUP>
An example of a fixed value implementation is given below.
An example of a variable value implementation is given below.
Currently, \( B_{Debye} \) is a constant in the model, specified either by a default water value, or through the input file. This may have to be looked at, in the future.
For the time being, we have set the standard concentration for all species in this phase equal to the default concentration of the solvent at 298 K and 1 atm. This means that the kinetics operator essentially works on an activities basis, with units specified as if it were on a concentration basis.
For example, a bulk-phase binary reaction between liquid species j and k, producing a new liquid species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.
\[ R^1 = k^1 C_j^a C_k^a = k^1 (C_o a_j) (C_o a_k) \]
where
\[ C_j^a = C_o a_j \quad and \quad C_k^a = C_o a_k \]
\( C_j^a \) is the activity concentration of species j, and \( C_k^a \) is the activity concentration of species k. \( C_o \) is the concentration of water at 298 K and 1 atm. \( a_j \) is the activity of species j at the current temperature and pressure and concentration of the liquid phase. \(k^1 \) has units of m3 kmol-1 s-1.
The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.
\[ \frac{a_j a_k}{ a_l} = K^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]
\( K^{o,1} \) is the dimensionless form of the equilibrium constant.
\[ R^{-1} = k^{-1} C_l^a = k^{-1} (C_o a_l) \]
where
\[ k^{-1} = k^1 K^{o,1} C_o \]
\(k^{-1} \) has units of s-1.
Note, this treatment may be modified in the future, as events dictate.
The constructor for this phase is NOT located in the default ThermoFactory for Cantera. However, a new DebyeHuckel object may be created by the following code snippets:
or
or by the following call to importPhase():
The phase model name for this is called StoichSubstance. It must be supplied as the model attribute of the thermo XML element entry. Within the phase XML block, the density of the phase must be specified. An example of an XML file this phase is given below.
<phase id="NaCl_electrolyte" dim="3"> <speciesArray datasrc="#species_waterSolution"> H2O(L) Na+ Cl- H+ OH- NaCl(aq) NaOH(aq) </speciesArray> <state> <temperature units="K"> 300 </temperature> <pressure units="Pa">101325.0</pressure> <soluteMolalities> Na+:3.0 Cl-:3.0 H+:1.0499E-8 OH-:1.3765E-6 NaCl(aq):0.98492 NaOH(aq):3.8836E-6 </soluteMolalities> </state> <!-- thermo model identifies the inherited class from ThermoPhase that will handle the thermodynamics. --> <thermo model="DebyeHuckel"> <standardConc model="solvent_volume" /> <activityCoefficients model="Beta_ij"> <!-- A_Debye units = sqrt(kg/gmol) --> <A_Debye> 1.172576 </A_Debye> <!-- B_Debye units = sqrt(kg/gmol)/m --> <B_Debye> 3.28640E9 </B_Debye> <ionicRadius default="3.042843" units="Angstroms"> </ionicRadius> <DHBetaMatrix> H+:Cl-:0.27 Na+:Cl-:0.15 Na+:OH-:0.06 </DHBetaMatrix> <stoichIsMods> NaCl(aq):-1.0 </stoichIsMods> <electrolyteSpeciesType> H+:chargedSpecies NaCl(aq):weakAcidAssociated </electrolyteSpeciesType> </activityCoefficients> <solvent> H2O(L) </solvent> </thermo> <elementArray datasrc="elements.xml"> O H Na Cl </elementArray> </phase>
Definition at line 614 of file DebyeHuckel.h.
DebyeHuckel | ( | ) |
Empty Constructor.
Definition at line 36 of file DebyeHuckel.cpp.
References DebyeHuckel::m_npActCoeff.
Referenced by DebyeHuckel::duplMyselfAsThermoPhase().
DebyeHuckel | ( | const DebyeHuckel & | b | ) |
Copy constructor.
Definition at line 116 of file DebyeHuckel.cpp.
DebyeHuckel | ( | std::string | inputFile, |
std::string | id = "" |
||
) |
Full constructor for creating the phase.
inputFile | File name containing the XML description of the phase |
id | id attribute containing the name of the phase. (default is the empty string) |
Definition at line 66 of file DebyeHuckel.cpp.
References DebyeHuckel::constructPhaseFile(), and DebyeHuckel::m_npActCoeff.
DebyeHuckel | ( | XML_Node & | phaseRef, |
std::string | id = "" |
||
) |
Full constructor for creating the phase.
phaseRef | XML phase node containing the description of the phase |
id | id attribute containing the name of the phase. (default is the empty string) |
Definition at line 88 of file DebyeHuckel.cpp.
References DebyeHuckel::constructPhaseXML(), and DebyeHuckel::m_npActCoeff.
|
virtual |
DebyeHuckel & operator= | ( | const DebyeHuckel & | b | ) |
Assignment operator.
Definition at line 145 of file DebyeHuckel.cpp.
References DebyeHuckel::m_A_Debye, DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Debye, DebyeHuckel::m_B_Dot, DebyeHuckel::m_Beta_ij, DebyeHuckel::m_d2lnActCoeffMolaldT2, DebyeHuckel::m_densWaterSS, DebyeHuckel::m_expg0_RT, DebyeHuckel::m_form_A_Debye, DebyeHuckel::m_formDH, DebyeHuckel::m_formGC, DebyeHuckel::m_IionicMolality, DebyeHuckel::m_IionicMolalityStoich, DebyeHuckel::m_lnActCoeffMolal, DebyeHuckel::m_maxIionicStrength, DebyeHuckel::m_npActCoeff, DebyeHuckel::m_pe, DebyeHuckel::m_pp, DebyeHuckel::m_speciesCharge_Stoich, DebyeHuckel::m_tmpV, DebyeHuckel::m_useHelgesonFixedForm, DebyeHuckel::m_waterProps, DebyeHuckel::m_waterSS, and MolalityVPSSTP::operator=().
|
virtual |
Duplicator from the ThermoPhase parent class.
Given a pointer to a ThermoPhase object, this function will duplicate the ThermoPhase object and all underlying structures. This is basically a wrapper around the copy constructor.
Reimplemented from MolalityVPSSTP.
Definition at line 213 of file DebyeHuckel.cpp.
References DebyeHuckel::DebyeHuckel().
|
virtual |
Equation of state type flag.
The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.
Reimplemented from MolalityVPSSTP.
Definition at line 225 of file DebyeHuckel.cpp.
References Cantera::cDebyeHuckel0, and DebyeHuckel::m_formGC.
|
virtual |
Molar enthalpy. Units: J/kmol.
Molar enthalpy of the solution. Units: J/kmol. (HKM -> Bump up to Parent object)
Reimplemented from ThermoPhase.
Definition at line 251 of file DebyeHuckel.cpp.
References DATA_PTR, DebyeHuckel::getPartialMolarEnthalpies(), DebyeHuckel::m_tmpV, and Phase::mean_X().
Referenced by DebyeHuckel::intEnergy_mole().
|
virtual |
Molar internal energy. Units: J/kmol.
Molar internal energy of the solution. Units: J/kmol. (HKM -> Bump up to Parent object)
Reimplemented from ThermoPhase.
Definition at line 263 of file DebyeHuckel.cpp.
References DebyeHuckel::enthalpy_mole(), Phase::molarDensity(), and DebyeHuckel::pressure().
|
virtual |
Molar entropy. Units: J/kmol/K.
Molar entropy of the solution. Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]
The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of temperature since the volume expansivities are equal to zero.
(HKM -> Bump up to Parent object)
Reimplemented from ThermoPhase.
Definition at line 277 of file DebyeHuckel.cpp.
References DATA_PTR, DebyeHuckel::getPartialMolarEntropies(), DebyeHuckel::m_tmpV, and Phase::mean_X().
|
virtual |
Molar Gibbs function. Units: J/kmol.
Reimplemented from ThermoPhase.
Definition at line 284 of file DebyeHuckel.cpp.
References DATA_PTR, DebyeHuckel::getChemPotentials(), DebyeHuckel::m_tmpV, and Phase::mean_X().
|
virtual |
Molar heat capacity at constant pressure. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 296 of file DebyeHuckel.cpp.
References DATA_PTR, DebyeHuckel::getPartialMolarCp(), DebyeHuckel::m_tmpV, and Phase::mean_X().
|
virtual |
Molar heat capacity at constant volume. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 304 of file DebyeHuckel.cpp.
|
virtual |
Return the thermodynamic pressure (Pa).
For this incompressible system, we return the internally stored independent value of the pressure.
Reimplemented from ThermoPhase.
Definition at line 321 of file DebyeHuckel.cpp.
References VPStandardStateTP::m_Pcurrent.
Referenced by DebyeHuckel::A_Debye_TP(), DebyeHuckel::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), and DebyeHuckel::intEnergy_mole().
|
virtual |
Set the internally stored pressure (Pa) at constant temperature and composition.
This method sets the pressure within the object. The water model is a completely compressible model. Also, the dielectric constant is pressure dependent.
p | input Pressure (Pa) |
Reimplemented from VPStandardStateTP.
Definition at line 326 of file DebyeHuckel.cpp.
References DebyeHuckel::setState_TP(), and Phase::temperature().
|
protectedvirtual |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.
Reimplemented from VPStandardStateTP.
Definition at line 374 of file DebyeHuckel.cpp.
References PDSS_Water::density(), Phase::getMoleFractions(), DebyeHuckel::getPartialMolarVolumes(), DebyeHuckel::m_densWaterSS, Phase::m_kk, DebyeHuckel::m_pp, DebyeHuckel::m_tmpV, DebyeHuckel::m_waterSS, Phase::meanMolecularWeight(), and Phase::setDensity().
Referenced by DebyeHuckel::setState_TP().
|
virtual |
Set the internally stored density (gm/m^3) of the phase.
Overwritten setDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition
May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.
This function will now throw an error condition if the input isn't exactly equal to the current density.
NOTE: This is an overwritten function from the State.h class
rho | Input density (kg/m^3). |
Reimplemented from Phase.
Definition at line 449 of file DebyeHuckel.cpp.
References Phase::density().
|
virtual |
Set the internally stored molar density (kmol/m^3) of the phase.
Overwritten setMolarDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition if the input isn't exactly equal to the current molar density.
NOTE: This is a virtual function overwritten from the State.h class
conc | Input molar density (kmol/m^3). |
Reimplemented from Phase.
Definition at line 467 of file DebyeHuckel.cpp.
References Phase::molarDensity().
|
virtual |
Set the temperature (K)
Overwritten setTemperature(double) from State.h. This function sets the temperature, and makes sure that the value propagates to underlying objects, such as the water standard state model.
temp | Temperature in kelvin |
Reimplemented from VPStandardStateTP.
Definition at line 481 of file DebyeHuckel.cpp.
References VPStandardStateTP::m_Pcurrent, and DebyeHuckel::setState_TP().
|
virtual |
Set the temperature (K) and pressure (Pa)
Set the temperature and pressure.
t | Temperature (K) |
p | Pressure (Pa) |
Reimplemented from VPStandardStateTP.
Definition at line 331 of file DebyeHuckel.cpp.
References VPStandardStateTP::_updateStandardStateThermo(), DebyeHuckel::calcDensity(), VPStandardStateTP::m_Pcurrent, and Phase::setTemperature().
Referenced by DebyeHuckel::setPressure(), and DebyeHuckel::setTemperature().
|
virtual |
The isothermal compressibility.
Units: 1/Pa. The isothermal compressibility is defined as
\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]
Reimplemented from ThermoPhase.
Definition at line 408 of file DebyeHuckel.cpp.
|
virtual |
The thermal expansion coefficient.
Units: 1/K. The thermal expansion coefficient is defined as
\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]
Reimplemented from ThermoPhase.
Definition at line 426 of file DebyeHuckel.cpp.
|
virtual |
This method returns an array of generalized concentrations.
\( C_k\) that are defined such that \( a_k = C_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below. These generalized concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.
c | Array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase. |
Reimplemented from MolalityVPSSTP.
Definition at line 504 of file DebyeHuckel.cpp.
References DebyeHuckel::getActivities(), Phase::m_kk, and DebyeHuckel::standardConcentration().
|
virtual |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration in kinetics calculations.
For the time being, we will use the concentration of pure solvent for the the standard concentration of all species. This has the effect of making reaction rates based on the molality of species proportional to the molality of the species.
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from MolalityVPSSTP.
Definition at line 530 of file DebyeHuckel.cpp.
References MolalityVPSSTP::m_indexSolvent, and Phase::m_speciesSize.
Referenced by DebyeHuckel::getActivityConcentrations(), and DebyeHuckel::logStandardConc().
|
virtual |
Natural logarithm of the standard concentration of the kth species.
k | index of the species (defaults to zero) |
Reimplemented from MolalityVPSSTP.
Definition at line 540 of file DebyeHuckel.cpp.
References DebyeHuckel::standardConcentration().
|
virtual |
Returns the units of the standard and generalized concentrations.
Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.
This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.
The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.
uA | Output vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0 |
k | species index. Defaults to 0. |
sizeUA | output int containing the size of the vector. Currently, this is equal to 6. |
Reimplemented from MolalityVPSSTP.
Definition at line 568 of file DebyeHuckel.cpp.
References Phase::nDim().
|
virtual |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.
(note solvent is on molar scale).
ac | Output vector of activities. Length: m_kk. |
Reimplemented from MolalityVPSSTP.
Definition at line 600 of file DebyeHuckel.cpp.
References VPStandardStateTP::_updateStandardStateThermo(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, MolalityVPSSTP::m_molalities, Phase::moleFraction(), and DebyeHuckel::s_update_lnMolalityActCoeff().
Referenced by DebyeHuckel::getActivityConcentrations().
|
virtual |
Get the array of non-dimensional molality-based activity coefficients at the current solution temperature, pressure, and solution concentration.
note solvent is on molar scale. The solvent molar based activity coefficient is returned.
acMolality | Vector of Molality-based activity coefficients Length: m_kk |
Reimplemented from MolalityVPSSTP.
Definition at line 630 of file DebyeHuckel.cpp.
References VPStandardStateTP::_updateStandardStateThermo(), DebyeHuckel::A_Debye_TP(), Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, and DebyeHuckel::s_update_lnMolalityActCoeff().
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution.
\[ \mu_k = \mu^{\triangle}_k(T,P) + R T ln(\gamma_k^{\triangle} m_k) \]
or another way to phrase this is
where
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 659 of file DebyeHuckel.cpp.
References Cantera::GasConstant, VPStandardStateTP::getStandardChemPotentials(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, MolalityVPSSTP::m_molalities, ckr::max(), Phase::moleFraction(), DebyeHuckel::s_update_lnMolalityActCoeff(), Phase::temperature(), and Cantera::xxSmall.
Referenced by DebyeHuckel::gibbs_mole().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the molality-based activity coefficient wrt temperature
\[ \bar h_k(T,P) = h^{\triangle}_k(T,P) - R T^2 \frac{d \ln(\gamma_k^\triangle)}{dT} \]
The solvent partial molar enthalpy is equal to
\[ \bar h_o(T,P) = h^{o}_o(T,P) - R T^2 \frac{d \ln(a_o}{dT} \]
The temperature dependence of the activity coefficients currently only occurs through the temperature dependence of the Debye constant.
hbar | Output vector of species partial molar enthalpies. Length: m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 701 of file DebyeHuckel.cpp.
References DebyeHuckel::dA_DebyedT_TP(), Cantera::GasConstant, VPStandardStateTP::getEnthalpy_RT(), DebyeHuckel::m_dlnActCoeffMolaldT, Phase::m_kk, DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), and Phase::temperature().
Referenced by DebyeHuckel::enthalpy_mole().
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K. Maxwell's equations provide an insight in how to calculate this (p.215 Smith and Van Ness)
d(chemPot_i)/dT = -sbar_i
For this phase, the partial molar entropies are equal to the SS species entropies plus the ideal solution contribution.following contribution:
\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(M0 * molality[k]) \]
\[ \bar s_solvent(T,P) = \hat s^0_solvent(T) - R ((xmolSolvent - 1.0) / xmolSolvent) \]
The reference-state pure-species entropies, \( \hat s^0_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
sbar | Output vector of species partial molar entropies. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 765 of file DebyeHuckel.cpp.
References DebyeHuckel::dA_DebyedT_TP(), Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), DebyeHuckel::m_dlnActCoeffMolaldT, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, MolalityVPSSTP::m_molalities, ckr::max(), Phase::moleFraction(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), Cantera::SmallNumber, and Phase::temperature().
