Cantera  2.0
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members
LatticePhase Class Reference

A simple thermodynamic model for a bulk phase, assuming a lattice of solid atoms. More...

#include <LatticePhase.h>

Inheritance diagram for LatticePhase:
[legend]
Collaboration diagram for LatticePhase:
[legend]

Public Member Functions

 LatticePhase ()
 Base Empty constructor.
 
 LatticePhase (const LatticePhase &right)
 Copy Constructor.
 
LatticePhaseoperator= (const LatticePhase &right)
 Assignment operator.
 
 LatticePhase (std::string inputFile, std::string id="")
 Full constructor for a lattice phase.
 
 LatticePhase (XML_Node &phaseRef, std::string id="")
 Full constructor for a water phase.
 
virtual ~LatticePhase ()
 Destructor.
 
ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication function.
 
void constructPhaseXML (XML_Node &phaseNode, std::string idTarget)
 Import and initialize a LatticePhase phase specification from an XML tree into the current object.
 
void constructPhaseFile (std::string inputFile, std::string id)
 Initialization of a LatticePhase phase using an xml file.
 
virtual int eosType () const
 Equation of state flag. Returns the value cLattice.
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature.
 
XML_Nodexml ()
 Returns a reference to the XML_Node stored for the phase.
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase Write to vector 'state' the current internal state.
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState.
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector.
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k.
 
doublereal molarMass (size_t k) const
 Return the Molar mass of species k Alternate name for molecular weight.
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights.
 
void getMolecularWeights (int iwt, doublereal *weights) const
 Copy the vector of molecular weights into array weights.
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
doublereal size (size_t k) const
 This routine returns the size of species k.
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
doublereal chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual void freezeSpecies ()
 Call when finished adding species.
 
bool speciesFrozen ()
 True if freezeSpecies has been called.
 
virtual bool ready () const
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
void stateMFChangeCalc (bool forceChange=false)
 Every time the mole fractions have changed, this routine will increment the stateMFNumber.
 
Molar Thermodynamic Properties of the Solution ------------------------
virtual doublereal enthalpy_mole () const
 Return the Molar Enthalpy. Units: J/kmol.
 
virtual doublereal intEnergy_mole () const
 Molar internal energy of the solution. Units: J/kmol.
 
virtual doublereal entropy_mole () const
 Molar entropy of the solution. Units: J/kmol/K.
 
virtual doublereal gibbs_mole () const
 Molar gibbs free energy of the solution. Units: J/kmol.
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure of the solution.
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume of the solution.
 
Mechanical Equation of State Properties ------------------------------------
virtual doublereal pressure () const
 In this equation of state implementation, the density is a function only of the mole fractions.
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition.
 
doublereal calcDensity ()
 Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions.
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions, but don't normalize them to one.
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions, and normalize them to one.
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions, but don't normalize them to one.
 
virtual void setConcentrations (const doublereal *const c)
 Set the concentration,.
 
Activities, Standard States, and Activity Concentrations
virtual void getActivityConcentrations (doublereal *c) const
 The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species.
 
virtual doublereal logStandardConc (size_t k=0) const
 Returns the natural logarithm of the standard concentration of the kth species.
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.
 
Partial Molar Properties of the Solution
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol.
 
Partial Molar Properties of the Solution -----------------------------
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture.
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution.
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture.
 
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species standard states at the current T and P of the solution.
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
Properties of the Standard State of the Species in the Solution
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species standard states at their standard states at the current T and P of the solution.
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the species standard states at the current T and P of the solution.
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species standard states at the current T and P of the solution.
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
Thermodynamic Values for the Species Reference States
const vector_fpenthalpy_RT_ref () const
 Returns the vector of nondimensional Enthalpies of the reference state at the current temperature of the solution and the reference pressure for the phase.
 
const vector_fpgibbs_RT_ref () const
 Returns a reference to the dimensionless reference state Gibbs free energy vector.
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
const vector_fpentropy_R_ref () const
 Returns a reference to the dimensionless reference state Entropy vector.
 
const vector_fpcp_R_ref () const
 Returns a reference to the dimensionless reference state Heat Capacity vector.
 
Utilities for Initialization of the Object
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up.
 
virtual void initThermoXML (XML_Node &phaseNode, std::string id)
 Import and initialize a ThermoPhase object using an XML tree.
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters from the argument list.
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector.
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries.
 
Information Methods
virtual doublereal refPressure () const
 Returns the reference pressure in Pa.
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
doublereal Hf298SS (const int k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
virtual void modifyOneHf298SS (const int k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid.
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
Mechanical Properties
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
virtual void updateDensity ()
 
Electric Potential

The phase may be at some non-zero electrical potential.

These methods set or get the value of the electric potential.

void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V).
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V).
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition.

The activity is dimensionless.

virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
virtual void getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const
 Returns the units of the standard and generalized concentrations.
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
Partial Molar Properties of the Solution
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials.
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
 
virtual void getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const
 Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.
 
virtual void getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const
 Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.
 
Properties of the Standard State of the Species in the Solution
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
virtual void getdStandardVolumes_dT (doublereal *d_vol_dT) const
 Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.
 
virtual void getdStandardVolumes_dP (doublereal *d_vol_dP) const
 Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.
 
Thermodynamic Values for the Species Reference States
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition.
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition.
 
Specific Properties
doublereal enthalpy_mass () const
 Specific enthalpy.
 
doublereal intEnergy_mass () const
 Specific internal energy.
 
doublereal entropy_mass () const
 Specific entropy.
 
doublereal gibbs_mass () const
 Specific Gibbs function.
 
doublereal cp_mass () const
 Specific heat at constant pressure.
 
doublereal cv_mass () const
 Specific heat at constant volume.
 
Setting the State

These methods set all or part of the thermodynamic state.

virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPX (doublereal t, doublereal p, compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TPY (doublereal t, doublereal p, compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa)
 
void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions.
 
void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions.
 
virtual void setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
Chemical Equilibrium

Chemical equilibrium.

virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver.
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object.
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object.
 
Critical State Properties.

These methods are only implemented by some subclasses, and may be moved out of ThermoPhase at a later date.

virtual doublereal critTemperature () const
 Critical temperature (K).
 
virtual doublereal critPressure () const
 Critical pressure (Pa).
 
virtual doublereal critDensity () const
 Critical density (kg/m3).
 
Saturation Properties.

These methods are only implemented by subclasses that implement full liquid-vapor equations of state.

They may be moved out of ThermoPhase at a later date.

virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure.
 
virtual doublereal satPressure (doublereal t) const
 Return the saturation pressure given the temperature.
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure.
 
Initialization Methods - For Internal Use (ThermoPhase)
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase.
 
const std::vector< const
XML_Node * > & 
speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase.
 
void setSpeciesThermo (SpeciesThermo *spthermo)
 Install a species thermodynamic property manager.
 
virtual SpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual void initThermoFile (std::string inputFile, std::string id)
 
virtual void installSlavePhases (Cantera::XML_Node *phaseNode)
 Add in species from Slave phases.
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element.
 
Derivatives of Thermodynamic Variables needed for Applications
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
Printing
virtual std::string report (bool show_thermo=true) const
 returns a summary of the state of the phase as a string
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file
 
Name and ID

Class Phase contains two strings that identify a phase. The ID is the value of the ID attribute of the XML phase node that is used to initialize a phase when it is read. The name field is also initialized to the value of the ID attribute of the XML phase node.

However, the name field may be changed to another value during the course of a calculation. For example, if a phase is located in two places, but has the same constitutive input, the ids of the two phases will be the same, but the names of the two phases may be different.

It is an error to have two phases in a single problem with the same name or the same id (or the name from one phase being the same as the id of another phase). Thus, it is expected that there is a 1-1 correspondence between names and unique phases within a Cantera problem.

std::string id () const
 Return the string id for the phase.
 
void setID (std::string id)
 Set the string id for the phase.
 
std::string name () const
 Return the name of the phase.
 
void setName (std::string nm)
 Sets the string name for the phase.
 
Element and Species Information
std::string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (std::string name) const
 Return the index of element named 'name'.
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m.
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements() Throws an exception if mm is less than nElements().
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k.
 
size_t speciesIndex (std::string name) const
 Returns the index of a species named 'name' within the Phase object.
 
std::string speciesName (size_t k) const
 Name of the species with index k.
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
 
Set thermodynamic state

Set the internal thermodynamic state by setting the internally stored temperature, density and species composition. Note that the composition is always set first.

Temperature and density are held constant if not explicitly set.

void setMoleFractionsByName (compositionMap &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (compositionMap &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name.
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRX (doublereal t, doublereal dens, compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions.
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TRY (doublereal t, doublereal dens, compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions.
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions.
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions.
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions.
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions.
 
Composition
void getMoleFractionsByName (compositionMap &x) const
 Get the mole fractions by name.
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
doublereal moleFraction (std::string name) const
 Return the mole fraction of a single species.
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species.
 
doublereal massFraction (std::string name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector.
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions.
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array.
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3).
 
doublereal concentration (const size_t k) const
 Concentration of species k.
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array.
 
Thermodynamic Properties
doublereal temperature () const
 Temperature (K).
 
virtual doublereal density () const
 Density (kg/m^3).
 
doublereal molarDensity () const
 Molar density (kmol/m^3).
 
doublereal molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const doublereal density)
 Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable.
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase.
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K).
 
Mean Properties
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
doublereal mean_Y (const doublereal *const Q) const
 Evaluate the mass-fraction-weighted mean of an array Q.
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \).
 
doublereal sum_xlogQ (doublereal *const Q) const
 Evaluate \( \sum_k X_k \log Q_k \).
 
Adding Elements and Species

These methods are used to add new elements or species.

These are not usually called by user programs.

Since species are checked to insure that they are only composed of declared elements, it is necessary to first add all elements before adding any species.

void addElement (const std::string &symbol, doublereal weight=-12345.0)
 Add an element.
 
void addElement (const XML_Node &e)
 Add an element from an XML specification.
 
void addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addUniqueElement (const XML_Node &e)
 Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addElementsFromXML (const XML_Node &phase)
 Add all elements referenced in an XML_Node tree.
 
void freezeElements ()
 Prohibit addition of more elements, and prepare to add species.
 
bool elementsFrozen ()
 True if freezeElements has been called.
 
size_t addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.
 
void addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 
void addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0)
 Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.
 

Protected Member Functions

void init (const vector_fp &mw)
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 

Protected Attributes

size_t m_mm
 Number of elements.
 
doublereal m_tmin
 Minimum temperature for valid species standard state thermo props.
 
doublereal m_tmax
 Maximum temperature for valid species standard state thermo props.
 
doublereal m_Pref
 Reference state pressure.
 
doublereal m_Pcurrent
 The current pressure.
 
doublereal m_tlast
 Current value of the temperature (Kelvin)
 
vector_fp m_h0_RT
 Reference state enthalpies / RT.
 
vector_fp m_cp0_R
 Temporary storage for the reference state heat capacities.
 
vector_fp m_g0_RT
 Temporary storage for the reference state gibbs energies.
 
vector_fp m_s0_R
 Temporary storage for the reference state entropies at the current temperature.
 
std::string m_vacancy
 String name for the species which represents a vacency in the lattice.
 
vector_fp m_speciesMolarVolume
 Vector of molar volumes for each species in the solution.
 
doublereal m_site_density
 Site Density of the lattice solid.
 
SpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases.
 
doublereal m_phi
 Stored value of the electric potential for this phase.
 
vector_fp m_lambdaRRT
 Vector of element potentials.
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase.
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention
 Contains the standard state convention.
 
std::vector< doublereal > xMol_Ref
 Reference Mole Fraction Composition.
 
size_t m_kk
 Number of species in the phase.
 
size_t m_ndim
 Dimensionality of the phase.
 
vector_fp m_speciesComp
 Atomic composition of the species.
 
vector_fp m_speciesSize
 Vector of species sizes.
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk.
 

Private Member Functions

void _updateThermo () const
 Update the species reference state thermodynamic functions.
 

Detailed Description

A simple thermodynamic model for a bulk phase, assuming a lattice of solid atoms.

The bulk consists of a matrix of equivalent sites whose molar density
does not vary with temperature or pressure. The thermodynamics
obeys the ideal solution laws. The phase and the pure species phases which

comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility.

The density of matrix sites is given by the variable \( C_o \), which has SI units of kmol m-3.

Specification of Species Standard State Properties

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). However, how to relate pressure changes to the reference state thermodynamics is within this class.

Pressure is defined as an independent variable in this phase. However, it has no effect on any quantities, as the molar concentration is a constant.

The standard state enthalpy function is given by the following relation, which has a weak dependence on the system pressure, \(P\).

\[ \raggedright h^o_k(T,P) = h^{ref}_k(T) + \left( \frac{P - P_{ref}}{C_o} \right) \]

For an incompressible substance, the molar internal energy is independent of pressure. Since the thermodynamic properties are specified by giving the standard-state enthalpy, the term \( \frac{P_{ref}}{C_o} \) is subtracted from the specified reference molar enthalpy to compute the standard state molar internal energy:

\[ u^o_k(T,P) = h^{ref}_k(T) - \frac{P_{ref}}{C_o} \]

The standard state heat capacity, internal energy, and entropy are independent of pressure. The standard state gibbs free energy is obtained from the enthalpy and entropy functions.

The standard state molar volume is independent of temperature, pressure, and species identity:

\[ V^o_k(T,P) = \frac{1.0}{C_o} \]


Specification of Solution Thermodynamic Properties


The activity of species \( k \) defined in the phase, \( a_k \), is given by the ideal solution law:

\[ a_k = X_k , \]

where \( X_k \) is the mole fraction of species k. The chemical potential for species k is equal to

\[ \mu_k(T,P) = \mu^o_k(T, P) + R T \log(X_k) \]

The partial molar entropy for species k is given by the following relation,

\[ \tilde{s}_k(T,P) = s^o_k(T,P) - R \log(X_k) = s^{ref}_k(T) - R \log(X_k) \]

The partial molar enthalpy for species k is

\[ \tilde{h}_k(T,P) = h^o_k(T,P) = h^{ref}_k(T) + \left( \frac{P - P_{ref}}{C_o} \right) \]

The partial molar Internal Energy for species k is

\[ \tilde{u}_k(T,P) = u^o_k(T,P) = u^{ref}_k(T) \]

The partial molar Heat Capacity for species k is

\[ \tilde{Cp}_k(T,P) = Cp^o_k(T,P) = Cp^{ref}_k(T) \]

The partial molar volume is independent of temperature, pressure, and species identity:

\[ \tilde{V}_k(T,P) = V^o_k(T,P) = \frac{1.0}{C_o} \]

It is assumed that the reference state thermodynamics may be obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Pressure is defined as an independent variable in this phase. However, it only has a weak dependence on the enthalpy, and doesn't effect the molar concentration.


