Cantera
2.0
|
Transport Parameters for pure water. More...
#include <WaterTransport.h>
Public Member Functions | |
WaterTransport (thermo_t *thermo=0, int ndim=1) | |
default constructor | |
WaterTransport (const WaterTransport &right) | |
Copy Constructor for the LiquidThermo object. | |
WaterTransport & | operator= (const WaterTransport &right) |
Assignment operator. | |
virtual Transport * | duplMyselfAsTransport () const |
Duplication routine for objects which inherit from Transport. | |
virtual | ~WaterTransport () |
virtual destructor | |
virtual int | model () const |
Return the model id for this transport parameterization. | |
virtual doublereal | viscosity () |
Returns the viscosity of water at the current conditions (kg/m/s) | |
virtual doublereal | bulkViscosity () |
The bulk viscosity in Pa-s. | |
virtual doublereal | thermalConductivity () |
Returns the thermal conductivity of water at the current conditions (W/m/K) | |
thermo_t & | thermo () |
Phase object. | |
bool | ready () |
Returns true if the transport manager is ready for use. | |
void | setNDim (const int ndim) |
Set the number of dimensions to be expected in flux expressions. | |
size_t | nDim () const |
Return the number of dimensions in flux expressions. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies() | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
virtual doublereal | getElectricConduct () |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) | |
virtual void | getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current) |
Compute the electric current density in A/m^2. | |
virtual void | getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes) |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. | |
virtual void | getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. | |
virtual void | getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes) |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes) |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getThermalDiffCoeffs (doublereal *const dt) |
Return a vector of Thermal diffusion coefficients [kg/m/sec]. | |
virtual void | getBinaryDiffCoeffs (const size_t ld, doublereal *const d) |
Returns the matrix of binary diffusion coefficients [m^2/s]. | |
virtual void | getMultiDiffCoeffs (const size_t ld, doublereal *const d) |
Return the Multicomponent diffusion coefficients. Units: [m^2/s]. | |
virtual void | getMixDiffCoeffs (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | getMixDiffCoeffsMole (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | getMixDiffCoeffsMass (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | setParameters (const int type, const int k, const doublereal *const p) |
Set model parameters for derived classes. | |
void | setVelocityBasis (VelocityBasis ivb) |
Sets the velocity basis. | |
VelocityBasis | getVelocityBasis () const |
Gets the velocity basis. | |
Transport Properties | |
virtual void | getSpeciesViscosities (doublereal *const visc) |
Returns the pure species viscosities. | |
virtual doublereal | ionConductivity () |
The ionic conductivity in 1/ohm/m. | |
virtual void | getSpeciesIonConductivity (doublereal *const ionCond) |
Returns the pure species ionic conductivity. | |
virtual void | mobilityRatio (double *mobRat) |
Returns the pointer to the mobility ratios of the species in the phase. | |
virtual void | getSpeciesMobilityRatio (double **mobRat) |
Returns the pure species limit of the mobility ratios. | |
virtual void | selfDiffusion (doublereal *const selfDiff) |
Returns the self diffusion coefficients of the species in the phase. | |
virtual void | getSpeciesSelfDiffusion (double **selfDiff) |
Returns the pure species self diffusion in solution of each species. | |
virtual doublereal | electricalConductivity () |
The electrical conductivity (Siemens/m). | |
virtual void | getMobilities (doublereal *const mobil_e) |
Get the Electrical mobilities (m^2/V/s). | |
virtual void | getFluidMobilities (doublereal *const mobil_f) |
Get the fluid mobilities (s kmol/kg). | |
Protected Member Functions | |
Transport manager construction | |
These methods are used internally during construction. | |
virtual bool | initGas (GasTransportParams &tr) |
Called by TransportFactory to set parameters. | |
virtual bool | initLiquid (LiquidTransportParams &tr) |
Called by TransportFactory to set parameters. | |
void | setThermo (thermo_t &thermo) |
Specifies the ThermPhase object. | |
void | finalize () |
Enable the transport object for use. | |
Protected Attributes | |
thermo_t * | m_thermo |
pointer to the object representing the phase | |
bool | m_ready |
true if finalize has been called | |
size_t | m_nsp |
Number of species. | |
size_t | m_nDim |
Number of dimensions used in flux expressions. | |
int | m_velocityBasis |
Velocity basis from which diffusion velocities are computed. | |
Private Member Functions | |
void | initTP () |
Routine to do some common initializations at the start of using this routine. | |
Private Attributes | |
WaterPropsIAPWS * | m_sub |
Pointer to the WaterPropsIAPWS object, which does the actual calculations for the real equation of state. | |
WaterProps * | m_waterProps |
Pointer to the WaterProps object. | |
PDSS_Water * | m_waterPDSS |
Pressure dependent standard state object for water. | |
Transport Parameters for pure water.
