Cantera
2.0
|
Class DustyGasTransport implements the Dusty Gas model for transport in porous media. More...
#include <DustyGasTransport.h>
Public Member Functions | |
DustyGasTransport (thermo_t *thermo=0) | |
default constructor | |
DustyGasTransport (const DustyGasTransport &right) | |
Copy Constructor for the DustyGasTransport object. | |
DustyGasTransport & | operator= (const DustyGasTransport &right) |
Assignment operator. | |
virtual | ~DustyGasTransport () |
Destructor. | |
virtual Transport * | duplMyselfAsTransport () const |
Duplication routine for objects which inherit from Transport. | |
virtual int | model () const |
Transport model. | |
virtual void | setParameters (const int type, const int k, const doublereal *const p) |
Set the Parameters in the model. | |
virtual void | getMultiDiffCoeffs (const size_t ld, doublereal *const d) |
Return the Multicomponent diffusion coefficients. Units: [m^2/s]. | |
virtual void | getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const fluxes) |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. | |
void | setPorosity (doublereal porosity) |
Set the porosity (dimensionless) | |
void | setTortuosity (doublereal tort) |
Set the tortuosity (dimensionless) | |
void | setMeanPoreRadius (doublereal rbar) |
Set the mean pore radius (m) | |
void | setMeanParticleDiameter (doublereal dbar) |
Set the mean particle diameter. | |
void | setPermeability (doublereal B) |
Set the permeability of the media. | |
Transport & | gasTransport () |
Return a reference to the transport manager used to compute the gas binary diffusion coefficients and the viscosity. | |
thermo_t & | thermo () |
Phase object. | |
bool | ready () |
Returns true if the transport manager is ready for use. | |
void | setNDim (const int ndim) |
Set the number of dimensions to be expected in flux expressions. | |
size_t | nDim () const |
Return the number of dimensions in flux expressions. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies() | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
virtual doublereal | getElectricConduct () |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) | |
virtual void | getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current) |
Compute the electric current density in A/m^2. | |
virtual void | getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes) |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. | |
virtual void | getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. | |
virtual void | getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes) |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getThermalDiffCoeffs (doublereal *const dt) |
Return a vector of Thermal diffusion coefficients [kg/m/sec]. | |
virtual void | getBinaryDiffCoeffs (const size_t ld, doublereal *const d) |
Returns the matrix of binary diffusion coefficients [m^2/s]. | |
virtual void | getMixDiffCoeffs (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | getMixDiffCoeffsMole (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | getMixDiffCoeffsMass (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
void | setVelocityBasis (VelocityBasis ivb) |
Sets the velocity basis. | |
VelocityBasis | getVelocityBasis () const |
Gets the velocity basis. | |
Transport Properties | |
virtual doublereal | viscosity () |
The viscosity in Pa-s. | |
virtual void | getSpeciesViscosities (doublereal *const visc) |
Returns the pure species viscosities. | |
virtual doublereal | bulkViscosity () |
The bulk viscosity in Pa-s. | |
virtual doublereal | ionConductivity () |
The ionic conductivity in 1/ohm/m. | |
virtual void | getSpeciesIonConductivity (doublereal *const ionCond) |
Returns the pure species ionic conductivity. | |
virtual void | mobilityRatio (double *mobRat) |
Returns the pointer to the mobility ratios of the species in the phase. | |
virtual void | getSpeciesMobilityRatio (double **mobRat) |
Returns the pure species limit of the mobility ratios. | |
virtual void | selfDiffusion (doublereal *const selfDiff) |
Returns the self diffusion coefficients of the species in the phase. | |
virtual void | getSpeciesSelfDiffusion (double **selfDiff) |
Returns the pure species self diffusion in solution of each species. | |
virtual doublereal | thermalConductivity () |
Returns the mixture thermal conductivity in W/m/K. | |
virtual doublereal | electricalConductivity () |
The electrical conductivity (Siemens/m). | |
virtual void | getMobilities (doublereal *const mobil_e) |
Get the Electrical mobilities (m^2/V/s). | |
virtual void | getFluidMobilities (doublereal *const mobil_f) |
Get the fluid mobilities (s kmol/kg). | |
Protected Member Functions | |
void | initialize (ThermoPhase *phase, Transport *gastr) |
Initialization routine called by TransportFactory. | |
Transport manager construction | |
These methods are used internally during construction. | |
virtual bool | initGas (GasTransportParams &tr) |
Called by TransportFactory to set parameters. | |
virtual bool | initLiquid (LiquidTransportParams &tr) |
Called by TransportFactory to set parameters. | |