Application within Kinetics Managers


\( C^a_k\) are defined such that \( C^a_k = a_k = X_k \) \( C^s_k \), the standard concentration, is defined to be equal to one. \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. The activity concentration, \( C^a_k \), is given by the following expression.

\[ C^a_k = C^s_k X_k = X_k \]

The standard concentration for species k is identically one

\[ C^s_k = C^s = 1.0 \]

For example, a bulk-phase binary gas reaction between species j and k, producing a new species l would have the following equation for its rate of progress variable, \( R^1 \), which has units of kmol m-3 s-1.

\[ R^1 = k^1 C_j^a C_k^a = k^1 X_j X_k \]

The reverse rate constant can then be obtained from the law of microscopic reversibility and the equilibrium expression for the system.

\[ \frac{X_j X_k}{ X_l} = K_a^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} ) \]

\( K_a^{o,1} \) is the dimensionless form of the equilibrium constant, associated with the pressure dependent standard states \( \mu^o_l(T,P) \) and their associated activities, \( a_l \), repeated here:

\[ \mu_l(T,P) = \mu^o_l(T, P) + R T \log(a_l) \]

The concentration equilibrium constant, \form#423, may be obtained by changing over
to activity concentrations. When this is done:

\[ \frac{C^a_j C^a_k}{ C^a_l} = C^o K_a^{o,1} = K_c^1 = \exp(\frac{\mu^{o}_l - \mu^{o}_j - \mu^{o}_k}{R T} ) \]

 %Kinetics managers will calculate the concentration equilibrium constant, \form#423,
 using the second and third part of the above expression as a definition for the concentration
 equilibrium constant.

Instantiation of the Class


The constructor for this phase is located in the default ThermoFactory for Cantera. A new LatticePhase object may be created by the following code snippet:

XML_Node *xc = get_XML_File("O_lattice_SiO2.xml");
XML_Node * const xs = xc->findNameID("phase", "O_lattice_SiO2");
ThermoPhase *tp = newPhase(*xs);
LatticePhase *o_lattice = dynamic_cast <LatticPhase *>(tp);

or by the following constructor:

XML_Node *xc = get_XML_File("O_lattice_SiO2.xml");
XML_Node * const xs = xc->findNameID("phase", "O_lattice_SiO2");
LatticePhase *o_lattice = new LatticePhase(*xs);

The XML file used in this example is listed in the next section


XML Example


An example of an XML Element named phase setting up a LatticePhase object named "O_lattice_SiO2" is given below.

   <!--     phase O_lattice_SiO2      -->
   <phase dim="3" id="O_lattice_SiO2">
      <elementArray datasrc="elements.xml"> Si  H  He </elementArray>
      <speciesArray datasrc="#species_data">
              O_O  Vac_O
      </speciesArray>
      <reactionArray datasrc="#reaction_data"/>
      <thermo model="Lattice">
  <site_density> 73.159 </site_density>
  <vacancy_species>  Vac_O </vacancy_species>
</thermo>
      <kinetics model="BulkKinetics"/>
      <transport model="None"/>
    </phase>

The model attribute "Lattice" of the thermo XML element identifies the phase as being of the type handled by the LatticePhase object.

Definition at line 250 of file LatticePhase.h.

Constructor & Destructor Documentation

Base Empty constructor.

Definition at line 25 of file LatticePhase.cpp.

Referenced by LatticePhase::duplMyselfAsThermoPhase().

LatticePhase ( const LatticePhase right)

Copy Constructor.

Parameters
rightObject to be copied

Definition at line 41 of file LatticePhase.cpp.

References LatticePhase::operator=().

LatticePhase ( std::string  inputFile,
std::string  id = "" 
)

Full constructor for a lattice phase.

Parameters
inputFileString name of the input file
idstring id of the phase name

Definition at line 90 of file LatticePhase.cpp.

References LatticePhase::constructPhaseFile().

LatticePhase ( XML_Node phaseRef,
std::string  id = "" 
)

Full constructor for a water phase.

Parameters
phaseRefXML node referencing the lattice phase.
idstring id of the phase name

Definition at line 100 of file LatticePhase.cpp.

References LatticePhase::constructPhaseXML().

~LatticePhase ( )
virtual

Destructor.

Definition at line 80 of file LatticePhase.cpp.

Member Function Documentation

LatticePhase & operator= ( const LatticePhase right)
ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication function.

This virtual function is used to create a duplicate of the current phase. It's used to duplicate the phase when given a ThermoPhase pointer to the phase.

Returns
It returns a ThermoPhase pointer.

Reimplemented from ThermoPhase.

Definition at line 114 of file LatticePhase.cpp.

References LatticePhase::LatticePhase().

void constructPhaseXML ( XML_Node phaseNode,
std::string  idTarget 
)

Import and initialize a LatticePhase phase specification from an XML tree into the current object.

Parameters
phaseNodeXML file containing the description of the phase
idTargetOptional parameter identifying the name of the phase. If none is given, the first XML phase element is used.

Definition at line 128 of file LatticePhase.cpp.

References XML_Node::id(), and Cantera::importPhase().

Referenced by LatticePhase::constructPhaseFile(), and LatticePhase::LatticePhase().

void constructPhaseFile ( std::string  inputFile,
std::string  id 
)

Initialization of a LatticePhase phase using an xml file.

This routine is a precursor to constructPhaseXML(XML_Node*) routine, which does most of the work.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If none is given, the first XML phase element will be used.

Definition at line 160 of file LatticePhase.cpp.

References XML_Node::build(), LatticePhase::constructPhaseXML(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), and Phase::xml().

Referenced by LatticePhase::LatticePhase().

virtual int eosType ( ) const
inlinevirtual

Equation of state flag. Returns the value cLattice.

Reimplemented from ThermoPhase.

Definition at line 321 of file LatticePhase.h.

doublereal enthalpy_mole ( ) const
virtual

Return the Molar Enthalpy. Units: J/kmol.

For an ideal solution,

\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T,P), \]

The standard-state pure-species Enthalpies \( \hat h^0_k(T,P) \) are computed first by the species reference state thermodynamic property manager and then a small pressure dependent term is added in.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 193 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, ThermoPhase::m_spthermo, Phase::mean_X(), Phase::molarDensity(), LatticePhase::pressure(), SpeciesThermo::refPressure(), and Phase::temperature().

Referenced by LatticePhase::gibbs_mole().

doublereal intEnergy_mole ( ) const
virtual

Molar internal energy of the solution. Units: J/kmol.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:

\[ \hat u(T,X) = \hat h(T,P,X) - p \hat V = \sum_k X_k \hat h^0_k(T) - P_{ref} (\sum_k{X_k \hat V^0_k}) \]

and is a function only of temperature. The reference-state pure-species enthalpies \( \hat h^0_k(T) \) are computed by the species thermodynamic property manager.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 201 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, ThermoPhase::m_spthermo, Phase::mean_X(), Phase::molarDensity(), SpeciesThermo::refPressure(), and Phase::temperature().

doublereal entropy_mole ( ) const
virtual

Molar entropy of the solution. Units: J/kmol/K.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]

The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.

Units: J/kmol/K.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 209 of file LatticePhase.cpp.

References LatticePhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), and Phase::sum_xlogx().

Referenced by LatticePhase::gibbs_mole().

doublereal gibbs_mole ( ) const
virtual

Molar gibbs free energy of the solution. Units: J/kmol.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]

The reference-state pure-species gibbs free energies \( \hat g^0_k(T) \) are computed by the species thermodynamic property manager, while the standard state gibbs free energies \( \hat g^0_k(T,P) \) are computed by the member function, gibbs_RT().

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 215 of file LatticePhase.cpp.

References LatticePhase::enthalpy_mole(), LatticePhase::entropy_mole(), and Phase::temperature().

doublereal cp_mole ( ) const
virtual

Molar heat capacity at constant pressure of the solution.

Units: J/kmol/K.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]

The heat capacity is independent of pressure. The reference-state pure-species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.

See Also
SpeciesThermo

Reimplemented from ThermoPhase.

Definition at line 220 of file LatticePhase.cpp.

References LatticePhase::cp_R_ref(), Cantera::GasConstant, and Phase::mean_X().

Referenced by LatticePhase::cv_mole().

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume of the solution.

Units: J/kmol/K.

For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:

\[ \hat c_v(T,P) = \hat c_p(T,P) \]

The two heat capacities are equal.

Reimplemented from ThermoPhase.

Definition at line 225 of file LatticePhase.cpp.

References LatticePhase::cp_mole().

virtual doublereal pressure ( ) const
inlinevirtual

In this equation of state implementation, the density is a function only of the mole fractions.

Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown.Pressure. Units: Pa.

For this incompressible system, we return the internally stored independent value of the pressure.

Reimplemented from ThermoPhase.

Definition at line 449 of file LatticePhase.h.

References LatticePhase::m_Pcurrent.

Referenced by LatticePhase::enthalpy_mole().

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method sets the pressure within the object. The mass density is not a function of pressure.

Parameters
pInput Pressure (Pa)

Reimplemented from ThermoPhase.

Definition at line 249 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and LatticePhase::m_Pcurrent.

doublereal calcDensity ( )

Calculate the density of the mixture using the partial molar volumes and mole fractions as input.

The formula for this is

\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]

where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.

Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.

NOTE: This is a non-virtual function, which is not a member of the ThermoPhase base class.

Definition at line 230 of file LatticePhase.cpp.

References LatticePhase::m_site_density, Phase::meanMolecularWeight(), and Phase::setMolarDensity().

Referenced by LatticePhase::setConcentrations(), LatticePhase::setMassFractions(), LatticePhase::setMassFractions_NoNorm(), LatticePhase::setMoleFractions(), LatticePhase::setMoleFractions_NoNorm(), and LatticePhase::setPressure().

void setMoleFractions ( const doublereal *const  x)
virtual

Set the mole fractions.

Parameters
xInput vector of mole fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 255 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMoleFractions().

void setMoleFractions_NoNorm ( const doublereal *const  x)
virtual

Set the mole fractions, but don't normalize them to one.

Parameters
xInput vector of mole fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 261 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMoleFractions().

void setMassFractions ( const doublereal *const  y)
virtual

Set the mass fractions, and normalize them to one.

Parameters
yInput vector of mass fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 267 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMassFractions().

void setMassFractions_NoNorm ( const doublereal *const  y)
virtual

Set the mass fractions, but don't normalize them to one.

Parameters
yInput vector of mass fractions. Length: m_kk.

Reimplemented from Phase.

Definition at line 273 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setMassFractions_NoNorm().

void setConcentrations ( const doublereal *const  c)
virtual

Set the concentration,.

Parameters
cInput vector of concentrations. Length: m_kk.

Reimplemented from Phase.

Definition at line 279 of file LatticePhase.cpp.

References LatticePhase::calcDensity(), and Phase::setConcentrations().

void getActivityConcentrations ( doublereal *  c) const
virtual

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and the pressure.

Activity is assumed to be molality-based here. This method returns an array of generalized concentrations \( C_k\) that are defined such that \( a_k = C_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below. These generalized concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions.

Parameters
cArray of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 285 of file LatticePhase.cpp.

References Phase::getMoleFractions().

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration for use

For the time being, we will use the concentration of pure solvent for the the standard concentration of all species. This has the effect of making mass-action reaction rates based on the molality of species proportional to the molality of the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard Concentration in units of m3 kmol-1.
Parameters
kSpecies index

Reimplemented from ThermoPhase.

Definition at line 297 of file LatticePhase.cpp.

doublereal logStandardConc ( size_t  k = 0) const
virtual

Returns the natural logarithm of the standard concentration of the kth species.

Parameters
kSpecies index

Reimplemented from ThermoPhase.

Definition at line 302 of file LatticePhase.cpp.

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional activity coefficients at the current solution temperature, pressure, and solution concentration.

For this phase, the activity coefficients are all equal to one.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 290 of file LatticePhase.cpp.

References Phase::m_kk.

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solid solution at the current temperature, pressure and mole fraction of the solid solution.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 307 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::gibbs_RT_ref(), Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, LatticePhase::m_speciesMolarVolume, ckr::max(), Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol) For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
hbarOutput vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 321 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, Cantera::scale(), and Phase::temperature().

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]

The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See Also
SpeciesThermo
Parameters
sbarOutput vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 328 of file LatticePhase.cpp.

References LatticePhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, ckr::max(), Phase::moleFraction(), and Cantera::SmallNumber.

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters
cpbarOutput vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 339 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::getCp_R(), and Phase::m_kk.

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented from ThermoPhase.

Definition at line 347 of file LatticePhase.cpp.

References LatticePhase::getStandardVolumes().

void getStandardChemPotentials ( doublereal *  mu) const
virtual

Get the array of chemical potentials at unit activity for the species standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 352 of file LatticePhase.cpp.

References ThermoPhase::_RT(), LatticePhase::gibbs_RT_ref(), and Cantera::scale().

void getPureGibbs ( doublereal *  gpure) const
virtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state gibbs free energies Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 358 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::gibbs_RT_ref(), Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, LatticePhase::m_speciesMolarVolume, and Phase::temperature().

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species standard states at their standard states at the current T and P of the solution.

A small pressure dependent term is added onto the reference state enthalpy to get the pressure dependence of this term.

\[ h^o_k(T,P) = h^{ref}_k(T) + \left( \frac{P - P_{ref}}{C_o} \right) \]

The reference state thermodynamics is obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 368 of file LatticePhase.cpp.

References LatticePhase::enthalpy_RT_ref(), Cantera::GasConstant, Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, LatticePhase::m_speciesMolarVolume, and Phase::temperature().

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the species standard states at the current T and P of the solution.

The entropy of the standard state is defined as independent of pressure here.

\[ s^o_k(T,P) = s^{ref}_k(T) \]

The reference state thermodynamics is obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 377 of file LatticePhase.cpp.

References LatticePhase::entropy_R_ref().

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species standard states at the current T and P of the solution.

The standard gibbs free energies are obtained from the enthalpy and entropy formulation.

\[ g^o_k(T,P) = h^{o}_k(T,P) - T s^{o}_k(T,P) \]

Parameters
grtOutput vector of nondimensional standard state gibbs free energies Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 383 of file LatticePhase.cpp.

References ThermoPhase::_RT(), LatticePhase::gibbs_RT_ref(), Phase::m_kk, LatticePhase::m_Pcurrent, LatticePhase::m_Pref, and LatticePhase::m_speciesMolarVolume.

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

The heat capacity of the standard state is independent of pressure

\[ Cp^o_k(T,P) = Cp^{ref}_k(T) \]

The reference state thermodynamics is obtained by a pointer to a populated species thermodynamic property manager class (see ThermoPhase::m_spthermo). How to relate pressure changes to the reference state thermodynamics is resolved at this level.

Parameters
cprOutput vector of nondimensional standard state heat capacities Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 402 of file LatticePhase.cpp.

References LatticePhase::cp_R_ref().

Referenced by LatticePhase::getPartialMolarCp().

void getStandardVolumes ( doublereal *  vol) const
virtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 408 of file LatticePhase.cpp.

References LatticePhase::m_speciesMolarVolume.

Referenced by LatticePhase::getPartialMolarVolumes().

const vector_fp & enthalpy_RT_ref ( ) const

Returns the vector of nondimensional Enthalpies of the reference state at the current temperature of the solution and the reference pressure for the phase.

Returns
Output vector of nondimensional reference state Enthalpies of the species. Length: m_kk

Definition at line 419 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_h0_RT.