Definition at line 43 of file WaterTransport.h.
WaterTransport | ( | thermo_t * | thermo = 0 , |
int | ndim = 1 |
||
) |
default constructor
thermo | ThermoPhase object that represents the phase. Defaults to zero |
ndim | Number of dimensions of the flux expressions. Defaults to a value of one. |
Definition at line 21 of file WaterTransport.cpp.
References WaterTransport::initTP().
Referenced by WaterTransport::duplMyselfAsTransport().
WaterTransport | ( | const WaterTransport & | right | ) |
Copy Constructor for the LiquidThermo object.
right | ThermoPhase to be copied |
Definition at line 31 of file WaterTransport.cpp.
|
virtual |
virtual destructor
Definition at line 74 of file WaterTransport.cpp.
WaterTransport & operator= | ( | const WaterTransport & | right | ) |
Assignment operator.
This is NOT a virtual function.
right | Reference to ThermoPhase object to be copied into the current one. |
Definition at line 43 of file WaterTransport.cpp.
References WaterTransport::initTP(), and Transport::operator=().
|
virtual |
Duplication routine for objects which inherit from Transport.
This virtual routine can be used to duplicate Transport objects inherited from Transport even if the application only has a pointer to Transport to work with.
These routines are basically wrappers around the derived copy constructor.
Reimplemented from Transport.
Definition at line 66 of file WaterTransport.cpp.
References WaterTransport::WaterTransport().
|
inlinevirtual |
Return the model id for this transport parameterization.
Reimplemented from Transport.
Definition at line 88 of file WaterTransport.h.
|
virtual |
Returns the viscosity of water at the current conditions (kg/m/s)
This function calculates the value of the viscosity of pure water at the current T and P.
The formulas used are from the paper
J. V. Sengers, J. T. R. Watson, "Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance", J. Phys. Chem. Ref. Data, 15, 1291 (1986).
The formulation is accurate for all temperatures and pressures, for steam and for water, even near the critical point. Pressures above 500 MPa and temperature above 900 C are suspect.
Reimplemented from Transport.
Definition at line 128 of file WaterTransport.cpp.
References WaterTransport::m_waterProps, and WaterProps::viscosityWater().
|
inlinevirtual |
The bulk viscosity in Pa-s.
The bulk viscosity is only non-zero in rare cases. Most transport managers either overload this method to return zero, or do not implement it, in which case an exception is thrown if called.
Reimplemented from Transport.
Definition at line 118 of file WaterTransport.h.
|
virtual |
Returns the thermal conductivity of water at the current conditions (W/m/K)
This function calculates the value of the thermal conductivity of water at the current T and P.
The formulas used are from the paper J. V. Sengers, J. T. R. Watson, "Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance", J. Phys. Chem. Ref. Data, 15, 1291 (1986).
The formulation is accurate for all temperatures and pressures, for steam and for water, even near the critical point. Pressures above 500 MPa and temperature above 900 C are suspect.
Reimplemented from Transport.
Definition at line 149 of file WaterTransport.cpp.
References WaterTransport::m_waterProps, and WaterProps::thermalConductivityWater().
|
private |
Routine to do some common initializations at the start of using this routine.