void | setThermo (thermo_t &thermo) |
Specifies the ThermPhase object. | |
void | finalize () |
Enable the transport object for use. | |
Protected Attributes | |
thermo_t * | m_thermo |
pointer to the object representing the phase | |
bool | m_ready |
true if finalize has been called | |
size_t | m_nsp |
Number of species. | |
size_t | m_nDim |
Number of dimensions used in flux expressions. | |
int | m_velocityBasis |
Velocity basis from which diffusion velocities are computed. | |
Private Member Functions | |
void | updateTransport_T () |
Update temperature-dependent quantities within the object. | |
void | updateTransport_C () |
Update concentration-dependent quantities within the object. | |
void | updateBinaryDiffCoeffs () |
Private routine to update the dusty gas binary diffusion coefficients. | |
void | updateMultiDiffCoeffs () |
Private routine to update the Multicomponent diffusion coefficients that are used in the approximation. | |
void | updateKnudsenDiffCoeffs () |
Private routine to update the Knudsen diffusion coefficients. | |
void | eval_H_matrix () |
Private routine to calculate the H matrix. | |
Private Attributes | |
vector_fp | m_mw |
Local copy of the species molecular weights. | |
DenseMatrix | m_d |
binary diffusion coefficients | |
vector_fp | m_x |
mole fractions | |
vector_fp | m_dk |
Knudsen diffusion coefficients. | |
doublereal | m_temp |
temperature | |
DenseMatrix | m_multidiff |
Multicomponent diffusion coefficients. | |
vector_fp | m_spwork |
work space of size m_nsp; | |
vector_fp | m_spwork2 |
work space of size m_nsp; | |
doublereal | m_gradP |
Pressure Gradient. | |
bool | m_knudsen_ok |
Update-to-date variable for Knudsen diffusion coefficients. | |
bool | m_bulk_ok |
Update-to-date variable for Binary diffusion coefficients. | |
doublereal | m_porosity |
Porosity. | |
doublereal | m_tortuosity |
Tortuosity. | |
doublereal | m_pore_radius |
Pore radius (meter) | |
doublereal | m_diam |
Particle diameter. | |
doublereal | m_perm |
Permeability of the media. | |
Transport * | m_gastran |
Pointer to the transport object for the gas phase. | |
Friends | |
class | TransportFactory |
Make the TransportFactory object a friend, because this object has restricted its instantiation to classes which are friends. | |
Class DustyGasTransport implements the Dusty Gas model for transport in porous media.
As implemented here, only species transport is handled. The viscosity, thermal conductivity, and thermal diffusion coefficients are not implemented.
The dusty gas model includes the effects of Darcy's law. There is a net flux of species due to a pressure gradient that is part of Darcy's law.
The dusty gas model expresses the value of the molar flux of species \( k \), \( J_k \) by the following formula.
\[ \sum_{j \ne k}{\frac{X_j J_k - X_k J_j}{D^e_{kj}}} + \frac{J_k}{\mathcal{D}^{e}_{k,knud}} = - \nabla C_k - \frac{C_k}{\mathcal{D}^{e}_{k,knud}} \frac{\kappa}{\mu} \nabla p \]
\( j \) is a sum over all species in the gas.
The effective Knudsen diffusion coefficients are given by the following form
\[ \mathcal{D}^e_{k,knud} = \frac{2}{3} \frac{r_{pore} \phi}{\tau} \left( \frac{8 R T}{\pi W_k} \right)^{1/2} \]
The effective knudsen diffusion coefficients take into account the effects of collisions of gas-phase molecules with the wall.
References for the Dusty Gas Model
(1) H. Zhu, R. J. Kee, "Modeling Electrochemical Impedance Spectra in SOFC Button Cells with Internal Methane Reforming," J. Electrochem. Soc., 153(9) A1765-1772 (2006).
(2) H. Zhu, R. J. Kee, V. M. Janardhanan, O. Deutschmann, D. G. Goodwin, J. Electrochem. Soc., 152, A2427 (2005).
(3) E. A. Mason, A. P. Malinauskas," Gas Transport in Porous Media: the Dusty-Gas Model", American Elsevier, New York (1983).
(4) J. W. Veldsink, R. M. J. van Damme, G. F. Versteeg, W. P. M. van Swaaij, "The use of the dusty gas model for the description of mass transport with chemical reaction in porous media," Chemical Engineering Journal, 57, 115 - 125 (1995).
Definition at line 62 of file DustyGasTransport.h.
DustyGasTransport | ( | thermo_t * | thermo = 0 | ) |
default constructor
thermo | Pointer to the ThermoPhase object for this phase. Defaults to zero. |
Definition at line 29 of file DustyGasTransport.cpp.
Referenced by DustyGasTransport::duplMyselfAsTransport().
DustyGasTransport | ( | const DustyGasTransport & | right | ) |
Copy Constructor for the DustyGasTransport object.
right | LiquidTransport to be copied |
Definition at line 49 of file DustyGasTransport.cpp.
|
virtual |
Destructor.
Definition at line 112 of file DustyGasTransport.cpp.
References DustyGasTransport::m_gastran.
DustyGasTransport & operator= | ( | const DustyGasTransport & | right | ) |
Assignment operator.
Warning -> Shallow pointer copies are made of m_thermo and m_gastran.. gastran may not point to the correct object after this copy. The routine initialize() must be called after this routine to complete the copy.
right | Reference to DustyGasTransport object to be copied into the current one. |
Definition at line 77 of file DustyGasTransport.cpp.