Referenced by LatticePhase::enthalpy_mole(), LatticePhase::getEnthalpy_RT(), LatticePhase::getPartialMolarEnthalpies(), and LatticePhase::intEnergy_mole().

const vector_fp & gibbs_RT_ref ( ) const

Returns a reference to the dimensionless reference state Gibbs free energy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 430 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_g0_RT.

Referenced by LatticePhase::getChemPotentials(), LatticePhase::getGibbs_RT(), LatticePhase::getPureGibbs(), and LatticePhase::getStandardChemPotentials().

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 436 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), LatticePhase::m_g0_RT, and Phase::m_kk.

Referenced by LatticePhase::getGibbs_ref().

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

units = J/kmol

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 393 of file LatticePhase.cpp.

References Cantera::GasConstant, LatticePhase::getGibbs_RT_ref(), Phase::m_kk, and Phase::temperature().

const vector_fp & entropy_R_ref ( ) const

Returns a reference to the dimensionless reference state Entropy vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 449 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_s0_R.

Referenced by LatticePhase::entropy_mole(), LatticePhase::getEntropy_R(), and LatticePhase::getPartialMolarEntropies().

const vector_fp & cp_R_ref ( ) const

Returns a reference to the dimensionless reference state Heat Capacity vector.

This function is part of the layer that checks/recalculates the reference state thermo functions.

Definition at line 460 of file LatticePhase.cpp.

References LatticePhase::_updateThermo(), and LatticePhase::m_cp0_R.

Referenced by LatticePhase::cp_mole(), and LatticePhase::getCp_R().

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method performs any initialization required after all species have been added. For example, it is used to resize internal work arrays that must have an entry for each species. This method is called from ThermoPhase::initThermoXML(), which is called from importPhase(), just prior to returning from the function, importPhase().

See Also
importCTML.cpp

Reimplemented from ThermoPhase.

Definition at line 480 of file LatticePhase.cpp.

References ThermoPhase::initThermo(), LatticePhase::m_cp0_R, LatticePhase::m_g0_RT, LatticePhase::m_h0_RT, Phase::m_kk, LatticePhase::m_mm, LatticePhase::m_Pref, LatticePhase::m_s0_R, LatticePhase::m_speciesMolarVolume, ThermoPhase::m_spthermo, LatticePhase::m_tmax, LatticePhase::m_tmin, SpeciesThermo::maxTemp(), SpeciesThermo::minTemp(), Phase::nElements(), Phase::nSpecies(), and ThermoPhase::refPressure().

void initThermoXML ( XML_Node phaseNode,
std::string  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented from ThermoPhase.

Definition at line 504 of file LatticePhase.cpp.

References XML_Node::attrib(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), ctml::getFloat(), XML_Node::hasChild(), ThermoPhase::initThermoXML(), Cantera::lowercase(), Phase::m_kk, LatticePhase::m_site_density, LatticePhase::m_speciesMolarVolume, XML_Node::root(), and Phase::speciesNames().

void setParameters ( int  n,
doublereal *const  c 
)
virtual

Set the equation of state parameters from the argument list.

Set equation of state parameters.

Parameters
nnumber of parameters. Must be one
carray of n coefficients c[0] = The bulk lattice density (kmol m-3)

Reimplemented from ThermoPhase.

Definition at line 569 of file LatticePhase.cpp.

References LatticePhase::m_site_density, and Phase::setMolarDensity().

void getParameters ( int &  n,
doublereal *const  c 
) const
virtual

Get the equation of state parameters in a vector.

Parameters
nnumber of parameters
carray of n coefficients

For this phase:

  • n = 1
  • c[0] = molar density of phase [ kmol/m^3 ]

Reimplemented from ThermoPhase.

Definition at line 575 of file LatticePhase.cpp.

References Phase::molarDensity().

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() in file importCTML.cpp when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

For this phase, the molar density of the phase is specified in this block, and is a required parameter.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

eosdata points to the thermo block, and looks like this:

  <phase id="O_lattice_SiO2" >
    <thermo model="Lattice">
        <site_density units="kmol/m^3"> 73.159 </site_density>
    <vacancy_species> "O_vacancy"  </vacancy_species>
    </thermo>
  </phase>    

Reimplemented from ThermoPhase.

Definition at line 582 of file LatticePhase.cpp.

References XML_Node::_require(), ctml::getChildValue(), ctml::getFloat(), LatticePhase::m_site_density, and LatticePhase::m_vacancy.

void _updateThermo ( ) const
private

Update the species reference state thermodynamic functions.

The polynomials for the standard state functions are only reevaluated if the temperature has changed.

Definition at line 556 of file LatticePhase.cpp.

References LatticePhase::m_cp0_R, LatticePhase::m_g0_RT, LatticePhase::m_h0_RT, Phase::m_kk, LatticePhase::m_s0_R, ThermoPhase::m_spthermo, LatticePhase::m_tlast, Phase::temperature(), and SpeciesThermo::update().

Referenced by LatticePhase::cp_R_ref(), LatticePhase::enthalpy_RT_ref(), LatticePhase::entropy_R_ref(), LatticePhase::getGibbs_RT_ref(), and LatticePhase::gibbs_RT_ref().

virtual doublereal refPressure ( ) const
inlinevirtualinherited
virtual doublereal minTemp ( size_t  k = npos) const
inlinevirtualinherited

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 181 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::minTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().

doublereal Hf298SS ( const int  k) const
inlineinherited

Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)

The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kspecies index
Returns
Returns the current value of the Heat of Formation at 298K and 1 bar

Definition at line 221 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void modifyOneHf298SS ( const int  k,
const doublereal  Hf298New 
)
inlinevirtualinherited

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kSpecies k
Hf298NewSpecify the new value of the Heat of Formation at 298K and 1 bar

Definition at line 233 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal maxTemp ( size_t  k = npos) const
inlinevirtualinherited

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 250 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and SpeciesThermo::maxTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ThermoPhase::setState_HPorUV(), ThermoPhase::setState_SPorSV(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupMM().

bool chargeNeutralityNecessary ( ) const
inlineinherited

Returns the chargeNeutralityNecessity boolean.

Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality-based activity coefficients have this parameter set to true.

Definition at line 261 of file ThermoPhase.h.

References ThermoPhase::m_chargeNeutralityNecessary.

virtual doublereal isothermalCompressibility ( ) const
inlinevirtualinherited

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, WaterSSTP, RedlichKwongMFTP, and IdealSolnGasVPSS.

Definition at line 348 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by SingleSpeciesTP::cv_mole().

virtual doublereal thermalExpansionCoeff ( ) const
inlinevirtualinherited

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, PureFluidPhase, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, and WaterSSTP.

Definition at line 360 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by SingleSpeciesTP::cv_mole().

virtual void updateDensity ( )
inlinevirtualinherited
Deprecated:

Definition at line 366 of file ThermoPhase.h.

References Cantera::deprecatedMethod().

void setElectricPotential ( doublereal  v)
inlineinherited

Set the electric potential of this phase (V).

This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.

Each phase may have its own electric potential.

Parameters
vInput value of the electric potential in Volts

Definition at line 390 of file ThermoPhase.h.

References ThermoPhase::m_phi.

Referenced by InterfaceKinetics::setElectricPotential(), vcs_VolPhase::setElectricPotential(), and vcs_VolPhase::setState_TP().

doublereal electricPotential ( ) const
inlineinherited
int activityConvention ( ) const
virtualinherited

This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.

Currently, there are two activity conventions:

  • Molar-based activities Unit activity of species at either a hypothetical pure solution of the species or at a hypothetical pure ideal solution at infinite dilution cAC_CONVENTION_MOLAR 0
    • default
  • Molality-based activities (unit activity of solutes at a hypothetical 1 molal solution referenced to infinite dilution at all pressures and temperatures). cAC_CONVENTION_MOLALITY 1

Reimplemented in MolalityVPSSTP.

Definition at line 143 of file ThermoPhase.cpp.

References Cantera::cAC_CONVENTION_MOLAR.

Referenced by vcs_MultiPhaseEquil::reportCSV(), and LiquidTransport::stefan_maxwell_solve().

int standardStateConvention ( ) const
virtualinherited

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

Currently, there are two standard state conventions:

  • Temperature-based activities cSS_CONVENTION_TEMPERATURE 0
    • default
  • Variable Pressure and Temperature -based activities cSS_CONVENTION_VPSS 1
  • Thermodynamics is set via slave ThermoPhase objects with nothing being carried out at this ThermoPhase object level cSS_CONVENTION_SLAVE 2

Reimplemented in PureFluidPhase, LatticeSolidPhase, MixtureFugacityTP, and VPStandardStateTP.

Definition at line 148 of file ThermoPhase.cpp.

References ThermoPhase::m_ssConvention.

Referenced by Cantera::importPhase().

void getUnitsStandardConc ( double *  uA,
int  k = 0,
int  sizeUA = 6 
) const
virtualinherited

Returns the units of the standard and generalized concentrations.

Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless.

This routine is used in print out applications where the units are needed. Usually, MKS units are assumed throughout the program and in the XML input files.

The base ThermoPhase class assigns the default quantities of (kmol/m3) for all species. Inherited classes are responsible for overriding the default values if necessary.

Parameters
uAOutput vector containing the units uA[0] = kmol units - default = 1 uA[1] = m units - default = -nDim(), the number of spatial dimensions in the Phase class. uA[2] = kg units - default = 0; uA[3] = Pa(pressure) units - default = 0; uA[4] = Temperature units - default = 0; uA[5] = time units - default = 0
kspecies index. Defaults to 0.
sizeUAoutput int containing the size of the vector. Currently, this is equal to 6.

Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, MolalityVPSSTP, IdealMolalSoln, MetalSHEelectrons, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, RedlichKwongMFTP, GibbsExcessVPSSTP, IdealSolnGasVPSS, and StoichSubstance.

Definition at line 848 of file ThermoPhase.cpp.

References Phase::nDim().

void getActivities ( doublereal *  a) const
virtualinherited

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

Note, for molality based formulations, this returns the molality based activities.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

Parameters
aOutput vector of activities. Length: m_kk.

Reimplemented in HMWSoln, DebyeHuckel, MolalityVPSSTP, IdealMolalSoln, GibbsExcessVPSSTP, PureFluidPhase, and SingleSpeciesTP.

Definition at line 158 of file ThermoPhase.cpp.

References ThermoPhase::getActivityConcentrations(), Phase::nSpecies(), and ThermoPhase::standardConcentration().

Referenced by vcs_MultiPhaseEquil::reportCSV(), and ThermoPhase::reportCSV().

void getLnActivityCoefficients ( doublereal *  lnac) const
virtualinherited

Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
lnacOutput vector of ln activity coefficients. Length: m_kk.

Reimplemented in MargulesVPSSTP, RedlichKisterVPSSTP, and MolarityIonicVPSSTP.

Definition at line 166 of file ThermoPhase.cpp.

References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.

Referenced by GibbsExcessVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

virtual void getChemPotentials_RT ( doublereal *  mu) const
inlinevirtualinherited

Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.

\( \mu_k / \hat R T \). Units: unitless

Parameters
muOutput vector of dimensionless chemical potentials. Length: m_kk.

Reimplemented in IdealSolidSolnPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, StoichSubstance, MixtureFugacityTP, and VPStandardStateTP.

Definition at line 583 of file ThermoPhase.h.

References ThermoPhase::err().

void getElectrochemPotentials ( doublereal *  mu) const
inlineinherited

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term \( F z_k \phi_p \) to each chemical potential. The electrochemical potential of species k in a phase p, \( \zeta_k \), is related to the chemical potential via the following equation,

\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]

Parameters
muOutput vector of species electrochemical potentials. Length: m_kk. Units: J/kmol

Definition at line 616 of file ThermoPhase.h.

References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

Referenced by InterfaceKinetics::getDeltaElectrochemPotentials().

virtual void getPartialMolarIntEnergies ( doublereal *  ubar) const
inlinevirtualinherited

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented in IdealGasPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, and PureFluidPhase.

Definition at line 650 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by MolalityVPSSTP::reportCSV(), and ThermoPhase::reportCSV().

virtual void getdPartialMolarVolumes_dT ( doublereal *  d_vbar_dT) const
inlinevirtualinherited

Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture.

Units: m^3/kmol.

The derivative is at constant pressure

Parameters
d_vbar_dTOutput vector of derivatives of species partial molar volumes wrt T. Length = m_kk. units are m^3/kmol/K.

Definition at line 683 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdPartialMolarVolumes_dP ( doublereal *  d_vbar_dP) const
inlinevirtualinherited

Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture.

Units: m^3/kmol.

The derivative is at constant temperature

Parameters
d_vbar_dPOutput vector of derivatives of species partial molar volumes wrt P. Length = m_kk. units are m^3/kmol/Pa.

Definition at line 695 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getIntEnergy_RT ( doublereal *  urt) const
inlinevirtualinherited

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MetalSHEelectrons, FixedChemPotSSTP, MineralEQ3, StoichSubstanceSSTP, WaterSSTP, MixtureFugacityTP, and VPStandardStateTP.

Definition at line 764 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by SingleSpeciesTP::getPartialMolarIntEnergies().

virtual void getdStandardVolumes_dT ( doublereal *  d_vol_dT) const
inlinevirtualinherited

Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution.

The derivative is at constant pressure units = m^3 / kmol / K

Parameters
d_vol_dTOutput vector containing derivatives of standard state volumes wrt T Length: m_kk.

Definition at line 800 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getdStandardVolumes_dP ( doublereal *  d_vol_dP) const
inlinevirtualinherited

Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution.

The derivative is at constant temperature. units = m^3 / kmol / Pa

Parameters
d_vol_dPOutput vector containing the derivative of standard state volumes wrt P. Length: m_kk.

Definition at line 813 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getEnthalpy_RT_ref ( doublereal *  hrt) const
inlinevirtualinherited

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

This base function will throw a CanteraException unless it is overwritten in a derived class.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies Length: m_kk.

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, SurfPhase, MixtureFugacityTP, FixedChemPotSSTP, SingleSpeciesTP, VPStandardStateTP, PureFluidPhase, StoichSubstance, and WaterSSTP.

Definition at line 832 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by PDSS_IonsFromNeutral::enthalpy_RT_ref().

virtual void getEntropy_R_ref ( doublereal *  er) const
inlinevirtualinherited

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MixtureFugacityTP, SurfPhase, FixedChemPotSSTP, VPStandardStateTP, SingleSpeciesTP, PureFluidPhase, StoichSubstance, and WaterSSTP.

Definition at line 867 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by PDSS_IonsFromNeutral::entropy_R_ref().

virtual void getIntEnergy_RT_ref ( doublereal *  urt) const
inlinevirtualinherited

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, FixedChemPotSSTP, MetalSHEelectrons, MineralEQ3, and StoichSubstanceSSTP.

Definition at line 879 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void getCp_R_ref ( doublereal *  cprt) const
inlinevirtualinherited

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MixtureFugacityTP, SurfPhase, FixedChemPotSSTP, VPStandardStateTP, SingleSpeciesTP, StoichSubstance, and WaterSSTP.

Definition at line 892 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by PDSS_IonsFromNeutral::cp_R_ref().

virtual void getStandardVolumes_ref ( doublereal *  vol) const
inlinevirtualinherited

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented in IdealGasPhase, MixtureFugacityTP, VPStandardStateTP, and WaterSSTP.

