Cantera  2.0
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
SimpleTransport Class Reference

Class SimpleTransport implements mixture-averaged transport properties for liquid phases. More...

#include <SimpleTransport.h>

Inheritance diagram for SimpleTransport:
[legend]
Collaboration diagram for SimpleTransport:
[legend]

Public Member Functions

 SimpleTransport (thermo_t *thermo=0, int ndim=1)
 Default constructor.
 
 SimpleTransport (const SimpleTransport &right)
 Copy Constructor for the LiquidThermo object.
 
SimpleTransportoperator= (const SimpleTransport &right)
 Assignment operator.
 
virtual TransportduplMyselfAsTransport () const
 Duplication routine for objects which inherit from Transport.
 
virtual ~SimpleTransport ()
 virtual destructor
 
virtual bool initLiquid (LiquidTransportParams &tr)
 Initialize the transport object.
 
virtual int model () const
 Return the model id for this transport parameterization.
 
virtual doublereal viscosity ()
 Returns the mixture viscosity of the solution.
 
virtual void getSpeciesViscosities (doublereal *const visc)
 Returns the pure species viscosities.
 
virtual void getBinaryDiffCoeffs (const size_t ld, doublereal *const d)
 Returns the binary diffusion coefficients.
 
virtual void getMixDiffCoeffs (doublereal *const d)
 Get the Mixture diffusion coefficients.
 
virtual void getThermalDiffCoeffs (doublereal *const dt)
 Return the thermal diffusion coefficients.
 
virtual doublereal thermalConductivity ()
 Returns the mixture thermal conductivity of the solution.
 
virtual void getMobilities (doublereal *const mobil_e)
 Get the electrical Mobilities (m^2/V/s).
 
virtual void getFluidMobilities (doublereal *const mobil_f)
 Get the fluid mobilities (s kmol/kg).
 
virtual void set_Grad_V (const doublereal *const grad_V)
 Specify the value of the gradient of the voltage.
 
virtual void set_Grad_T (const doublereal *const grad_T)
 Specify the value of the gradient of the temperature.
 
virtual void set_Grad_X (const doublereal *const grad_X)
 Specify the value of the gradient of the MoleFractions.
 
virtual void getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff)
 Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction and temperature.
 
virtual void getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff)
 Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
 
virtual void getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes)
 Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.
 
virtual void getSpeciesFluxesExt (size_t ldf, doublereal *fluxes)
 Return the species diffusive mass fluxes wrt to the mass averaged velocity,.
 
thermo_tthermo ()
 Phase object.
 
bool ready ()
 Returns true if the transport manager is ready for use.
 
void setNDim (const int ndim)
 Set the number of dimensions to be expected in flux expressions.
 
size_t nDim () const
 Return the number of dimensions in flux expressions.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range Throws an exception if k is greater than nSpecies()
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
 
virtual doublereal getElectricConduct ()
 Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)
 
virtual void getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current)
 Compute the electric current density in A/m^2.
 
virtual void getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes)
 Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
 
virtual void getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes)
 Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
 
virtual void getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes)
 Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.
 
virtual void getMultiDiffCoeffs (const size_t ld, doublereal *const d)
 Return the Multicomponent diffusion coefficients. Units: [m^2/s].
 
virtual void getMixDiffCoeffsMole (doublereal *const d)
 Returns a vector of mixture averaged diffusion coefficients.
 
virtual void getMixDiffCoeffsMass (doublereal *const d)
 Returns a vector of mixture averaged diffusion coefficients.
 
virtual void setParameters (const int type, const int k, const doublereal *const p)
 Set model parameters for derived classes.
 
void setVelocityBasis (VelocityBasis ivb)
 Sets the velocity basis.
 
VelocityBasis getVelocityBasis () const
 Gets the velocity basis.
 
Transport Properties
virtual doublereal bulkViscosity ()
 The bulk viscosity in Pa-s.
 
virtual doublereal ionConductivity ()
 The ionic conductivity in 1/ohm/m.
 
virtual void getSpeciesIonConductivity (doublereal *const ionCond)
 Returns the pure species ionic conductivity.
 
virtual void mobilityRatio (double *mobRat)
 Returns the pointer to the mobility ratios of the species in the phase.
 
virtual void getSpeciesMobilityRatio (double **mobRat)
 Returns the pure species limit of the mobility ratios.
 
virtual void selfDiffusion (doublereal *const selfDiff)
 Returns the self diffusion coefficients of the species in the phase.
 
virtual void getSpeciesSelfDiffusion (double **selfDiff)
 Returns the pure species self diffusion in solution of each species.
 
virtual doublereal electricalConductivity ()
 The electrical conductivity (Siemens/m).
 