References DustyGasTransport::duplMyselfAsTransport(), DustyGasTransport::m_bulk_ok, DustyGasTransport::m_d, DustyGasTransport::m_diam, DustyGasTransport::m_dk, DustyGasTransport::m_gastran, DustyGasTransport::m_gradP, DustyGasTransport::m_knudsen_ok, DustyGasTransport::m_multidiff, DustyGasTransport::m_mw, DustyGasTransport::m_perm, DustyGasTransport::m_pore_radius, DustyGasTransport::m_porosity, DustyGasTransport::m_spwork, DustyGasTransport::m_spwork2, DustyGasTransport::m_temp, DustyGasTransport::m_tortuosity, DustyGasTransport::m_x, and Transport::operator=().
|
virtual |
Duplication routine for objects which inherit from Transport.
This virtual routine can be used to duplicate Transport objects inherited from Transport even if the application only has a pointer to Transport to work with.
These routines are basically wrappers around the derived copy constructor.
Reimplemented from Transport.
Definition at line 126 of file DustyGasTransport.cpp.
References DustyGasTransport::DustyGasTransport().
Referenced by DustyGasTransport::operator=().
|
inlinevirtual |
Transport model.
The transport model is the set of equations used to compute the transport properties. This virtual method returns an integer flag that identifies the transport model implemented. The base class returns 0.
Reimplemented from Transport.
Definition at line 108 of file DustyGasTransport.h.
|
virtual |
Set the Parameters in the model.
type | Type of the parameter to set 0 - porosity 1 - tortuosity 2 - mean pore radius 3 - mean particle radius 4 - permeability |
k | Unused int |
p | pointer to double for the input list of parameters |
Reimplemented from Transport.
Definition at line 144 of file DustyGasTransport.cpp.
References DustyGasTransport::setMeanParticleDiameter(), DustyGasTransport::setMeanPoreRadius(), DustyGasTransport::setPermeability(), DustyGasTransport::setPorosity(), and DustyGasTransport::setTortuosity().
|
virtual |
Return the Multicomponent diffusion coefficients. Units: [m^2/s].
Returns the array of multicomponent diffusion coefficients.
ld | The dimension of the inner loop of d (usually equal to m_nsp) |
d | flat vector of diffusion coefficients, fortran ordering. d[ld*j+i] is the D_ij diffusion coefficient (the diffusion coefficient for species i due to species j). |
Reimplemented from Transport.
Definition at line 394 of file DustyGasTransport.cpp.
References DustyGasTransport::m_multidiff, Transport::m_nsp, and DustyGasTransport::updateMultiDiffCoeffs().
|
virtual |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
\[ J_k = - \sum_{j = 1, N} \left[D^{multi}_{kj}\right]^{-1} \left( \nabla C_j + \frac{C_j}{\mathcal{D}^{knud}_j} \frac{\kappa}{\mu} \nabla p \right) \]
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
fluxes | Vector of species molar fluxes due to diffusional driving force |
Reimplemented from Transport.
Definition at line 299 of file DustyGasTransport.cpp.
References DATA_PTR, Cantera::divide_each(), Cantera::GasConstant, Cantera::increment(), DustyGasTransport::m_diam, DustyGasTransport::m_dk, DustyGasTransport::m_gastran, DustyGasTransport::m_multidiff, DustyGasTransport::m_mw, Transport::m_nsp, DustyGasTransport::m_perm, DustyGasTransport::m_porosity, DustyGasTransport::m_spwork, DustyGasTransport::m_spwork2, Transport::m_thermo, DustyGasTransport::m_tortuosity, Cantera::multiply(), Cantera::scale(), ThermoPhase::setState_TPX(), DustyGasTransport::updateMultiDiffCoeffs(), and Transport::viscosity().
void setPorosity | ( | doublereal | porosity | ) |
Set the porosity (dimensionless)
porosity | Set the value of the porosity |
Definition at line 436 of file DustyGasTransport.cpp.
References DustyGasTransport::m_bulk_ok, DustyGasTransport::m_knudsen_ok, and DustyGasTransport::m_porosity.
Referenced by DustyGasTransport::setParameters().
void setTortuosity | ( | doublereal | tort | ) |
Set the tortuosity (dimensionless)
Tortuosity is considered to be constant within the object
tort | Value of the tortuosity |
Definition at line 447 of file DustyGasTransport.cpp.
References DustyGasTransport::m_bulk_ok, DustyGasTransport::m_knudsen_ok, and DustyGasTransport::m_tortuosity.
Referenced by DustyGasTransport::setParameters().
void setMeanPoreRadius | ( | doublereal | rbar | ) |
Set the mean pore radius (m)
rbar | Value of the pore radius ( m) |
Definition at line 458 of file DustyGasTransport.cpp.
References DustyGasTransport::m_knudsen_ok, and DustyGasTransport::m_pore_radius.
Referenced by DustyGasTransport::setParameters().
void setMeanParticleDiameter | ( | doublereal | dbar | ) |
Set the mean particle diameter.
dbar | Set the mean particle diameter (m) |
Definition at line 468 of file DustyGasTransport.cpp.
References DustyGasTransport::m_diam.
Referenced by DustyGasTransport::setParameters().
void setPermeability | ( | doublereal | B | ) |
Set the permeability of the media.