Definition at line 904 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by PDSS_IonsFromNeutral::molarVolume_ref().

void setReferenceComposition ( const doublereal *const  x)
virtualinherited

Sets the reference composition.

Parameters
xMole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector.

Definition at line 992 of file ThermoPhase.cpp.

References DATA_PTR, Phase::getMoleFractions(), Phase::m_kk, and ThermoPhase::xMol_Ref.

Referenced by ThermoPhase::initThermoXML().

void getReferenceComposition ( doublereal *const  x) const
virtualinherited

Gets the reference composition.

The reference mole fraction is a safe mole fraction.

Parameters
xMole fraction vector containing the reference composition.

Definition at line 1013 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::xMol_Ref.

doublereal enthalpy_mass ( ) const
inlineinherited
doublereal intEnergy_mass ( ) const
inlineinherited
doublereal entropy_mass ( ) const
inlineinherited
doublereal gibbs_mass ( ) const
inlineinherited
doublereal cp_mass ( ) const
inlineinherited
doublereal cv_mass ( ) const
inlineinherited
doublereal _RT ( ) const
inlineinherited
void setState_TPX ( doublereal  t,
doublereal  p,
const doublereal *  x 
)
virtualinherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Reimplemented in SingleSpeciesTP, and MixtureFugacityTP.

Definition at line 174 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().

Referenced by MultiTransport::getMassFluxes(), DustyGasTransport::getMolarFluxes(), MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().

void setState_TPX ( doublereal  t,
doublereal  p,
compositionMap x 
)
inherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xComposition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 181 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPX ( doublereal  t,
doublereal  p,
const std::string &  x 
)
inherited

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xString containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 188 of file ThermoPhase.cpp.

References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().

void setState_TPY ( doublereal  t,
doublereal  p,
const doublereal *  y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 206 of file ThermoPhase.cpp.

References Phase::setMassFractions(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
compositionMap y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yComposition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 214 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

void setState_TPY ( doublereal  t,
doublereal  p,
const std::string &  y 
)
inherited

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yString containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 222 of file ThermoPhase.cpp.

References ThermoPhase::err(), Phase::nSpecies(), Cantera::parseCompString(), CanteraError::save(), Phase::setMassFractionsByName(), ThermoPhase::setPressure(), Phase::setTemperature(), and Phase::speciesName().

void setState_TP ( doublereal  t,
doublereal  p 
)
inherited
void setState_PX ( doublereal  p,
doublereal *  x 
)
inherited

Set the pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Definition at line 249 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), and ThermoPhase::setPressure().

Referenced by vcs_VolPhase::_updateMoleFractionDependencies(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().

void setState_PY ( doublereal  p,
doublereal *  y 
)
inherited

Set the internally stored pressure (Pa) and mass fractions.

Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 256 of file ThermoPhase.cpp.

References Phase::setMassFractions(), and ThermoPhase::setPressure().

void setState_HP ( doublereal  h,
doublereal  p,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 263 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by FlowReactor::updateState(), and ConstPressureReactor::updateState().

void setState_UV ( doublereal  u,
doublereal  v,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 270 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by Reactor::updateState().

void setState_SP ( doublereal  s,
doublereal  p,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 546 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

void setState_SV ( doublereal  s,
doublereal  v,
doublereal  tol = 1.e-4 
)
virtualinherited

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Defaults to 1.0E-4

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 553 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

virtual void setToEquilState ( const doublereal *  lambda_RT)
inlinevirtualinherited

This method is used by the ChemEquil equilibrium solver.

It sets the state such that the chemical potentials satisfy

\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]

where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.

Parameters
lambda_RTInput vector of dimensionless element potentials The length is equal to nElements().

Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, IdealGasPhase, IdealMolalSoln, MolalityVPSSTP, RedlichKwongMFTP, IdealSolnGasVPSS, and ConstDensityThermo.

Definition at line 1193 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by ChemEquil::setToEquilState().

void setElementPotentials ( const vector_fp lambda)
inherited

Stores the element potentials in the ThermoPhase object.

Called by function 'equilibrate' in ChemEquil.h to transfer the element potentials to this object after every successful equilibration routine. The element potentials are stored in their dimensionless forms, calculated by dividing by RT.

Parameters
lambdaInput vector containing the element potentials. Length = nElements. Units are Joules/kmol.

Definition at line 1106 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().

Referenced by Cantera::equilibrate(), ChemEquil::equilibrate(), and Cantera::vcs_equilibrate().

bool getElementPotentials ( doublereal *  lambda) const
inherited

Returns the element potentials stored in the ThermoPhase object.

Returns the stored element potentials. The element potentials are retrieved from their stored dimensionless forms by multiplying by RT.

Parameters
lambdaOutput vector containing the element potentials. Length = nElements. Units are Joules/kmol.
Returns
bool indicating whether there are any valid stored element potentials. The calling routine should check this bool. In the case that there aren't any, lambda is not touched.

Definition at line 1129 of file ThermoPhase.cpp.

References Cantera::GasConstant, ThermoPhase::m_hasElementPotentials, ThermoPhase::m_lambdaRRT, Phase::nElements(), and Phase::temperature().

Referenced by ChemEquil::equilibrate().

virtual doublereal critTemperature ( ) const
inlinevirtualinherited
virtual doublereal critPressure ( ) const
inlinevirtualinherited

Critical pressure (Pa).

Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.

Definition at line 1242 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by MixtureFugacityTP::calculatePsat(), and MixtureFugacityTP::psatEst().

virtual doublereal critDensity ( ) const
inlinevirtualinherited

Critical density (kg/m3).

Reimplemented in HMWSoln, IdealMolalSoln, RedlichKwongMFTP, PureFluidPhase, and WaterSSTP.

Definition at line 1248 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by MixtureFugacityTP::densityCalc(), and MixtureFugacityTP::phaseState().

virtual doublereal satTemperature ( doublereal  p) const
inlinevirtualinherited

Return the saturation temperature given the pressure.

Parameters
pPressure (Pa)

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.

Definition at line 1267 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal satPressure ( doublereal  t) const
inlinevirtualinherited

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.

Definition at line 1276 of file ThermoPhase.h.

References ThermoPhase::err().

virtual doublereal vaporFraction ( ) const
inlinevirtualinherited

Return the fraction of vapor at the current conditions.

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, PureFluidPhase, and WaterSSTP.

Definition at line 1282 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void setState_Tsat ( doublereal  t,
doublereal  x 
)
inlinevirtualinherited

Set the state to a saturated system at a particular temperature.

Parameters
tTemperature (kelvin)
xFraction of vapor

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.

Definition at line 1292 of file ThermoPhase.h.

References ThermoPhase::err().

virtual void setState_Psat ( doublereal  p,
doublereal  x 
)
inlinevirtualinherited

Set the state to a saturated system at a particular pressure.

Parameters
pPressure (Pa)
xFraction of vapor

Reimplemented in HMWSoln, DebyeHuckel, SingleSpeciesTP, and PureFluidPhase.

Definition at line 1301 of file ThermoPhase.h.

References ThermoPhase::err().

void saveSpeciesData ( const size_t  k,
const XML_Node *const  data 
)
inherited

Store a reference pointer to the XML tree containing the species data for this phase.

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see files importCTML.cpp and ThermoFactory.cpp.

This is used to access data needed to construct transport manager later.

Parameters
kSpecies index
dataPointer to the XML_Node data containing information about the species in the phase.

Definition at line 1050 of file ThermoPhase.cpp.

References ThermoPhase::m_speciesData.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

const std::vector< const XML_Node * > & speciesData ( ) const
inherited

Return a pointer to the vector of XML nodes containing the species data for this phase.

Definition at line 1060 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::m_speciesData.

Referenced by MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), TransportFactory::initTransport(), LatticeSolidPhase::installSlavePhases(), and TransportFactory::setupLiquidTransport().

void setSpeciesThermo ( SpeciesThermo spthermo)
inherited

Install a species thermodynamic property manager.

The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase() in importCTML.cpp.

Parameters
spthermoinput pointer to the species thermodynamic property manager.

Definition at line 886 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), LatticeSolidPhase::installSlavePhases(), and VPSSMgrFactory::newVPSSMgr().

SpeciesThermo & speciesThermo ( int  k = -1)
virtualinherited

Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.

Parameters
kSpeices id. The default is -1, meaning return the default

Reimplemented in LatticeSolidPhase.

Definition at line 904 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().

void initThermoFile ( std::string  inputFile,
std::string  id 
)
virtualinherited

Initialization of a ThermoPhase object using an ctml file.

This routine is a precursor to initThermoXML(XML_Node*) routine, which does most of the work. Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If none is given, the first XML phase element encountered will be used.

Definition at line 928 of file ThermoPhase.cpp.

References XML_Node::build(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), ThermoPhase::initThermoXML(), and Phase::xml().

void installSlavePhases ( Cantera::XML_Node phaseNode)
virtualinherited

Add in species from Slave phases.

This hook is used for cSS_CONVENTION_SLAVE phases

Parameters
phaseNodeXML Element for the phase

Reimplemented in LatticeSolidPhase.

Definition at line 1045 of file ThermoPhase.cpp.

Referenced by Cantera::importPhase().

void setStateFromXML ( const XML_Node state)
virtualinherited

Set the initial state of the phase to the conditions specified in the state XML element.

This method sets the temperature, pressure, and mole fraction vector to a set default value.

Parameters
stateAN XML_Node object corresponding to the "state" entry for this phase in the input file.

Reimplemented in MolalityVPSSTP, MixtureFugacityTP, and SurfPhase.

Definition at line 1072 of file ThermoPhase.cpp.

References ctml::getChildValue(), ctml::getFloat(), XML_Node::hasChild(), Phase::setDensity(), Phase::setMassFractionsByName(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

Referenced by ThermoPhase::initThermoXML(), and MolalityVPSSTP::setStateFromXML().

virtual void getdlnActCoeffds ( const doublereal  dTds,
const doublereal *const  dXds,
doublereal *  dlnActCoeffds 
) const
inlinevirtualinherited

Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.

Parameters
dTdsInput of temperature change along the path
dXdsInput vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one.
dlnActCoeffdsOutput vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m.

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 1511 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().

virtual void getdlnActCoeffdlnX_diag ( doublereal *  dlnActCoeffdlnX_diag) const
inlinevirtualinherited

Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnX_diagOutput vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, and IonsFromNeutralVPSSTP.

Definition at line 1533 of file ThermoPhase.h.

References ThermoPhase::err().

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().

virtual void getdlnActCoeffdlnN_diag ( doublereal *  dlnActCoeffdlnN_diag) const
inlinevirtualinherited

Get the array of log species mole number derivatives of the log activity coefficients.

This function is a virtual method. For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration-like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that species mole number variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnN_diagOutput vector of derivatives of the log Activity Coefficients. length = m_kk

Reimplemented in MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, MixtureFugacityTP, and VPStandardStateTP.

Definition at line 1554 of file ThermoPhase.h.

References ThermoPhase::err().

void getdlnActCoeffdlnN ( const size_t  ld,
doublereal *const  dlnActCoeffdlnN 
)
virtualinherited

Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.

Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.

units = 1 / kmol

dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.

\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]

Parameters
ldNumber of rows in the matrix
dlnActCoeffdlnNOutput vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk

Reimplemented in MolalityVPSSTP, MixedSolventElectrolyte, MargulesVPSSTP, RedlichKisterVPSSTP, PhaseCombo_Interaction, IonsFromNeutralVPSSTP, and GibbsExcessVPSSTP.

Definition at line 1158 of file ThermoPhase.cpp.

References Phase::m_kk.

Referenced by vcs_VolPhase::_updateLnActCoeffJac().

std::string report ( bool  show_thermo = true) const
virtualinherited
void reportCSV ( std::ofstream &  csvFile) const
virtualinherited
XML_Node & xml ( )
inherited
std::string id ( ) const
inherited
void setID ( std::string  id)
inherited

Set the string id for the phase.

Parameters
idString id of the phase

Definition at line 135 of file Phase.cpp.

References Phase::id(), and Phase::m_id.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

std::string name ( ) const
inherited
void setName ( std::string  nm)
inherited

Sets the string name for the phase.

Parameters
nmString name of the phase

Definition at line 145 of file Phase.cpp.

References Phase::m_name.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

string elementName ( size_t  m) const
inherited
size_t elementIndex ( std::string  name) const
inherited

Return the index of element named 'name'.

The index is an integer assigned to each element in the order it was added. Returns npos if the specified element is not found.

Parameters
nameName of the element

Definition at line 175 of file Phase.cpp.

References Phase::m_elementNames, Phase::m_mm, and Cantera::npos.

Referenced by Phase::addUniqueElementAfterFreeze(), MultiPhase::init(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), Cantera::installSpecies(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().

const vector< string > & elementNames ( ) const
inherited

Return a read-only reference to the vector of element names.

Definition at line 185 of file Phase.cpp.

References Phase::m_elementNames.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), and IonsFromNeutralVPSSTP::initThermoXML().

doublereal atomicWeight ( size_t  m) const
inherited

Atomic weight of element m.

Parameters
mElement index

Definition at line 190 of file Phase.cpp.

References Phase::m_atomicWeights.

Referenced by ChemEquil::initialize(), and WaterSSTP::initThermoXML().

doublereal entropyElement298 ( size_t  m) const
inherited

Entropy of the element in its standard state at 298 K and 1 bar.

Parameters
mElement index

Definition at line 195 of file Phase.cpp.

References AssertThrowMsg, AssertTrace, ENTROPY298_UNKNOWN, Phase::m_entropy298, and Phase::m_mm.

Referenced by LatticeSolidPhase::installSlavePhases(), Cantera::LookupGe(), and PDSS_HKFT::LookupGe().

int atomicNumber ( size_t  m) const
inherited

Atomic number of element m.

Parameters
mElement index

Definition at line 209 of file Phase.cpp.

References Phase::m_atomicNumbers.

Referenced by MultiPhase::addPhase(), and LatticeSolidPhase::installSlavePhases().

int elementType ( size_t  m) const
inherited

Return the element constraint type Possible types include:

CT_ELEM_TYPE_TURNEDOFF -1 CT_ELEM_TYPE_ABSPOS 0 CT_ELEM_TYPE_ELECTRONCHARGE 1 CT_ELEM_TYPE_CHARGENEUTRALITY 2 CT_ELEM_TYPE_LATTICERATIO 3 CT_ELEM_TYPE_KINETICFROZEN 4 CT_ELEM_TYPE_SURFACECONSTRAINT 5 CT_ELEM_TYPE_OTHERCONSTRAINT 6

The default is CT_ELEM_TYPE_ABSPOS.

Parameters
mElement index
Returns
Returns the element type

Definition at line 214 of file Phase.cpp.

References Phase::m_elem_type.

Referenced by LatticeSolidPhase::installSlavePhases(), and vcs_VolPhase::transferElementsFM().

int changeElementType ( int  m,
int  elem_type 
)
inherited

Change the element type of the mth constraint Reassigns an element type.

Parameters
mElement index
elem_typeNew elem type to be assigned
Returns
Returns the old element type

Definition at line 219 of file Phase.cpp.