Protected Member Functions

virtual bool update_T ()
 Handles the effects of changes in the Temperature, internally within the object.
 
virtual bool update_C ()
 Handles the effects of changes in the mixture concentration.
 
void updateViscosity_T ()
 Update the temperature-dependent viscosity terms.
 
void updateCond_T ()
 Update the temperature-dependent parts of the mixture-averaged thermal conductivity.
 
void updateViscosities_C ()
 Update the concentration parts of the viscosities.
 
void updateDiff_T ()
 Update the binary diffusion coefficients wrt T.
 
Transport manager construction

These methods are used internally during construction.

virtual bool initGas (GasTransportParams &tr)
 Called by TransportFactory to set parameters.
 
void setThermo (thermo_t &thermo)
 Specifies the ThermPhase object.
 
void finalize ()
 Enable the transport object for use.
 

Protected Attributes

thermo_tm_thermo
 pointer to the object representing the phase
 
bool m_ready
 true if finalize has been called
 
size_t m_nsp
 Number of species.
 
int m_velocityBasis
 Velocity basis from which diffusion velocities are computed.
 

Private Member Functions

doublereal err (std::string msg) const
 Throw an exception if this method is invoked.
 

Private Attributes

int tempDepType_
 Temperature dependence type.
 
int compositionDepType_
 Composition dependence of the transport properties.
 
bool useHydroRadius_
 Boolean indicating whether to use the hydrodynamic radius formulation.
 
bool doMigration_
 Boolean indicating whether electro-migration term should be added.
 
doublereal m_tmin
 Minimum temperature applicable to the transport property eval.
 
doublereal m_tmax
 Maximum temperature applicable to the transport property evaluator.
 
vector_fp m_mw
 Local Copy of the molecular weights of the species.
 
std::vector< LTPspecies * > m_coeffVisc_Ns
 Pure species viscosities in Arrhenius temperature-dependent form.
 
std::vector< LTPspecies * > m_coeffLambda_Ns
 Pure species thermal conductivities in Arrhenius temperature-dependent form.
 
std::vector< LTPspecies * > m_coeffDiff_Ns
 Pure species viscosities in Arrhenius temperature-dependent form.
 
std::vector< LTPspecies * > m_coeffHydroRadius_Ns
 Hydrodynamic radius in LTPspecies form.
 
vector_fp m_Grad_X
 Internal value of the gradient of the mole fraction vector.
 
vector_fp m_Grad_T
 Internal value of the gradient of the Temperature vector.
 
vector_fp m_Grad_P
 Internal value of the gradient of the Pressure vector.
 
vector_fp m_Grad_V
 Internal value of the gradient of the Electric Voltage.
 
vector_fp m_diffSpecies
 Vector of Species Diffusivities.
 
vector_fp m_viscSpecies
 Species viscosities.
 
vector_fp m_condSpecies
 Internal value of the species individual thermal conductivities.
 
int m_iStateMF
 State of the mole fraction vector.
 
vector_fp m_molefracs
 Local copy of the mole fractions of the species in the phase.
 
vector_fp m_concentrations
 Local copy of the concentrations of the species in the phase.
 
doublereal concTot_
 Local copy of the total concentration.
 
doublereal meanMolecularWeight_
 Mean molecular weight.
 
doublereal dens_
 Density.
 
vector_fp m_chargeSpecies
 Local copy of the charge of each species.
 
doublereal m_temp
 Current Temperature -> locally stored.
 
doublereal m_press
 Current value of the pressure.
 
doublereal m_lambda
 Saved value of the mixture thermal conductivity.
 
doublereal m_viscmix
 Saved value of the mixture viscosity.
 
vector_fp m_spwork
 work space
 
vector_fp m_fluxes
 
bool m_visc_mix_ok
 Boolean indicating that the top-level mixture viscosity is current.
 
bool m_visc_temp_ok
 Boolean indicating that weight factors wrt viscosity is current.
 
bool m_diff_mix_ok
 Boolean indicating that mixture diffusion coeffs are current.
 
bool m_diff_temp_ok
 Boolean indicating that binary diffusion coeffs are current.
 
bool m_cond_temp_ok
 Flag to indicate that the pure species conductivities are current wrt the temperature.
 
bool m_cond_mix_ok
 Boolean indicating that mixture conductivity is current.
 
size_t m_nDim
 Number of dimensions.
 
double rhoVc [3]
 Temporary variable that stores the rho Vc value.
 