Definition at line 80 of file WaterTransport.cpp.
References AssertTrace, PDSS_Water::getWater(), WaterSSTP::getWater(), PDSS_Water::getWaterProps(), WaterSSTP::getWaterProps(), WaterTransport::m_sub, Transport::m_thermo, WaterTransport::m_waterPDSS, and WaterTransport::m_waterProps.
Referenced by WaterTransport::operator=(), and WaterTransport::WaterTransport().
|
inlineinherited |
Phase object.
Every transport manager is designed to compute properties for a specific phase of a mixture, which might be a liquid solution, a gas mixture, a surface, etc. This method returns a reference to the object representing the phase itself.
Definition at line 239 of file TransportBase.h.
References Transport::m_thermo.
Referenced by Transport::setThermo().
|
inherited |
Returns true if the transport manager is ready for use.
Definition at line 75 of file TransportBase.cpp.
References Transport::m_ready.
Referenced by Transport::finalize(), and Transport::setThermo().
|
inherited |
Set the number of dimensions to be expected in flux expressions.
Internal memory will be set with this value.
ndim | Number of dimensions in flux expressions |
Definition at line 83 of file TransportBase.cpp.
References Transport::m_nDim.
|
inlineinherited |
Return the number of dimensions in flux expressions.
Definition at line 261 of file TransportBase.h.
References Transport::m_nDim.
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()
Definition at line 88 of file TransportBase.cpp.
References Transport::m_nsp.
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 95 of file TransportBase.cpp.
References Transport::m_nsp.
|
inlinevirtualinherited |
Returns the pure species viscosities.
The units are Pa-s and the length is the number of species
visc | Vector of viscosities |
Reimplemented in SimpleTransport, LiquidTransport, AqueousTransport, and GasTransport.
Definition at line 293 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The ionic conductivity in 1/ohm/m.
Reimplemented in LiquidTransport.
Definition at line 310 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species ionic conductivity.
The units are 1/ohm/m and the length is the number of species
ionCond | Vector of ionic conductivities |
Reimplemented in LiquidTransport.
Definition at line 320 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pointer to the mobility ratios of the species in the phase.
mobRat | Returns a matrix of mobility ratios for the current problem. The mobility ratio mobRat(i,j) is defined as the ratio of the mobility of species i to species j. |
mobRat(i,j) = mu_i / mu_j
It is returned in fortran-ordering format. ie. it is returned as mobRat[k], where
k = j * nsp + i
The size of mobRat must be at least equal to nsp*nsp
Reimplemented in LiquidTransport.
Definition at line 342 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species limit of the mobility ratios.
The value is dimensionless and the length is the number of species
mobRat | Vector of mobility ratios |
Reimplemented in LiquidTransport.
Definition at line 352 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the self diffusion coefficients of the species in the phase.
The self diffusion coefficient is the diffusion coefficient of a tracer species at the current temperature and composition of the species. Therefore, the dilute limit of transport is assumed for the tracer species. The effective formula may be calculated from the stefan-maxwell formulation by adding another row for the tracer species, assigning all D's to be equal to the respective species D's, and then taking the limit as the tracer species mole fraction goes to zero. The corresponding flux equation for the tracer species k in units of kmol m-2 s-1 is.
\[ J_k = - D^{sd}_k \frac{C_k}{R T} \nabla \mu_k \]
The derivative is taken at constant T and P.
The self diffusion calculation is handled by subclasses of LiquidTranInteraction as specified in the input file. These in turn employ subclasses of LTPspecies to determine the individual species self diffusion coeffs.
selfDiff | Vector of self-diffusion coefficients Length = number of species in phase units = m**2 s-1 |
Reimplemented in LiquidTransport.
Definition at line 382 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species self diffusion in solution of each species.
The pure species molar volumes are evaluated using the appropriate subclasses of LTPspecies as specified in the input file.
selfDiff | array of length "number of species" to hold returned self diffusion coeffs. |
Reimplemented in LiquidTransport.