References Phase::m_elem_type.

const vector_fp & atomicWeights ( ) const
inherited

Return a read-only reference to the vector of atomic weights.

Definition at line 204 of file Phase.cpp.

References Phase::m_atomicWeights.

Referenced by LatticeSolidPhase::installSlavePhases().

size_t nElements ( ) const
inherited
void checkElementIndex ( size_t  m) const
inherited

Check that the specified element index is in range Throws an exception if m is greater than nElements()-1.

Definition at line 155 of file Phase.cpp.

References Phase::m_mm.

Referenced by Phase::elementName(), and Phase::nAtoms().

void checkElementArraySize ( size_t  mm) const
inherited

Check that an array size is at least nElements() Throws an exception if mm is less than nElements().

Used before calls which take an array pointer.

Definition at line 162 of file Phase.cpp.

References Phase::m_mm.

doublereal nAtoms ( size_t  k,
size_t  m 
) const
inherited
void getAtoms ( size_t  k,
double *  atomArray 
) const
inherited

Get a vector containing the atomic composition of species k.

Parameters
kspecies index
atomArrayvector containing the atomic number in the species. Length: m_mm

Definition at line 233 of file Phase.cpp.

References Phase::m_mm, and Phase::m_speciesComp.

Referenced by LatticeSolidPhase::installSlavePhases().

size_t speciesIndex ( std::string  name) const
inherited
string speciesName ( size_t  k) const
inherited

Name of the species with index k.

Parameters
kindex of the species

Definition at line 257 of file Phase.cpp.

References Phase::checkSpeciesIndex(), and Phase::m_speciesNames.

Referenced by StFlow::componentName(), ReactingSurf1D::componentName(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), MolalityVPSSTP::findCLMIndex(), TransportFactory::fitProperties(), AqueousTransport::getLiquidTransportData(), Phase::getMoleFractionsByName(), Cantera::importSolution(), MultiPhase::init(), ChemEquil::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), IdealMolalSoln::initThermoXML(), DebyeHuckel::initThermoXML(), FlowDevice::install(), LatticeSolidPhase::installSlavePhases(), Kinetics::kineticsSpeciesName(), solveProb::print_header(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), StFlow::save(), SurfPhase::setCoveragesByName(), ChemEquil::setInitialMoles(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Inlet1D::showSolution(), ReactingSurf1D::showSolution(), Phase::speciesSPName(), and ChemEquil::update().

std::string speciesSPName ( int  k) const
inherited

Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem.

Parameters
kSpecies index within the phase
Returns
The "phaseName:speciesName" string

Definition at line 282 of file Phase.cpp.

References Phase::m_name, and Phase::speciesName().

const vector< string > & speciesNames ( ) const
inherited
size_t nSpecies ( ) const
inlineinherited

Returns the number of species in the phase.

Definition at line 252 of file Phase.h.

References Phase::m_kk.

Referenced by MultiPhase::addPhase(), InterfaceKinetics::applyButlerVolmerCorrection(), Kinetics::assignShallowPointers(), MultiPhase::calcElemAbundances(), Phase::chargeDensity(), MultiPhaseEquil::computeReactionSteps(), PDSS_IonsFromNeutral::constructPDSSXML(), RedlichKisterVPSSTP::cp_mole(), MargulesVPSSTP::cp_mole(), MixedSolventElectrolyte::cp_mole(), PhaseCombo_Interaction::cp_mole(), SolidTransport::electricalConductivity(), RedlichKisterVPSSTP::enthalpy_mole(), MargulesVPSSTP::enthalpy_mole(), MixedSolventElectrolyte::enthalpy_mole(), PhaseCombo_Interaction::enthalpy_mole(), RedlichKisterVPSSTP::entropy_mole(), MargulesVPSSTP::entropy_mole(), MixedSolventElectrolyte::entropy_mole(), PhaseCombo_Interaction::entropy_mole(), ChemEquil::equilibrate(), vcs_MultiPhaseEquil::equilibrate_TP(), ChemEquil::estimateElementPotentials(), ThermoPhase::getActivities(), MetalPhase::getActivityConcentrations(), MetalPhase::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), MetalPhase::getEnthalpy_RT(), MetalPhase::getEntropy_R(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MultiTransport::getMolarFluxes(), Phase::getMoleFractionsByName(), MultiPhase::getMoles(), MetalPhase::getStandardChemPotentials(), ImplicitSurfChem::ImplicitSurfChem(), Cantera::importSolution(), LiquidTranInteraction::init(), MultiPhase::init(), AqueousKinetics::init(), GasKinetics::init(), InterfaceKinetics::init(), GasTransport::initGas(), ChemEquil::initialize(), DustyGasTransport::initialize(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), VPStandardStateTP::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), VPSSMgr::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), LatticePhase::initThermo(), FlowDevice::install(), rxninfo::installReaction(), LatticeSolidPhase::installSlavePhases(), Kinetics::nTotalSpecies(), solveProb::print_header(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), vcs_MultiPhaseEquil::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), Phase::restoreState(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), Phase::saveState(), Kinetics::selectPhase(), ImplicitSurfChem::setConcSpecies(), SurfPhase::setCoveragesByName(), Phase::setMassFractionsByName(), MolalityVPSSTP::setMolalitiesByName(), Phase::setMoleFractionsByName(), MultiPhase::setMoles(), SolidTransport::setParameters(), MultiPhase::setPhaseMoleFractions(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), Transport::setThermo(), ReactorBase::setThermoMgr(), TransportFactory::setupLiquidTransport(), TransportFactory::setupMM(), Inlet1D::showSolution(), solveSP::solveSP(), StFlow::StFlow(), vcs_VolPhase::transferElementsFM(), AqueousKinetics::updateKc(), InterfaceKinetics::updateKc(), ConstPressureReactor::updateState(), Reactor::updateState(), and MultiPhase::uploadMoleFractionsFromPhases().

void checkSpeciesIndex ( size_t  k) const
inherited

Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1.

Definition at line 268 of file Phase.cpp.

References Phase::m_kk.

Referenced by Phase::concentration(), Phase::massFraction(), Phase::molecularWeight(), Phase::moleFraction(), Phase::nAtoms(), and Phase::speciesName().

void checkSpeciesArraySize ( size_t  kk) const
inherited

Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().

Used before calls which take an array pointer.

Definition at line 275 of file Phase.cpp.

References Phase::m_kk.

void saveState ( vector_fp state) const
inherited

Save the current internal state of the phase Write to vector 'state' the current internal state.

Parameters
stateoutput vector. Will be resized to nSpecies() + 2.

Definition at line 288 of file Phase.cpp.

References Phase::nSpecies().

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), TransportFactory::newTransport(), ReactorBase::setThermoMgr(), FlowReactor::updateState(), ConstPressureReactor::updateState(), and Reactor::updateState().

void saveState ( size_t  lenstate,
doublereal *  state 
) const
inherited

Write to array 'state' the current internal state.

Parameters
lenstatelength of the state array. Must be >= nSpecies()+2
stateoutput vector. Must be of length nSpecies() + 2 or greater.

Definition at line 293 of file Phase.cpp.

References Phase::density(), Phase::getMassFractions(), and Phase::temperature().

void restoreState ( const vector_fp state)
inherited

Restore a state saved on a previous call to saveState.

Parameters
stateState vector containing the previously saved state.

Definition at line 300 of file Phase.cpp.

Referenced by ChemEquil::equilibrate(), ChemEquil::estimateEP_Brinkley(), MultiTransport::getMassFluxes(), FlowReactor::initialize(), ConstPressureReactor::initialize(), Reactor::initialize(), and TransportFactory::newTransport().

void restoreState ( size_t  lenstate,
const doublereal *  state 
)
inherited

Restore the state of the phase from a previously saved state vector.

Parameters
lenstateLength of the state vector
stateVector of state conditions.

Definition at line 305 of file Phase.cpp.

References Phase::nSpecies(), Phase::setDensity(), Phase::setMassFractions_NoNorm(), and Phase::setTemperature().

void setMoleFractionsByName ( compositionMap xMap)
inherited

Set the species mole fractions by name.

@param xMap map from species names to mole fraction values.

Species not listed by name in xMap are set to zero.

Definition at line 362 of file Phase.cpp.

References Phase::nSpecies(), Phase::setMoleFractions(), and Phase::speciesName().

Referenced by Inlet1D::setMoleFractions(), OutletRes1D::setMoleFractions(), Phase::setMoleFractionsByName(), ThermoPhase::setState_TPX(), Phase::setState_TRX(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void setMoleFractionsByName ( const std::string &  x)
inherited

Set the mole fractions of a group of species by name.

Species which are not listed by name in the composition map are set to zero.

Parameters
xstring x in the form of a composition map

Definition at line 376 of file Phase.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMoleFractionsByName(), and Phase::speciesName().

void setMassFractionsByName ( compositionMap yMap)
inherited

Set the species mass fractions by name.

@param yMap map from species names to mass fraction values.

Species not listed by name in yMap are set to zero.

Definition at line 416 of file Phase.cpp.

References Phase::nSpecies(), Phase::setMassFractions(), and Phase::speciesName().

Referenced by Phase::setMassFractionsByName(), ThermoPhase::setState_TPY(), Phase::setState_TRY(), MixtureFugacityTP::setStateFromXML(), and ThermoPhase::setStateFromXML().

void setMassFractionsByName ( const std::string &  x)
inherited

Set the species mass fractions by name.

Species not listed by name in x are set to zero.

Parameters
xString containing a composition map

Definition at line 430 of file Phase.cpp.

References Phase::nSpecies(), Cantera::parseCompString(), Phase::setMassFractionsByName(), and Phase::speciesName().

void setState_TRX ( doublereal  t,
doublereal  dens,
const doublereal *  x 
)
inherited

Set the internally stored temperature (K), density, and mole fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
xvector of species mole fractions, length m_kk

Definition at line 441 of file Phase.cpp.

References Phase::setDensity(), Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TRX ( doublereal  t,
doublereal  dens,
compositionMap x 
)
inherited

Set the internally stored temperature (K), density, and mole fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
xComposition Map containing the mole fractions. Species not included in the map are assumed to have a zero mole fraction.

Definition at line 455 of file Phase.cpp.

References Phase::setDensity(), Phase::setMoleFractionsByName(), and Phase::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
const doublereal *  y 
)
inherited

Set the internally stored temperature (K), density, and mass fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
yvector of species mass fractions, length m_kk

Definition at line 462 of file Phase.cpp.

References Phase::setDensity(), Phase::setMassFractions(), and Phase::setTemperature().

void setState_TRY ( doublereal  t,
doublereal  dens,
compositionMap y 
)
inherited

Set the internally stored temperature (K), density, and mass fractions.

Parameters
tTemperature in kelvin
densDensity (kg/m^3)
yComposition Map containing the mass fractions. Species not included in the map are assumed to have a zero mass fraction.

Definition at line 469 of file Phase.cpp.

References Phase::setDensity(), Phase::setMassFractionsByName(), and Phase::setTemperature().

void setState_TNX ( doublereal  t,
doublereal  n,
const doublereal *  x 
)
inherited

Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions.

Parameters
tTemperature in kelvin
nmolar density (kmol/m^3)
xvector of species mole fractions, length m_kk

Definition at line 448 of file Phase.cpp.

References Phase::setMolarDensity(), Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TR ( doublereal  t,
doublereal  rho 
)
inherited

Set the internally stored temperature (K) and density (kg/m^3)

Parameters
tTemperature in kelvin
rhoDensity (kg/m^3)

Definition at line 476 of file Phase.cpp.

References Phase::setDensity(), and Phase::setTemperature().

Referenced by PureFluidPhase::setState_HP(), PureFluidPhase::setState_SP(), PureFluidPhase::setState_SV(), PDSS_IonsFromNeutral::setState_TR(), and PureFluidPhase::setState_UV().

void setState_TX ( doublereal  t,
doublereal *  x 
)
inherited

Set the internally stored temperature (K) and mole fractions.

Parameters
tTemperature in kelvin
xvector of species mole fractions, length m_kk

Definition at line 482 of file Phase.cpp.

References Phase::setMoleFractions(), and Phase::setTemperature().

void setState_TY ( doublereal  t,
doublereal *  y 
)
inherited

Set the internally stored temperature (K) and mass fractions.

Parameters
tTemperature in kelvin
yvector of species mass fractions, length m_kk

Definition at line 488 of file Phase.cpp.

References Phase::setMassFractions(), and Phase::setTemperature().

void setState_RX ( doublereal  rho,
doublereal *  x 
)
inherited

Set the density (kg/m^3) and mole fractions.

Parameters
rhoDensity (kg/m^3)
xvector of species mole fractions, length m_kk

Definition at line 494 of file Phase.cpp.

References Phase::setDensity(), and Phase::setMoleFractions().

void setState_RY ( doublereal  rho,
doublereal *  y 
)
inherited

Set the density (kg/m^3) and mass fractions.

Parameters
rhoDensity (kg/m^3)
yvector of species mass fractions, length m_kk

Definition at line 500 of file Phase.cpp.

References Phase::setDensity(), and Phase::setMassFractions().

doublereal molecularWeight ( size_t  k) const
inherited
doublereal molarMass ( size_t  k) const
inlineinherited

Return the Molar mass of species k Alternate name for molecular weight.

@param k  index for species
@return   Return the molar mass of species k kg/kmol.
Deprecated:
use molecularWeight instead

Definition at line 388 of file Phase.h.

References Phase::molecularWeight().

void getMolecularWeights ( vector_fp weights) const
inherited

Copy the vector of molecular weights into vector weights.

Parameters
weightsOutput vector of molecular weights (kg/kmol)

Definition at line 512 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( int  iwt,
doublereal *  weights 
) const
inherited

Copy the vector of molecular weights into array weights.

@param iwt      Unused.
@param weights  Output array of molecular weights (kg/kmol)
Deprecated:

Definition at line 521 of file Phase.cpp.

References Phase::molecularWeights().

void getMolecularWeights ( doublereal *  weights) const
inherited

Copy the vector of molecular weights into array weights.

Parameters
weightsOutput array of molecular weights (kg/kmol)

Definition at line 527 of file Phase.cpp.

References Phase::molecularWeights().

const vector_fp & molecularWeights ( ) const
inherited
doublereal size ( size_t  k) const
inlineinherited
void getMoleFractionsByName ( compositionMap x) const
inherited

Get the mole fractions by name.

Parameters
[out]xcomposition map containing the species mole fractions.

Definition at line 538 of file Phase.cpp.

References Phase::moleFraction(), Phase::nSpecies(), and Phase::speciesName().

doublereal moleFraction ( size_t  k) const
inherited

Return the mole fraction of a single species.

Parameters
kspecies index
Returns
Mole fraction of the species

Definition at line 552 of file Phase.cpp.

References Phase::checkSpeciesIndex(), Phase::m_mmw, and Phase::m_ym.

Referenced by Phase::chargeDensity(), SolidTransport::electricalConductivity(), ChemEquil::equilibrate(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), MolalityVPSSTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealMolalSoln::getMolalityActivityCoefficients(), Phase::getMoleFractionsByName(), IdealSolnGasVPSS::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), Phase::moleFraction(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), and ChemEquil::setInitialMoles().

doublereal moleFraction ( std::string  name) const
inherited

Return the mole fraction of a single species.

