32 for (
size_t k = 0; k <
m_kk; k++) {
47 for (
size_t k = 0; k <
m_kk; k++) {
64 for (
size_t k = 0; k <
m_kk; k++) {
72 for (
size_t k = 0; k <
m_kk; k++) {
81 for (
size_t k = 0; k <
m_kk; k++) {
97 for (
size_t k = 0; k <
m_kk; k++) {
102 for (
size_t k = 0; k <
m_kk; k++) {
111 for (
size_t iK = 0; iK <
m_kk; iK++) {
119 for (
const auto& item :
m_input[
"interactions"].asVector<
AnyMap>()) {
120 auto&
species = item[
"species"].asVector<
string>(2);
121 vector<double> h_excess = item.convertVector(
"excess-enthalpy",
"J/kmol");
122 vector<double> s_excess = item.convertVector(
"excess-entropy",
"J/kmol/K");
124 h_excess.data(), h_excess.size(),
125 s_excess.data(), s_excess.size());
135 vector<AnyMap> interactions;
138 interaction[
"species"] = vector<string>{
142 while (h.size() > 1 && h.back() == 0) {
145 while (s.size() > 1 && s.back() == 0) {
148 interaction[
"excess-enthalpy"].setQuantity(std::move(h),
"J/kmol");
149 interaction[
"excess-entropy"].setQuantity(std::move(s),
"J/kmol/K");
150 interactions.push_back(std::move(interaction));
152 phaseNode[
"interactions"] = std::move(interactions);
169 for (
size_t i = 0; i <
m_HE_m_ij.size(); i++) {
174 double deltaX = XA - XB;
175 const vector<double>& he_vec =
m_HE_m_ij[i];
176 const vector<double>& se_vec =
m_SE_m_ij[i];
178 double polyMm1 = 1.0;
182 for (
size_t m = 0; m < he_vec.size(); m++) {
183 double A_ge = (he_vec[m] - T * se_vec[m]) / (
GasConstant * T);
185 sum2 += A_ge * (m + 1) * poly;
188 sumMm1 += (A_ge * polyMm1 * m);
192 double oneMXA = 1.0 - XA;
193 double oneMXB = 1.0 - XB;
194 for (
size_t k = 0; k <
m_kk; k++) {
197 }
else if (iB == k) {
212 for (
size_t i = 0; i <
m_HE_m_ij.size(); i++) {
217 double deltaX = XA - XB;
220 const vector<double>& he_vec =
m_HE_m_ij[i];
222 double polyMm1 = 1.0;
224 for (
size_t m = 0; m < he_vec.size(); m++) {
227 sum2 += h_e * (m + 1) * poly;
230 sumMm1 += (h_e * polyMm1 * m);
234 double oneMXA = 1.0 - XA;
235 double oneMXB = 1.0 - XB;
236 for (
size_t k = 0; k <
m_kk; k++) {
239 }
else if (iB == k) {
247 for (
size_t k = 0; k <
m_kk; k++) {
255 for (
size_t k = 0; k <
m_kk; k++) {
263 for (
size_t k = 0; k <
m_kk; k++) {
273 for (
size_t i = 0; i <
m_HE_m_ij.size(); i++) {
278 double deltaX = XA - XB;
281 const vector<double>& he_vec =
m_HE_m_ij[i];
282 const vector<double>& se_vec =
m_SE_m_ij[i];
284 double polyMm1 = 1.0;
285 double polyMm2 = 1.0;
287 for (
size_t m = 0; m < he_vec.size(); m++) {
288 double A_ge = (he_vec[m] - T * se_vec[m]) / (
GasConstant * T);;
292 sumMm1 += (A_ge * polyMm1 * m);
296 sumMm2 += (A_ge * polyMm2 * m * (m - 1.0));
301 for (
size_t k = 0; k <
m_kk; k++) {
304 XA * (- (1-XA+XB) * sum + 2*(1.0 - XA) * XB * sumMm1
305 + sumMm1 * (XB * (1 - 2*XA + XB) - XA * (1 - XA + 2*XB))
306 + 2 * XA * XB * sumMm2 * (1.0 - XA + XB));
307 }
else if (iB == k) {
309 XB * (- (1-XB+XA) * sum - 2*(1.0 - XB) * XA * sumMm1