Referenced by DebyeHuckel::entropy_mole().
|
virtual |
Return an array of partial molar heat capacities for the species in the mixture.
Units: J/kmol/K
cpbar | Output vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K. |
Reimplemented from ThermoPhase.
Definition at line 856 of file DebyeHuckel.cpp.
References DebyeHuckel::dA_DebyedT_TP(), Cantera::GasConstant, VPStandardStateTP::getCp_R(), DebyeHuckel::m_d2lnActCoeffMolaldT2, DebyeHuckel::m_dlnActCoeffMolaldT, Phase::m_kk, DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), and Phase::temperature().
Referenced by DebyeHuckel::cp_mole().
|
virtual |
Return an array of partial molar volumes for the species in the mixture.
Units: m^3/kmol.
For this solution, the partial molar volumes are equal to the constant species molar volumes.
vbar | Output vector of species partial molar volumes. Length = m_kk. units are m^3/kmol. |
Reimplemented from ThermoPhase.
Definition at line 832 of file DebyeHuckel.cpp.
References Cantera::GasConstant, VPStandardStateTP::getStandardVolumes(), DebyeHuckel::m_dlnActCoeffMolaldP, Phase::m_kk, DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_lnMolalityActCoeff(), and Phase::temperature().
Referenced by DebyeHuckel::calcDensity().
|
inlinevirtual |
This method is used by the ChemEquil equilibrium solver.
It sets the state such that the chemical potentials satisfy
\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]
where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.
lambda_RT | Input vector of dimensionless element potentials The length is equal to nElements(). |
Reimplemented from MolalityVPSSTP.
Definition at line 1148 of file DebyeHuckel.h.
|
virtual |
Set the equation of state parameters.
The number and meaning of these depends on the subclass.
n | number of parameters |
c | array of n coefficients |
Reimplemented from ThermoPhase.
Definition at line 1644 of file DebyeHuckel.cpp.
|
virtual |
Get the equation of state parameters in a vector.
The number and meaning of these depends on the subclass.
n | number of parameters |
c | array of n coefficients |
Reimplemented from ThermoPhase.
Definition at line 1648 of file DebyeHuckel.cpp.
|
virtual |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.
eosdata | An XML_Node object corresponding to the "thermo" entry for this phase in the input file. |
Reimplemented from VPStandardStateTP.
Definition at line 1666 of file DebyeHuckel.cpp.
|
inlinevirtual |
Return the saturation temperature given the pressure.
p | Pressure (Pa) |
Reimplemented from ThermoPhase.
Definition at line 1205 of file DebyeHuckel.h.
|
inlinevirtual |
Get the saturation pressure for a given temperature.
Note the limitations of this function. Stability considerations concerning multiphase equilibrium are ignored in this calculation. Therefore, the call is made directly to the SS of water underneath. The object is put back into its original state at the end of the call.
T | Temperature (kelvin) |
Reimplemented from ThermoPhase.
Definition at line 1225 of file DebyeHuckel.h.
|
inlinevirtual |
Return the fraction of vapor at the current conditions.
Reimplemented from ThermoPhase.
Definition at line 1230 of file DebyeHuckel.h.
|
inlinevirtual |
Set the state to a saturated system at a particular temperature.
t | Temperature (kelvin) |
x | Fraction of vapor |
Reimplemented from ThermoPhase.
Definition at line 1235 of file DebyeHuckel.h.
|
inlinevirtual |
Set the state to a saturated system at a particular pressure.
p | Pressure (Pa) |
x | Fraction of vapor |
Reimplemented from ThermoPhase.
Definition at line 1239 of file DebyeHuckel.h.
|
virtual |
Initialize the object's internal lengths after species are set.
Initialize. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase().
Cascading call sequence downwards starting with Parent.
Reimplemented from MolalityVPSSTP.
Definition at line 905 of file DebyeHuckel.cpp.
References DebyeHuckel::initLengths(), and MolalityVPSSTP::initThermo().
Referenced by DebyeHuckel::initThermoXML().
void constructPhaseFile | ( | std::string | infile, |
std::string | id = "" |
||
) |
Initialization of a DebyeHuckel phase using an xml file.
This routine is a precursor to initThermo(XML_Node*) routine, which does most of the work.
infile | XML file containing the description of the phase |
id | Optional parameter identifying the name of the phase. If none is given, the first XML phase element will be used. |
Definition at line 927 of file DebyeHuckel.cpp.
References XML_Node::build(), DebyeHuckel::constructPhaseXML(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), and Phase::xml().
Referenced by DebyeHuckel::DebyeHuckel().
void constructPhaseXML | ( | XML_Node & | phaseNode, |
std::string | id = "" |
||
) |
Import and initialize a DebyeHuckel phase specification in an XML tree into the current object.
Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species.
Then, we read the species molar volumes from the xml tree to finish the initialization.
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Definition at line 1011 of file DebyeHuckel.cpp.
References XML_Node::attrib(), XML_Node::child(), ctml::getStringArray(), XML_Node::hasChild(), XML_Node::id(), Cantera::importPhase(), DebyeHuckel::m_formDH, DebyeHuckel::m_formGC, and Phase::size().
Referenced by DebyeHuckel::constructPhaseFile(), and DebyeHuckel::DebyeHuckel().
|
virtual |
Process the XML file after species are set up.
This gets called from importPhase(). It processes the XML file after the species are set up. This is the main routine for reading in activity coefficient parameters.
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from VPStandardStateTP.
Definition at line 1135 of file DebyeHuckel.cpp.
References XML_Node::attrib(), Cantera::cEST_solvent, Phase::charge(), XML_Node::child(), PDSS_Water::density(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::fpValue(), Cantera::get_XML_NameID(), ctml::getChildValue(), ctml::getFloat(), ctml::getMap(), ctml::getMatrixValues(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), DebyeHuckel::initThermo(), Cantera::interp_est(), Cantera::lowercase(), DebyeHuckel::m_A_Debye, DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Debye, DebyeHuckel::m_B_Dot, DebyeHuckel::m_Beta_ij, DebyeHuckel::m_electrolyteSpeciesType, DebyeHuckel::m_form_A_Debye, DebyeHuckel::m_formDH, DebyeHuckel::m_formGC, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_maxIionicStrength, Phase::m_speciesCharge, DebyeHuckel::m_speciesCharge_Stoich, Phase::m_speciesSize, DebyeHuckel::m_useHelgesonFixedForm, DebyeHuckel::m_waterProps, DebyeHuckel::m_waterSS, PDSS::molecularWeight(), Cantera::npos, Cantera::OneAtm, XML_Node::root(), PDSS_Water::setState_TP(), MolalityVPSSTP::setStateFromXML(), ThermoPhase::speciesData(), Phase::speciesIndex(), Phase::speciesName(), Phase::speciesNames(), and Cantera::toSI().
|
virtual |
Return the Debye Huckel constant as a function of temperature and pressure (Units = sqrt(kg/gmol))
The default is to assume that it is constant, given in the initialization process, and stored in the member double, m_A_Debye. Optionally, a full water treatment may be employed that makes \( A_{Debye} \) a full function of T and P.
\[ A_{Debye} = \frac{F e B_{Debye}}{8 \pi \epsilon R T} {\left( C_o \tilde{M}_o \right)}^{1/2} \]
where
\[ B_{Debye} = \frac{F} {{(\frac{\epsilon R T}{2})}^{1/2}} \]
Therefore:
\[ A_{Debye} = \frac{1}{8 \pi} {\left(\frac{2 N_a \rho_o}{1000}\right)}^{1/2} {\left(\frac{N_a e^2}{\epsilon R T }\right)}^{3/2} \]
Units = sqrt(kg/gmol)
where
Nominal value at 298 K and 1 atm = 1.172576 (kg/gmol)<SUP>1/2</SUP> based on: - \form#245 = 78.54 (water at 25C) - T = 298.15 K - B_Debye = 3.28640E9 (kg/gmol)<SUP>1/2</SUP> m<SUP>-1</SUP>
temperature | Temperature in kelvin. Defaults to -1, in which case the temperature of the phase is assumed. |
pressure | Pressure (Pa). Defaults to -1, in which case the pressure of the phase is assumed. |
Definition at line 1690 of file DebyeHuckel.cpp.
References WaterProps::ADebye(), DebyeHuckel::m_A_Debye, DebyeHuckel::m_form_A_Debye, DebyeHuckel::m_waterProps, DebyeHuckel::pressure(), and Phase::temperature().
Referenced by DebyeHuckel::getMolalityActivityCoefficients(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
virtual |
Value of the derivative of the Debye Huckel constant with respect to temperature.
This is a function of temperature and pressure. See A_Debye_TP() for a definition of \( A_{Debye} \).
Units = sqrt(kg/gmol) K-1
temperature | Temperature in kelvin. Defaults to -1, in which case the temperature of the phase is assumed. |
pressure | Pressure (Pa). Defaults to -1, in which case the pressure of the phase is assumed. |
Definition at line 1727 of file DebyeHuckel.cpp.
References WaterProps::ADebye(), DebyeHuckel::m_form_A_Debye, DebyeHuckel::m_waterProps, DebyeHuckel::pressure(), and Phase::temperature().
Referenced by DebyeHuckel::getPartialMolarCp(), DebyeHuckel::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEntropies(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), and DebyeHuckel::s_update_dlnMolalityActCoeff_dT().
|
virtual |
Value of the 2nd derivative of the Debye Huckel constant with respect to temperature as a function of temperature and pressure.
This is a function of temperature and pressure. See A_Debye_TP() for a definition of \( A_{Debye} \).
Units = sqrt(kg/gmol) K-2
temperature | Temperature in kelvin. Defaults to -1, in which case the temperature of the phase is assumed. |
pressure | Pressure (Pa). Defaults to -1, in which case the pressure of the phase is assumed. |
Definition at line 1762 of file DebyeHuckel.cpp.
References WaterProps::ADebye(), DebyeHuckel::m_form_A_Debye, DebyeHuckel::m_waterProps, DebyeHuckel::pressure(), and Phase::temperature().
Referenced by DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2().
|
virtual |
Value of the derivative of the Debye Huckel constant with respect to pressure, as a function of temperature and pressure.
This is a function of temperature and pressure. See A_Debye_TP() for a definition of \( A_{Debye} \).
Units = sqrt(kg/gmol) Pa-1
temperature | Temperature in kelvin. Defaults to -1, in which case the temperature of the phase is assumed. |
pressure | Pressure (Pa). Defaults to -1, in which case the pressure of the phase is assumed. |
Definition at line 1797 of file DebyeHuckel.cpp.
References WaterProps::ADebye(), DebyeHuckel::m_form_A_Debye, DebyeHuckel::m_waterProps, DebyeHuckel::pressure(), and Phase::temperature().
Referenced by DebyeHuckel::s_update_dlnMolalityActCoeff_dP().
double AionicRadius | ( | int | k = 0 | ) | const |
Reports the ionic radius of the kth species.
k | species index. |
Definition at line 1829 of file DebyeHuckel.cpp.
References DebyeHuckel::m_Aionic.
|
inline |
Returns the form of the Debye-Huckel parameterization used.
Definition at line 1441 of file DebyeHuckel.h.
References DebyeHuckel::m_formDH.
|
inline |
Returns a reference to M_Beta_ij.
Definition at line 1446 of file DebyeHuckel.h.
References DebyeHuckel::m_Beta_ij.
|
private |
Static function that implements the non-polar species salt-out modifications.
Returns the calculated activity coefficients.
IionicMolality | Value of the ionic molality (sqrt(gmol/kg)) |
Definition at line 1889 of file DebyeHuckel.cpp.
References DebyeHuckel::m_npActCoeff.
Referenced by DebyeHuckel::s_update_lnMolalityActCoeff().
|
private |
Formula for the osmotic coefficient that occurs in the GWB.
_osmoticCoeffHelgesonFixedForm()
It is originally from Helgeson for a variable NaCl brine. It's to be used with extreme caution.
Formula for the osmotic coefficient that occurs in the GWB. It is originally from Helgeson for a variable NaCl brine. It's to be used with extreme caution.
Definition at line 1908 of file DebyeHuckel.cpp.
References DebyeHuckel::m_A_Debye, and DebyeHuckel::m_IionicMolalityStoich.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm().
|
private |
Formula for the log of the water activity that occurs in the GWB.
It is originally from Helgeson for a variable NaCl brine. It's to be used with extreme caution.
Definition at line 1937 of file DebyeHuckel.cpp.
References DebyeHuckel::_osmoticCoeffHelgesonFixedForm(), MolalityVPSSTP::calcMolalities(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_maxIionicStrength, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and ckr::max().
Referenced by DebyeHuckel::s_update_lnMolalityActCoeff().
|
private |
Initialize the internal lengths.
This internal function adjusts the lengths of arrays based on the number of species.
Definition at line 1856 of file DebyeHuckel.cpp.
References DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Dot, DebyeHuckel::m_Beta_ij, DebyeHuckel::m_d2lnActCoeffMolaldT2, DebyeHuckel::m_dlnActCoeffMolaldP, DebyeHuckel::m_dlnActCoeffMolaldT, DebyeHuckel::m_electrolyteSpeciesType, DebyeHuckel::m_expg0_RT, DebyeHuckel::m_formDH, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, DebyeHuckel::m_pe, DebyeHuckel::m_pp, Phase::m_speciesSize, DebyeHuckel::m_tmpV, Phase::nSpecies(), and Array2D::resize().
Referenced by DebyeHuckel::initThermo().
|
private |
Calculate the log activity coefficients.
This function updates the internally stored natural logarithm of the molality activity coefficients
Definition at line 1970 of file DebyeHuckel.cpp.
References DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), DebyeHuckel::_nonpolarActCoeff(), DebyeHuckel::A_Debye_TP(), MolalityVPSSTP::calcMolalities(), DebyeHuckel::m_A_Debye, DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Debye, DebyeHuckel::m_B_Dot, DebyeHuckel::m_Beta_ij, DebyeHuckel::m_electrolyteSpeciesType, DebyeHuckel::m_formDH, DebyeHuckel::m_IionicMolality, DebyeHuckel::m_IionicMolalityStoich, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, DebyeHuckel::m_maxIionicStrength, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, Phase::m_speciesCharge, DebyeHuckel::m_speciesCharge_Stoich, DebyeHuckel::m_useHelgesonFixedForm, ckr::max(), Phase::moleFraction(), and Array2D::value().
Referenced by DebyeHuckel::getActivities(), DebyeHuckel::getChemPotentials(), DebyeHuckel::getMolalityActivityCoefficients(), DebyeHuckel::getPartialMolarCp(), DebyeHuckel::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEntropies(), and DebyeHuckel::getPartialMolarVolumes().
|
private |
Calculation of temperature derivative of activity coefficient.
Using internally stored values, this function calculates the temperature derivative of the logarithm of the activity coefficient for all species in the mechanism.
We assume that the activity coefficients are current in this routine
The solvent activity coefficient is on the molality scale. Its derivative is too.
Definition at line 2240 of file DebyeHuckel.cpp.
References DebyeHuckel::dA_DebyedT_TP(), DebyeHuckel::m_A_Debye, DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Debye, DebyeHuckel::m_dlnActCoeffMolaldT, DebyeHuckel::m_formDH, DebyeHuckel::m_IionicMolality, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, Phase::m_speciesCharge, ckr::max(), and Phase::moleFraction().
Referenced by DebyeHuckel::getPartialMolarCp(), DebyeHuckel::getPartialMolarEnthalpies(), and DebyeHuckel::getPartialMolarEntropies().
|
private |
Calculate the temperature 2nd derivative of the activity coefficient.
Using internally stored values, this function calculates the temperature 2nd derivative of the logarithm of the activity coefficient for all species in the mechanism.
We assume that the activity coefficients are current in this routine
solvent activity coefficient is on the molality scale. Its derivatives are too.
note: private routine
Definition at line 2380 of file DebyeHuckel.cpp.
References DebyeHuckel::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedT_TP(), DebyeHuckel::m_A_Debye, DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Debye, DebyeHuckel::m_d2lnActCoeffMolaldT2, DebyeHuckel::m_formDH, DebyeHuckel::m_IionicMolality, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, Phase::m_speciesCharge, ckr::max(), and Phase::moleFraction().
Referenced by DebyeHuckel::getPartialMolarCp().
|
private |
Calculate the pressure derivative of the activity coefficient.