Definition at line 396 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The electrical conductivity (Siemens/m).
Reimplemented in SolidTransport, and FtnTransport.
Definition at line 413 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the Electrical mobilities (m^2/V/s).
This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by faraday's constant.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^e_k = \frac{F D_k}{R T} \]
mobil_e | Returns the mobilities of the species in array mobil_e . The array must be dimensioned at least as large as the number of species. |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, MixTransport, FtnTransport, and SolidTransport.
Definition at line 435 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the fluid mobilities (s kmol/kg).
This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^f_k = \frac{D_k}{R T} \]
mobil_f | Returns the mobilities of the species in array mobil . The array must be dimensioned at least as large as the number of species. |
Reimplemented in LiquidTransport, SimpleTransport, and AqueousTransport.
Definition at line 457 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)
The electrical conductivity, \( \sigma \), relates the electric current density, J, to the electric field, E.
\[ \vec{J} = \sigma \vec{E} \]
We assume here that the mixture electrical conductivity is an isotropic quantity, at this stage. Tensors may be included at a later time.
The conductivity is the reciprocal of the resistivity.
The units are Siemens m-1, where 1 S = 1 A / volt = 1 s^3 A^2 /kg /m^2
Reimplemented in LiquidTransport.
Definition at line 482 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the electric current density in A/m^2.
Calculates the electric current density as a vector, given the gradients of the field variables.
ndim | The number of spatial dimensions (1, 2, or 3). |
grad_T | The temperature gradient (ignored in this model). |
ldx | Leading dimension of the grad_X array. |
grad_X | The gradient of the mole fraction |
ldf | Leading dimension of the grad_V and current vectors. |
grad_V | The electrostatic potential gradient. |
current | The electric current in A/m^2. This is a vector of length ndim |
Reimplemented in LiquidTransport.
Definition at line 500 of file TransportBase.h.
References Transport::err().
|
virtualinherited |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned fluxes are kg m-2 s-1.
Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, MixTransport, and MultiTransport.
Definition at line 146 of file TransportBase.cpp.
References Transport::err().
Referenced by Transport::getSpeciesFluxesES().
|
inlinevirtualinherited |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
Units for the returned fluxes are kg m-2 s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Definition at line 560 of file TransportBase.h.
References Transport::getSpeciesFluxes().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned velocities are m s-1
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 593 of file TransportBase.h.
References Transport::err().
Referenced by Transport::getSpeciesVdiffES().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential.
Units for the returned velocities are m s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 625 of file TransportBase.h.
References Transport::getSpeciesVdiff().
|
inlinevirtualinherited |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
cfluxes | Output array containing the diffusive molar fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kmol/m^2/s]. |
Reimplemented in MultiTransport, and DustyGasTransport.
Definition at line 650 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
mfluxes | Output array containing the diffusive mass fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kg/m^2/s]. |
Reimplemented in MultiTransport.
Definition at line 671 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Return a vector of Thermal diffusion coefficients [kg/m/sec].
The thermal diffusion coefficient \( D^T_k \) is defined so that the diffusive mass flux of species k induced by the local temperature gradient is given by the following formula
\[ M_k J_k = -D^T_k \nabla \ln T. \]
The thermal diffusion coefficient can be either positive or negative.
dt | On return, dt will contain the species thermal diffusion coefficients. Dimension dt at least as large as the number of species. Units are kg/m/s. |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, MixTransport, MultiTransport, and FtnTransport.
Definition at line 693 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
Returns the matrix of binary diffusion coefficients [m^2/s].
ld | Inner stride for writing the two dimension diffusion coefficients into a one dimensional vector |
d | Diffusion coefficient matrix (must be at least m_k * m_k in length. |
Reimplemented in SimpleTransport, LiquidTransport, AqueousTransport, and GasTransport.
Definition at line 705 of file TransportBase.h.
References Transport::err().
Referenced by DustyGasTransport::updateBinaryDiffCoeffs().
|
inlinevirtualinherited |
Return the Multicomponent diffusion coefficients. Units: [m^2/s].