Parameters
nameString name of the species
Returns
Mole fraction of the species

Definition at line 558 of file Phase.cpp.

References Phase::moleFraction(), Cantera::npos, and Phase::speciesIndex().

doublereal massFraction ( size_t  k) const
inherited

Return the mass fraction of a single species.

Parameters
kspecies index
Returns
Mass fraction of the species

Definition at line 573 of file Phase.cpp.

References Phase::checkSpeciesIndex(), and Phase::m_y.

doublereal massFraction ( std::string  name) const
inherited

Return the mass fraction of a single species.

Parameters
nameString name of the species
Returns
Mass Fraction of the species

Definition at line 579 of file Phase.cpp.

References Phase::massFractions(), Cantera::npos, and Phase::speciesIndex().

void getMoleFractions ( doublereal *const  x) const
inherited

Get the species mole fraction vector.

Parameters
xOn return, x contains the mole fractions. Must have a length greater than or equal to the number of species.

Definition at line 547 of file Phase.cpp.

References Phase::m_mmw, Phase::m_ym, and Cantera::scale().

Referenced by IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IdealMolalSoln::enthalpy_mole(), HMWSoln::enthalpy_mole(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), GibbsExcessVPSSTP::getActivities(), LatticePhase::getActivityConcentrations(), MultiTransport::getMassFluxes(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), LTI_MoleFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_Pairwise_Interaction::getMixTransProp(), LTI_StefanMaxwell_PPN::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), LatticeSolidPhase::getMoleFractions(), DustyGasTransport::initialize(), GibbsExcessVPSSTP::initThermo(), HMWSoln::printCoeffs(), HMWSoln::relative_molal_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), MixtureFugacityTP::setConcentrations(), GibbsExcessVPSSTP::setConcentrations(), MixtureFugacityTP::setMassFractions(), GibbsExcessVPSSTP::setMassFractions(), MixtureFugacityTP::setMassFractions_NoNorm(), GibbsExcessVPSSTP::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalitiesByName(), MixtureFugacityTP::setMoleFractions(), GibbsExcessVPSSTP::setMoleFractions(), MixtureFugacityTP::setMoleFractions_NoNorm(), GibbsExcessVPSSTP::setMoleFractions_NoNorm(), MultiPhase::setMoles(), vcs_VolPhase::setPtrThermoPhase(), ThermoPhase::setReferenceComposition(), MixtureFugacityTP::setState_TP(), MixtureFugacityTP::setState_TR(), AqueousTransport::stefan_maxwell_solve(), ChemEquil::update(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), solveSP::updateMFKinSpecies(), DustyGasTransport::updateTransport_C(), and MultiPhase::uploadMoleFractionsFromPhases().

void getMassFractions ( doublereal *const  y) const
inherited
const doublereal* massFractions ( ) const
inlineinherited
void getConcentrations ( doublereal *const  c) const
inherited

Get the species concentrations (kmol/m^3).

@param[out] c Array of species concentrations Length must be

greater than or equal to the number of species.

Definition at line 600 of file Phase.cpp.

References Phase::m_dens, Phase::m_ym, and Cantera::scale().

Referenced by ConstDensityThermo::getActivityConcentrations(), IdealSolnGasVPSS::getActivityConcentrations(), SurfPhase::getActivityConcentrations(), IdealGasPhase::getActivityConcentrations(), SurfPhase::getCoverages(), solveSP::solveSurfProb(), SimpleTransport::update_C(), and LiquidTransport::update_C().

doublereal concentration ( const size_t  k) const
inherited

Concentration of species k.

If k is outside the valid range, an exception will be thrown.

Parameters
kIndex of species

Definition at line 594 of file Phase.cpp.

References Phase::checkSpeciesIndex(), Phase::m_dens, Phase::m_rmolwts, and Phase::m_y.

const doublereal * moleFractdivMMW ( ) const
inherited

Returns a const pointer to the start of the moleFraction/MW array.

This array is the array of mole fractions, each divided by the mean molecular weight.

Definition at line 568 of file Phase.cpp.

References Phase::m_ym.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::getActivityConcentrations().

doublereal charge ( size_t  k) const
inherited

Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.

Parameters
kspecies index

Definition at line 642 of file Phase.cpp.

References Phase::m_speciesCharge.

Referenced by InterfaceKinetics::applyButlerVolmerCorrection(), HMWSoln::calcMolalitiesCropped(), Phase::chargeDensity(), PDSS_HKFT::constructPDSSXML(), SolidTransport::electricalConductivity(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), InterfaceKinetics::getEquilibriumConstants(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), PDSS_HKFT::initThermo(), IonsFromNeutralVPSSTP::initThermoXML(), DebyeHuckel::initThermoXML(), LatticeSolidPhase::installSlavePhases(), HMWSoln::printCoeffs(), PhaseCombo_Interaction::readXMLBinarySpecies(), RedlichKisterVPSSTP::readXMLBinarySpecies(), MargulesVPSSTP::readXMLBinarySpecies(), MixedSolventElectrolyte::readXMLBinarySpecies(), HMWSoln::relative_molal_enthalpy(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), MolalityVPSSTP::setMolalitiesByName(), vcs_VolPhase::transferElementsFM(), and InterfaceKinetics::updateKc().

doublereal chargeDensity ( ) const
inherited

Charge density [C/m^3].

Definition at line 647 of file Phase.cpp.

References Phase::charge(), Phase::moleFraction(), and Phase::nSpecies().

size_t nDim ( ) const
inlineinherited
void setNDim ( size_t  ndim)
inlineinherited

Set the number of spatial dimensions (1, 2, or 3).

The number of spatial dimensions is used for vector involving directions.

Parameters
ndimInput number of dimensions.

Definition at line 530 of file Phase.h.

References Phase::m_ndim.

Referenced by EdgePhase::EdgePhase(), FixedChemPotSSTP::FixedChemPotSSTP(), Cantera::importPhase(), EdgePhase::operator=(), and SurfPhase::SurfPhase().

doublereal temperature ( ) const
inlineinherited

Temperature (K).

Returns
The temperature of the phase

Definition at line 539 of file Phase.h.

References Phase::m_temp.

Referenced by ThermoPhase::_RT(), InterfaceKinetics::_update_rates_T(), MixtureFugacityTP::_updateReferenceStateThermo(), VPStandardStateTP::_updateStandardStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), LatticeSolidPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), DebyeHuckel::A_Debye_TP(), HMWSoln::A_Debye_TP(), MultiPhase::addPhase(), HMWSoln::ADebye_J(), HMWSoln::ADebye_L(), HMWSoln::ADebye_V(), InterfaceKinetics::applyButlerVolmerCorrection(), InterfaceKinetics::applyExchangeCurrentDensityFormulation(), IdealSolnGasVPSS::calcDensity(), MixtureFugacityTP::calculatePsat(), RedlichKwongMFTP::cp_mole(), SingleSpeciesTP::cv_mole(), HMWSoln::cv_mole(), DebyeHuckel::d2A_DebyedT2_TP(), HMWSoln::d2A_DebyedT2_TP(), DebyeHuckel::dA_DebyedP_TP(), HMWSoln::dA_DebyedP_TP(), DebyeHuckel::dA_DebyedT_TP(), HMWSoln::dA_DebyedT_TP(), WaterSSTP::dthermalExpansionCoeffdT(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), ChemEquil::estimateElementPotentials(), ChemEquil::estimateEP_Brinkley(), FixedChemPotSSTP::FixedChemPotSSTP(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), StoichSubstance::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), WaterSSTP::getCp_R_ref(), AqueousKinetics::getDeltaSSEnthalpy(), GasKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), PhaseCombo_Interaction::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), ThermoPhase::getElementPotentials(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT_ref(), PureFluidPhase::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), PureFluidPhase::getEntropy_R_ref(), AqueousKinetics::getEquilibriumConstants(), GasKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), StoichSubstance::getGibbs_ref(), PureFluidPhase::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), WaterSSTP::getGibbs_RT(), StoichSubstance::getGibbs_RT(), SurfPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT_ref(), PureFluidPhase::getGibbs_RT_ref(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), LTI_Pairwise_Interaction::getMatrixTransProp(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), SolidTransport::getMixDiffCoeffs(), LTI_MoleFracs::getMixTransProp(), LTI_MassFracs::getMixTransProp(), LTI_Log_MoleFracs::getMixTransProp(), LTI_MoleFracs_ExpT::getMixTransProp(), SolidTransport::getMobilities(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), SingleSpeciesTP::getPureGibbs(), LatticePhase::getPureGibbs(), LTPspecies_Arrhenius::getSpeciesTransProp(), LTPspecies_Poly::getSpeciesTransProp(), LTPspecies_ExpT::getSpeciesTransProp(), WaterSSTP::getStandardChemPotentials(), StoichSubstanceSSTP::getStandardChemPotentials(), MineralEQ3::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), WaterSSTP::getStandardVolumes_ref(), IdealSolnGasVPSS::gibbs_mole(), ConstDensityThermo::gibbs_mole(), StoichSubstance::gibbs_mole(), RedlichKwongMFTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), ThermoPhase::gibbs_mole(), LatticePhase::gibbs_mole(), IdealGasPhase::gibbs_mole(), RedlichKwongMFTP::hresid(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), IdealGasPhase::logStandardConc(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), RedlichKwongMFTP::pressureDerivatives(), HMWSoln::relative_enthalpy(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), WaterSSTP::satPressure(), HMWSoln::satPressure(), Phase::saveState(), WaterSSTP::setDensity(), ThermoPhase::setElementPotentials(), ChemEquil::setInitialMoles(), PureFluidPhase::setPressure(), WaterSSTP::setPressure(), GibbsExcessVPSSTP::setPressure(), IdealMolalSoln::setPressure(), VPStandardStateTP::setPressure(), MixtureFugacityTP::setPressure(), IdealGasPhase::setPressure(), IonsFromNeutralVPSSTP::setPressure(), DebyeHuckel::setPressure(), HMWSoln::setPressure(), vcs_VolPhase::setPtrThermoPhase(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_HPorUV(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), SingleSpeciesTP::setState_UV(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), PureFluidPhase::setTPXState(), ImplicitSurfChem::solvePseudoSteadyStateProblem(), RedlichKwongMFTP::sresid(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), MetalSHEelectrons::thermalExpansionCoeff(), IdealGasPhase::thermalExpansionCoeff(), ChemEquil::update(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), RedlichKwongMFTP::updateAB(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), VPStandardStateTP::updateStandardStateThermo(), Reactor::updateState(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_T(), and WaterSSTP::vaporFraction().

virtual doublereal density ( ) const
inlinevirtualinherited

Density (kg/m^3).

Returns
The density of the phase

Reimplemented in HMWSoln.

Definition at line 545 of file Phase.h.

References Phase::m_dens.

Referenced by MixtureFugacityTP::calculatePsat(), SingleSpeciesTP::cv_mole(), HMWSoln::density(), WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), MultiTransport::getMassFluxes(), ConstDensityThermo::getParameters(), StoichSubstance::getParameters(), StoichSubstanceSSTP::getParameters(), MetalSHEelectrons::getParameters(), MineralEQ3::getParameters(), SingleSpeciesTP::getPartialMolarVolumes(), MultiTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), SingleSpeciesTP::getStandardVolumes(), WaterSSTP::getStandardVolumes_ref(), RedlichKwongMFTP::hresid(), Phase::molarDensity(), MixtureFugacityTP::phaseState(), RedlichKwongMFTP::pressure(), PseudoBinaryVPSSTP::report(), MolarityIonicVPSSTP::report(), PureFluidPhase::report(), MolalityVPSSTP::report(), ThermoPhase::report(), PureFluidPhase::reportCSV(), MolalityVPSSTP::reportCSV(), ThermoPhase::reportCSV(), WaterSSTP::satPressure(), Phase::saveState(), IdealMolalSoln::setDensity(), IdealSolidSolnPhase::setDensity(), Phase::setDensity(), DebyeHuckel::setDensity(), WaterSSTP::setPressure(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), MixtureFugacityTP::setStateFromXML(), MixtureFugacityTP::setTemperature(), WaterSSTP::setTemperature(), PureFluidPhase::setTPXState(), RedlichKwongMFTP::sresid(), ChemEquil::update(), SimpleTransport::update_C(), LiquidTransport::update_C(), ConstPressureReactor::updateState(), StFlow::updateThermo(), WaterSSTP::vaporFraction(), and MixtureFugacityTP::z().

doublereal molarDensity ( ) const
inherited

Molar density (kmol/m^3).

Returns
The molar density of the phase

Definition at line 627 of file Phase.cpp.

References Phase::density(), and Phase::meanMolecularWeight().

Referenced by solveSP::calc_t(), SolidTransport::electricalConductivity(), ConstDensityThermo::enthalpy_mole(), StoichSubstance::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), ConstDensityThermo::getChemPotentials(), StoichSubstanceSSTP::getEnthalpy_RT(), MineralEQ3::getEnthalpy_RT(), StoichSubstanceSSTP::getIntEnergy_RT(), MineralEQ3::getIntEnergy_RT(), StoichSubstanceSSTP::getIntEnergy_RT_ref(), MineralEQ3::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), LatticePhase::getParameters(), PureFluidPhase::getPartialMolarVolumes(), StoichSubstance::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), StoichSubstance::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), IdealSolnGasVPSS::intEnergy_mole(), ConstDensityThermo::intEnergy_mole(), StoichSubstance::intEnergy_mole(), RedlichKwongMFTP::intEnergy_mole(), IonsFromNeutralVPSSTP::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), LatticePhase::intEnergy_mole(), DebyeHuckel::intEnergy_mole(), HMWSoln::intEnergy_mole(), ConstDensityThermo::logStandardConc(), Phase::molarVolume(), IdealGasPhase::pressure(), MixTransport::pressure_ig(), IdealMolalSoln::setMolarDensity(), DebyeHuckel::setMolarDensity(), and ConstDensityThermo::standardConcentration().

doublereal molarVolume ( ) const
inherited
virtual void setDensity ( const doublereal  density)
inlinevirtualinherited

Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable.

Parameters
[in]densitydensity (kg/m^3).

Reimplemented in HMWSoln, DebyeHuckel, WaterSSTP, IdealSolidSolnPhase, and IdealMolalSoln.

Definition at line 560 of file Phase.h.

References Phase::density(), and Phase::m_dens.

Referenced by IdealSolnGasVPSS::calcDensity(), RedlichKwongMFTP::calcDensity(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), IdealSolidSolnPhase::calcDensity(), LatticeSolidPhase::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), StoichSubstanceSSTP::initThermoXML(), WaterSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), MineralEQ3::initThermoXML(), electrodeElectron::initThermoXML(), Phase::restoreState(), Phase::setConcentrations(), WaterSSTP::setDensity(), ConstDensityThermo::setParameters(), StoichSubstance::setParameters(), StoichSubstanceSSTP::setParameters(), MetalSHEelectrons::setParameters(), MineralEQ3::setParameters(), electrodeElectron::setParameters(), SemiconductorPhase::setParametersFromXML(), MetalPhase::setParametersFromXML(), StoichSubstance::setParametersFromXML(), ConstDensityThermo::setParametersFromXML(), StoichSubstanceSSTP::setParametersFromXML(), MetalSHEelectrons::setParametersFromXML(), PureFluidPhase::setPressure(), IdealGasPhase::setPressure(), ThermoPhase::setState_HPorUV(), PureFluidPhase::setState_Psat(), Phase::setState_RX(), Phase::setState_RY(), ThermoPhase::setState_SPorSV(), SingleSpeciesTP::setState_SV(), MixtureFugacityTP::setState_TP(), IonsFromNeutralVPSSTP::setState_TP(), Phase::setState_TR(), MixtureFugacityTP::setState_TR(), Phase::setState_TRX(), Phase::setState_TRY(), PureFluidPhase::setState_Tsat(), SingleSpeciesTP::setState_UV(), ThermoPhase::setStateFromXML(), and Reactor::updateState().

void setMolarDensity ( const doublereal  molarDensity)
virtualinherited

Set the internally stored molar density (kmol/m^3) of the phase.