If not set, the value for close-packed spheres will be used by default.
The value for close-packed spheres is given below, where p is the porosity, t is the tortuosity, and d is the diameter of the sphere
\[ \kappa = \frac{p^3 d^2}{72 t (1 - p)^2} \]
B | set the permeability of the media (units = m^2) |
Definition at line 486 of file DustyGasTransport.cpp.
References DustyGasTransport::m_perm.
Referenced by DustyGasTransport::setParameters().
Transport & gasTransport | ( | ) |
Return a reference to the transport manager used to compute the gas binary diffusion coefficients and the viscosity.
Definition at line 496 of file DustyGasTransport.cpp.
References DustyGasTransport::m_gastran.
|
protected |
Initialization routine called by TransportFactory.
The DustyGas model is a subordinate model to the gas phase transport model. Here we set the gas phase models.
This is a protected routine, so that initialization of the Model must occur within Cantera's setup
phase | Pointer to the underlying ThermoPhase model for the gas phase |
gastr | Pointer to the underlying Transport model for transport in the gas phase. |
Definition at line 177 of file DustyGasTransport.cpp.
References DATA_PTR, Phase::getMoleFractions(), DustyGasTransport::m_bulk_ok, DustyGasTransport::m_d, DustyGasTransport::m_dk, DustyGasTransport::m_gastran, DustyGasTransport::m_knudsen_ok, DustyGasTransport::m_multidiff, DustyGasTransport::m_mw, Transport::m_nsp, DustyGasTransport::m_spwork, DustyGasTransport::m_spwork2, Transport::m_thermo, DustyGasTransport::m_x, Phase::molecularWeights(), Phase::nSpecies(), and DenseMatrix::resize().
Referenced by TransportFactory::newTransport().
|
private |
Update temperature-dependent quantities within the object.
The object keeps a value m_temp, which is the temperature at which quantities were last evaluated at. If the temperature is changed, update Booleans are set false, triggering recomputation.
Definition at line 409 of file DustyGasTransport.cpp.
References DustyGasTransport::m_bulk_ok, DustyGasTransport::m_knudsen_ok, DustyGasTransport::m_temp, Transport::m_thermo, and Phase::temperature().
Referenced by DustyGasTransport::updateMultiDiffCoeffs().
|
private |
Update concentration-dependent quantities within the object.
The object keeps a value m_temp, which is the temperature at which quantities were last evaluated at. If the temperature is changed, update Booleans are set false, triggering recomputation.
Definition at line 419 of file DustyGasTransport.cpp.
References DATA_PTR, Phase::getMoleFractions(), DustyGasTransport::m_bulk_ok, Transport::m_nsp, Transport::m_thermo, DustyGasTransport::m_x, ckr::max(), and MIN_X.
Referenced by DustyGasTransport::updateMultiDiffCoeffs().
|
private |
Private routine to update the dusty gas binary diffusion coefficients.
The dusty gas binary diffusion coefficients \( D^{dg}_{i,j} \) are evaluated from the binary gas-phase diffusion coefficients \( D^{bin}_{i,j} \) using the following formula
\[ D^{dg}_{i,j} = \frac{\phi}{\tau} D^{bin}_{i,j} \]
where \( \phi \) is the porosity of the media and \( \tau \) is the tortuosity of the media.
Definition at line 221 of file DustyGasTransport.cpp.
References Transport::getBinaryDiffCoeffs(), DustyGasTransport::m_bulk_ok, DustyGasTransport::m_d, DustyGasTransport::m_gastran, Transport::m_nsp, DustyGasTransport::m_porosity, DustyGasTransport::m_tortuosity, and Array2D::ptrColumn().
Referenced by DustyGasTransport::eval_H_matrix().
|
private |
Private routine to update the Multicomponent diffusion coefficients that are used in the approximation.
This routine updates the H matrix and then inverts it.
Definition at line 366 of file DustyGasTransport.cpp.
References DustyGasTransport::eval_H_matrix(), Cantera::int2str(), Cantera::invert(), DustyGasTransport::m_multidiff, DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().
Referenced by DustyGasTransport::getMolarFluxes(), and DustyGasTransport::getMultiDiffCoeffs().
|
private |
Private routine to update the Knudsen diffusion coefficients.
The Knudsen diffusion coefficients are given by the following form
\[ \mathcal{D}^{knud}_k = \frac{2}{3} \frac{r_{pore} \phi}{\tau} \left( \frac{8 R T}{\pi W_k} \right)^{1/2} \]
Definition at line 247 of file DustyGasTransport.cpp.
References Cantera::GasConstant, DustyGasTransport::m_dk, DustyGasTransport::m_knudsen_ok, DustyGasTransport::m_mw, Transport::m_nsp, DustyGasTransport::m_pore_radius, DustyGasTransport::m_porosity, DustyGasTransport::m_temp, DustyGasTransport::m_tortuosity, and Cantera::Pi.
Referenced by DustyGasTransport::eval_H_matrix().
|
private |
Private routine to calculate the H matrix.
The multicomponent diffusion H matrix \( H_{k,l} \) is given by the following form
\[ H_{k,l} = - \frac{X_k}{D_{k,l}} \]
\[ H_{k,k} = \frac{1}{\mathcal(D)^{knud}_{k}} + \sum_{j \ne k}^N{ \frac{X_j}{D_{k,j}} } \]
Definition at line 276 of file DustyGasTransport.cpp.
References DustyGasTransport::m_d, DustyGasTransport::m_dk, DustyGasTransport::m_multidiff, Transport::m_nsp, DustyGasTransport::m_x, DustyGasTransport::updateBinaryDiffCoeffs(), and DustyGasTransport::updateKnudsenDiffCoeffs().
Referenced by DustyGasTransport::updateMultiDiffCoeffs().
|
inlineinherited |
Phase object.
Every transport manager is designed to compute properties for a specific phase of a mixture, which might be a liquid solution, a gas mixture, a surface, etc. This method returns a reference to the object representing the phase itself.
Definition at line 239 of file TransportBase.h.
References Transport::m_thermo.
Referenced by Transport::setThermo().
|
inherited |
Returns true if the transport manager is ready for use.
Definition at line 75 of file TransportBase.cpp.
References Transport::m_ready.
Referenced by Transport::finalize(), and Transport::setThermo().
|
inherited |
Set the number of dimensions to be expected in flux expressions.
Internal memory will be set with this value.
ndim | Number of dimensions in flux expressions |
Definition at line 83 of file TransportBase.cpp.
References Transport::m_nDim.
|
inlineinherited |
Return the number of dimensions in flux expressions.
Definition at line 261 of file TransportBase.h.
References Transport::m_nDim.
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()
Definition at line 88 of file TransportBase.cpp.
References Transport::m_nsp.
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 95 of file TransportBase.cpp.
References Transport::m_nsp.
|
inlinevirtualinherited |
The viscosity in Pa-s.
Reimplemented in SimpleTransport, LiquidTransport, AqueousTransport, WaterTransport, FtnTransport, and GasTransport.
Definition at line 283 of file TransportBase.h.
References Transport::err().
Referenced by DustyGasTransport::getMolarFluxes(), and StFlow::updateTransport().
|
inlinevirtualinherited |
Returns the pure species viscosities.
The units are Pa-s and the length is the number of species
visc | Vector of viscosities |
Reimplemented in SimpleTransport, LiquidTransport, AqueousTransport, and GasTransport.
Definition at line 293 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The bulk viscosity in Pa-s.
The bulk viscosity is only non-zero in rare cases. Most transport managers either overload this method to return zero, or do not implement it, in which case an exception is thrown if called.
Reimplemented in WaterTransport, and FtnTransport.
Definition at line 303 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The ionic conductivity in 1/ohm/m.
Reimplemented in LiquidTransport.
Definition at line 310 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species ionic conductivity.
The units are 1/ohm/m and the length is the number of species
ionCond | Vector of ionic conductivities |
Reimplemented in LiquidTransport.
Definition at line 320 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pointer to the mobility ratios of the species in the phase.
mobRat | Returns a matrix of mobility ratios for the current problem. The mobility ratio mobRat(i,j) is defined as the ratio of the mobility of species i to species j. |
mobRat(i,j) = mu_i / mu_j
It is returned in fortran-ordering format. ie. it is returned as mobRat[k], where
k = j * nsp + i
The size of mobRat must be at least equal to nsp*nsp
Reimplemented in LiquidTransport.
Definition at line 342 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species limit of the mobility ratios.
The value is dimensionless and the length is the number of species
mobRat | Vector of mobility ratios |
Reimplemented in LiquidTransport.
Definition at line 352 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the self diffusion coefficients of the species in the phase.
The self diffusion coefficient is the diffusion coefficient of a tracer species at the current temperature and composition of the species. Therefore, the dilute limit of transport is assumed for the tracer species. The effective formula may be calculated from the stefan-maxwell formulation by adding another row for the tracer species, assigning all D's to be equal to the respective species D's, and then taking the limit as the tracer species mole fraction goes to zero. The corresponding flux equation for the tracer species k in units of kmol m-2 s-1 is.
\[ J_k = - D^{sd}_k \frac{C_k}{R T} \nabla \mu_k \]
The derivative is taken at constant T and P.
The self diffusion calculation is handled by subclasses of LiquidTranInteraction as specified in the input file. These in turn employ subclasses of LTPspecies to determine the individual species self diffusion coeffs.
selfDiff | Vector of self-diffusion coefficients Length = number of species in phase units = m**2 s-1 |
Reimplemented in LiquidTransport.
Definition at line 382 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species self diffusion in solution of each species.
The pure species molar volumes are evaluated using the appropriate subclasses of LTPspecies as specified in the input file.
selfDiff | array of length "number of species" to hold returned self diffusion coeffs. |
Reimplemented in LiquidTransport.
Definition at line 396 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the mixture thermal conductivity in W/m/K.
Units are in W / m K or equivalently kg m / s3 K
Reimplemented in SimpleTransport, LiquidTransport, AqueousTransport, MixTransport, WaterTransport, MultiTransport, FtnTransport, and SolidTransport.
Definition at line 406 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
The electrical conductivity (Siemens/m).
Reimplemented in SolidTransport, and FtnTransport.
Definition at line 413 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the Electrical mobilities (m^2/V/s).
This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by faraday's constant.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^e_k = \frac{F D_k}{R T} \]
mobil_e | Returns the mobilities of the species in array mobil_e . The array must be dimensioned at least as large as the number of species. |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, MixTransport, FtnTransport, and SolidTransport.
Definition at line 435 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the fluid mobilities (s kmol/kg).
This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^f_k = \frac{D_k}{R T} \]
mobil_f | Returns the mobilities of the species in array mobil . The array must be dimensioned at least as large as the number of species. |
Reimplemented in LiquidTransport, SimpleTransport, and AqueousTransport.
Definition at line 457 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)
The electrical conductivity, \( \sigma \), relates the electric current density, J, to the electric field, E.
\[ \vec{J} = \sigma \vec{E} \]
We assume here that the mixture electrical conductivity is an isotropic quantity, at this stage. Tensors may be included at a later time.
The conductivity is the reciprocal of the resistivity.
The units are Siemens m-1, where 1 S = 1 A / volt = 1 s^3 A^2 /kg /m^2
Reimplemented in LiquidTransport.
Definition at line 482 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the electric current density in A/m^2.
Calculates the electric current density as a vector, given the gradients of the field variables.
ndim | The number of spatial dimensions (1, 2, or 3). |
grad_T | The temperature gradient (ignored in this model). |
ldx | Leading dimension of the grad_X array. |
grad_X | The gradient of the mole fraction |
ldf | Leading dimension of the grad_V and current vectors. |
grad_V | The electrostatic potential gradient. |
current | The electric current in A/m^2. This is a vector of length ndim |
Reimplemented in LiquidTransport.
Definition at line 500 of file TransportBase.h.
References Transport::err().
|
virtualinherited |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned fluxes are kg m-2 s-1.
Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, MixTransport, and MultiTransport.
Definition at line 146 of file TransportBase.cpp.
References Transport::err().
Referenced by Transport::getSpeciesFluxesES().
|
inlinevirtualinherited |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
Units for the returned fluxes are kg m-2 s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Definition at line 560 of file TransportBase.h.
References Transport::getSpeciesFluxes().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned velocities are m s-1
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 593 of file TransportBase.h.
References Transport::err().
Referenced by Transport::getSpeciesVdiffES().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential.
Units for the returned velocities are m s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 625 of file TransportBase.h.
References Transport::getSpeciesVdiff().
|
inlinevirtualinherited |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
mfluxes | Output array containing the diffusive mass fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kg/m^2/s]. |
Reimplemented in MultiTransport.
Definition at line 671 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Return a vector of Thermal diffusion coefficients [kg/m/sec].
The thermal diffusion coefficient \( D^T_k \) is defined so that the diffusive mass flux of species k induced by the local temperature gradient is given by the following formula
\[ M_k J_k = -D^T_k \nabla \ln T. \]
The thermal diffusion coefficient can be either positive or negative.
dt | On return, dt will contain the species thermal diffusion coefficients. Dimension dt at least as large as the number of species. Units are kg/m/s. |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, MixTransport, MultiTransport, and FtnTransport.
Definition at line 693 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
Returns the matrix of binary diffusion coefficients [m^2/s].
ld | Inner stride for writing the two dimension diffusion coefficients into a one dimensional vector |
d | Diffusion coefficient matrix (must be at least m_k * m_k in length. |
Reimplemented in SimpleTransport, LiquidTransport, AqueousTransport, and GasTransport.
Definition at line 705 of file TransportBase.h.
References Transport::err().
Referenced by DustyGasTransport::updateBinaryDiffCoeffs().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Mixture-averaged diffusion coefficients [m^2/s]. If the
transport manager implements a mixture-averaged diffusion model, then this method returns the array of mixture-averaged diffusion coefficients. Otherwise it throws an exception.
d | Return vector of mixture averaged diffusion coefficients Units = m2/s. Length = n_sp |
Reimplemented in LiquidTransport, SimpleTransport, AqueousTransport, FtnTransport, GasTransport, and SolidTransport.
Definition at line 738 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport.
Definition at line 744 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport.
Definition at line 749 of file TransportBase.h.
References Transport::err().
|
inlineinherited |
Sets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
ivb | Species the velocity basis |
Definition at line 777 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineinherited |
Gets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
Definition at line 789 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineprotectedvirtualinherited |
Called by TransportFactory to set parameters.
Called by TransportFactory to set parameters.
This is called by classes that use the gas phase parameter list to initialize themselves.
tr | Reference to the parameter list that will be used to initialize the class |
Reimplemented in MixTransport, MultiTransport, and GasTransport.
Definition at line 819 of file TransportBase.h.
References Transport::err().
Referenced by TransportFactory::initTransport().
|
inlineprotectedvirtualinherited |
Called by TransportFactory to set parameters.
This is called by classes that use the liquid phase parameter list to initialize themselves.
tr | Reference to the parameter list that will be used to initialize the class |
Reimplemented in AqueousTransport, SimpleTransport, and LiquidTransport.
Definition at line 832 of file TransportBase.h.
References Transport::err().
Referenced by TransportFactory::initLiquidTransport().
|
protectedinherited |
Specifies the ThermPhase object.
thermo | Reference to the ThermoPhase object that the transport object will use |
Definition at line 112 of file TransportBase.cpp.
References Transport::m_nsp, Transport::m_thermo, Phase::nSpecies(), Transport::ready(), and Transport::thermo().
Referenced by TransportFactory::newTransport().
|
protectedinherited |
Enable the transport object for use.
Once finalize() has been called, the transport manager should be ready to compute any supported transport property, and no further modifications to the model parameters should be made.
Definition at line 136 of file TransportBase.cpp.
References Transport::m_ready, and Transport::ready().
|
friend |
Make the TransportFactory object a friend, because this object has restricted its instantiation to classes which are friends.
Definition at line 210 of file DustyGasTransport.h.
|
private |
Local copy of the species molecular weights.
units kg /kmol length = m_nsp;
Definition at line 293 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::initialize(), DustyGasTransport::operator=(), and DustyGasTransport::updateKnudsenDiffCoeffs().
|
private |
binary diffusion coefficients
Definition at line 296 of file DustyGasTransport.h.
Referenced by DustyGasTransport::eval_H_matrix(), DustyGasTransport::initialize(), DustyGasTransport::operator=(), and DustyGasTransport::updateBinaryDiffCoeffs().
|
private |
mole fractions
Definition at line 299 of file DustyGasTransport.h.
Referenced by DustyGasTransport::eval_H_matrix(), DustyGasTransport::initialize(), DustyGasTransport::operator=(), and DustyGasTransport::updateTransport_C().
|
private |
Knudsen diffusion coefficients.
The Knudsen diffusion coefficients are given by the following form
\[ \mathcal{D}^{knud}_k = \frac{2}{3} \frac{r_{pore} \phi}{\tau} \left( \frac{8 R T}{\pi W_k} \right)^{1/2} \]
Definition at line 310 of file DustyGasTransport.h.
Referenced by DustyGasTransport::eval_H_matrix(), DustyGasTransport::getMolarFluxes(), DustyGasTransport::initialize(), DustyGasTransport::operator=(), and DustyGasTransport::updateKnudsenDiffCoeffs().
|
private |
temperature
Definition at line 313 of file DustyGasTransport.h.
Referenced by DustyGasTransport::operator=(), DustyGasTransport::updateKnudsenDiffCoeffs(), and DustyGasTransport::updateTransport_T().
|
private |
Multicomponent diffusion coefficients.
The multicomponent diffusion matrix \( H_{k,l} \) is given by the following form
\[ H_{k,l} = - \frac{X_k}{D_{k,l}} \]
\[ H_{k,k} = \frac{1}{\mathcal(D)^{knud}_{k}} + \sum_{j \ne k}^N{ \frac{X_j}{D_{k,j}} } \]
Definition at line 326 of file DustyGasTransport.h.
Referenced by DustyGasTransport::eval_H_matrix(), DustyGasTransport::getMolarFluxes(), DustyGasTransport::getMultiDiffCoeffs(), DustyGasTransport::initialize(), DustyGasTransport::operator=(), and DustyGasTransport::updateMultiDiffCoeffs().
|
private |
work space of size m_nsp;
Definition at line 329 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::initialize(), and DustyGasTransport::operator=().
|
private |
work space of size m_nsp;
Definition at line 332 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::initialize(), and DustyGasTransport::operator=().
|
private |
Pressure Gradient.
Definition at line 335 of file DustyGasTransport.h.
Referenced by DustyGasTransport::operator=().
|
private |
Update-to-date variable for Knudsen diffusion coefficients.
Definition at line 338 of file DustyGasTransport.h.
Referenced by DustyGasTransport::initialize(), DustyGasTransport::operator=(), DustyGasTransport::setMeanPoreRadius(), DustyGasTransport::setPorosity(), DustyGasTransport::setTortuosity(), DustyGasTransport::updateKnudsenDiffCoeffs(), and DustyGasTransport::updateTransport_T().
|
private |
Update-to-date variable for Binary diffusion coefficients.
Definition at line 341 of file DustyGasTransport.h.
Referenced by DustyGasTransport::initialize(), DustyGasTransport::operator=(), DustyGasTransport::setPorosity(), DustyGasTransport::setTortuosity(), DustyGasTransport::updateBinaryDiffCoeffs(), DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().
|
private |
Porosity.
Definition at line 344 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::operator=(), DustyGasTransport::setPorosity(), DustyGasTransport::updateBinaryDiffCoeffs(), and DustyGasTransport::updateKnudsenDiffCoeffs().
|
private |
Tortuosity.
Definition at line 347 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::operator=(), DustyGasTransport::setTortuosity(), DustyGasTransport::updateBinaryDiffCoeffs(), and DustyGasTransport::updateKnudsenDiffCoeffs().
|
private |
Pore radius (meter)
Definition at line 350 of file DustyGasTransport.h.
Referenced by DustyGasTransport::operator=(), DustyGasTransport::setMeanPoreRadius(), and DustyGasTransport::updateKnudsenDiffCoeffs().
|
private |
Particle diameter.
The medium is assumed to consist of particles of size m_diam units = m
Definition at line 357 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::operator=(), and DustyGasTransport::setMeanParticleDiameter().
|
private |
Permeability of the media.
The permeability is the proportionality constant for Darcy's law which relates discharge rate and viscosity to the applied pressure gradient.
Below is Darcy's law, where \( \kappa \) is the permeability
\[ v = \frac{\kappa}{\mu} \frac{\delta P}{\delta x} \]
units are m2
Definition at line 373 of file DustyGasTransport.h.
Referenced by DustyGasTransport::getMolarFluxes(), DustyGasTransport::operator=(), and DustyGasTransport::setPermeability().
|
private |
Pointer to the transport object for the gas phase.
Note, this object owns the gastran object
Definition at line 379 of file DustyGasTransport.h.
Referenced by DustyGasTransport::gasTransport(), DustyGasTransport::getMolarFluxes(), DustyGasTransport::initialize(), DustyGasTransport::operator=(), DustyGasTransport::updateBinaryDiffCoeffs(), and DustyGasTransport::~DustyGasTransport().
|
protectedinherited |
pointer to the object representing the phase
Definition at line 857 of file TransportBase.h.
Referenced by SolidTransport::electricalConductivity(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getLiquidTransportData(), MultiTransport::getMassFluxes(), SolidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), SolidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), WaterTransport::initTP(), Transport::operator=(), MixTransport::pressure_ig(), SolidTransport::setParameters(), Transport::setThermo(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), Transport::thermo(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().
|
protectedinherited |
true if finalize has been called
Definition at line 860 of file TransportBase.h.
Referenced by Transport::finalize(), Transport::operator=(), Transport::ready(), and Transport::Transport().
|
protectedinherited |
Number of species.
Definition at line 863 of file TransportBase.h.
Referenced by Transport::checkSpeciesArraySize(), Transport::checkSpeciesIndex(), DustyGasTransport::eval_H_matrix(), MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::eval_L1000(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), LiquidTransport::getBinaryDiffCoeffs(), SimpleTransport::getBinaryDiffCoeffs(), LiquidTransport::getElectricConduct(), LiquidTransport::getElectricCurrent(), AqueousTransport::getFluidMobilities(), SimpleTransport::getFluidMobilities(), LiquidTransport::getFluidMobilities(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), LiquidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MixTransport::getMobilities(), AqueousTransport::getMobilities(), SimpleTransport::getMobilities(), LiquidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), DustyGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesMobilityRatio(), LiquidTransport::getSpeciesSelfDiffusion(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), LiquidTransport::getSpeciesVdiffExt(), MultiTransport::getThermalDiffCoeffs(), MixTransport::getThermalDiffCoeffs(), AqueousTransport::getThermalDiffCoeffs(), SimpleTransport::getThermalDiffCoeffs(), LiquidTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::initGas(), MixTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), LiquidTransport::mobilityRatio(), Transport::operator=(), LiquidTransport::selfDiffusion(), AqueousTransport::set_Grad_X(), SimpleTransport::set_Grad_X(), LiquidTransport::set_Grad_X(), Transport::setThermo(), MultiTransport::solveLMatrixEquation(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), MultiTransport::thermalConductivity(), MixTransport::thermalConductivity(), AqueousTransport::thermalConductivity(), SimpleTransport::thermalConductivity(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), DustyGasTransport::updateBinaryDiffCoeffs(), MixTransport::updateCond_T(), SimpleTransport::updateCond_T(), AqueousTransport::updateCond_T(), LiquidTransport::updateCond_T(), GasTransport::updateDiff_T(), SimpleTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), LiquidTransport::updateHydrodynamicRadius_T(), LiquidTransport::updateIonConductivity_T(), DustyGasTransport::updateKnudsenDiffCoeffs(), LiquidTransport::updateMobilityRatio_T(), LiquidTransport::updateSelfDiffusion_T(), GasTransport::updateSpeciesViscosities(), AqueousTransport::updateSpeciesViscosities(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), GasTransport::updateViscosity_T(), SimpleTransport::updateViscosity_T(), AqueousTransport::updateViscosity_T(), LiquidTransport::updateViscosity_T(), GasTransport::viscosity(), AqueousTransport::viscosity(), SimpleTransport::viscosity(), and LiquidTransport::~LiquidTransport().
|
protectedinherited |
Number of dimensions used in flux expressions.
Definition at line 866 of file TransportBase.h.
Referenced by Transport::nDim(), Transport::operator=(), Transport::setNDim(), and Transport::Transport().
|
protectedinherited |
Velocity basis from which diffusion velocities are computed.
Defaults to the mass averaged basis = -2
Definition at line 870 of file TransportBase.h.
Referenced by SimpleTransport::getSpeciesFluxesExt(), Transport::getVelocityBasis(), LiquidTransport::initLiquid(), Transport::operator=(), Transport::setVelocityBasis(), LiquidTransport::stefan_maxwell_solve(), and Transport::Transport().