Using internally stored values, this function calculates the pressure derivative of the logarithm of the activity coefficient for all species in the mechanism.
We assume that the activity coefficients, molalities, and A_Debye are current.
solvent activity coefficient is on the molality scale. Its derivatives are too.
Definition at line 2515 of file DebyeHuckel.cpp.
References DebyeHuckel::dA_DebyedP_TP(), DebyeHuckel::m_A_Debye, DebyeHuckel::m_Aionic, DebyeHuckel::m_B_Debye, DebyeHuckel::m_dlnActCoeffMolaldP, DebyeHuckel::m_electrolyteSpeciesType, DebyeHuckel::m_formDH, DebyeHuckel::m_IionicMolality, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, DebyeHuckel::m_lnActCoeffMolal, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, Phase::m_speciesCharge, ckr::max(), and Phase::moleFraction().
Referenced by DebyeHuckel::getPartialMolarVolumes().
|
inherited |
Set the pH scale, which determines the scale for single-ion activity coefficients.
Single ion activity coefficients are not unique in terms of the representing actual measurable quantities.
pHscaleType | Integer representing the pHscale |
Definition at line 143 of file MolalityVPSSTP.cpp.
References Cantera::int2str(), MolalityVPSSTP::m_pHScalingType, Cantera::PHSCALE_NBS, and Cantera::PHSCALE_PITZER.
|
inherited |
Reports the pH scale, which determines the scale for single-ion activity coefficients.
Single ion activity coefficients are not unique in terms of the representing actual measurable quantities.
Definition at line 158 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::m_pHScalingType.
|
inherited |
This routine sets the index number of the solvent for the phase.
Note, having a solvent is a precursor to many things having to do with molality.
k | the solvent index number |
Definition at line 170 of file MolalityVPSSTP.cpp.
References AssertThrowMsg, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_weightSolvent, and Phase::molecularWeight().
Referenced by MolalityVPSSTP::initThermo(), and MolalityVPSSTP::initThermoXML().
|
inherited |
Sets the minimum mole fraction in the molality formulation.
Note the molality formulation is singular in the limit that the solvent mole fraction goes to zero. Numerically, how this limit is treated and resolved is an ongoing issue within Cantera.
xmolSolventMIN | Input double containing the minimum mole fraction |
Definition at line 196 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::m_xmolSolventMIN.
Referenced by IdealMolalSoln::initThermoXML().
|
inherited |
Returns the solvent index.
Definition at line 186 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::m_indexSolvent.
|
inherited |
Returns the minimum mole fraction in the molality formulation.
Definition at line 209 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::m_xmolSolventMIN.
|
inherited |
Calculates the molality of all species and stores the result internally.
We calculate the vector of molalities of the species in the phase and store the result internally:
\[ m_i = \frac{X_i}{1000 * M_o * X_{o,p}} \]
where
Definition at line 229 of file MolalityVPSSTP.cpp.
References DATA_PTR, Phase::getMoleFractions(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and MolalityVPSSTP::m_xmolSolventMIN.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), IdealMolalSoln::getActivities(), IdealMolalSoln::getChemPotentials(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getPartialMolarEntropies(), HMWSoln::printCoeffs(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), MolalityVPSSTP::setMolalities(), and MolalityVPSSTP::setMolalitiesByName().
|
inherited |
This function will return the molalities of the species.
We calculate the vector of molalities of the species in the phase
\[ m_i = \frac{X_i}{1000 * M_o * X_{o,p}} \]
where
molal | Output vector of molalities. Length: m_kk. |
Definition at line 257 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::calcMolalities(), Phase::m_kk, and MolalityVPSSTP::m_molalities.
Referenced by MolalityVPSSTP::report(), vcs_MultiPhaseEquil::reportCSV(), and MolalityVPSSTP::reportCSV().
|
inherited |
Set the molalities of the solutes in a phase.
Note, the entry for the solvent is not used. We are supplied with the molalities of all of the solute species. We then calculate the mole fractions of all species and update the ThermoPhase object.
\[ m_i = \frac{X_i}{M_o/1000 * X_{o,p}} \]
where
The formulas for calculating mole fractions are
\[ L^{sum} = \frac{1}{\tilde{M}_o X_o} = \frac{1}{\tilde{M}_o} + \sum_{i\ne o} m_i \]
Then,
\[ X_o = \frac{1}{\tilde{M}_o L^{sum}} \]
\[ X_i = \frac{m_i}{L^{sum}} \]
It is currently an error if the solvent mole fraction is attempted to be set to a value lower than \(X_o^{min}\).
molal | Input vector of molalities. Length: m_kk. |
Definition at line 280 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::calcMolalities(), DATA_PTR, MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and Phase::setMoleFractions().
Referenced by MolalityVPSSTP::setState_TPM().
|
inherited |
Set the molalities of a phase.
Set the molalities of the solutes in a phase. Note, the entry for the solvent is not used.
xMap | Composition Map containing the molalities. |
Definition at line 318 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::calcMolalities(), Phase::charge(), DATA_PTR, Phase::getMoleFractions(), MolalityVPSSTP::m_indexSolvent, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_xmolSolventMIN, ckr::max(), Cantera::npos, Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().
Referenced by MolalityVPSSTP::setMolalitiesByName(), MolalityVPSSTP::setState_TPM(), and MolalityVPSSTP::setStateFromXML().
|
inherited |
Set the molalities of a phase.
Set the molalities of the solutes in a phase. Note, the entry for the solvent is not used.
name | String containing the information for a composition map. |
Definition at line 405 of file MolalityVPSSTP.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), MolalityVPSSTP::setMolalitiesByName(), and Phase::speciesName().
|
virtualinherited |
This method returns the activity convention.
Currently, there are two activity conventions Molar-based activities Unit activity of species at either a hypothetical pure solution of the species or at a hypothetical pure ideal solution at infinite dilution cAC_CONVENTION_MOLAR 0
Molality based activities (unit activity of solutes at a hypothetical 1 molal solution referenced to infinite dilution at all pressures and temperatures). cAC_CONVENTION_MOLALITY 1
We set the convention to molality here.
Reimplemented from ThermoPhase.
Definition at line 444 of file MolalityVPSSTP.cpp.
References Cantera::cAC_CONVENTION_MOLALITY.
|
virtualinherited |
Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
These are mole-fraction based activity coefficients. In this object, their calculation is based on translating the values of the molality-based activity coefficients. See Denbigh p. 278 for a thorough discussion.
The molar-based activity coefficients \( \gamma_k \) may be calculated from the molality-based activity coefficients, \( \gamma_k^\triangle \) by the following formula.
\[ \gamma_k = \frac{\gamma_k^\triangle}{X_o} \]
For purposes of establishing a convention, the molar activity coefficient of the solvent is set equal to the molality-based activity coefficient of the solvent:
\[ \gamma_o = \gamma_o^\triangle \]
Derived classes don't need to overload this function. This function is handled at this level.
ac | Output vector containing the mole-fraction based activity coefficients. length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 484 of file MolalityVPSSTP.cpp.
References AssertThrow, MolalityVPSSTP::getMolalityActivityCoefficients(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_xmolSolventMIN, and Phase::moleFraction().
|
virtualinherited |
Calculate the osmotic coefficient.
\[ \phi = \frac{- ln(a_o)}{\tilde{M}_o \sum_{i \ne o} m_i} \]
Note there are a few of definitions of the osmotic coefficient floating around. We use the one defined in (Activity Coefficients in Electrolyte Solutions, K. S. Pitzer CRC Press, Boca Raton, 1991, p. 85, Eqn. 28). This definition is most clearly related to theoretical calculation.
units = dimensionless
Definition at line 529 of file MolalityVPSSTP.cpp.
References DATA_PTR, MolalityVPSSTP::getActivities(), MolalityVPSSTP::m_indexSolvent, Phase::m_kk, MolalityVPSSTP::m_Mnaught, MolalityVPSSTP::m_molalities, and ckr::max().
|
inherited |
Get the species electrochemical potentials.
These are partial molar quantities. This method adds a term \( Fz_k \phi_k \) to the to each chemical potential.
Units: J/kmol
mu | output vector containing the species electrochemical potentials. Length: m_kk. |
Definition at line 552 of file MolalityVPSSTP.cpp.
References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.
|
virtualinherited |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model.
The MolalityVPSSTP object defines a new method for setting the concentrations of a phase. The new method is defined by a block called "soluteMolalities". If this block is found, the concentrations within that phase are set to the "name":"molalities pairs found within that XML block. The solvent concentration is then set to everything else.
The function first calls the overloaded function , VPStandardStateTP::setStateFromXML(), to pick up the parent class behavior.
usage: Overloaded functions should call this function before carrying out their own behavior.
state | An XML_Node object corresponding to the "state" entry for this phase in the input file. |
Reimplemented from ThermoPhase.
Definition at line 628 of file MolalityVPSSTP.cpp.
References ctml::getChildValue(), ctml::getFloat(), XML_Node::hasChild(), MolalityVPSSTP::setMolalitiesByName(), VPStandardStateTP::setPressure(), and ThermoPhase::setStateFromXML().
Referenced by IdealMolalSoln::initThermoXML(), and DebyeHuckel::initThermoXML().
|
inherited |
Set the temperature (K), pressure (Pa), and molalities (gmol kg-1) of the solutes.
t | Temperature (K) |
p | Pressure (Pa) |
molalities | Input vector of molalities of the solutes. Length: m_kk. |
Definition at line 645 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::setMolalities(), and VPStandardStateTP::setState_TP().
|
inherited |
Set the temperature (K), pressure (Pa), and molalities.
t | Temperature (K) |
p | Pressure (Pa) |
m | compositionMap containing the molalities |
Definition at line 655 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::setMolalitiesByName(), and VPStandardStateTP::setState_TP().
|
inherited |
Set the temperature (K), pressure (Pa), and molalities.
t | Temperature (K) |
p | Pressure (Pa) |
m | String which gets translated into a composition map for the molalities of the solutes. |
Definition at line 664 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::setMolalitiesByName(), and VPStandardStateTP::setState_TP().
|
inlinevirtualinherited |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.
units = 1 / kmol
dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.
\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]
ld | Number of rows in the matrix |
dlnActCoeffdlnN | Output vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk |
Reimplemented from ThermoPhase.
Definition at line 813 of file MolalityVPSSTP.h.
|
virtualinherited |
returns a summary of the state of the phase as a string
Format a summary of the mixture state for output.
show_thermo | If true, extra information is printed out about the thermodynamic state of the system. |
Reimplemented from ThermoPhase.
Definition at line 836 of file MolalityVPSSTP.cpp.
References ThermoPhase::cp_mass(), ThermoPhase::cp_mole(), ThermoPhase::cv_mass(), ThermoPhase::cv_mole(), Phase::density(), ThermoPhase::electricPotential(), ThermoPhase::enthalpy_mass(), ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mass(), ThermoPhase::entropy_mole(), MolalityVPSSTP::err(), MolalityVPSSTP::getActivities(), ThermoPhase::getChemPotentials(), MolalityVPSSTP::getMolalities(), MolalityVPSSTP::getMolalityActivityCoefficients(), Phase::getMoleFractions(), VPStandardStateTP::getStandardChemPotentials(), ThermoPhase::gibbs_mass(), ThermoPhase::gibbs_mole(), ThermoPhase::intEnergy_mass(), ThermoPhase::intEnergy_mole(), Phase::meanMolecularWeight(), Phase::name(), Cantera::npos, Phase::nSpecies(), VPStandardStateTP::pressure(), CanteraError::save(), Cantera::SmallNumber, Phase::speciesIndex(), Phase::speciesName(), and Phase::temperature().
|
virtualinherited |
returns a summary of the state of the phase to specified comma separated files
csvFile | ofstream file to print comma separated data for the phase |
Reimplemented from ThermoPhase.
Definition at line 958 of file MolalityVPSSTP.cpp.
References ThermoPhase::cp_mass(), ThermoPhase::cp_mole(), ThermoPhase::cv_mass(), ThermoPhase::cv_mole(), Phase::density(), ThermoPhase::electricPotential(), ThermoPhase::enthalpy_mass(), ThermoPhase::enthalpy_mole(), ThermoPhase::entropy_mass(), ThermoPhase::entropy_mole(), MolalityVPSSTP::err(), MolalityVPSSTP::getActivities(), ThermoPhase::getChemPotentials(), MolalityVPSSTP::getMolalities(), MolalityVPSSTP::getMolalityActivityCoefficients(), Phase::getMoleFractions(), ThermoPhase::getPartialMolarCp(), ThermoPhase::getPartialMolarEnthalpies(), ThermoPhase::getPartialMolarEntropies(), ThermoPhase::getPartialMolarIntEnergies(), ThermoPhase::getPartialMolarVolumes(), VPStandardStateTP::getStandardChemPotentials(), ThermoPhase::gibbs_mass(), ThermoPhase::gibbs_mole(), ThermoPhase::intEnergy_mass(), ThermoPhase::intEnergy_mole(), Phase::meanMolecularWeight(), Phase::name(), Cantera::npos, Phase::nSpecies(), VPStandardStateTP::pressure(), CanteraError::save(), Cantera::SmallNumber, Phase::speciesIndex(), Phase::speciesName(), and Phase::temperature().
|
protectedvirtualinherited |
Get the array of unscaled non-dimensional molality based activity coefficients at the current solution temperature, pressure, and solution concentration.
See Denbigh p. 278 for a thorough discussion. This class must be overwritten in classes which derive from MolalityVPSSTP. This function takes over from the molar-based activity coefficient calculation, getActivityCoefficients(), in derived classes.
acMolality | Output vector containing the molality based activity coefficients. length: m_kk. |
Reimplemented in HMWSoln.
Definition at line 711 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::err().
Referenced by MolalityVPSSTP::getMolalityActivityCoefficients().
|
protectedvirtualinherited |
Apply the current phScale to a set of activity Coefficients or activities.
See the Eq3/6 Manual for a thorough discussion.
acMolality | input/Output vector containing the molality based activity coefficients. length: m_kk. |
Reimplemented in HMWSoln.
Definition at line 723 of file MolalityVPSSTP.cpp.
References MolalityVPSSTP::err().
Referenced by MolalityVPSSTP::getMolalityActivityCoefficients().
|
virtualinherited |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
Currently, there are two standard state conventions:
Reimplemented from ThermoPhase.
Definition at line 163 of file VPStandardStateTP.cpp.
References Cantera::cSS_CONVENTION_VPSS.
|
inlinevirtualinherited |
Get the array of log concentration-like derivatives of the log activity coefficients.
This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that concentration-like variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnN_diag | Output vector of derivatives of the log Activity Coefficients. length = m_kk |
Reimplemented from ThermoPhase.
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 140 of file VPStandardStateTP.h.
References VPStandardStateTP::err().
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag().
|
virtualinherited |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.
\( \mu_k / \hat R T \). Units: unitless
We close the loop on this function, here, calling getChemPotentials() and then dividing by RT. No need for child classes to handle.
mu | Output vector of non-dimensional species chemical potentials Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 194 of file VPStandardStateTP.cpp.
References ThermoPhase::_RT(), ThermoPhase::getChemPotentials(), and Phase::m_kk.
|
virtualinherited |
Get the array of chemical potentials at unit activity.
These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure.
mu | Output vector of standard state chemical potentials. length = m_kk. units are J / kmol. |
Reimplemented from ThermoPhase.
Definition at line 206 of file VPStandardStateTP.cpp.
References ThermoPhase::_RT(), VPStandardStateTP::getGibbs_RT(), and Phase::m_kk.
Referenced by MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealMolalSoln::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), MolalityVPSSTP::report(), and MolalityVPSSTP::reportCSV().
|
inlinevirtualinherited |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
hrt | Output vector of standard state enthalpies. length = m_kk. units are unitless. |
Reimplemented from ThermoPhase.
Definition at line 216 of file VPStandardStateTP.cpp.
References VPSSMgr::getEnthalpy_RT(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
Referenced by IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), and HMWSoln::relative_enthalpy().
|
virtualinherited |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
sr | Output vector of nondimensional standard state entropies. length = m_kk. |
Reimplemented from ThermoPhase.
Definition at line 239 of file VPStandardStateTP.cpp.
References VPSSMgr::getEntropy_R(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
Referenced by IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), and HMWSoln::getPartialMolarEntropies().
|
inlinevirtualinherited |
Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution.
grt | Output vector of nondimensional standard state Gibbs free energies. length = m_kk. |
Reimplemented from ThermoPhase.