Parameters
[in]molarDensityInput molar density (kmol/m^3).

Reimplemented in HMWSoln, DebyeHuckel, IdealSolidSolnPhase, and IdealMolalSoln.

Definition at line 632 of file Phase.cpp.

References Phase::m_dens, and Phase::meanMolecularWeight().

Referenced by LatticePhase::calcDensity(), LatticePhase::setParameters(), and Phase::setState_TNX().

virtual void setTemperature ( const doublereal  temp)
inlinevirtualinherited
doublereal mean_X ( const doublereal *const  Q) const
inherited

Evaluate the mole-fraction-weighted mean of an array Q.

\[ \sum_k X_k Q_k. \]

Q should contain pure-species molar property values.

Parameters
[in]QArray of length m_kk that is to be averaged.
Returns
mole-fraction-weighted mean of Q

Definition at line 658 of file Phase.cpp.

References Phase::m_mmw, and Phase::m_ym.

Referenced by IdealSolnGasVPSS::cp_mole(), ConstDensityThermo::cp_mole(), RedlichKwongMFTP::cp_mole(), IonsFromNeutralVPSSTP::cp_mole(), IdealSolidSolnPhase::cp_mole(), IdealMolalSoln::cp_mole(), LatticePhase::cp_mole(), IdealGasPhase::cp_mole(), DebyeHuckel::cp_mole(), HMWSoln::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), IdealSolnGasVPSS::enthalpy_mole(), ConstDensityThermo::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), IonsFromNeutralVPSSTP::enthalpy_mole(), IdealMolalSoln::enthalpy_mole(), SurfPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), DebyeHuckel::enthalpy_mole(), HMWSoln::enthalpy_mole(), IdealSolnGasVPSS::entropy_mole(), ConstDensityThermo::entropy_mole(), RedlichKwongMFTP::entropy_mole(), IonsFromNeutralVPSSTP::entropy_mole(), IdealSolidSolnPhase::entropy_mole(), IdealMolalSoln::entropy_mole(), LatticePhase::entropy_mole(), IdealGasPhase::entropy_mole(), DebyeHuckel::entropy_mole(), HMWSoln::entropy_mole(), IonsFromNeutralVPSSTP::gibbs_mole(), IdealSolidSolnPhase::gibbs_mole(), IdealMolalSoln::gibbs_mole(), DebyeHuckel::gibbs_mole(), HMWSoln::gibbs_mole(), ConstDensityThermo::intEnergy_mole(), IdealSolidSolnPhase::intEnergy_mole(), IdealMolalSoln::intEnergy_mole(), LatticePhase::intEnergy_mole(), IdealGasPhase::intEnergy_mole(), and HMWSoln::relative_enthalpy().

doublereal mean_Y ( const doublereal *const  Q) const
inherited

Evaluate the mass-fraction-weighted mean of an array Q.

\[ \sum_k Y_k Q_k \]

Parameters
[in]QArray of species property values in mass units.
Returns
The mass-fraction-weighted mean of Q.

Definition at line 663 of file Phase.cpp.

References Cantera::dot(), and Phase::m_y.

doublereal meanMolecularWeight ( ) const
inlineinherited
doublereal sum_xlogx ( ) const
inherited
doublereal sum_xlogQ ( doublereal *const  Q) const
inherited

Evaluate \( \sum_k X_k \log Q_k \).

Parameters
QVector of length m_kk to take the log average of
Returns
The indicated sum.

Definition at line 673 of file Phase.cpp.

References Phase::m_mmw, Phase::m_ym, and Cantera::sum_xlogQ().

void addElement ( const std::string &  symbol,
doublereal  weight = -12345.0 
)
inherited

Add an element.

Parameters
symbolAtomic symbol std::string.
weightAtomic mass in amu.

Definition at line 678 of file Phase.cpp.

References CT_ELEM_TYPE_ABSPOS, CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, and Phase::m_mm.

Referenced by Phase::addElement().

void addElement ( const XML_Node e)
inherited

Add an element from an XML specification.

Parameters
eReference to the XML_Node where the element is described.

Definition at line 701 of file Phase.cpp.

References Phase::addElement().

void addUniqueElement ( const std::string &  symbol,
doublereal  weight = -12345.0,
int  atomicNumber = 0,
doublereal  entropy298 = ENTROPY298_UNKNOWN,
int  elem_type = CT_ELEM_TYPE_ABSPOS 
)
inherited

Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
symbolString symbol of the element
weightAtomic weight of the element (kg kmol-1).
atomicNumberAtomic number of the element (unitless)
entropy298Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which is interpreted as an unknown, and if used will cause Cantera to throw an error.
elem_typeSpecifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element.

Definition at line 708 of file Phase.cpp.

References CT_ELEM_TYPE_ELECTRONCHARGE, Cantera::LookupWtElements(), Phase::m_atomicNumbers, Phase::m_atomicWeights, Phase::m_elem_type, Phase::m_elementNames, Phase::m_elementsFrozen, Phase::m_entropy298, and Phase::m_mm.

Referenced by Phase::addElementsFromXML(), Phase::addUniqueElement(), Phase::addUniqueElementAfterFreeze(), and FixedChemPotSSTP::FixedChemPotSSTP().

void addUniqueElement ( const XML_Node e)
inherited

Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
eReference to the XML_Node where the element is described.

Definition at line 755 of file Phase.cpp.

References Phase::addUniqueElement(), Cantera::atofCheck(), XML_Node::child(), ENTROPY298_UNKNOWN, XML_Node::hasAttrib(), XML_Node::hasChild(), and Cantera::stripws().

void addElementsFromXML ( const XML_Node phase)
inherited

Add all elements referenced in an XML_Node tree.

Parameters
phaseReference to the root XML_Node of a phase

Definition at line 780 of file Phase.cpp.

References Phase::addUniqueElement(), XML_Node::child(), XML_Node::findByAttr(), Cantera::get_XML_File(), ctml::getStringArray(), XML_Node::hasAttrib(), XML_Node::hasChild(), and XML_Node::root().

Referenced by Cantera::importPhase().

void freezeElements ( )
inherited

Prohibit addition of more elements, and prepare to add species.

Definition at line 831 of file Phase.cpp.

References Phase::m_elementsFrozen.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP().

bool elementsFrozen ( )
inherited

True if freezeElements has been called.

Definition at line 836 of file Phase.cpp.

References Phase::m_elementsFrozen.

size_t addUniqueElementAfterFreeze ( const std::string &  symbol,
doublereal  weight,
int  atomicNumber,
doublereal  entropy298 = ENTROPY298_UNKNOWN,
int  elem_type = CT_ELEM_TYPE_ABSPOS 
)
inherited

Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol.

If not unique, nothing is done.

Parameters
symbolString symbol of the element
weightAtomic weight of the element (kg kmol-1).
atomicNumberAtomic number of the element (unitless)
entropy298Entropy of the element at 298 K and 1 bar in its most stable form. The default is the value ENTROPY298_UNKNOWN, which if used will cause Cantera to throw an error.
elem_typeSpecifies the type of the element constraint equation. This defaults to CT_ELEM_TYPE_ABSPOS, i.e., an element.

Definition at line 841 of file Phase.cpp.

References Phase::addUniqueElement(), Phase::elementIndex(), Phase::m_elementsFrozen, Phase::m_kk, Phase::m_mm, Phase::m_speciesComp, and Cantera::npos.

Referenced by LatticeSolidPhase::installSlavePhases().

void addUniqueSpecies ( const std::string &  name,
const doublereal *  comp,
doublereal  charge = 0.0,
doublereal  size = 1.0 
)
inherited

Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name.

It only adds the species if it is unique.

Parameters
nameString name of the species
compArray containing the elemental composition of the species.
chargeCharge of the species. Defaults to zero.
sizeSize of the species (meters). Defaults to 1 meter.

Definition at line 919 of file Phase.cpp.

References Phase::m_kk, Phase::m_mm, Phase::m_speciesCharge, Phase::m_speciesComp, Phase::m_speciesNames, and Phase::m_speciesSize.

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), LatticeSolidPhase::installSlavePhases(), and Cantera::installSpecies().

void freezeSpecies ( )
virtualinherited

Call when finished adding species.

Prepare to use them for calculation of mixture properties.

Definition at line 952 of file Phase.cpp.

References Phase::init(), Phase::m_speciesFrozen, and Phase::molecularWeights().

Referenced by FixedChemPotSSTP::FixedChemPotSSTP(), and Cantera::importPhase().

bool speciesFrozen ( )
inlineinherited

True if freezeSpecies has been called.

Definition at line 694 of file Phase.h.

References Phase::m_speciesFrozen.

int stateMFNumber ( ) const
inlineinherited

Return the State Mole Fraction Number.

Definition at line 701 of file Phase.h.

References Phase::m_stateNum.

Referenced by SimpleTransport::update_C(), and LiquidTransport::update_C().

void stateMFChangeCalc ( bool  forceChange = false)
inlineinherited

Every time the mole fractions have changed, this routine will increment the stateMFNumber.

@param forceChange If this is true then the stateMFNumber always

changes. This defaults to false.

Deprecated:

Definition at line 115 of file Phase.cpp.

References Phase::m_stateNum.

Referenced by Phase::setConcentrations(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), Phase::setMoleFractions(), and Phase::setMoleFractions_NoNorm().

void init ( const vector_fp mw)
protectedinherited

Initialize. Make a local copy of the vector of molecular weights, and resize the composition arrays to the appropriate size.

Parameters
mwVector of molecular weights of the species.

Definition at line 958 of file Phase.cpp.

References Cantera::int2str(), Phase::m_kk, Phase::m_mmw, Phase::m_molwts, Phase::m_rmolwts, Phase::m_y, Phase::m_ym, and Cantera::Tiny.

Referenced by Phase::freezeSpecies().

void setMolecularWeight ( const int  k,
const double  mw 
)
inlineprotectedinherited

Set the molecular weight of a single species to a given value.

Parameters
kid of the species
mwMolecular Weight (kg kmol-1)

Definition at line 722 of file Phase.h.

References Phase::m_molwts, and Phase::m_rmolwts.

Referenced by PureFluidPhase::initThermo(), and WaterSSTP::initThermoXML().

Member Data Documentation

size_t m_mm
protected

Number of elements.

Definition at line 955 of file LatticePhase.h.

Referenced by LatticePhase::initThermo(), and LatticePhase::operator=().

doublereal m_tmin
protected

Minimum temperature for valid species standard state thermo props.

This is the minimum temperature at which all species have valid standard state thermo props defined.

Definition at line 962 of file LatticePhase.h.

Referenced by LatticePhase::initThermo(), and LatticePhase::operator=().

doublereal m_tmax
protected

Maximum temperature for valid species standard state thermo props.

This is the maximum temperature at which all species have valid standard state thermo props defined.

Definition at line 969 of file LatticePhase.h.

Referenced by LatticePhase::initThermo(), and LatticePhase::operator=().

doublereal m_Pref
protected
doublereal m_Pcurrent
protected

The current pressure.

Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure. The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.

Definition at line 982 of file LatticePhase.h.

Referenced by LatticePhase::getChemPotentials(), LatticePhase::getEnthalpy_RT(), LatticePhase::getGibbs_RT(), LatticePhase::getPureGibbs(), LatticePhase::operator=(), LatticePhase::pressure(), and LatticePhase::setPressure().

doublereal m_tlast
mutableprotected

Current value of the temperature (Kelvin)

Definition at line 985 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), and LatticePhase::operator=().

vector_fp m_h0_RT
mutableprotected

Reference state enthalpies / RT.

Definition at line 988 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::enthalpy_RT_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

vector_fp m_cp0_R
mutableprotected

Temporary storage for the reference state heat capacities.

Definition at line 991 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::cp_R_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

vector_fp m_g0_RT
mutableprotected

Temporary storage for the reference state gibbs energies.

Definition at line 994 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::getGibbs_RT_ref(), LatticePhase::gibbs_RT_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

vector_fp m_s0_R
mutableprotected

Temporary storage for the reference state entropies at the current temperature.

Definition at line 997 of file LatticePhase.h.

Referenced by LatticePhase::_updateThermo(), LatticePhase::entropy_R_ref(), LatticePhase::initThermo(), and LatticePhase::operator=().

std::string m_vacancy
protected

String name for the species which represents a vacency in the lattice.

This string is currently unused

Definition at line 1005 of file LatticePhase.h.

Referenced by LatticePhase::operator=(), and LatticePhase::setParametersFromXML().

vector_fp m_speciesMolarVolume
protected
doublereal m_site_density
protected

Site Density of the lattice solid.

Currently, this is imposed as a function of T, P or composition

units are kmol m-3

Definition at line 1019 of file LatticePhase.h.

Referenced by LatticePhase::calcDensity(), LatticePhase::initThermoXML(), LatticePhase::operator=(), LatticePhase::setParameters(), and LatticePhase::setParametersFromXML().

SpeciesThermo* m_spthermo
protectedinherited

Pointer to the calculation manager for species reference-state thermodynamic properties.

This class is called when the reference-state thermodynamic properties of all the species in the phase needs to be evaluated.

Definition at line 1611 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), SingleSpeciesTP::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), ConstDensityThermo::enthalpy_mole(), LatticePhase::enthalpy_mole(), RedlichKwongMFTP::entropy_mole(), IdealGasPhase::entropy_mole(), FixedChemPotSSTP::FixedChemPotSSTP(), ConstDensityThermo::getChemPotentials(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), PureFluidPhase::getEntropy_R_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), PureFluidPhase::getGibbs_RT_ref(), IdealGasPhase::getPartialMolarEntropies(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), IdealSolidSolnPhase::initLengths(), ConstDensityThermo::initThermo(), StoichSubstance::initThermo(), StoichSubstanceSSTP::initThermo(), PureFluidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), WaterSSTP::initThermoXML(), LatticeSolidPhase::installSlavePhases(), ConstDensityThermo::intEnergy_mole(), LatticePhase::intEnergy_mole(), ThermoPhase::maxTemp(), ThermoPhase::minTemp(), VPStandardStateTP::operator=(), ThermoPhase::operator=(), ThermoPhase::refPressure(), ThermoPhase::setSpeciesThermo(), LatticeSolidPhase::speciesThermo(), ThermoPhase::speciesThermo(), and ThermoPhase::~ThermoPhase().

std::vector<const XML_Node*> m_speciesData
protectedinherited

Vector of pointers to the species databases.