310 + sumMm1 * (XA * (2*XB - XA - 1) - XB * (-2*XA + XB - 1))
311 - 2 * XA * XB * sumMm2 * (-XA - 1 + XB));
322 for (
size_t i = 0; i <
m_HE_m_ij.size(); i++) {
327 double deltaX = XA - XB;
330 const vector<double>& he_vec =
m_HE_m_ij[i];
331 const vector<double>& se_vec =
m_SE_m_ij[i];
333 double polyMm1 = 1.0;
334 double polyMm2 = 1.0;
336 double sum2Mm1 = 0.0;
338 for (
size_t m = 0; m < he_vec.size(); m++) {
339 double A_ge = he_vec[m] - T * se_vec[m];
341 sum2 += A_ge * (m + 1) * poly;
344 sumMm1 += (A_ge * polyMm1 * m);
345 sum2Mm1 += (A_ge * polyMm1 * m * (1.0 + m));
349 sumMm2 += (A_ge * polyMm2 * m * (m - 1.0));
354 for (
size_t k = 0; k <
m_kk; k++) {
357 + XB * sumMm1 * (1.0 - 2.0 * XA + XB)
358 + XA * XB * sumMm2 * (1.0 - XA + XB));
361 + XA * sumMm1 * (1.0 + 2.0 * XB - XA)
362 - XA * XB * sumMm2 * (1.0 - XA + XB));
363 }
else if (iB == k) {
365 + XB * sumMm1 * (1.0 - 2.0 * XA + XB)
366 + XA * XB * sumMm2 * (1.0 - XA + XB));
369 + XA * sumMm1 * (XB - XA - (1.0 - XB))
370 - XA * XB * sumMm2 * (-XA - (1.0 - XB)));
380 double* dlnActCoeffds)
const
384 for (
size_t k = 0; k <
m_kk; k++) {
386 for (
size_t j = 0; j <
m_kk; j++) {
395 for (
size_t j = 0; j <
m_kk; j++) {
397 for (
size_t k = 0; k <
m_kk; k++) {
406 for (
size_t k = 0; k <
m_kk; k++) {
415 for (
size_t k = 0; k <
m_kk; k++) {
416 for (
size_t m = 0; m <
m_kk; m++) {
417 dlnActCoeffdlnN[ld * k + m] = data[
m_kk * k + m];
423 const string& speciesA,
const string& speciesB,
424 const double* excess_enthalpy,
size_t n_enthalpy,
425 const double* excess_entropy,
size_t n_entropy)
430 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
431 "Species '{}' not present in phase", speciesA);
432 }
else if (kB ==
npos) {
433 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
434 "Species '{}' not present in phase", speciesB);
437 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
438 "Species '{}' should be neutral", speciesA);
439 }
else if (
charge(kB) != 0) {
440 throw CanteraError(
"RedlichKisterVPSSTP::addBinaryInteraction",
441 "Species '{}' should be neutral", speciesB);
446 m_HE_m_ij.emplace_back(excess_enthalpy, excess_enthalpy + n_enthalpy);
447 m_SE_m_ij.emplace_back(excess_entropy, excess_entropy + n_entropy);
448 size_t N = max(n_enthalpy, n_entropy);
(see Thermodynamic Properties and class RedlichKisterVPSSTP).
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
A map of string keys to values whose type can vary at runtime.
bool hasKey(const string &key) const
Returns true if the map contains an item named key.
void zero()
Set all of the entries to zero.
virtual void resize(size_t n, size_t m, double v=0.0)
Resize the array, and fill the new entries with 'v'.
Base class for exceptions thrown by Cantera classes.
vector< double > d2lnActCoeffdT2_Scaled_
Storage for the current derivative values of the gradients with respect to temperature of the log of ...