Definition at line 246 of file VPStandardStateTP.cpp.
References VPSSMgr::getGibbs_RT(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
Referenced by VPStandardStateTP::getStandardChemPotentials().
|
inlinevirtualinherited |
Get the standard state Gibbs functions for each species at the current T and P.
(Note resolved at this level)
gpure | Output vector of standard state Gibbs free energies. length = m_kk. units are J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 253 of file VPStandardStateTP.cpp.
References VPSSMgr::getStandardChemPotentials(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species.
\[ u^{ss}_k(T,P) = h^{ss}_k(T) - P * V^{ss}_k \]
urt | Output vector of nondimensional standard state internal energies. length = m_kk. |
Reimplemented from ThermoPhase.
Definition at line 259 of file VPStandardStateTP.cpp.
References VPSSMgr::getIntEnergy_RT(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
Referenced by IdealSolnGasVPSS::getPartialMolarIntEnergies().
|
virtualinherited |
Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P.
This is redefined here to call the internal function, _updateStandardStateThermo(), which calculates all standard state properties at the same time.
cpr | Output vector containing the the nondimensional Heat Capacities at constant pressure for the standard state of the species. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 265 of file VPStandardStateTP.cpp.
References VPSSMgr::getCp_R(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
Referenced by IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), and HMWSoln::getPartialMolarCp().
|
virtualinherited |
Get the molar volumes of each species in their standard states at the current T and P of the solution.
units = m^3 / kmol
This is redefined here to call the internal function, _updateStandardStateThermo(), which calculates all standard state properties at the same time.
vol | Output vector of species volumes. length = m_kk. units = m^3 / kmol |
Reimplemented from ThermoPhase.
Definition at line 271 of file VPStandardStateTP.cpp.
References VPSSMgr::getStandardVolumes(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
Referenced by IdealSolnGasVPSS::getPartialMolarVolumes(), MolarityIonicVPSSTP::getPartialMolarVolumes(), GibbsExcessVPSSTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealMolalSoln::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), and HMWSoln::standardConcentration().
|
protectedvirtualinherited |
Updates the standard state thermodynamic functions at the current T and P of the solution.
If m_useTmpStandardStateStorage is true, this function must be called for every call to functions in this class.
This function is responsible for updating the following internal members, when m_useTmpStandardStateStorage is true.
This function doesn't check to see if the temperature or pressure has changed. It automatically assumes that it has changed. If m_useTmpStandardStateStorage is not true, this function may be required to be called by child classes to update internal member data..
Definition at line 517 of file VPStandardStateTP.cpp.
References AssertThrowMsg, VPStandardStateTP::m_Pcurrent, VPStandardStateTP::m_Plast_ss, VPStandardStateTP::m_Tlast_ss, VPStandardStateTP::m_VPSS_ptr, VPSSMgr::setState_TP(), and Phase::temperature().
Referenced by IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), DebyeHuckel::getMolalityActivityCoefficients(), DebyeHuckel::setState_TP(), and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Updates the standard state thermodynamic functions at the current T and P of the solution.
If m_useTmpStandardStateStorage is true, this function must be called for every call to functions in this class. It checks to see whether the temperature or pressure has changed and thus the ss thermodynamics functions for all of the species must be recalculated.
This function is responsible for updating the following internal members, when m_useTmpStandardStateStorage is true.
If m_useTmpStandardStateStorage is not true, this function may be required to be called by child classes to update internal member data.
Definition at line 527 of file VPStandardStateTP.cpp.
References VPStandardStateTP::_updateStandardStateThermo(), VPStandardStateTP::m_Pcurrent, VPStandardStateTP::m_Plast_ss, VPStandardStateTP::m_Tlast_ss, and Phase::temperature().
Referenced by IdealSolnGasVPSS::cp_mole(), IdealSolnGasVPSS::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), HMWSoln::getActivities(), VPStandardStateTP::getCp_R(), VPStandardStateTP::getCp_R_ref(), VPStandardStateTP::getEnthalpy_RT(), VPStandardStateTP::getEnthalpy_RT_ref(), VPStandardStateTP::getEntropy_R(), VPStandardStateTP::getEntropy_R_ref(), VPStandardStateTP::getGibbs_ref(), VPStandardStateTP::getGibbs_RT(), VPStandardStateTP::getGibbs_RT_ref(), VPStandardStateTP::getIntEnergy_RT(), VPStandardStateTP::getPureGibbs(), VPStandardStateTP::getStandardVolumes(), VPStandardStateTP::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), IdealSolnGasVPSS::setPressure(), VPStandardStateTP::setPressure(), VPStandardStateTP::setState_TP(), IdealMolalSoln::setState_TP(), GibbsExcessVPSSTP::setState_TP(), HMWSoln::setState_TP(), VPStandardStateTP::setTemperature(), IdealSolnGasVPSS::setToEquilState(), MolalityVPSSTP::setToEquilState(), and HMWSoln::setToEquilState().
|
virtualinherited |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
There are also temporary variables for holding the species reference-state values of Cp, H, S, and V at the last temperature and reference pressure called. These functions are not recalculated if a new call is made using the previous temperature. All calculations are done within the routine _updateRefStateThermo().
hrt | Output vector contains the nondimensional enthalpies of the reference state of the species length = m_kk, units = dimensionless. |
Reimplemented from ThermoPhase.
Definition at line 286 of file VPStandardStateTP.cpp.
References VPSSMgr::getEnthalpy_RT_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector contains the nondimensional Gibbs free energies of the reference state of the species length = m_kk, units = dimensionless. |
Reimplemented from ThermoPhase.
Definition at line 297 of file VPStandardStateTP.cpp.
References VPSSMgr::getGibbs_RT_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. units = J/kmol
g | Output vector contain the Gibbs free energies of the reference state of the species length = m_kk, units = J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 312 of file VPStandardStateTP.cpp.
References VPSSMgr::getGibbs_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for the species.
er | Output vector contain the nondimensional entropies of the species in their reference states length: m_kk, units: dimensionless. |
Reimplemented from ThermoPhase.
Definition at line 329 of file VPStandardStateTP.cpp.
References VPSSMgr::getEntropy_R_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for the species.
cprt | Output vector contains the nondimensional heat capacities of the species in their reference states length: m_kk, units: dimensionless. |
Reimplemented from ThermoPhase.
Definition at line 341 of file VPStandardStateTP.cpp.
References VPSSMgr::getCp_R_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
virtualinherited |
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 353 of file VPStandardStateTP.cpp.
References VPSSMgr::getStandardVolumes_ref(), VPStandardStateTP::m_VPSS_ptr, and VPStandardStateTP::updateStandardStateThermo().
|
inherited |
set the VPSS Mgr
vp_ptr | Pointer to the manager |
Definition at line 376 of file VPStandardStateTP.cpp.
References VPStandardStateTP::m_VPSS_ptr.
Referenced by Cantera::importPhase().
|
inherited |
Return a pointer to the VPSSMgr for this phase.
Definition at line 498 of file VPStandardStateTP.cpp.
References VPStandardStateTP::m_VPSS_ptr.
Referenced by PDSS::initThermo(), and PDSS::PDSS().
|
inlinevirtualinherited |
Returns the reference pressure in Pa.
This function is a wrapper that calls the species thermo refPressure function.
Reimplemented in LatticeSolidPhase.
Definition at line 164 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::refPressure().
Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), RedlichKwongMFTP::getChemPotentials(), RedlichKwongMFTP::getPartialMolarEntropies(), MixtureFugacityTP::getStandardVolumes_ref(), ChemEquil::initialize(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), and RedlichKwongMFTP::setToEquilState().
|
inlinevirtualinherited |
Minimum temperature for which the thermodynamic data for the species or phase are valid.
If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.
k | index of the species. Default is -1, which will return the max of the min value over all species. |
Reimplemented in LatticeSolidPhase.
Definition at line 181 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().
Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | species index |
Definition at line 221 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | Species k |
Hf298New | Specify the new value of the Heat of Formation at 298K and 1 bar |
Definition at line 233 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Maximum temperature for which the thermodynamic data for the species are valid.
If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.
k | index of the species. Default is -1, which will return the min of the max value over all species. |
Reimplemented in LatticeSolidPhase.
Definition at line 250 of file ThermoPhase.h.
References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().
Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Returns the chargeNeutralityNecessity boolean.
Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.
Definition at line 261 of file ThermoPhase.h.
References ThermoPhase::m_chargeNeutralityNecessary.
|
inlinevirtualinherited |
|
inlineinherited |
Set the electric potential of this phase (V).
This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.
Each phase may have its own electric potential.
v | Input value of the electric potential in Volts |
Definition at line 390 of file ThermoPhase.h.
References ThermoPhase::m_phi.
Referenced by InterfaceKinetics::setElectricPotential(), vcs_VolPhase::setElectricPotential(), and vcs_VolPhase::setState_TP().
|
inlineinherited |
Returns the electric potential of this phase (V).
Units are Volts (which are Joules/coulomb)
Definition at line 398 of file ThermoPhase.h.
References ThermoPhase::m_phi.
Referenced by InterfaceKinetics::_update_rates_phi(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), and vcs_VolPhase::setPtrThermoPhase().
|
virtualinherited |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
lnac | Output vector of ln activity coefficients. Length: m_kk. |
Reimplemented in MargulesVPSSTP, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.
Definition at line 166 of file ThermoPhase.cpp.
References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.
Referenced by GibbsExcessVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
inlinevirtualinherited |
Return an array of partial molar internal energies for the species in the mixture.
Units: J/kmol.
ubar | Output vector of species partial molar internal energies. Length = m_kk. units are J/kmol. |
Reimplemented in IdealGasPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, and PureFluidPhase.
Definition at line 650 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlinevirtualinherited |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.
Units: m^3/kmol.
The derivative is at constant pressure
d_vbar_dT | Output vector of derivatives of species partial molar volumes wrt T. Length = m_kk. units are m^3/kmol/K. |
Definition at line 683 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.
Units: m^3/kmol.
The derivative is at constant temperature
d_vbar_dP | Output vector of derivatives of species partial molar volumes wrt P. Length = m_kk. units are m^3/kmol/Pa. |
Definition at line 695 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.
The derivative is at constant pressure units = m^3 / kmol / K
d_vol_dT | Output vector containing derivatives of standard state volumes wrt T Length: m_kk. |
Definition at line 800 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.
The derivative is at constant temperature. units = m^3 / kmol / Pa
d_vol_dP | Output vector containing the derivative of standard state volumes wrt P. Length: m_kk. |
Definition at line 813 of file ThermoPhase.h.
References ThermoPhase::err().
|
inlinevirtualinherited |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
urt | Output vector of nondimensional reference state internal energies of the species. Length: m_kk |
Reimplemented in IdealSolidSolnPhase, IdealGasPhase, FixedChemPotSSTP, MetalSHEelectrons, MineralEQ3, and StoichSubstanceSSTP.
Definition at line 879 of file ThermoPhase.h.
References ThermoPhase::err().
|
virtualinherited |
Sets the reference composition.
x | Mole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector. |
Definition at line 992 of file ThermoPhase.cpp.
References DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.
Referenced by ThermoPhase::initThermoXML().
|
virtualinherited |
Gets the reference composition.
The reference mole fraction is a safe mole fraction.
x | Mole fraction vector containing the reference composition. |
Definition at line 1013 of file ThermoPhase.cpp.
References Phase::m_kk, and ThermoPhase::xMol_Ref.
|
inlineinherited |
Specific enthalpy.
Units: J/kg.
Definition at line 937 of file ThermoPhase.h.
References ThermoPhase::enthalpy_mole(), and Phase::meanMolecularWeight().
Referenced by ConstPressureReactor::initialize(), Reactor::initialize(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), ReactorBase::setThermoMgr(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inlineinherited |
Specific internal energy.
Units: J/kg.
Definition at line 944 of file ThermoPhase.h.
References ThermoPhase::intEnergy_mole(), and Phase::meanMolecularWeight().
Referenced by ConstPressureReactor::initialize(), Reactor::initialize(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_UV(), ReactorBase::setThermoMgr(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inlineinherited |
Specific entropy.
Units: J/kg/K.
Definition at line 951 of file ThermoPhase.h.
References ThermoPhase::entropy_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), and SingleSpeciesTP::setState_SV().
|
inlineinherited |
Specific Gibbs function.
Units: J/kg.
Definition at line 958 of file ThermoPhase.h.
References ThermoPhase::gibbs_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inlineinherited |
Specific heat at constant pressure.
Units: J/kg/K.
Definition at line 965 of file ThermoPhase.h.
References ThermoPhase::cp_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), and StFlow::updateThermo().
|
inlineinherited |
Specific heat at constant volume.
Units: J/kg/K.
Definition at line 972 of file ThermoPhase.h.
References ThermoPhase::cv_mole(), and Phase::meanMolecularWeight().
Referenced by PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), and SingleSpeciesTP::setState_UV().
|
inlineinherited |
Return the Gas Constant multiplied by the current temperature.
The units are Joules kmol-1
Definition at line 981 of file ThermoPhase.h.
References Cantera::GasConstant, and Phase::temperature().
Referenced by MixtureFugacityTP::corr0(), RedlichKwongMFTP::enthalpy_mole(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), PureFluidPhase::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT_ref(), WaterSSTP::getGibbs_ref(), MixtureFugacityTP::getGibbs_ref(), IdealGasPhase::getGibbs_ref(), PureFluidPhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealMolalSoln::getPartialMolarEnthalpies(), ConstDensityThermo::getPureGibbs(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), LatticePhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), and MixtureFugacityTP::z().
|
virtualinherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | Vector of mole fractions. Length is equal to m_kk. |
Reimplemented in SingleSpeciesTP, and MixtureFugacityTP.
Definition at line 174 of file ThermoPhase.cpp.
References Phase::setMoleFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().
Referenced by MultiTransport::getMassFluxes(), DustyGasTransport::getMolarFluxes(), MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().
|
inherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | Composition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction |
Definition at line 181 of file ThermoPhase.cpp.
References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the temperature (K), pressure (Pa), and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
x | String containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction |
Definition at line 188 of file ThermoPhase.cpp.
References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | Vector of mass fractions. Length is equal to m_kk. |
Definition at line 206 of file ThermoPhase.cpp.
References Phase::setMassFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | Composition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction |
Definition at line 214 of file ThermoPhase.cpp.
References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
y | String containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction |
Definition at line 222 of file ThermoPhase.cpp.
References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().
|
inherited |
Set the pressure (Pa) and mole fractions.
Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
p | Pressure (Pa) |
x | Vector of mole fractions. Length is equal to m_kk. |
Definition at line 249 of file ThermoPhase.cpp.
References Phase::setMoleFractions(), and ThermoPhase::setPressure().
Referenced by vcs_VolPhase::_updateMoleFractionDependencies(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().
|
inherited |
Set the internally stored pressure (Pa) and mass fractions.
Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.
p | Pressure (Pa) |
y | Vector of mass fractions. Length is equal to m_kk. |
Definition at line 256 of file ThermoPhase.cpp.
References Phase::setMassFractions(), and ThermoPhase::setPressure().
|
virtualinherited |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
h | Specific enthalpy (J/kg) |
p | Pressure (Pa) |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 263 of file ThermoPhase.cpp.
References ThermoPhase::setState_HPorUV().
Referenced by FlowReactor::updateState(), and ConstPressureReactor::updateState().
|
virtualinherited |
Set the specific internal energy (J/kg) and specific volume (m^3/kg).
This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.
u | specific internal energy (J/kg) |
v | specific volume (m^3/kg). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 270 of file ThermoPhase.cpp.
References ThermoPhase::setState_HPorUV().
Referenced by Reactor::updateState().
|
virtualinherited |
Set the specific entropy (J/kg/K) and pressure (Pa).
This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.
s | specific entropy (J/kg/K) |
p | specific pressure (Pa). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 546 of file ThermoPhase.cpp.
References ThermoPhase::setState_SPorSV().
|
virtualinherited |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.
s | specific entropy (J/kg/K) |
v | specific volume (m^3/kg). |
tol | Optional parameter setting the tolerance of the calculation. Defaults to 1.0E-4 |
Reimplemented in SingleSpeciesTP, and PureFluidPhase.
Definition at line 553 of file ThermoPhase.cpp.
References ThermoPhase::setState_SPorSV().
|
inherited |
Stores the element potentials in the ThermoPhase object.
Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are stored in their dimensionless forms, calculated by dividing by RT.
lambda | Input vector containing the element potentials. Length = nElements. Units are Joules/kmol. |
Definition at line 1106 of file ThermoPhase.cpp.
References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().
Referenced by Cantera::equilibrate(), ChemEquil::equilibrate(), and Cantera::vcs_equilibrate().
|
inherited |
Returns the element potentials stored in the ThermoPhase object.
Returns the stored element potentials. The element potentials are retrieved from their stored dimensionless forms by multiplying by RT.
lambda | Output vector containing the element potentials. Length = nElements. Units are Joules/kmol. |
Definition at line 1129 of file ThermoPhase.cpp.
References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().
Referenced by ChemEquil::equilibrate().
|
inlinevirtualinherited |
Critical temperature (K).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1236 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::calculatePsat(), MixtureFugacityTP::densityCalc(), MixtureFugacityTP::phaseState(), and MixtureFugacityTP::psatEst().
|
inlinevirtualinherited |
Critical pressure (Pa).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1242 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::calculatePsat(), and MixtureFugacityTP::psatEst().
|
inlinevirtualinherited |
Critical density (kg/m3).
Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.
Definition at line 1248 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by MixtureFugacityTP::densityCalc(), and MixtureFugacityTP::phaseState().
|
inherited |
Store a reference pointer to the XML tree containing the species data for this phase.
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.
This is used to access data needed to construct transport manager later.
k | Species index |
data | Pointer to the XML_Node data containing information about the species in the phase. |
Definition at line 1050 of file ThermoPhase.cpp.
References ThermoPhase::m_speciesData.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Return a pointer to the vector of XML nodes containing the species data for this phase.
Definition at line 1060 of file ThermoPhase.cpp.
References Phase::m_kk, and ThermoPhase::m_speciesData.
Referenced by MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::initTransport(), LatticeSolidPhase::installSlavePhases(), and TransportFactory::setupLiquidTransport().
|
inherited |
Install a species thermodynamic property manager.
The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.
spthermo | input pointer to the species thermodynamic property manager. |
Definition at line 886 of file ThermoPhase.cpp.
References ThermoPhase::m_spthermo.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), and VPSSMgrFactory::newVPSSMgr().
|
virtualinherited |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
k | Speices id. The default is -1, meaning return the default |
Reimplemented in LatticeSolidPhase.
Definition at line 904 of file ThermoPhase.cpp.
References ThermoPhase::m_spthermo.
Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().
|
virtualinherited |
Initialization of a ThermoPhase object using an ctml file.
This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.
inputFile | XML file containing the description of the phase |
id | Optional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used. |
Definition at line 928 of file ThermoPhase.cpp.
References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().
|
virtualinherited |
Add in species from Slave phases.
This hook is used for cSS_CONVENTION_SLAVE phases
phaseNode | XML Element for the phase |
Reimplemented in LatticeSolidPhase.
Definition at line 1045 of file ThermoPhase.cpp.
Referenced by Cantera::importPhase().
|
inlinevirtualinherited |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
dTds | Input of temperature change along the path |
dXds | Input vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one. |
dlnActCoeffds | Output vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m. |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 1511 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().
|
inlinevirtualinherited |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnX_diag | Output vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk |
Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.
Definition at line 1533 of file ThermoPhase.h.
References ThermoPhase::err().
Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().
|
inherited |
Returns a reference to the XML_Node stored for the phase.
The XML_Node for the phase contains all of the input data used to set up the model for the phase, during its initialization.
Definition at line 125 of file Phase.cpp.
References Phase::m_xml.
Referenced by MolarityIonicVPSSTP::constructPhaseFile(), LatticePhase::constructPhaseFile(), RedlichKisterVPSSTP::constructPhaseFile(), MargulesVPSSTP::constructPhaseFile(), MixedSolventElectrolyte::constructPhaseFile(), WaterSSTP::constructPhaseFile(), PhaseCombo_Interaction::constructPhaseFile(), IonsFromNeutralVPSSTP::constructPhaseFile(), IdealMolalSoln::constructPhaseFile(), IdealSolidSolnPhase::constructPhaseFile(), DebyeHuckel::constructPhaseFile(), Cantera::importPhase(), SimpleTransport::initLiquid(), ThermoPhase::initThermoFile(), TransportFactory::newTransport(), and TransportFactory::setupLiquidTransport().
|
inherited |
Return the string id for the phase.
Definition at line 130 of file Phase.cpp.
References Phase::m_id.
Referenced by Kinetics::assignShallowPointers(), Cantera::equilibrate(), Cantera::getEfficiencies(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesIndex(), MultiPhase::phaseIndex(), MultiPhase::phaseName(), solveProb::print_header(), RedlichKwongMFTP::RedlichKwongMFTP(), Phase::setID(), LatticeSolidPhase::setParametersFromXML(), vcs_VolPhase::transferElementsFM(), and Cantera::vcs_equilibrate().
|
inherited |
Set the string id for the phase.
id | String id of the phase |
Definition at line 135 of file Phase.cpp.
References Phase::id(), and Phase::m_id.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Return the name of the phase.
Definition at line 140 of file Phase.cpp.
References Phase::m_name.
Referenced by Cantera::operator<<(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().
|
inherited |
Sets the string name for the phase.
nm | String name of the phase |
Definition at line 145 of file Phase.cpp.
References Phase::m_name.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inherited |
Name of the element with index m.
m | Element index. |
Definition at line 169 of file Phase.cpp.
References Phase::checkElementIndex(), and Phase::m_elementNames.
Referenced by MultiPhase::addPhase(), Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), ChemEquil::equilibrate(), ChemEquil::equilResidual(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), ChemEquil::initialize(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), ChemEquil::setInitialMoles(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Return the index of element named 'name'.
The index is an integer assigned to each element in the order it was added. Returns npos if the specified element is not found.
name | Name of the element |
Definition at line 175 of file Phase.cpp.
References Phase::m_elementNames, Phase::m_mm, and Cantera::npos.
Referenced by Phase::addUniqueElementAfterFreeze(), MultiPhase::init(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().
|
inherited |
Return a read-only reference to the vector of element names.
Definition at line 185 of file Phase.cpp.
References Phase::m_elementNames.
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), and IonsFromNeutralVPSSTP::initThermoXML().
|
inherited |
Atomic weight of element m.
m | Element index |
Definition at line 190 of file Phase.cpp.
References Phase::m_atomicWeights.
Referenced by ChemEquil::initialize(), and WaterSSTP::initThermoXML().
|
inherited |
Entropy of the element in its standard state at 298 K and 1 bar.
m | Element index |
Definition at line 195 of file Phase.cpp.
References AssertThrowMsg, AssertTrace, ENTROPY298_UNKNOWN, Phase::m_entropy298, and Phase::m_mm.
Referenced by LatticeSolidPhase::installSlavePhases(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().
|
inherited |
Atomic number of element m.
m | Element index |
Definition at line 209 of file Phase.cpp.
References Phase::m_atomicNumbers.
Referenced by MultiPhase::addPhase(), and LatticeSolidPhase::installSlavePhases().
|
inherited |
Return the element constraint type Possible types include:
CT_ELEM_TYPE_TURNEDOFF -1 CT_ELEM_TYPE_ABSPOS 0 CT_ELEM_TYPE_ELECTRONCHARGE 1 CT_ELEM_TYPE_CHARGENEUTRALITY 2 CT_ELEM_TYPE_LATTICERATIO 3 CT_ELEM_TYPE_KINETICFROZEN 4 CT_ELEM_TYPE_SURFACECONSTRAINT 5 CT_ELEM_TYPE_OTHERCONSTRAINT 6
The default is CT_ELEM_TYPE_ABSPOS.
m | Element index |
Definition at line 214 of file Phase.cpp.
References Phase::m_elem_type.
Referenced by LatticeSolidPhase::installSlavePhases(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Change the element type of the mth constraint Reassigns an element type.
m | Element index |
elem_type | New elem type to be assigned |
Definition at line 219 of file Phase.cpp.
References Phase::m_elem_type.
|
inherited |
Return a read-only reference to the vector of atomic weights.
Definition at line 204 of file Phase.cpp.
References Phase::m_atomicWeights.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Number of elements.
Definition at line 150 of file Phase.cpp.
References Phase::m_mm.
Referenced by MultiPhase::addPhase(), Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), ChemEquil::equilibrate(), MolalityVPSSTP::findCLMIndex(), FixedChemPotSSTP::FixedChemPotSSTP(), ThermoPhase::getElementPotentials(), ChemEquil::initialize(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), LatticeSolidPhase::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), ThermoPhase::setElementPotentials(), vcs_VolPhase::setPtrThermoPhase(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.
Definition at line 155 of file Phase.cpp.
References Phase::m_mm.
Referenced by Phase::elementName(), and Phase::nAtoms().
|
inherited |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements().
Used before calls which take an array pointer.
Definition at line 162 of file Phase.cpp.
References Phase::m_mm.
|
inherited |
Number of atoms of element m
in species k
.
k | species index |
m | element index |
Definition at line 226 of file Phase.cpp.
References Phase::checkElementIndex(), Phase::checkSpeciesIndex(), Phase::m_mm, and Phase::m_speciesComp.
Referenced by Cantera::checkRxnElementBalance(), Cantera::convertDGFormation(), PDSS_HKFT::convertDGFormation(), MolalityVPSSTP::findCLMIndex(), MultiPhase::init(), ChemEquil::initialize(), IonsFromNeutralVPSSTP::initThermoXML(), IdealSolidSolnPhase::setToEquilState(), and vcs_VolPhase::transferElementsFM().
|
inherited |
Get a vector containing the atomic composition of species k.
k | species index |
atomArray | vector containing the atomic number in the species. Length: m_mm |
Definition at line 233 of file Phase.cpp.
References Phase::m_mm, and Phase::m_speciesComp.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Returns the index of a species named 'name' within the Phase object.
The first species in the phase will have an index 0, and the last one will have an index of nSpecies() - 1.
name | String name of the species. It may also be in the form phaseName:speciesName |
Definition at line 240 of file Phase.cpp.
References Phase::m_id, Phase::m_kk, Phase::m_name, Phase::m_speciesNames, Cantera::npos, and Cantera::parseSpeciesName().
Referenced by PDSS_IonsFromNeutral::constructPDSSXML(), TransportFactory::getLiquidInteractionsTransportData(), TransportFactory::getLiquidSpeciesTransportData(), Cantera::getStick(), HMWSoln::HMWSoln(), Cantera::importSolution(), LiquidTranInteraction::init(), DebyeHuckel::initThermoXML(), FlowDevice::install(), Kinetics::kineticsSpeciesIndex(), MargulesVPSSTP::MargulesVPSSTP(), Phase::massFraction(), MixedSolventElectrolyte::MixedSolventElectrolyte(), Phase::moleFraction(), PhaseCombo_Interaction::PhaseCombo_Interaction(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), RedlichKisterVPSSTP::RedlichKisterVPSSTP(), MolalityVPSSTP::report(), MolalityVPSSTP::reportCSV(), and Kinetics::speciesPhase().
|
inherited |
Name of the species with index k.
k | index of the species |
Definition at line 257 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_speciesNames.
Referenced by StFlow::componentName(), ReactingSurf1D::componentName(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), TransportFactory::fitProperties(), AqueousTransport::getLiquidTransportData(), Phase::getMoleFractionsByName(), Cantera::importSolution(), MultiPhase::init(), ChemEquil::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), FlowDevice::install(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesName(), solveProb::print_header(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), StFlow::save(), SurfPhase::setCoveragesByName(), ChemEquil::setInitialMoles(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Inlet1D::showSolution(), ReactingSurf1D::showSolution(), Phase::speciesSPName(), and ChemEquil::update().
|
inherited |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
k | Species index within the phase |
Definition at line 282 of file Phase.cpp.
References Phase::m_name, and Phase::speciesName().
|
inherited |
Return a const reference to the vector of species names.
Definition at line 263 of file Phase.cpp.
References Phase::m_speciesNames.
Referenced by PDSS_ConstVol::constructPDSSFile(), PDSS_HKFT::constructPDSSFile(), PDSS_IonsFromNeutral::constructPDSSFile(), PDSS_SSVol::constructPDSSFile(), VPSSMgr_ConstVol::initThermoXML(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().
|
inlineinherited |
Returns the number of species in the phase.
Definition at line 252 of file Phase.h.
References Phase::m_kk.
Referenced by MultiPhase::addPhase(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::assignShallowPointers(), MultiPhase::calcElemAbundances(), Phase::chargeDensity(), MultiPhaseEquil::computeReactionSteps(), PDSS_IonsFromNeutral::constructPDSSXML(), RedlichKisterVPSSTP::cp_mole(), MargulesVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), PhaseCombo_Interaction::cp_mole(), SolidTransport::electricalConductivity(), RedlichKisterVPSSTP::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MargulesVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), ChemEquil::equilibrate(), vcs_MultiPhaseEquil::equilibrate_TP(), ChemEquil::estimateElementPotentials(), ThermoPhase::getActivities(), MetalPhase::getActivityConcentrations(), MetalPhase::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MetalPhase::getEnthalpy_RT(), MetalPhase::getEntropy_R(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MultiTransport::getMolarFluxes(), Phase::getMoleFractionsByName(), MultiPhase::getMoles(), MetalPhase::getStandardChemPotentials(), ImplicitSurfChem::ImplicitSurfChem(), Cantera::importSolution(), LiquidTranInteraction::init(), MultiPhase::init(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), GasTransport::initGas(), ChemEquil::initialize(), DustyGasTransport::initialize(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), VPSSMgr::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), LatticePhase::initThermo(), FlowDevice::install(), rxninfo::installReaction(), LatticeSolidPhase::installSlavePhases(), Kinetics::nTotalSpecies(), solveProb::print_header(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::restoreState(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), Phase::saveState(), Kinetics::selectPhase(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMoles(), SolidTransport::setParameters(), MultiPhase::setPhaseMoleFractions(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Transport::setThermo(), ReactorBase::setThermoMgr(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), Inlet1D::showSolution(), solveSP::solveSP(), StFlow::StFlow(), vcs_VolPhase::transferElementsFM(), AqueousKinetics::updateKc(), InterfaceKinetics::updateKc(), ConstPressureReactor::updateState(), Reactor::updateState(), and MultiPhase::uploadMoleFractionsFromPhases().
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
Definition at line 268 of file Phase.cpp.
References Phase::m_kk.
Referenced by Phase::concentration(), Phase::massFraction(), Phase::molecularWeight(), Phase::moleFraction(), Phase::nAtoms(), and Phase::speciesName().
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 275 of file Phase.cpp.
References Phase::m_kk.
|
inherited |
Save the current internal state of the phase Write to vector 'state' the current internal state.
state | output vector. Will be resized to nSpecies() + 2. |
Definition at line 288 of file Phase.cpp.
References Phase::nSpecies().
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), TransportFactory::newTransport(), ReactorBase::setThermoMgr(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
inherited |
Write to array 'state' the current internal state.
lenstate | length of the state array. Must be >= nSpecies()+2 |
state | output vector. Must be of length nSpecies() + 2 or greater. |
Definition at line 293 of file Phase.cpp.
References Phase::density(), Phase::getMassFractions(), and Phase::temperature().
|
inherited |
Restore a state saved on a previous call to saveState.
state | State vector containing the previously saved state. |
Definition at line 300 of file Phase.cpp.
Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiTransport::getMassFluxes(), FlowReactor::initialize(), ConstPressureReactor::initialize(), Reactor::initialize(), and TransportFactory::newTransport().
|
inherited |
Restore the state of the phase from a previously saved state vector.
lenstate | Length of the state vector |
state | Vector of state conditions. |
Definition at line 305 of file Phase.cpp.
References Phase::nSpecies(), Phase::setDensity(), Phase::setMassFractions_NoNorm(), and Phase::setTemperature().
|
inherited |
Set the species mole fractions by name.
@param xMap map from species names to mole fraction values.
Species not listed by name in xMap
are set to zero.
Definition at line 362 of file Phase.cpp.
References Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().
Referenced by Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().
|
inherited |
Set the mole fractions of a group of species by name.
Species which are not listed by name in the composition map are set to zero.
x | string x in the form of a composition map |
Definition at line 376 of file Phase.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Phase::speciesName().
|
inherited |
Set the species mass fractions by name.
@param yMap map from species names to mass fraction values.
Species not listed by name in yMap
are set to zero.
Definition at line 416 of file Phase.cpp.
References Phase::nSpecies(), Phase::setMassFractions(), and Phase::speciesName().
Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().
|
inherited |
Set the species mass fractions by name.
Species not listed by name in x
are set to zero.
x | String containing a composition map |
Definition at line 430 of file Phase.cpp.
References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Phase::speciesName().
|
inherited |
Set the internally stored temperature (K), density, and mole fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 441 of file Phase.cpp.
References Phase::setDensity(), Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mole fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
x | Composition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction. |
Definition at line 455 of file Phase.cpp.
References Phase::setDensity(), Phase::setMoleFractionsByName(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mass fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
y | vector of species mass fractions, length m_kk |
Definition at line 462 of file Phase.cpp.
References Phase::setDensity(), Phase::setMassFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), density, and mass fractions.
t | Temperature in kelvin |
dens | Density (kg/m^3) |
y | Composition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction. |
Definition at line 469 of file Phase.cpp.
References Phase::setDensity(), Phase::setMassFractionsByName(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
t | Temperature in kelvin |
n | molar density (kmol/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 448 of file Phase.cpp.
References Phase::setMolarDensity(), Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K) and density (kg/m^3)
t | Temperature in kelvin |
rho | Density (kg/m^3) |
Definition at line 476 of file Phase.cpp.
References Phase::setDensity(), and Phase::setTemperature().
Referenced by PureFluidPhase::setState_HP(), PureFluidPhase::setState_SP(), PureFluidPhase::setState_SV(), PDSS_IonsFromNeutral::setState_TR(), and PureFluidPhase::setState_UV().
|
inherited |
Set the internally stored temperature (K) and mole fractions.
t | Temperature in kelvin |
x | vector of species mole fractions, length m_kk |
Definition at line 482 of file Phase.cpp.
References Phase::setMoleFractions(), and Phase::setTemperature().
|
inherited |
Set the internally stored temperature (K) and mass fractions.
t | Temperature in kelvin |
y | vector of species mass fractions, length m_kk |
Definition at line 488 of file Phase.cpp.
References Phase::setMassFractions(), and Phase::setTemperature().
|
inherited |
Set the density (kg/m^3) and mole fractions.
rho | Density (kg/m^3) |
x | vector of species mole fractions, length m_kk |
Definition at line 494 of file Phase.cpp.
References Phase::setDensity(), and Phase::setMoleFractions().
|
inherited |
Set the density (kg/m^3) and mass fractions.
rho | Density (kg/m^3) |
y | vector of species mass fractions, length m_kk |
Definition at line 500 of file Phase.cpp.
References Phase::setDensity(), and Phase::setMassFractions().
|
inherited |
Molecular weight of species k
.
k | index of species k |
k
. Definition at line 506 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_molwts.
Referenced by VPSSMgr_Water_ConstVol::_updateRefStateThermo(), VPSSMgr_Water_HKFT::_updateRefStateThermo(), VPSSMgr_Water_ConstVol::_updateStandardStateThermo(), VPSSMgr_Water_HKFT::_updateStandardStateThermo(), SingleSpeciesTP::cv_mole(), SingleSpeciesTP::getPartialMolarVolumes(), SingleSpeciesTP::getStandardVolumes(), VPSSMgr_Water_ConstVol::getStandardVolumes_ref(), PDSS::initThermo(), VPSSMgr_Water_ConstVol::initThermoXML(), VPSSMgr_Water_HKFT::initThermoXML(), PDSS_ConstVol::initThermoXML(), MineralEQ3::initThermoXML(), PDSS_SSVol::initThermoXML(), Phase::molarMass(), MolalityVPSSTP::setSolvent(), HMWSoln::speciesMolarVolume(), and LiquidTransport::stefan_maxwell_solve().
|
inlineinherited |
Return the Molar mass of species k
Alternate name for molecular weight.
@param k index for species @return Return the molar mass of species k kg/kmol.
Definition at line 388 of file Phase.h.
References Phase::molecularWeight().
|
inherited |
Copy the vector of molecular weights into vector weights.
weights | Output vector of molecular weights (kg/kmol) |
Definition at line 512 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Copy the vector of molecular weights into array weights.
@param iwt Unused. @param weights Output array of molecular weights (kg/kmol)
Definition at line 521 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Copy the vector of molecular weights into array weights.
weights | Output array of molecular weights (kg/kmol) |
Definition at line 527 of file Phase.cpp.
References Phase::molecularWeights().
|
inherited |
Return a const reference to the internal vector of molecular weights.
units = kg / kmol
Definition at line 533 of file Phase.cpp.
References Phase::m_molwts.
Referenced by ReactingSurf1D::eval(), Phase::freezeSpecies(), Phase::getMolecularWeights(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), Cantera::getStick(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), and StFlow::StFlow().
|
inlineinherited |
This routine returns the size of species k.
k | index of the species |
Definition at line 413 of file Phase.h.
References Phase::m_speciesSize.
Referenced by MolarityIonicVPSSTP::constructPhaseXML(), RedlichKisterVPSSTP::constructPhaseXML(), MargulesVPSSTP::constructPhaseXML(), MixedSolventElectrolyte::constructPhaseXML(), PhaseCombo_Interaction::constructPhaseXML(), IonsFromNeutralVPSSTP::constructPhaseXML(), IdealMolalSoln::constructPhaseXML(), IdealSolidSolnPhase::constructPhaseXML(), DebyeHuckel::constructPhaseXML(), ReactingSurf1D::eval(), SurfPhase::getCoverages(), SurfPhase::initThermo(), IdealMolalSoln::initThermoXML(), LatticeSolidPhase::installSlavePhases(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), and SurfPhase::standardConcentration().
|
inherited |
Get the mole fractions by name.
[out] | x | composition map containing the species mole fractions. |
Definition at line 538 of file Phase.cpp.
References Phase::moleFraction(), Phase::nSpecies(), and Phase::speciesName().
|
inherited |
Return the mole fraction of a single species.
k | species index |
Definition at line 552 of file Phase.cpp.
References Phase::checkSpeciesIndex(), Phase::m_mmw, and Phase::m_ym.
Referenced by Phase::chargeDensity(), SolidTransport::electricalConductivity(), ChemEquil::equilibrate(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealMolalSoln::getMolalityActivityCoefficients(), Phase::getMoleFractionsByName(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), Phase::moleFraction(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and ChemEquil::setInitialMoles().
|
inherited |
Return the mole fraction of a single species.
name | String name of the species |
Definition at line 558 of file Phase.cpp.
References Phase::moleFraction(), Cantera::npos, and Phase::speciesIndex().
|
inherited |
Return the mass fraction of a single species.
k | species index |
Definition at line 573 of file Phase.cpp.
References Phase::checkSpeciesIndex(), and Phase::m_y.
|
inherited |
Return the mass fraction of a single species.
name | String name of the species |
Definition at line 579 of file Phase.cpp.
References Phase::massFractions(), Cantera::npos, and Phase::speciesIndex().
|
inherited |
Get the species mole fraction vector.
x | On return, x contains the mole fractions. Must have a length greater than or equal to the number of species. |
Definition at line 547 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::scale().
Referenced by IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::enthalpy_mole(), HMWSoln::enthalpy_mole(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GibbsExcessVPSSTP::getActivities(), LatticePhase::getActivityConcentrations(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), LTI_MoleFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), LatticeSolidPhase::getMoleFractions(), DustyGasTransport::initialize(), GibbsExcessVPSSTP::initThermo(), HMWSoln::printCoeffs(), HMWSoln::relative_molal_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), MixtureFugacityTP::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalitiesByName(), MixtureFugacityTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), MultiPhase::setMoles(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setReferenceComposition(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), AqueousTransport::stefan_maxwell_solve(), ChemEquil::update(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), solveSP::updateMFKinSpecies(), DustyGasTransport::updateTransport_C(), and MultiPhase::uploadMoleFractionsFromPhases().
|
virtualinherited |
Set the mole fractions to the specified values There is no restriction on the sum of the mole fraction vector.
Internally, the Phase object will normalize this vector before storing its contents.
x | Array of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species, m_kk. |
Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, IdealSolidSolnPhase, LatticeSolidPhase, and RedlichKwongMFTP.
Definition at line 317 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, ckr::max(), and Phase::stateMFChangeCalc().
Referenced by ChemEquil::calcEmoles(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), WaterSSTP::initThermoXML(), IonsFromNeutralVPSSTP::setConcentrations(), IonsFromNeutralVPSSTP::setMassFractions(), IonsFromNeutralVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), MolalityVPSSTP::setMolalitiesByName(), Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), LatticeSolidPhase::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions(), MixtureFugacityTP::setMoleFractions(), LatticePhase::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), IonsFromNeutralVPSSTP::setMoleFractions(), IdealSolidSolnPhase::setMoleFractions_NoNorm(), LatticePhase::setMoleFractions_NoNorm(), Phase::setMoleFractionsByName(), ThermoPhase::setState_PX(), Phase::setState_RX(), Phase::setState_TNX(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), and Phase::setState_TX().
|
virtualinherited |
Set the mole fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
x | Input vector of mole fractions. Length is m_kk. |
Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 350 of file Phase.cpp.
References Cantera::dot(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, and Phase::stateMFChangeCalc().
Referenced by MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), and IonsFromNeutralVPSSTP::setMoleFractions_NoNorm().
|
inherited |
Get the species mass fractions.
[out] | y | Array of mass fractions, length nSpecies() |
Definition at line 589 of file Phase.cpp.
References Phase::m_y.
Referenced by LTI_MassFracs::getMixTransProp(), Cantera::importSolution(), PureFluidPhase::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), ThermoPhase::reportCSV(), Phase::saveState(), Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), and LiquidTransport::update_C().
|
inlineinherited |
Return a const pointer to the mass fraction array.
Definition at line 469 of file Phase.h.
References Phase::m_y.
Referenced by MultiTransport::getMassFluxes(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), and Phase::massFraction().
|
virtualinherited |
Set the mass fractions to the specified values and normalize them.
@param[in] y Array of unnormalized mass fraction values. Length
must be greater than or equal to the number of species. The Ptate object will normalize this vector before storing its contents.
Reimplemented in IonsFromNeutralVPSSTP, LatticePhase, GibbsExcessVPSSTP, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 387 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, ckr::max(), Cantera::scale(), and Phase::stateMFChangeCalc().
Referenced by Cantera::importSolution(), IdealSolidSolnPhase::setMassFractions(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), LatticePhase::setMassFractions(), Phase::setMassFractionsByName(), ThermoPhase::setState_PY(), Phase::setState_RY(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), Phase::setState_TY(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().
|
virtualinherited |
Set the mass fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
y | Input vector of mass fractions. Length is m_kk. |
Reimplemented in IonsFromNeutralVPSSTP, LatticePhase, GibbsExcessVPSSTP, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 403 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Phase::stateMFChangeCalc().
Referenced by Phase::restoreState(), StFlow::setGas(), StFlow::setGasAtMidpoint(), IdealSolidSolnPhase::setMassFractions_NoNorm(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), and LatticePhase::setMassFractions_NoNorm().
|
inherited |
Get the species concentrations (kmol/m^3).
@param[out] c Array of species concentrations Length must be
greater than or equal to the number of species.
Definition at line 600 of file Phase.cpp.
References Phase::m_dens, Phase::m_ym, and Cantera::scale().
Referenced by ConstDensityThermo::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), SurfPhase::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), SurfPhase::getCoverages(), solveSP::solveSurfProb(), SimpleTransport::update_C(), and LiquidTransport::update_C().
|
inherited |
Concentration of species k.
If k is outside the valid range, an exception will be thrown.
k | Index of species |
Definition at line 594 of file Phase.cpp.
References Phase::checkSpeciesIndex(), Phase::m_dens, Phase::m_rmolwts, and Phase::m_y.
|
virtualinherited |
Set the concentrations to the specified values within the phase.
We set the concentrations here and therefore we set the overall density of the phase. We hold the temperature constant during this operation. Therefore, we have possibly changed the pressure of the phase by calling this routine.
[in] | conc | Array of concentrations in dimensional units. For bulk phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the numberof species in the phase. |
Reimplemented in IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, LatticePhase, MixtureFugacityTP, LatticeSolidPhase, IdealSolidSolnPhase, and RedlichKwongMFTP.
Definition at line 605 of file Phase.cpp.
References Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_y, Phase::m_ym, ckr::max(), Phase::setDensity(), and Phase::stateMFChangeCalc().
Referenced by IdealSolidSolnPhase::setConcentrations(), MixtureFugacityTP::setConcentrations(), LatticePhase::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoverages(), and SurfPhase::setCoveragesNoNorm().
|
inherited |
Returns a const pointer to the start of the moleFraction/MW array.
This array is the array of mole fractions, each divided by the mean molecular weight.
Definition at line 568 of file Phase.cpp.
References Phase::m_ym.
Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().
|
inherited |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
k | species index |
Definition at line 642 of file Phase.cpp.
References Phase::m_speciesCharge.
Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), HMWSoln::calcMolalitiesCropped(), Phase::chargeDensity(), PDSS_HKFT::constructPDSSXML(), SolidTransport::electricalConductivity(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), InterfaceKinetics::getEquilibriumConstants(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), PDSS_HKFT::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), DebyeHuckel::initThermoXML(), LatticeSolidPhase::installSlavePhases(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::transferElementsFM(), and InterfaceKinetics::updateKc().
|
inherited |
Charge density [C/m^3].
Definition at line 647 of file Phase.cpp.
References Phase::charge(), Phase::moleFraction(), and Phase::nSpecies().
|
inlineinherited |
Returns the number of spatial dimensions (1, 2, or 3)
Definition at line 523 of file Phase.h.
References Phase::m_ndim.
Referenced by Kinetics::addPhase(), EdgeKinetics::finalize(), InterfaceKinetics::finalize(), IdealSolnGasVPSS::getUnitsStandardConc(), RedlichKwongMFTP::getUnitsStandardConc(), IdealMolalSoln::getUnitsStandardConc(), MolalityVPSSTP::getUnitsStandardConc(), IdealSolidSolnPhase::getUnitsStandardConc(), ThermoPhase::getUnitsStandardConc(), DebyeHuckel::getUnitsStandardConc(), and HMWSoln::getUnitsStandardConc().
|
inlineinherited |
Set the number of spatial dimensions (1, 2, or 3).
The number of spatial dimensions is used for vector involving directions.
ndim | Input number of dimensions. |
Definition at line 530 of file Phase.h.
References Phase::m_ndim.
Referenced by EdgePhase::EdgePhase(), FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().
|
inlineinherited |
Temperature (K).
Definition at line 539 of file Phase.h.
References Phase::m_temp.
Referenced by ThermoPhase::_RT(), InterfaceKinetics::_update_rates_T(), MixtureFugacityTP::_updateReferenceStateThermo(), VPStandardStateTP::_updateStandardStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), LatticeSolidPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), DebyeHuckel::A_Debye_TP(), HMWSoln::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), IdealSolnGasVPSS::calcDensity(), MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::cv_mole(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), HMWSoln::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), FixedChemPotSSTP::FixedChemPotSSTP(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), StoichSubstance::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), PhaseCombo_Interaction::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), PureFluidPhase::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), PureFluidPhase::getEntropy_R_ref(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), StoichSubstance::getGibbs_ref(), PureFluidPhase::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), StoichSubstance::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), PureFluidPhase::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), LatticePhase::getPureGibbs(), LTPspecies_Arrhenius::getSpeciesTransProp(), LTPspecies_Poly::getSpeciesTransProp(), LTPspecies_ExpT::getSpeciesTransProp(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), ConstDensityThermo::gibbs_mole(), StoichSubstance::gibbs_mole(), RedlichKwongMFTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), ThermoPhase::gibbs_mole(), LatticePhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), RedlichKwongMFTP::hresid(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), RedlichKwongMFTP::pressureDerivatives(), HMWSoln::relative_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), ChemEquil::setInitialMoles(), PureFluidPhase::setPressure(), WaterSSTP::setPressure(), GibbsExcessVPSSTP::setPressure(), IdealMolalSoln::setPressure(), VPStandardStateTP::setPressure(), MixtureFugacityTP::setPressure(), IdealGasPhase::setPressure(), IonsFromNeutralVPSSTP::setPressure(), DebyeHuckel::setPressure(), HMWSoln::setPressure(), vcs_VolPhase::setPtrThermoPhase(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), PureFluidPhase::setTPXState(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), RedlichKwongMFTP::sresid(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), ChemEquil::update(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), RedlichKwongMFTP::updateAB(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), VPStandardStateTP::updateStandardStateThermo(), Reactor::updateState(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_T(), and WaterSSTP::vaporFraction().
|
inlinevirtualinherited |
Density (kg/m^3).
Reimplemented in HMWSoln.
Definition at line 545 of file Phase.h.
References Phase::m_dens.
Referenced by MixtureFugacityTP::calculatePsat(), SingleSpeciesTP::cv_mole(), HMWSoln::density(), WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), MultiTransport::getMassFluxes(), ConstDensityThermo::getParameters(), StoichSubstance::getParameters(), StoichSubstanceSSTP::getParameters(), MetalSHEelectrons::getParameters(), MineralEQ3::getParameters(), SingleSpeciesTP::getPartialMolarVolumes(), MultiTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), SingleSpeciesTP::getStandardVolumes(), WaterSSTP::getStandardVolumes_ref(), RedlichKwongMFTP::hresid(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), WaterSSTP::satPressure(), Phase::saveState(), IdealMolalSoln::setDensity(), IdealSolidSolnPhase::setDensity(), Phase::setDensity(), DebyeHuckel::setDensity(), WaterSSTP::setPressure(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), WaterSSTP::setTemperature(), PureFluidPhase::setTPXState(), RedlichKwongMFTP::sresid(), ChemEquil::update(), SimpleTransport::update_C(), LiquidTransport::update_C(), ConstPressureReactor::updateState(), StFlow::updateThermo(), WaterSSTP::vaporFraction(), and MixtureFugacityTP::z().
|
inherited |
Molar density (kmol/m^3).
Definition at line 627 of file Phase.cpp.
References Phase::density(), and Phase::meanMolecularWeight().
Referenced by solveSP::calc_t(), SolidTransport::electricalConductivity(), ConstDensityThermo::enthalpy_mole(), StoichSubstance::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), ConstDensityThermo::getChemPotentials(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), LatticePhase::getParameters(), PureFluidPhase::getPartialMolarVolumes(), StoichSubstance::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), StoichSubstance::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealSolnGasVPSS::intEnergy_mole(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), RedlichKwongMFTP::intEnergy_mole(), IonsFromNeutralVPSSTP::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), DebyeHuckel::intEnergy_mole(), HMWSoln::intEnergy_mole(), ConstDensityThermo::logStandardConc(), Phase::molarVolume(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), IdealMolalSoln::setMolarDensity(), DebyeHuckel::setMolarDensity(), and ConstDensityThermo::standardConcentration().
|
inherited |
Molar volume (m^3/kmol).
Definition at line 637 of file Phase.cpp.
References Phase::molarDensity().
Referenced by RedlichKwongMFTP::cp_mole(), HMWSoln::cv_mole(), RedlichKwongMFTP::getActivityCoefficients(), RedlichKwongMFTP::getChemPotentials(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarVolumes(), ThermoPhase::intEnergy_mole(), RedlichKwongMFTP::pressureDerivatives(), MixtureFugacityTP::setState_TR(), and LiquidTransport::stefan_maxwell_solve().
|
inherited |
Evaluate the mole-fraction-weighted mean of an array Q.
\[ \sum_k X_k Q_k. \]
Q should contain pure-species molar property values.
[in] | Q | Array of length m_kk that is to be averaged. |
Definition at line 658 of file Phase.cpp.
References Phase::m_mmw, and Phase::m_ym.
Referenced by IdealSolnGasVPSS::cp_mole(), ConstDensityThermo::cp_mole(), RedlichKwongMFTP::cp_mole(), IonsFromNeutralVPSSTP::cp_mole(), IdealSolidSolnPhase::cp_mole(), IdealMolalSoln::cp_mole(), LatticePhase::cp_mole(), IdealGasPhase::cp_mole(), DebyeHuckel::cp_mole(), HMWSoln::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IonsFromNeutralVPSSTP::enthalpy_mole(), IdealMolalSoln::enthalpy_mole(), SurfPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), DebyeHuckel::enthalpy_mole(), HMWSoln::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IonsFromNeutralVPSSTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealMolalSoln::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), DebyeHuckel::entropy_mole(), HMWSoln::entropy_mole(), IonsFromNeutralVPSSTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealMolalSoln::gibbs_mole(), DebyeHuckel::gibbs_mole(), HMWSoln::gibbs_mole(), ConstDensityThermo::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealMolalSoln::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), and HMWSoln::relative_enthalpy().
|
inherited |
Evaluate the mass-fraction-weighted mean of an array Q.
\[ \sum_k Y_k Q_k \]
[in] | Q | Array of species property values in mass units. |
Definition at line 663 of file Phase.cpp.
References Cantera::dot(), and Phase::m_y.
|
inlineinherited |
The mean molecular weight. Units: (kg/kmol)
Definition at line 592 of file Phase.h.
References Phase::m_mmw.
Referenced by IdealSolnGasVPSS::calcDensity(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), LatticePhase::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), MixtureFugacityTP::calculatePsat(), ThermoPhase::cp_mass(), RedlichKwongMFTP::critDensity(), ThermoPhase::cv_mass(), RedlichKwongMFTP::densityCalc(), MixtureFugacityTP::densityCalc(), RedlichKwongMFTP::densSpinodalGas(), RedlichKwongMFTP::densSpinodalLiquid(), ThermoPhase::enthalpy_mass(), ThermoPhase::entropy_mass(), IdealSolidSolnPhase::getActivityConcentrations(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), MultiTransport::getMultiDiffCoeffs(), WaterSSTP::getStandardVolumes_ref(), ThermoPhase::gibbs_mass(), RedlichKwongMFTP::hresid(), ThermoPhase::intEnergy_mass(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::setMolarDensity(), IdealGasPhase::setPressure(), RedlichKwongMFTP::sresid(), SimpleTransport::update_C(), LiquidTransport::update_C(), StFlow::updateThermo(), StFlow::updateTransport(), and MixtureFugacityTP::z().
|
inherited |
Evaluate \( \sum_k X_k \log X_k \).
Definition at line 668 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogx().
Referenced by IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), and IdealSolidSolnPhase::gibbs_mole().
|
inherited |
Evaluate \( \sum_k X_k \log Q_k \).
Q | Vector of length m_kk to take the log average of |
Definition at line 673 of file Phase.cpp.
References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogQ().
|
inherited |
Add an element.
symbol | Atomic symbol std::string. |
weight | Atomic mass in amu. |
Definition at line 678 of file Phase.cpp.
References CT_ELEM_TYPE_ABSPOS, CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, and Phase::m_mm.
Referenced by Phase::addElement().
|
inherited |
Add an element from an XML specification.
e | Reference to the XML_Node where the element is described. |
Definition at line 701 of file Phase.cpp.
References Phase::addElement().
|
inherited |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
symbol | String symbol of the element |
weight | Atomic weight of the element (kg kmol-1). |
atomicNumber | Atomic number of the element (unitless) |
entropy298 | Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error. |
elem_type | Specifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element. |
Definition at line 708 of file Phase.cpp.
References CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicNumbers, Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, Phase::m_entropy298, and Phase::m_mm.
Referenced by Phase::addElementsFromXML(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), and FixedChemPotSSTP::FixedChemPotSSTP().
|
inherited |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
e | Reference to the XML_Node where the element is described. |
Definition at line 755 of file Phase.cpp.
References Phase::addUniqueElement(), Cantera::atofCheck(), XML_Node::child(), ENTROPY298_UNKNOWN, XML_Node::hasAttrib(), XML_Node::hasChild(), and Cantera::stripws().
|
inherited |
Add all elements referenced in an XML_Node tree.
phase | Reference to the root XML_Node of a phase |
Definition at line 780 of file Phase.cpp.
References Phase::addUniqueElement(), XML_Node::child(), XML_Node::findByAttr(), Cantera::get_XML_File(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and XML_Node::root().
Referenced by Cantera::importPhase().
|
inherited |
Prohibit addition of more elements, and prepare to add species.
Definition at line 831 of file Phase.cpp.
References Phase::m_elementsFrozen.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP().
|
inherited |
True if freezeElements has been called.
Definition at line 836 of file Phase.cpp.
References Phase::m_elementsFrozen.
|
inherited |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.
If not unique, nothing is done.
symbol | String symbol of the element |
weight | Atomic weight of the element (kg kmol-1). |
atomicNumber | Atomic number of the element (unitless) |
entropy298 | Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which if used will cause Cantera to throw an error. |
elem_type | Specifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element. |
Definition at line 841 of file Phase.cpp.
References Phase::addUniqueElement(), Phase::elementIndex(), Phase::m_elementsFrozen, Phase::m_kk, Phase::m_mm, Phase::m_speciesComp, and Cantera::npos.
Referenced by LatticeSolidPhase::installSlavePhases().
|
inherited |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.
It only adds the species if it is unique.
name | String name of the species |
comp | Array containing the elemental composition of the species. |
charge | Charge of the species. Defaults to zero. |
size | Size of the species (meters). Defaults to 1 meter. |
Definition at line 919 of file Phase.cpp.
References Phase::m_kk, Phase::m_mm, Phase::m_speciesCharge, Phase::m_speciesComp, Phase::m_speciesNames, and Phase::m_speciesSize.
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), LatticeSolidPhase::installSlavePhases(), and Cantera::installSpecies().
|
virtualinherited |
Call when finished adding species.
Prepare to use them for calculation of mixture properties.
Definition at line 952 of file Phase.cpp.
References Phase::init(), Phase::m_speciesFrozen, and Phase::molecularWeights().
Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().
|
inlineinherited |
True if freezeSpecies has been called.
Definition at line 694 of file Phase.h.
References Phase::m_speciesFrozen.
|
inlineinherited |
Return the State Mole Fraction Number.
Definition at line 701 of file Phase.h.
References Phase::m_stateNum.
Referenced by SimpleTransport::update_C(), and LiquidTransport::update_C().
|
inlineinherited |
Every time the mole fractions have changed, this routine will increment the stateMFNumber.
@param forceChange If this is true then the stateMFNumber always
changes. This defaults to false.
Definition at line 115 of file Phase.cpp.
References Phase::m_stateNum.
Referenced by Phase::setConcentrations(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), Phase::setMoleFractions(), and Phase::setMoleFractions_NoNorm().
|
protectedinherited |
Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size.
mw | Vector of molecular weights of the species. |
Definition at line 958 of file Phase.cpp.
References Cantera::int2str(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Cantera::Tiny.
Referenced by Phase::freezeSpecies().
|
inlineprotectedinherited |
Set the molecular weight of a single species to a given value.
k | id of the species |
mw | Molecular Weight (kg kmol-1) |
Definition at line 722 of file Phase.h.
References Phase::m_molwts, and Phase::m_rmolwts.
Referenced by PureFluidPhase::initThermo(), and WaterSSTP::initThermoXML().
|
protected |
form of the Debye-Huckel parameterization used in the model.
The options are described at the top of this document, and in the general documentation. The list is repeated here:
DHFORM_DILUTE_LIMIT = 0 (default) DHFORM_BDOT_AK = 1 DHFORM_BDOT_AUNIFORM = 2 DHFORM_BETAIJ = 3 DHFORM_PITZER_BETAIJ = 4
Definition at line 1496 of file DebyeHuckel.h.
Referenced by DebyeHuckel::constructPhaseXML(), DebyeHuckel::formDH(), DebyeHuckel::initLengths(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
Format for the generalized concentration:
0 = unity 1 = molar_volume 2 = solvent_volume (default)
The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor.
m_formGC | GeneralizedConc | StandardConc |
0 | X_k | 1.0 |
1 | X_k / V_k | 1.0 / V_k |
2 | X_k / V_N | 1.0 / V_N |
The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.
(HKM Note: Using option #1 may lead to spurious results and has been included only with warnings. The reason is that it molar volumes of electrolytes may often be negative. The molar volume of H+ is defined to be zero too. Either options 0 or 2 are the appropriate choice. Option 0 leads to bulk reaction rate constants which have units of s-1. Option 2 leads to bulk reaction rate constants for bimolecular rxns which have units of m-3 kmol-1 s-1.)
Definition at line 1527 of file DebyeHuckel.h.
Referenced by DebyeHuckel::constructPhaseXML(), DebyeHuckel::eosType(), DebyeHuckel::initThermoXML(), and DebyeHuckel::operator=().
|
protected |
Vector containing the electrolyte species type.
The possible types are:
Definition at line 1540 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initLengths(), DebyeHuckel::initThermoXML(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
a_k = Size of the ionic species in the DH formulation units = meters
Definition at line 1546 of file DebyeHuckel.h.
Referenced by DebyeHuckel::AionicRadius(), DebyeHuckel::initLengths(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
mutableprotected |
Current value of the ionic strength on the molality scale.
Definition at line 1551 of file DebyeHuckel.h.
Referenced by DebyeHuckel::operator=(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
Maximum value of the ionic strength allowed in the calculation of the activity coefficients.
Definition at line 1557 of file DebyeHuckel.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_lnMolalityActCoeff().
bool m_useHelgesonFixedForm |
If true, then the fixed for of Helgeson's activity for water is used instead of the rigorous form obtained from Gibbs-Duhem relation.
This should be used with caution, and is really only included as a validation exercise.
Definition at line 1568 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
mutableprotected |
Stoichiometric ionic strength on the molality scale.
Definition at line 1572 of file DebyeHuckel.h.
Referenced by DebyeHuckel::_osmoticCoeffHelgesonFixedForm(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_lnMolalityActCoeff().
int m_form_A_Debye |
Form of the constant outside the Debye-Huckel term called A.
It's normally a function of temperature and pressure. However, it can be set from the input file in order to aid in numerical comparisons. Acceptable forms:
A_DEBYE_CONST 0 A_DEBYE_WATER 1
The A_DEBYE_WATER form may be used for water solvents with needs to cover varying temperatures and pressures. Note, the dielectric constant of water is a relatively strong function of T, and its variability must be accounted for,
Definition at line 1592 of file DebyeHuckel.h.
Referenced by DebyeHuckel::A_Debye_TP(), DebyeHuckel::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), DebyeHuckel::initThermoXML(), and DebyeHuckel::operator=().
|
mutableprotected |
Current value of the Debye Constant, A_Debye.
A_Debye -> this expression appears on the top of the ln actCoeff term in the general Debye-Huckel expression It depends on temperature and pressure.
A_Debye = (F e B_Debye) / (8 Pi epsilon R T)
Units = sqrt(kg/gmol)
Nominal value(298K, atm) = 1.172576 sqrt(kg/gmol) based on: epsilon/epsilon_0 = 78.54 (water at 25C) T = 298.15 K B_Debye = 3.28640E9 sqrt(kg/gmol)/m
note in Pitzer's nomenclature, A_phi = A_Debye/3.0
Definition at line 1616 of file DebyeHuckel.h.
Referenced by DebyeHuckel::_osmoticCoeffHelgesonFixedForm(), DebyeHuckel::A_Debye_TP(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
Current value of the constant that appears in the denominator.
B_Debye -> this expression appears on the bottom of the ln actCoeff term in the general Debye-Huckel expression It depends on temperature
B_Bebye = F / sqrt( epsilon R T / 2 )
Units = sqrt(kg/gmol) / m
Nominal value = 3.28640E9 sqrt(kg/gmol) / m based on: epsilon/epsilon_0 = 78.54 (water at 25C) T = 298.15 K
Definition at line 1635 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
Array of B_Dot values.
B_Dot -> This expression is an extension of the Debye-Huckel expression used in some formulations to extend DH to higher molalities. B_dot is specific to the major ionic pair.
Definition at line 1644 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initLengths(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
m_npActCoeff -> These are coefficients to describe the increase in activity coeff for non-polar molecules due to the electrolyte becoming stronger (the so-called salt-out effect)
Definition at line 1652 of file DebyeHuckel.h.
Referenced by DebyeHuckel::_nonpolarActCoeff(), DebyeHuckel::DebyeHuckel(), and DebyeHuckel::operator=().
|
protected |
Pointer to the Water standard state object.
derived from the equation of state for water.
Definition at line 1659 of file DebyeHuckel.h.
Referenced by DebyeHuckel::calcDensity(), DebyeHuckel::initThermoXML(), and DebyeHuckel::operator=().
|
protected |
Storage for the density of water's standard state.
Density depends on temperature and pressure.
Definition at line 1665 of file DebyeHuckel.h.