This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.

Definition at line 1621 of file ThermoPhase.h.

Referenced by LatticeSolidPhase::installSlavePhases(), ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), ThermoPhase::speciesData(), and ThermoPhase::~ThermoPhase().

doublereal m_phi
protectedinherited

Stored value of the electric potential for this phase.

Units are Volts

Definition at line 1627 of file ThermoPhase.h.

Referenced by ThermoPhase::electricPotential(), IdealMolalSoln::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().

vector_fp m_lambdaRRT
protectedinherited

Vector of element potentials.

-> length equal to number of elements

Definition at line 1631 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

bool m_hasElementPotentials
protectedinherited

Boolean indicating whether there is a valid set of saved element potentials for this phase.

Definition at line 1635 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

bool m_chargeNeutralityNecessary
protectedinherited

Boolean indicating whether a charge neutrality condition is a necessity.

Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.

Definition at line 1645 of file ThermoPhase.h.

Referenced by ThermoPhase::chargeNeutralityNecessary(), MolalityVPSSTP::MolalityVPSSTP(), and ThermoPhase::operator=().

int m_ssConvention
protectedinherited

Contains the standard state convention.

Definition at line 1648 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().

std::vector<doublereal> xMol_Ref
protectedinherited

Reference Mole Fraction Composition.

Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state xml file in the input file

Definition at line 1657 of file ThermoPhase.h.

Referenced by ThermoPhase::getReferenceComposition(), ThermoPhase::initThermo(), and ThermoPhase::setReferenceComposition().

size_t m_kk
protectedinherited

Number of species in the phase.

Definition at line 727 of file Phase.h.

Referenced by DebyeHuckel::_lnactivityWaterHelgesonFixedForm(), MixtureFugacityTP::_updateReferenceStateThermo(), ConstDensityThermo::_updateThermo(), SurfPhase::_updateThermo(), IdealGasPhase::_updateThermo(), LatticePhase::_updateThermo(), IdealSolidSolnPhase::_updateThermo(), Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), HMWSoln::applyphScale(), RedlichKwongMFTP::applyStandardMixingRules(), GibbsExcessVPSSTP::calcDensity(), IdealMolalSoln::calcDensity(), DebyeHuckel::calcDensity(), HMWSoln::calcDensity(), IonsFromNeutralVPSSTP::calcIonMoleFractions(), MolalityVPSSTP::calcMolalities(), HMWSoln::calcMolalitiesCropped(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), PseudoBinaryVPSSTP::calcPseudoBinaryMoleFractions(), MolarityIonicVPSSTP::calcPseudoBinaryMoleFractions(), RedlichKwongMFTP::calculateAB(), GibbsExcessVPSSTP::checkMFSum(), Phase::checkSpeciesArraySize(), Phase::checkSpeciesIndex(), HMWSoln::counterIJ_setup(), RedlichKwongMFTP::critDensity(), RedlichKwongMFTP::critPressure(), RedlichKwongMFTP::critTemperature(), ConstDensityThermo::expGibbs_RT(), IdealGasPhase::expGibbs_RT_ref(), IdealSolidSolnPhase::expGibbs_RT_ref(), MolalityVPSSTP::findCLMIndex(), GibbsExcessVPSSTP::getActivities(), IdealMolalSoln::getActivities(), DebyeHuckel::getActivities(), HMWSoln::getActivities(), ConstDensityThermo::getActivityCoefficients(), SingleSpeciesTP::getActivityCoefficients(), IdealSolnGasVPSS::getActivityCoefficients(), IonsFromNeutralVPSSTP::getActivityCoefficients(), GibbsExcessVPSSTP::getActivityCoefficients(), RedlichKwongMFTP::getActivityCoefficients(), LatticeSolidPhase::getActivityCoefficients(), MixedSolventElectrolyte::getActivityCoefficients(), PhaseCombo_Interaction::getActivityCoefficients(), IdealSolidSolnPhase::getActivityCoefficients(), ThermoPhase::getActivityCoefficients(), MolalityVPSSTP::getActivityCoefficients(), IdealGasPhase::getActivityCoefficients(), LatticePhase::getActivityCoefficients(), IdealSolnGasVPSS::getActivityConcentrations(), RedlichKwongMFTP::getActivityConcentrations(), IdealMolalSoln::getActivityConcentrations(), IdealSolidSolnPhase::getActivityConcentrations(), DebyeHuckel::getActivityConcentrations(), HMWSoln::getActivityConcentrations(), ConstDensityThermo::getChemPotentials(), SurfPhase::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealGasPhase::getChemPotentials(), LatticePhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), IdealSolnGasVPSS::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), IdealSolidSolnPhase::getChemPotentials_RT(), SurfPhase::getCoverages(), IdealSolidSolnPhase::getCp_R_ref(), RedlichKisterVPSSTP::getd2lnActCoeffdT2(), MargulesVPSSTP::getd2lnActCoeffdT2(), MixedSolventElectrolyte::getd2lnActCoeffdT2(), PhaseCombo_Interaction::getd2lnActCoeffdT2(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), PhaseCombo_Interaction::getdlnActCoeffdlnN(), RedlichKisterVPSSTP::getdlnActCoeffdlnN(), MargulesVPSSTP::getdlnActCoeffdlnN(), MixedSolventElectrolyte::getdlnActCoeffdlnN(), ThermoPhase::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnN_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnN_diag(), MargulesVPSSTP::getdlnActCoeffdlnN_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), PhaseCombo_Interaction::getdlnActCoeffdlnX_diag(), RedlichKisterVPSSTP::getdlnActCoeffdlnX_diag(), MargulesVPSSTP::getdlnActCoeffdlnX_diag(), MixedSolventElectrolyte::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), PhaseCombo_Interaction::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffds(), MargulesVPSSTP::getdlnActCoeffds(), MixedSolventElectrolyte::getdlnActCoeffds(), RedlichKisterVPSSTP::getdlnActCoeffdT(), MargulesVPSSTP::getdlnActCoeffdT(), MixedSolventElectrolyte::getdlnActCoeffdT(), PhaseCombo_Interaction::getdlnActCoeffdT(), PureFluidPhase::getElectrochemPotentials(), PseudoBinaryVPSSTP::getElectrochemPotentials(), MolarityIonicVPSSTP::getElectrochemPotentials(), GibbsExcessVPSSTP::getElectrochemPotentials(), RedlichKisterVPSSTP::getElectrochemPotentials(), MargulesVPSSTP::getElectrochemPotentials(), ThermoPhase::getElectrochemPotentials(), MixedSolventElectrolyte::getElectrochemPotentials(), MolalityVPSSTP::getElectrochemPotentials(), PhaseCombo_Interaction::getElectrochemPotentials(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), MixtureFugacityTP::getEntropy_R(), IdealGasPhase::getEntropy_R(), IdealSolidSolnPhase::getEntropy_R_ref(), WaterSSTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), MixtureFugacityTP::getGibbs_RT(), IdealGasPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT_ref(), LatticePhase::getGibbs_RT_ref(), MixtureFugacityTP::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealGasPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), MolarityIonicVPSSTP::getLnActivityCoefficients(), RedlichKisterVPSSTP::getLnActivityCoefficients(), MargulesVPSSTP::getLnActivityCoefficients(), ThermoPhase::getLnActivityCoefficients(), MolalityVPSSTP::getMolalities(), IdealMolalSoln::getMolalityActivityCoefficients(), DebyeHuckel::getMolalityActivityCoefficients(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), SurfPhase::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarCp(), MolarityIonicVPSSTP::getPartialMolarCp(), RedlichKwongMFTP::getPartialMolarCp(), RedlichKisterVPSSTP::getPartialMolarCp(), MargulesVPSSTP::getPartialMolarCp(), MixedSolventElectrolyte::getPartialMolarCp(), PhaseCombo_Interaction::getPartialMolarCp(), IdealSolidSolnPhase::getPartialMolarCp(), IdealMolalSoln::getPartialMolarCp(), LatticePhase::getPartialMolarCp(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), SurfPhase::getPartialMolarEnthalpies(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), MolarityIonicVPSSTP::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), RedlichKisterVPSSTP::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), PhaseCombo_Interaction::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarEntropies(), MolarityIonicVPSSTP::getPartialMolarEntropies(), IonsFromNeutralVPSSTP::getPartialMolarEntropies(), RedlichKwongMFTP::getPartialMolarEntropies(), RedlichKisterVPSSTP::getPartialMolarEntropies(), MargulesVPSSTP::getPartialMolarEntropies(), MixedSolventElectrolyte::getPartialMolarEntropies(), PhaseCombo_Interaction::getPartialMolarEntropies(), IdealGasPhase::getPartialMolarEntropies(), IdealMolalSoln::getPartialMolarEntropies(), IdealSolidSolnPhase::getPartialMolarEntropies(), LatticePhase::getPartialMolarEntropies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), MolarityIonicVPSSTP::getPartialMolarVolumes(), RedlichKwongMFTP::getPartialMolarVolumes(), RedlichKisterVPSSTP::getPartialMolarVolumes(), MargulesVPSSTP::getPartialMolarVolumes(), MixedSolventElectrolyte::getPartialMolarVolumes(), IdealGasPhase::getPartialMolarVolumes(), PhaseCombo_Interaction::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), MixtureFugacityTP::getPureGibbs(), IdealGasPhase::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), ThermoPhase::getReferenceComposition(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), SurfPhase::getStandardVolumes(), IdealGasPhase::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), HMWSoln::getUnscaledMolalityActivityCoefficients(), HMWSoln::HMWSoln(), Phase::init(), PseudoBinaryVPSSTP::initLengths(), IdealSolnGasVPSS::initLengths(), MolarityIonicVPSSTP::initLengths(), GibbsExcessVPSSTP::initLengths(), RedlichKwongMFTP::initLengths(), VPStandardStateTP::initLengths(), LatticeSolidPhase::initLengths(), IonsFromNeutralVPSSTP::initLengths(), MixtureFugacityTP::initLengths(), PhaseCombo_Interaction::initLengths(), RedlichKisterVPSSTP::initLengths(), MargulesVPSSTP::initLengths(), MixedSolventElectrolyte::initLengths(), MolalityVPSSTP::initLengths(), IdealMolalSoln::initLengths(), IdealSolidSolnPhase::initLengths(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), ConstDensityThermo::initThermo(), SurfPhase::initThermo(), MolarityIonicVPSSTP::initThermo(), StoichSubstanceSSTP::initThermo(), VPStandardStateTP::initThermo(), LatticeSolidPhase::initThermo(), SingleSpeciesTP::initThermo(), IdealGasPhase::initThermo(), LatticePhase::initThermo(), ThermoPhase::initThermo(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), IonsFromNeutralVPSSTP::initThermoXML(), IdealMolalSoln::initThermoXML(), LatticePhase::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), DebyeHuckel::initThermoXML(), IdealSolidSolnPhase::logStandardConc(), Phase::nSpecies(), VPStandardStateTP::operator=(), Phase::operator=(), ThermoPhase::operator=(), MolalityVPSSTP::osmoticCoefficient(), HMWSoln::printCoeffs(), RedlichKwongMFTP::readXMLCrossFluid(), RedlichKwongMFTP::readXMLPureFluid(), IdealSolidSolnPhase::referenceConcentration(), HMWSoln::relative_enthalpy(), HMWSoln::relative_molal_enthalpy(), DebyeHuckel::s_update_d2lnMolalityActCoeff_dT2(), HMWSoln::s_update_d2lnMolalityActCoeff_dT2(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnN_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnN_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dlnX_diag(), MargulesVPSSTP::s_update_dlnActCoeff_dlnX_diag(), MixedSolventElectrolyte::s_update_dlnActCoeff_dlnX_diag(), PhaseCombo_Interaction::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dT(), MargulesVPSSTP::s_update_dlnActCoeff_dT(), MixedSolventElectrolyte::s_update_dlnActCoeff_dT(), RedlichKisterVPSSTP::s_update_dlnActCoeff_dX_(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), DebyeHuckel::s_update_dlnMolalityActCoeff_dP(), HMWSoln::s_update_dlnMolalityActCoeff_dP(), DebyeHuckel::s_update_dlnMolalityActCoeff_dT(), HMWSoln::s_update_dlnMolalityActCoeff_dT(), MolarityIonicVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), PhaseCombo_Interaction::s_update_lnActCoeff(), RedlichKisterVPSSTP::s_update_lnActCoeff(), MargulesVPSSTP::s_update_lnActCoeff(), MixedSolventElectrolyte::s_update_lnActCoeff(), DebyeHuckel::s_update_lnMolalityActCoeff(), HMWSoln::s_update_lnMolalityActCoeff(), IdealMolalSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updateIMS_lnMolalityActCoeff(), HMWSoln::s_updatePitzer_CoeffWRTemp(), HMWSoln::s_updatePitzer_d2lnMolalityActCoeff_dT2(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dP(), HMWSoln::s_updatePitzer_dlnMolalityActCoeff_dT(), HMWSoln::s_updatePitzer_lnMolalityActCoeff(), HMWSoln::s_updateScaling_pHScaling(), HMWSoln::s_updateScaling_pHScaling_dP(), HMWSoln::s_updateScaling_pHScaling_dT(), HMWSoln::s_updateScaling_pHScaling_dT2(), Phase::setConcentrations(), SurfPhase::setCoverages(), SurfPhase::setCoveragesNoNorm(), Phase::setMassFractions(), Phase::setMassFractions_NoNorm(), MolalityVPSSTP::setMolalities(), Phase::setMoleFractions(), Phase::setMoleFractions_NoNorm(), ThermoPhase::setReferenceComposition(), MolalityVPSSTP::setSolvent(), IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), IdealSolidSolnPhase::setToEquilState(), ThermoPhase::speciesData(), Phase::speciesIndex(), IdealSolidSolnPhase::standardConcentration(), RedlichKwongMFTP::updateAB(), and ThermoPhase::~ThermoPhase().

size_t m_ndim
protectedinherited

Dimensionality of the phase.

Volumetric phases have dimensionality 3 and surface phases have dimensionality 2.

Definition at line 731 of file Phase.h.

Referenced by Phase::nDim(), Phase::operator=(), and Phase::setNDim().

vector_fp m_speciesComp
protectedinherited

Atomic composition of the species.

The number of atoms of element i in species k is equal to m_speciesComp[k * m_mm + i] The length of this vector is equal to m_kk * m_mm

Definition at line 736 of file Phase.h.

Referenced by Phase::addUniqueElementAfterFreeze(), Phase::addUniqueSpecies(), Phase::getAtoms(), LatticeSolidPhase::installSlavePhases(), Phase::nAtoms(), and Phase::operator=().

vector_fp m_speciesSize
protectedinherited

Vector of species sizes.

length m_kk. Used in some equations of state which employ the constant partial molar volume approximation.

Definition at line 740 of file Phase.h.

Referenced by Phase::addUniqueSpecies(), DebyeHuckel::initLengths(), HMWSoln::initLengths(), MineralEQ3::initThermoXML(), DebyeHuckel::initThermoXML(), Phase::operator=(), Phase::size(), HMWSoln::speciesMolarVolume(), and DebyeHuckel::standardConcentration().

vector_fp m_speciesCharge
protectedinherited

The documentation for this class was generated from the following files: