Bibliography#

See also

References cited in the C++ Documentation can be found here.

[Bil79]

R. W. Bilger. Turbulent jet diffusion flames. In N. A. Chigier, editor, Energy and Combustion Science, pages 109–131. Pergamon, 1979. URL: https://doi.org/10.1016/B978-0-08-024780-9.50011-3, doi:10.1016/B978-0-08-024780-9.50011-3.

[BM00]

P. Blowers and R. Masel. Engineering approximations for activation energies in hydrogen transfer reactions. AIChE Journal, 46(10):2041–2052, 2000. URL: https://dx.doi.org/10.1002/aic.690461015, doi:10.1002/aic.690461015.

[DL68]

G. Dixon-Lewis. Flame structure and flame reaction kinetics ii. transport phenomena in multicomponent systems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 307(1488):111–135, 1968. URL: https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1968.0178, doi:10.1098/rspa.1968.0178.

[GLT83]

R. G. Gilbert, K. Luther, and J. Troe. Theory of thermal unimolecular reactions in the fall-off range. II. weak collision rate constants. Berichte der Bunsengesellschaft für physikalische Chemie, 87(2):169–175, 1983. URL: https://doi.org/10.1002/bbpc.19830870218, doi:10.1002/bbpc.19830870218.

[GMSJ11]

X. Gou, J. A. Miller, W. Sun, and Y. Ju. Implementation of PLOG function in Chemkin II and III. https://engine.princeton.edu/model-reduction/, 2011. Accessed: 2022-04-25.

[Hag15]

G. J. M. Hagelaar. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas. Plasma Sources Science and Technology, 25(1):15015, 2015. URL: https://dx.doi.org/10.1088/0963-0252/25/1/015015, doi:10.1088/0963-0252/25/1/015015.

[HP05]

G. J. M. Hagelaar and L. C. Pitchford. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4):722, 2005. URL: https://dx.doi.org/10.1088/0963-0252/14/4/011, doi:10.1088/0963-0252/14/4/011.

[HWY14]

H. Huo, X. Wang, and V. Yang. A general study of counterflow diffusion flames at subcritical and supercritical conditions: oxygen/hydrogen mixtures. Combustion and Flame, 161:3040–3050, 2014. URL: https://doi.org/10.1016/j.combustflame.2014.06.005, doi:10.1016/j.combustflame.2014.06.005.

[KCG03]

R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting Flow: Theory and Practice. John Wiley & Sons, 2003.

[KCGZ17]

R. J. Kee, M. E. Coltrin, P. Glarborg, and H. Zhu. Chemically Reacting Flow: Theory and Practice. John Wiley & Sons, 2nd edition, 2017. URL: https://dx.doi.org/10.1002/9781119186304, doi:10.1002/9781119186304.

[KDLW+86]

R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Technical Report SAND86-8246, Sandia National Laboratories, 1986.

[KRM89]

R. J. Kee, F. M. Rupley, and J. A. Miller. Chemkin-II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAND89-8009, Sandia National Laboratories, 1989. URL: https://www.osti.gov/biblio/5681118.

[KKMS92]

I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. Plasma Sources Science and Technology, 1(3):207, 1992. URL: https://dx.doi.org/10.1088/0963-0252/1/3/011, doi:10.1088/0963-0252/1/3/011.

[Lin22]

F. Lindemann. Discussion on “the radiation theory of chemical action”. Trans. Faraday Soc., 17:598, 1922. URL: https://dx.doi.org/10.1039/TF9221700598, doi:10.1039/TF9221700598.

[MZG02]

B. J. McBride, M. J. Zehe, and S. Gordon. NASA Glenn coefficients for calculating thermodynamic properties of individual species. Technical Report NASA/TP-2002-211556, National Aeronautics and Space Administration, 2002. URL: https://ntrs.nasa.gov/citations/20020085330.

[NLT96]

M. Nishioka, C.K. Law, and T. Takeno. A flame-controlling continuation method for generating s-curve responses with detailed chemistry. Combustion and Flame, 104:328–342, 1996. URL: https://doi.org/10.1016/0010-2180(95)00132-8, doi:10.1016/0010-2180(95)00132-8.

[PB93]

T. Pedersen and R. .C. Brown. Simulation of electric field effects in premixed methane flames. Combustion and Flame, 94(4):433–448, 1993. URL: https://doi.org/10.1016/0010-2180(93)90125-M, doi:10.1016/0010-2180(93)90125-M.

[PPOConnell01]

B. E. Poling, J. M. Prausnitz, and J. P. O'Connell. The Properties of Gases and Liquids. McGraw-Hill, New York, fifth edition, 2001. ISBN 0-07-149999-7.

[SLL+24]

P. J. Singal, J. Lee, L. Lei, R. L. Speth, and M. P. Burke. Implementation of new mixture rules has a substantial impact on combustion predictions for H2 and NH3. Proceedings of the Combustion Institute, 40(1–4):105779, 2024. URL: https://doi.org/10.1016/j.proci.2024.105779, doi:10.1016/j.proci.2024.105779.

[SGF+99]

G. P. Smith, D. M. Golden, M. Frenklach, N .W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, Jr. W. C. Gardiner, V. V. Lissianski, and Z. Qin. GRI-Mech 3.0. 1999. URL: http://combustion.berkeley.edu/gri-mech/version30/text30.html.

[SM82]

W. R. Smith and R. W. Missen. Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Wiley, New York, 1982. ISBN 978-0471093473.

[SLG89]

P. H. Stewart, C. W. Larson, and D. Golden. Pressure and temperature dependence of reactions proceeding via a bound complex. 2. application to 2 CH3 -> C2H5 + H. Combustion and Flame, 75(1):25–40, 1989. URL: https://doi.org/10.1016/0010-2180(89)90084-9, doi:10.1016/0010-2180(89)90084-9.

[Tak75]

S. Takahashi. Preparation of a generalized chart for the diffusion coefficients of gases at high pressures. Journal of Chemical Engineering of Japan, 7(6):417–420, 1975. URL: https://doi.org/10.1252/jcej.7.417, doi:10.1252/jcej.7.417.

[TH91]

W. Tsang and J. T. Herron. Chemical kinetic data base for propellant combustion I. reactions involving NO, NO2, HNO, HNO2, HCN and N2O. Journal of Physical and Chemical Reference Data, 20(3):779–798, 1991. URL: https://dx.doi.org/10.1063/1.555890, doi:10.1063/1.555890.

[WPruss02]

W. Wagner and A. Pruß. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 31(2):387–535, 2002. URL: https://dx.doi.org/10.1063/1.1461829, doi:10.1063/1.1461829.

[WSN23]

A. S. Walker, R. L. Speth, and K. E. Niemeyer. Generalized preconditioning for accelerating simulations with large kinetic models. Proceedings of the Combustion Institute, 39(4):5395–5403, June 2023. URL: https://www.sciencedirect.com/science/article/pii/S1540748922003273, doi:10.1016/j.proci.2022.07.256.

[WD81]

C. K. Westbrook and F. L. Dryer. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology, 27(1-2):31–43, 1981. URL: https://doi.org/10.1080/00102208108946970, doi:10.1080/00102208108946970.