If the transport manager implements a multicomponent diffusion model, then this method returns the array of multicomponent diffusion coefficients. Otherwise it throws an exception.
ld | The dimension of the inner loop of d (usually equal to m_nsp) |
d | flat vector of diffusion coefficients, fortran ordering. d[ld*j+i] is the D_ij diffusion coefficient (the diffusion coefficient for species i due to species j). |
Reimplemented in DustyGasTransport, and MultiTransport.
Definition at line 721 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Mixture-averaged diffusion coefficients [m^2/s]. If the
transport manager implements a mixture-averaged diffusion model, then this method returns the array of mixture-averaged diffusion coefficients. Otherwise it throws an exception.
d | Return vector of mixture averaged diffusion coefficients Units = m2/s. Length = n_sp |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, FtnTransport, GasTransport, and SolidTransport.
Definition at line 738 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport.
Definition at line 744 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport.
Definition at line 749 of file TransportBase.h.
References Transport::err().
|
virtualinherited |
Set model parameters for derived classes.
This method may be derived in subclasses to set model-specific parameters. The primary use of this class is to set parameters while in the middle of a calculation without actually having to dynamically cast the base Transport pointer.
type | Specifies the type of parameters to set 0 : Diffusion coefficient 1 : Thermal Conductivity The rest are currently unused. |
k | Species index to set the parameters on |
p | Vector of parameters. The length of the vector varies with the parameterization |
Reimplemented in DustyGasTransport, and SolidTransport.
Definition at line 105 of file TransportBase.cpp.
References Transport::err().
|
inlineinherited |
Sets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
ivb | Species the velocity basis |
Definition at line 777 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineinherited |
Gets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
Definition at line 789 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineprotectedvirtualinherited |
Called by TransportFactory to set parameters.
Called by TransportFactory to set parameters.
This is called by classes that use the gas phase parameter list to initialize themselves.
tr | Reference to the parameter list that will be used to initialize the class |
Reimplemented in MixTransport, MultiTransport, and GasTransport.
Definition at line 819 of file TransportBase.h.
References Transport::err().
Referenced by TransportFactory::initTransport().
|
inlineprotectedvirtualinherited |
Called by TransportFactory to set parameters.
This is called by classes that use the liquid phase parameter list to initialize themselves.
tr | Reference to the parameter list that will be used to initialize the class |
Reimplemented in AqueousTransport, SimpleTransport, and LiquidTransport.
Definition at line 832 of file TransportBase.h.
References Transport::err().
Referenced by TransportFactory::initLiquidTransport().
|
protectedinherited |
Specifies the ThermPhase object.
thermo | Reference to the ThermoPhase object that the transport object will use |
Definition at line 112 of file TransportBase.cpp.
References Transport::m_nsp, Transport::m_thermo, Phase::nSpecies(), Transport::ready(), and Transport::thermo().
Referenced by TransportFactory::newTransport().
|
protectedinherited |
Enable the transport object for use.
Once finalize() has been called, the transport manager should be ready to compute any supported transport property, and no further modifications to the model parameters should be made.
Definition at line 136 of file TransportBase.cpp.
References Transport::m_ready, and Transport::ready().
|
mutableprivate |
Pointer to the WaterPropsIAPWS object, which does the actual calculations for the real equation of state.
This object owns m_sub
Definition at line 152 of file WaterTransport.h.
Referenced by WaterTransport::initTP().
|
private |
Pointer to the WaterProps object.
This class is used to house several approximation routines for properties of water.
This object owns m_waterProps, and the WaterPropsIAPWS object used by WaterProps is m_sub, which is defined above.
Definition at line 162 of file WaterTransport.h.
Referenced by WaterTransport::initTP(), WaterTransport::thermalConductivity(), and WaterTransport::viscosity().
|
private |
Pressure dependent standard state object for water.
We assume that species 0 is water, with a PDSS_Water object.