Referenced by DebyeHuckel::calcDensity(), and DebyeHuckel::operator=().
|
protected |
Pointer to the water property calculator.
Definition at line 1670 of file DebyeHuckel.h.
Referenced by DebyeHuckel::A_Debye_TP(), DebyeHuckel::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), and DebyeHuckel::~DebyeHuckel().
|
mutableprotected |
Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
Definition at line 1676 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initLengths(), and DebyeHuckel::operator=().
|
mutableprotected |
Vector of potential energies for the species.
Definition at line 1681 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initLengths(), and DebyeHuckel::operator=().
|
mutableprotected |
Temporary array used in equilibrium calculations.
Definition at line 1686 of file DebyeHuckel.h.
Referenced by DebyeHuckel::calcDensity(), DebyeHuckel::initLengths(), and DebyeHuckel::operator=().
|
mutableprotected |
vector of size m_kk, used as a temporary holding area.
Definition at line 1691 of file DebyeHuckel.h.
Referenced by DebyeHuckel::calcDensity(), DebyeHuckel::cp_mole(), DebyeHuckel::enthalpy_mole(), DebyeHuckel::entropy_mole(), DebyeHuckel::gibbs_mole(), DebyeHuckel::initLengths(), and DebyeHuckel::operator=().
|
protected |
Stoichiometric species charge -> This is for calculations of the ionic strength which ignore ion-ion pairing into neutral molecules.
The Stoichiometric species charge is the charge of one of the ion that would occur if the species broke into two charged ion pairs. NaCl -> m_speciesCharge_Stoich = -1; HSO4- -> H+ + SO42- = -2 -> The other charge is calculated. For species that aren't ion pairs, it's equal to the m_speciesCharge[] value.
Definition at line 1705 of file DebyeHuckel.h.
Referenced by DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
protected |
Array of 2D data used in the DHFORM_BETAIJ formulation Beta_ij.value(i,j) is the coefficient of the jth species for the specification of the chemical potential of the ith species.
Definition at line 1713 of file DebyeHuckel.h.
Referenced by DebyeHuckel::get_Beta_ij(), DebyeHuckel::initLengths(), DebyeHuckel::initThermoXML(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
mutableprotected |
Logarithm of the activity coefficients on the molality scale.
mutable because we change this if the composition or temperature or pressure changes.
Definition at line 1720 of file DebyeHuckel.h.
Referenced by DebyeHuckel::getActivities(), DebyeHuckel::getChemPotentials(), DebyeHuckel::getMolalityActivityCoefficients(), DebyeHuckel::getPartialMolarEntropies(), DebyeHuckel::initLengths(), DebyeHuckel::operator=(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), and DebyeHuckel::s_update_lnMolalityActCoeff().
|
mutableprotected |
Derivative of log act coeff wrt T.
Definition at line 1723 of file DebyeHuckel.h.
Referenced by DebyeHuckel::getPartialMolarCp(), DebyeHuckel::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEntropies(), DebyeHuckel::initLengths(), and DebyeHuckel::s_update_dlnMolalityActCoeff_dT().
|
mutableprotected |
2nd Derivative of log act coeff wrt T
Definition at line 1726 of file DebyeHuckel.h.
Referenced by DebyeHuckel::getPartialMolarCp(), DebyeHuckel::initLengths(), DebyeHuckel::operator=(), and DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2().
|
mutableprotected |
Derivative of log act coeff wrt P.
Definition at line 1729 of file DebyeHuckel.h.
Referenced by DebyeHuckel::getPartialMolarVolumes(), DebyeHuckel::initLengths(), and DebyeHuckel::s_update_dlnMolalityActCoeff_dP().
|
protectedinherited |
Index of the solvent.
Currently the index of the solvent is hard-coded to the value 0
Definition at line 883 of file MolalityVPSSTP.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealMolalSoln::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealMolalSoln::getMolalityActivityCoefficients(), IdealMolalSoln::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), MolalityVPSSTP::operator=(), MolalityVPSSTP::osmoticCoefficient(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalities(), MolalityVPSSTP::setMolalitiesByName(), MolalityVPSSTP::setSolvent(), MolalityVPSSTP::solventIndex(), IdealMolalSoln::standardConcentration(), DebyeHuckel::standardConcentration(), and HMWSoln::standardConcentration().
|
protectedinherited |
Scaling to be used for output of single-ion species activity coefficients.
Index of the species to be used in the single-ion scaling law. This is the identity of the Cl- species for the PHSCALE_NBS scaling. Either PHSCALE_PITZER or PHSCALE_NBS
Definition at line 893 of file MolalityVPSSTP.h.
Referenced by HMWSoln::applyphScale(), MolalityVPSSTP::operator=(), MolalityVPSSTP::pHScale(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), and MolalityVPSSTP::setpHScale().
|
protectedinherited |
Index of the phScale species.
Index of the species to be used in the single-ion scaling law. This is the identity of the Cl- species for the PHSCALE_NBS scaling
Definition at line 901 of file MolalityVPSSTP.h.
Referenced by HMWSoln::applyphScale(), MolalityVPSSTP::initThermo(), MolalityVPSSTP::operator=(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), and HMWSoln::s_updateScaling_pHScaling_dT2().
|
protectedinherited |
Molecular weight of the Solvent.
Definition at line 904 of file MolalityVPSSTP.h.
Referenced by MolalityVPSSTP::operator=(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and MolalityVPSSTP::setSolvent().
|
protectedinherited |
In any molality implementation, it makes sense to have a minimum solvent mole fraction requirement, since the implementation becomes singular in the xmolSolvent=0 limit. The default is to set it to 0.01. We then modify the molality definition to ensure that molal_solvent = 0 when xmol_solvent = 0.
Definition at line 914 of file MolalityVPSSTP.h.
Referenced by MolalityVPSSTP::calcMolalities(), IdealMolalSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealMolalSoln::getMolalityActivityCoefficients(), MolalityVPSSTP::moleFSolventMin(), MolalityVPSSTP::operator=(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), and MolalityVPSSTP::setMoleFSolventMin().
|
protectedinherited |
This is the multiplication factor that goes inside log expressions involving the molalities of species.
It's equal to Wt_0 / 1000, where Wt_0 = weight of solvent (kg/kmol)
Definition at line 922 of file MolalityVPSSTP.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), MolalityVPSSTP::operator=(), MolalityVPSSTP::osmoticCoefficient(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), MolalityVPSSTP::setMolalities(), MolalityVPSSTP::setMolalitiesByName(), MolalityVPSSTP::setSolvent(), and HMWSoln::standardConcentration().
|
mutableprotectedinherited |
Current value of the molalities of the species in the phase.
Note this vector is a mutable quantity. units are (kg/kmol)
Definition at line 929 of file MolalityVPSSTP.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), IdealMolalSoln::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), MolalityVPSSTP::initLengths(), MolalityVPSSTP::operator=(), MolalityVPSSTP::osmoticCoefficient(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and MolalityVPSSTP::setMolalities().
|
protectedinherited |
Current value of the pressure - state variable.
Because we are now using the pressure as a state variable, we need to carry it along within this object
units = Pascals
Definition at line 606 of file VPStandardStateTP.h.
Referenced by VPStandardStateTP::_updateStandardStateThermo(), IdealSolnGasVPSS::calcDensity(), IdealSolnGasVPSS::isothermalCompressibility(), VPStandardStateTP::operator=(), VPStandardStateTP::pressure(), DebyeHuckel::pressure(), HMWSoln::pressure(), IdealSolnGasVPSS::setPressure(), VPStandardStateTP::setState_TP(), IdealMolalSoln::setState_TP(), GibbsExcessVPSSTP::setState_TP(), DebyeHuckel::setState_TP(), HMWSoln::setState_TP(), VPStandardStateTP::setTemperature(), DebyeHuckel::setTemperature(), HMWSoln::setTemperature(), and VPStandardStateTP::updateStandardStateThermo().
|
mutableprotectedinherited |
The last temperature at which the standard statethermodynamic properties were calculated at.
Definition at line 609 of file VPStandardStateTP.h.
Referenced by VPStandardStateTP::_updateStandardStateThermo(), VPStandardStateTP::operator=(), and VPStandardStateTP::updateStandardStateThermo().
|
mutableprotectedinherited |
The last pressure at which the Standard State thermodynamic properties were calculated at.
Definition at line 613 of file VPStandardStateTP.h.
Referenced by VPStandardStateTP::_updateStandardStateThermo(), VPStandardStateTP::operator=(), and VPStandardStateTP::updateStandardStateThermo().
|
protectedinherited |
Reference pressure (Pa) must be the same for all species
Definition at line 619 of file VPStandardStateTP.h.
Referenced by VPStandardStateTP::operator=().
|
mutableprotectedinherited |
Pointer to the VPSS manager that calculates all of the standard state info efficiently.
Definition at line 626 of file VPStandardStateTP.h.
Referenced by VPStandardStateTP::_updateStandardStateThermo(), IdealSolnGasVPSS::calcDensity(), IdealSolnGasVPSS::cp_mole(), IdealSolnGasVPSS::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), IdealSolnGasVPSS::getActivityConcentrations(), VPStandardStateTP::getCp_R(), VPStandardStateTP::getCp_R_ref(), VPStandardStateTP::getEnthalpy_RT(), VPStandardStateTP::getEnthalpy_RT_ref(), VPStandardStateTP::getEntropy_R(), VPStandardStateTP::getEntropy_R_ref(), VPStandardStateTP::getGibbs_ref(), VPStandardStateTP::getGibbs_RT(), VPStandardStateTP::getGibbs_RT_ref(), VPStandardStateTP::getIntEnergy_RT(), VPStandardStateTP::getPureGibbs(), VPStandardStateTP::getStandardVolumes(), VPStandardStateTP::getStandardVolumes_ref(), VPStandardStateTP::initThermo(), VPStandardStateTP::initThermoXML(), VPStandardStateTP::operator=(), VPStandardStateTP::provideVPSSMgr(), IdealSolnGasVPSS::setToEquilState(), VPStandardStateTP::setVPSSMgr(), IdealSolnGasVPSS::standardConcentration(), and VPStandardStateTP::~VPStandardStateTP().
|
protectedinherited |
Storage for the PDSS objects for the species.
Storage is in species index order. VPStandardStateTp owns each of the objects. Copy operations are deep.
Definition at line 634 of file VPStandardStateTP.h.
Referenced by VPStandardStateTP::initThermo(), VPStandardStateTP::initThermoXML(), VPStandardStateTP::operator=(), and VPStandardStateTP::~VPStandardStateTP().
|
protectedinherited |
Pointer to the calculation manager for species reference-state thermodynamic properties.
This class is called when the reference-state thermodynamic properties of all the species in the phase needs to be evaluated.
Definition at line 1611 of file ThermoPhase.h.
Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), ConstDensityThermo::enthalpy_mole(), LatticePhase::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), IdealGasPhase::entropy_mole(), FixedChemPotSSTP::FixedChemPotSSTP(), ConstDensityThermo::getChemPotentials(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), PureFluidPhase::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), PureFluidPhase::getGibbs_RT_ref(), IdealGasPhase::getPartialMolarEntropies(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), ConstDensityThermo::intEnergy_mole(), LatticePhase::intEnergy_mole(), ThermoPhase::maxTemp(), ThermoPhase::minTemp(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), ThermoPhase::refPressure(), ThermoPhase::setSpeciesThermo(), LatticeSolidPhase::speciesThermo(), ThermoPhase::speciesThermo(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Vector of pointers to the species databases.
This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.
Definition at line 1621 of file ThermoPhase.h.
Referenced by LatticeSolidPhase::installSlavePhases(), ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Stored value of the electric potential for this phase.
Units are Volts
Definition at line 1627 of file ThermoPhase.h.
Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().
|
protectedinherited |
Vector of element potentials.
-> length equal to number of elements
Definition at line 1631 of file ThermoPhase.h.
Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().
|
protectedinherited |
Boolean indicating whether there is a valid set of saved element potentials for this phase.
Definition at line 1635 of file ThermoPhase.h.
Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().
|
protectedinherited |
Boolean indicating whether a charge neutrality condition is a necessity.
Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.
Definition at line 1645 of file ThermoPhase.h.
Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().
|
protectedinherited |
Contains the standard state convention.
Definition at line 1648 of file ThermoPhase.h.
Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().
|
protectedinherited |
Reference Mole Fraction Composition.
Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file
Definition at line 1657 of file ThermoPhase.h.
Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().
|
protectedinherited |
Number of species in the phase.
Definition at line 727 of file Phase.h.
Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), HMWSoln::applyphScale(), RedlichKwongMFTP::applyStandardMixingRules(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKwongMFTP::calculateAB(), GibbsExcessVPSSTP::checkMFSum(), Phase::checkSpeciesArraySize(), Phase::checkSpeciesIndex(), HMWSoln::counterIJ_setup(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), ConstDensityThermo::expGibbs_RT(), IdealGasPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), GibbsExcessVPSSTP::getActivities(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), ConstDensityThermo::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IonsFromNeutralVPSSTP::getActivityCoefficients(), GibbsExcessVPSSTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityCoefficients(), LatticeSolidPhase::getActivityCoefficients(), MixedSolventElectrolyte::getActivityCoefficients(), PhaseCombo_Interaction::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), ThermoPhase::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), LatticePhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), HMWSoln::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), RedlichKisterVPSSTP::getd2lnActCoeffdT2(), MargulesVPSSTP::getd2lnActCoeffdT2(), MixedSolventElectrolyte::getd2lnActCoeffdT2(), PhaseCombo_Interaction::getd2lnActCoeffdT2(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), PhaseCombo_Interaction::getdlnActCoeffdlnN(), RedlichKisterVPSSTP::getdlnActCoeffdlnN(), MargulesVPSSTP::getdlnActCoeffdlnN(), MixedSolventElectrolyte::getdlnActCoeffdlnN(), ThermoPhase::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnN_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), MargulesVPSSTP::getdlnActCoeffdlnN_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnX_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnX_diag(), MargulesVPSSTP::getdlnActCoeffdlnX_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), LatticePhase::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), MolarityIonicVPSSTP::getLnActivityCoefficients(), RedlichKisterVPSSTP::getLnActivityCoefficients(), MargulesVPSSTP::getLnActivityCoefficients(), ThermoPhase::getLnActivityCoefficients(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), LatticePhase::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), MolarityIonicVPSSTP::getPartialMolarVolumes(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::HMWSoln(), Phase::init(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), RedlichKwongMFTP::initLengths(), VPStandardStateTP::initLengths(), LatticeSolidPhase::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), ConstDensityThermo::initThermo(), SurfPhase::initThermo(), MolarityIonicVPSSTP::initThermo(), StoichSubstanceSSTP::initThermo(), VPStandardStateTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), ThermoPhase::initThermo(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), Phase::nSpecies(), VPStandardStateTP::operator=(), Phase::operator=(), ThermoPhase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::printCoeffs(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), IdealSolidSolnPhase::referenceConcentration(), HMWSoln::relative_enthalpy(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), MolarityIonicVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), Phase::setConcentrations(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), Phase::setMoleFractions(), Phase::setMoleFractions_NoNorm(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), ThermoPhase::speciesData(), Phase::speciesIndex(), IdealSolidSolnPhase::standardConcentration(), RedlichKwongMFTP::updateAB(), and ThermoPhase::~ThermoPhase().
|
protectedinherited |
Dimensionality of the phase.
Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.
Definition at line 731 of file Phase.h.
Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().
|
protectedinherited |
Atomic composition of the species.
The number of atoms of element i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm
Definition at line 736 of file Phase.h.
Referenced by Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), Phase::getAtoms(), LatticeSolidPhase::installSlavePhases(), Phase::nAtoms(), and Phase::operator=().
|
protectedinherited |
Vector of species sizes.
length m_kk. Used in some equations of state which employ the constant partial molar volume approximation.
Definition at line 740 of file Phase.h.
Referenced by Phase::addUniqueSpecies(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), Phase::operator=(), Phase::size(), HMWSoln::speciesMolarVolume(), and DebyeHuckel::standardConcentration().
|
protectedinherited |
Vector of species charges. length m_kk.
Definition at line 742 of file Phase.h.
Referenced by Phase::addUniqueSpecies(), HMWSoln::applyphScale(), HMWSoln::calcMolalitiesCropped(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), Phase::charge(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), MolarityIonicVPSSTP::initThermo(), DebyeHuckel::initThermoXML(), Phase::operator=(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), and HMWSoln::s_updateScaling_pHScaling_dT2().