Array2D dlnActCoeffdlnN_
Storage for the current derivative values of the gradients with respect to logarithm of the species m...
vector< double > lnActCoeff_Scaled_
Storage for the current values of the activity coefficients of the species.
vector< double > dlnActCoeffdlnX_diag_
Storage for the current derivative values of the gradients with respect to logarithm of the mole frac...
vector< double > moleFractions_
Storage for the current values of the mole fractions of the species.
vector< double > dlnActCoeffdT_Scaled_
Storage for the current derivative values of the gradients with respect to temperature of the log of ...
size_t m_kk
Number of species in the phase.
double temperature() const
Temperature (K).
string speciesName(size_t k) const
Name of the species with index k.
size_t speciesIndex(const string &name) const
Returns the index of a species named 'name' within the Phase object.
shared_ptr< Species > species(const string &name) const
Return the Species object for the named species.
double charge(size_t k) const
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the...
void getdlnActCoeffds(const double dTds, const double *const dXds, double *dlnActCoeffds) const override
Get the change in activity coefficients wrt changes in state (temp, mole fraction,...
void s_update_dlnActCoeff_dX_() const
Internal routine that calculates the derivative of the activity coefficients wrt the mole fractions.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials. Units: J/kmol.
Array2D dlnActCoeff_dX_
Two dimensional array of derivatives of activity coefficients wrt mole fractions.
vector< vector< double > > m_SE_m_ij
Entropy term for the binary mole fraction interaction of the excess Gibbs free energy expression.
void getParameters(AnyMap &phaseNode) const override
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
void initThermo() override
Initialize the ThermoPhase object after all species have been set up.
void getPartialMolarVolumes(double *vbar) const override
Return an array of partial molar volumes for the species in the mixture.
vector< size_t > m_pSpecies_A_ij
vector of species indices representing species A in the interaction
double cv_mole() const override
Molar heat capacity at constant volume. Units: J/kmol/K.
void s_update_dlnActCoeff_dT() const
Update the derivative of the log of the activity coefficients wrt T.
vector< size_t > m_pSpecies_B_ij
vector of species indices representing species B in the interaction
void addBinaryInteraction(const string &speciesA, const string &speciesB, const double *excess_enthalpy, size_t n_enthalpy, const double *excess_entropy, size_t n_entropy)
Add a binary species interaction with the specified parameters.
vector< vector< double > > m_HE_m_ij
Enthalpy term for the binary mole fraction interaction of the excess Gibbs free energy expression.
void getdlnActCoeffdT(double *dlnActCoeffdT) const override
Get the array of temperature derivatives of the log activity coefficients.
void getPartialMolarCp(double *cpbar) const override
Returns an array of partial molar heat capacities for the species in the mixture.
void initLengths()
Initialize lengths of local variables after all species have been identified.
void getLnActivityCoefficients(double *lnac) const override
Get the array of non-dimensional molar-based ln activity coefficients at the current solution tempera...
void s_update_dlnActCoeff_dlnX_diag() const
Internal routine that calculates the total derivative of the activity coefficients with respect to th...
void s_update_lnActCoeff() const
Update the activity coefficients.
void getdlnActCoeffdlnX_diag(double *dlnActCoeffdlnX_diag) const override
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component o...
RedlichKisterVPSSTP(const string &inputFile="", const string &id="")
Construct a RedlichKisterVPSSTP object from an input file.
void getdlnActCoeffdlnN_diag(double *dlnActCoeffdlnN_diag) const override
Get the array of log species mole number derivatives of the log activity coefficients.
void getd2lnActCoeffdT2(double *d2lnActCoeffdT2) const
Get the array of temperature second derivatives of the log activity coefficients.
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies for the species in the mixture.
void getdlnActCoeffdlnN(const size_t ld, double *const dlnActCoeffdlnN) override
Get the array of derivatives of the log activity coefficients with respect to the log of the species ...
virtual double cp_mole() const
Molar heat capacity at constant pressure. Units: J/kmol/K.
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
double RT() const
Return the Gas Constant multiplied by the current temperature.
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
AnyMap m_input
Data supplied via setParameters.
void getEntropy_R(double *sr) const override
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
void getStandardChemPotentials(double *mu) const override
Get the array of chemical potentials at unit activity for the species at their standard states at the...
void getCp_R(double *cpr) const override
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
void getEnthalpy_RT(double *hrt) const override
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
void getStandardVolumes(double *vol) const override
Get the molar volumes of the species standard states at the current T and P of the solution.
const double GasConstant
Universal Gas Constant [J/kmol/K].
Namespace for the Cantera kernel.
const size_t npos
index returned by functions to indicate "no position"
const double SmallNumber
smallest number to compare to zero.
Contains declarations for string manipulation functions within Cantera.