Definition at line 169 of file WaterTransport.h.
Referenced by WaterTransport::initTP().
|
protectedinherited |
pointer to the object representing the phase
Definition at line 857 of file TransportBase.h.
Referenced by SolidTransport::electricalConductivity(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getLiquidTransportData(), MultiTransport::getMassFluxes(), SolidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), SolidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), WaterTransport::initTP(), Transport::operator=(), MixTransport::pressure_ig(), SolidTransport::setParameters(), Transport::setThermo(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), Transport::thermo(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().
|
protectedinherited |
true if finalize has been called
Definition at line 860 of file TransportBase.h.
Referenced by Transport::finalize(), Transport::operator=(), Transport::ready(), and Transport::Transport().
|
protectedinherited |
Number of species.
Definition at line 863 of file TransportBase.h.
Referenced by Transport::checkSpeciesArraySize(), Transport::checkSpeciesIndex(), DustyGasTransport::eval_H_matrix(), MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::eval_L1000(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), LiquidTransport::getBinaryDiffCoeffs(), SimpleTransport::getBinaryDiffCoeffs(), LiquidTransport::getElectricConduct(), LiquidTransport::getElectricCurrent(), AqueousTransport::getFluidMobilities(), SimpleTransport::getFluidMobilities(), LiquidTransport::getFluidMobilities(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), LiquidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MixTransport::getMobilities(), AqueousTransport::getMobilities(), SimpleTransport::getMobilities(), LiquidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), DustyGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesMobilityRatio(), LiquidTransport::getSpeciesSelfDiffusion(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), LiquidTransport::getSpeciesVdiffExt(), MultiTransport::getThermalDiffCoeffs(), MixTransport::getThermalDiffCoeffs(), AqueousTransport::getThermalDiffCoeffs(), SimpleTransport::getThermalDiffCoeffs(), LiquidTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::initGas(), MixTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), LiquidTransport::mobilityRatio(), Transport::operator=(), LiquidTransport::selfDiffusion(), AqueousTransport::set_Grad_X(), SimpleTransport::set_Grad_X(), LiquidTransport::set_Grad_X(), Transport::setThermo(), MultiTransport::solveLMatrixEquation(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), MultiTransport::thermalConductivity(), MixTransport::thermalConductivity(), AqueousTransport::thermalConductivity(), SimpleTransport::thermalConductivity(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), DustyGasTransport::updateBinaryDiffCoeffs(), MixTransport::updateCond_T(), SimpleTransport::updateCond_T(), AqueousTransport::updateCond_T(), LiquidTransport::updateCond_T(), GasTransport::updateDiff_T(), SimpleTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), LiquidTransport::updateHydrodynamicRadius_T(), LiquidTransport::updateIonConductivity_T(), DustyGasTransport::updateKnudsenDiffCoeffs(), LiquidTransport::updateMobilityRatio_T(), LiquidTransport::updateSelfDiffusion_T(), GasTransport::updateSpeciesViscosities(), AqueousTransport::updateSpeciesViscosities(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), GasTransport::updateViscosity_T(), SimpleTransport::updateViscosity_T(), AqueousTransport::updateViscosity_T(), LiquidTransport::updateViscosity_T(), GasTransport::viscosity(), AqueousTransport::viscosity(), SimpleTransport::viscosity(), and LiquidTransport::~LiquidTransport().
|
protectedinherited |
Number of dimensions used in flux expressions.
Definition at line 866 of file TransportBase.h.
Referenced by Transport::nDim(), Transport::operator=(), Transport::setNDim(), and Transport::Transport().
|
protectedinherited |
Velocity basis from which diffusion velocities are computed.
Defaults to the mass averaged basis = -2
Definition at line 870 of file TransportBase.h.
Referenced by SimpleTransport::getSpeciesFluxesExt(), Transport::getVelocityBasis(), LiquidTransport::initLiquid(), Transport::operator=(), Transport::setVelocityBasis(), LiquidTransport::stefan_maxwell_solve(), and Transport::Transport().