Detailed Description

Class SimpleTransport implements mixture-averaged transport properties for liquid phases.

The model is based on that described by Newman, Electrochemical Systems

The velocity of species i may be described by the following equation p. 297 (12.1)

\[ c_i \nabla \mu_i = R T \sum_j \frac{c_i c_j}{c_T D_{ij}} (\mathbf{v}_j - \mathbf{v}_i) \]

This as written is degenerate by 1 dof.

To fix this we must add in the definition of the mass averaged velocity of the solution. We will call the simple bold-faced \(\mathbf{v} \) symbol the mass-averaged velocity. Then, the relation between \(\mathbf{v}\) and the individual species velocities is \(\mathbf{v}_i\)

\[ \rho_i \mathbf{v}_i = \rho_i \mathbf{v} + \mathbf{j}_i \]

where \(\mathbf{j}_i\) are the diffusional fluxes of species i with respect to the mass averaged velocity and

\[ \sum_i \mathbf{j}_i = 0 \]

and

\[ \sum_i \rho_i \mathbf{v}_i = \rho \mathbf{v} \]

Using these definitions, we can write

\[ \mathbf{v}_i = \mathbf{v} + \frac{\mathbf{j}_i}{\rho_i} \]

\[ c_i \nabla \mu_i = R T \sum_j \frac{c_i c_j}{c_T D_{ij}} (\frac{\mathbf{j}_j}{\rho_j} - \frac{\mathbf{j}_i}{\rho_i}) = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]

The equations that we actually solve are

\[ c_i \nabla \mu_i = = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]

and we replace the 0th equation with the following:

\[ \sum_i \mathbf{j}_i = 0 \]

When there are charged species, we replace the rhs with the gradient of the electrochemical potential to obtain the modified equation

\[ c_i \nabla \mu_i + c_i F z_i \nabla \Phi = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]

With this formulation we may solve for the diffusion velocities, without having to worry about what the mass averaged velocity is.

Viscosity Calculation

The viscosity calculation may be broken down into two parts. In the first part, the viscosity of the pure species are calculated In the second part, a mixing rule is applied. There are two mixing rules. Solvent-only and mixture-averaged.

For the solvent-only mixing rule, we use the pure species viscosity calculated for the solvent as the viscosity of the entire mixture. For the mixture averaged rule we do a mole fraction based average of the pure species viscosities:

Solvent-only:

\[ \mu = \mu_0 \]

Mixture-average:

\[ \mu = \sum_k {\mu_k X_k} \]

Calculate of the Binary Diffusion Coefficients

The binary diffusion coefficients are obtained from the pure species diffusion coefficients using an additive process

\[ D_{i,j} = \frac{1}{2} \left( D^0_i(T) + D^0_j(T) \right) \]

Electrical Mobilities

The mobility \( \mu^e_k \) is calculated from the diffusion coefficient using the Einstein relation.

\[ \mu^e_k = \frac{F D_k}{R T} \]

The diffusion coefficients, \( D_k \) , is calculated from a call to the mixture diffusion coefficient routine.

Species Diffusive Fluxes

The diffusive mass flux of species k is computed from the following formula

Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.

\[ j_k = - c^T M_k D_k \nabla X_k - \rho Y_k V_c \]

where V_c is the correction velocity

\[ \rho V_c = - \sum_j {c^T M_j D_j \nabla X_j} \]

In the above equation, \( D_k \) is the mixture diffusivity for species k calculated for the current conditions, which may depend on T, P, and X_k. \( C^T \) is the total concentration of the phase.

When this is electrical migration, the formulas above are enhanced to

\[ j_k = - C^T M_k D_k \nabla X_k + F C^T M_k \frac{D_k}{ R T } X_k z_k \nabla V - \rho Y_k V_c \]

where V_c is the correction velocity

\[ \rho V_c = - \sum_j {c^T M_j D_j \nabla X_j} + \sum_j F C^T M_j \frac{D_j}{ R T } X_j z_j \nabla V \]

Species Diffusional Velocities

Species diffusional velocities are calculated from the species diffusional fluxes, within this object, using the following formula for the diffusional velocity of the kth species, \( V_k^d \)

\[ j_k = \rho Y_k V_k^d \]

   TODO

This object has to be made compatible with different types of reference velocities. Right now, elements of the formulas are only compatible with the mass-averaged velocity.

Definition at line 206 of file SimpleTransport.h.

Constructor & Destructor Documentation

SimpleTransport ( thermo_t thermo = 0,
int  ndim = 1 
)

Default constructor.

This requires call to initLiquid(LiquidTransportParams& tr) after filling LiquidTransportParams to complete instantiation. The filling of LiquidTransportParams is currently carried out in the TransportFactory class, but might be moved at some point.

Parameters
thermoThermoPhase object holding species information.
ndimNumber of spatial dimensions.

Definition at line 33 of file SimpleTransport.cpp.

Referenced by SimpleTransport::duplMyselfAsTransport().

SimpleTransport ( const SimpleTransport right)

Copy Constructor for the LiquidThermo object.

Parameters
rightLiquidTransport to be copied

Definition at line 57 of file SimpleTransport.cpp.

~SimpleTransport ( )
virtual

Member Function Documentation

SimpleTransport & operator= ( const SimpleTransport right)
Transport * duplMyselfAsTransport ( ) const
virtual

Duplication routine for objects which inherit from Transport.

This virtual routine can be used to duplicate Transport objects inherited from Transport even if the application only has a pointer to Transport to work with.

These routines are basically wrappers around the derived copy constructor.

Reimplemented from Transport.

Definition at line 160 of file SimpleTransport.cpp.

References SimpleTransport::SimpleTransport().

bool initLiquid ( LiquidTransportParams tr)
virtual

Initialize the transport object.

Here we change all of the internal dimensions to be sufficient. We get the object ready to do property evaluations.

Parameters
trTransport parameters for all of the species in the phase.

Reimplemented from Transport.

Definition at line 186 of file SimpleTransport.cpp.

References XML_Node::attrib(), Phase::charge(), XML_Node::child(), SimpleTransport::compositionDepType_, ctml::getOptionalModel(), XML_Node::hasChild(), LiquidTransportData::hydroRadius, Cantera::lowercase(), LiquidTransportParams::LTData, SimpleTransport::m_chargeSpecies, SimpleTransport::m_coeffDiff_Ns, SimpleTransport::m_coeffHydroRadius_Ns, SimpleTransport::m_coeffLambda_Ns, SimpleTransport::m_coeffVisc_Ns, SimpleTransport::m_concentrations, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_condSpecies, SimpleTransport::m_diff_mix_ok, SimpleTransport::m_diff_temp_ok, SimpleTransport::m_diffSpecies, SimpleTransport::m_Grad_P, SimpleTransport::m_Grad_T, SimpleTransport::m_Grad_V, SimpleTransport::m_Grad_X, SimpleTransport::m_molefracs, SimpleTransport::m_mw, SimpleTransport::m_nDim, Transport::m_nsp, SimpleTransport::m_spwork, Transport::m_thermo, SimpleTransport::m_tmax, SimpleTransport::m_tmin, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, SimpleTransport::m_viscSpecies, ThermoPhase::maxTemp(), ThermoPhase::minTemp(), Phase::molecularWeights(), Phase::nSpecies(), LiquidTransportData::speciesDiffusivity, Phase::speciesName(), LiquidTransportData::thermalCond, TransportParams::thermo, SimpleTransport::useHydroRadius_, LiquidTransportData::viscosity, and Phase::xml().

virtual int model ( ) const
inlinevirtual

Return the model id for this transport parameterization.

Reimplemented from Transport.

Definition at line 264 of file SimpleTransport.h.

Referenced by SimpleTransport::err().

doublereal viscosity ( )
virtual

Returns the mixture viscosity of the solution.

The viscosity is computed using the general mixture rules specified in the variable compositionDepType_.

Solvent-only:

\[ \mu = \mu_0 \]

Mixture-average:

\[ \mu = \sum_k {\mu_k X_k} \]

Here \( \mu_k \) is the viscosity of pure species k.

units are Pa s or kg/m/s

See Also
updateViscosity_T();

Reimplemented from Transport.

Definition at line 425 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_molefracs, Transport::m_nsp, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, SimpleTransport::m_viscmix, SimpleTransport::m_viscSpecies, SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateViscosity_T().

Referenced by SimpleTransport::updateDiff_T().

void getSpeciesViscosities ( doublereal *const  visc)
virtual

Returns the pure species viscosities.

The pure species viscosities are to be given in an Arrhenius form in accordance with activated-jump-process dominated transport.

units are Pa s or kg/m/s

Parameters
viscReturn the species viscosities as a vector of length m_nsp

Reimplemented from Transport.

Definition at line 452 of file SimpleTransport.cpp.

References SimpleTransport::m_visc_temp_ok, SimpleTransport::m_viscSpecies, SimpleTransport::update_T(), and SimpleTransport::updateViscosity_T().

void getBinaryDiffCoeffs ( const size_t  ld,
doublereal *const  d 
)
virtual

Returns the binary diffusion coefficients.

Parameters
ld
d

Reimplemented from Transport.

Definition at line 461 of file SimpleTransport.cpp.

References SimpleTransport::m_diff_temp_ok, SimpleTransport::m_diffSpecies, Transport::m_nsp, SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

void getMixDiffCoeffs ( doublereal *const  d)
virtual

Get the Mixture diffusion coefficients.

Parameters
dvector of mixture diffusion coefficients units = m2 s-1. length = number of species

Reimplemented from Transport.

Definition at line 860 of file SimpleTransport.cpp.

References SimpleTransport::m_diff_temp_ok, SimpleTransport::m_diffSpecies, Transport::m_nsp, SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

Referenced by SimpleTransport::getFluidMobilities(), SimpleTransport::getMobilities(), and SimpleTransport::getSpeciesFluxesExt().

void getThermalDiffCoeffs ( doublereal *const  dt)
virtual

Return the thermal diffusion coefficients.

These are all zero for this simple implementaion

Parameters
dtthermal diffusion coefficients

Reimplemented from Transport.

Definition at line 604 of file SimpleTransport.cpp.

References Transport::m_nsp.

doublereal thermalConductivity ( )
virtual

Returns the mixture thermal conductivity of the solution.

The thermal is computed using the general mixture rules specified in the variable compositionDepType_.

Controlling update boolean = m_condmix_ok

Units are in W/m/K or equivalently kg m / s3 / K

Solvent-only:

\[ \lambda = \lambda_0 \]

Mixture-average:

\[ \lambda = \sum_k {\lambda_k X_k} \]

Here \( \lambda_k \) is the thermal conductivity of pure species k.

See Also
updateCond_T();

Reimplemented from Transport.

Definition at line 576 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_condSpecies, SimpleTransport::m_lambda, SimpleTransport::m_molefracs, Transport::m_nsp, SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateCond_T().

void getMobilities ( doublereal *const  mobil_e)
virtual

Get the electrical Mobilities (m^2/V/s).

This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by faraday's constant.

Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation

\[ \mu^e_k = \frac{F D_k}{R T} \]

Parameters
mobil_eReturns the mobilities of the species in array mobil_e. The array must be dimensioned at least as large as the number of species.

Reimplemented from Transport.

Definition at line 496 of file SimpleTransport.cpp.

References Cantera::Boltzmann, DATA_PTR, SimpleTransport::getMixDiffCoeffs(), Transport::m_nsp, SimpleTransport::m_spwork, and SimpleTransport::m_temp.

void getFluidMobilities ( doublereal *const  mobil_f)
virtual

Get the fluid mobilities (s kmol/kg).

This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.

Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation

\[ \mu^f_k = \frac{D_k}{R T} \]

Parameters
mobil_fReturns the mobilities of the species in array mobil. The array must be dimensioned at least as large as the number of species.

Reimplemented from Transport.

Definition at line 523 of file SimpleTransport.cpp.

References DATA_PTR, Cantera::GasConstant, SimpleTransport::getMixDiffCoeffs(), Transport::m_nsp, SimpleTransport::m_spwork, and SimpleTransport::m_temp.

void set_Grad_V ( const doublereal *const  grad_V)
virtual

Specify the value of the gradient of the voltage.

Parameters
grad_VGradient of the voltage (length num dimensions);

Definition at line 532 of file SimpleTransport.cpp.

References SimpleTransport::doMigration_, SimpleTransport::m_Grad_V, and SimpleTransport::m_nDim.

Referenced by SimpleTransport::getSpeciesVdiffES().

void set_Grad_T ( const doublereal *const  grad_T)
virtual

Specify the value of the gradient of the temperature.

Parameters
grad_TGradient of the temperature (length num dimensions);

Definition at line 543 of file SimpleTransport.cpp.

References SimpleTransport::m_Grad_T, and SimpleTransport::m_nDim.

Referenced by SimpleTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), and SimpleTransport::getSpeciesVdiffES().

void set_Grad_X ( const doublereal *const  grad_X)
virtual

Specify the value of the gradient of the MoleFractions.

Parameters
grad_XGradient of the mole fractions(length nsp * num dimensions);

Definition at line 550 of file SimpleTransport.cpp.

References SimpleTransport::m_Grad_X, SimpleTransport::m_nDim, and Transport::m_nsp.

Referenced by SimpleTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), and SimpleTransport::getSpeciesVdiffES().

void getSpeciesVdiff ( size_t  ndim,
const doublereal *  grad_T,
int  ldx,
const doublereal *  grad_X,
int  ldf,
doublereal *  Vdiff 
)
virtual

Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction and temperature.

The average velocity can be computed on a mole-weighted or mass-weighted basis, or the diffusion velocities may be specified as relative to a specific species (i.e. a solvent) all according to the velocityBasis input parameter.

Units for the returned velocities are m s-1.

Parameters
ndimNumber of dimensions in the flux expressions
grad_TGradient of the temperature (length = ndim)
ldxLeading dimension of the grad_X array (usually equal to m_nsp but not always)
grad_XGradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim
ldfLeading dimension of the fluxes array (usually equal to m_nsp but not always)
VdiffOutput of the diffusive velocities. Flat vector with the m_nsp in the inner loop. length = ldx * ndim

Reimplemented from Transport.

Definition at line 636 of file SimpleTransport.cpp.

References DATA_PTR, Phase::density(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::m_nDim, Transport::m_nsp, Transport::m_thermo, Phase::massFractions(), SimpleTransport::set_Grad_T(), and SimpleTransport::set_Grad_X().

void getSpeciesVdiffES ( size_t  ndim,
const doublereal *  grad_T,
int  ldx,
const doublereal *  grad_X,
int  ldf,
const doublereal *  grad_Phi,
doublereal *  Vdiff 
)
virtual

Get the species diffusive velocities wrt to the averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.

The average velocity can be computed on a mole-weighted or mass-weighted basis, or the diffusion velocities may be specified as relative to a specific species (i.e. a solvent) all according to the velocityBasis input parameter.

Units for the returned velocities are m s-1.

Parameters
ndimNumber of dimensions in the flux expressions
grad_TGradient of the temperature (length = ndim)
ldxLeading dimension of the grad_X array (usually equal to m_nsp but not always)
grad_XGradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim
ldfLeading dimension of the fluxes array (usually equal to m_nsp but not always)
grad_PhiGradients of the electrostatic potential (length = ndim)
VdiffOutput of the species diffusion velocities Flat vector with the m_nsp in the inner loop. length = ldx * ndim

Reimplemented from Transport.

Definition at line 687 of file SimpleTransport.cpp.

References DATA_PTR, Phase::density(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::m_nDim, Transport::m_nsp, Transport::m_thermo, Phase::massFractions(), SimpleTransport::set_Grad_T(), SimpleTransport::set_Grad_V(), and SimpleTransport::set_Grad_X().

void getSpeciesFluxes ( size_t  ndim,
const doublereal *const  grad_T,
size_t  ldx,
const doublereal *const  grad_X,
size_t  ldf,
doublereal *const  fluxes 
)
virtual

Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.

units = kg/m2/s

The diffusive mass flux of species k is computed from the following formula

Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.

\[ j_k = - \rho M_k D_k \nabla X_k - Y_k V_c \]

where V_c is the correction velocity

\[ V_c = - \sum_j {\rho M_j D_j \nabla X_j} \]

Parameters
ndimThe number of spatial dimensions (1, 2, or 3).
grad_TThe temperature gradient (ignored in this model).
ldxLeading dimension of the grad_X array.
grad_XGradient of the mole fractions(length nsp * num dimensions);
ldfLeading dimension of the fluxes array.
fluxesOutput fluxes of species.

Reimplemented from Transport.

Definition at line 740 of file SimpleTransport.cpp.

References SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::set_Grad_T(), and SimpleTransport::set_Grad_X().

void getSpeciesFluxesExt ( size_t  ldf,
doublereal *  fluxes 
)
virtual

Return the species diffusive mass fluxes wrt to the mass averaged velocity,.

units = kg/m2/s

Internally, gradients in the in mole fraction, temperature and electrostatic potential contribute to the diffusive flux

The diffusive mass flux of species k is computed from the following formula

\[ j_k = - \rho M_k D_k \nabla X_k - Y_k V_c \]

where V_c is the correction velocity

\[ V_c = - \sum_j {\rho M_j D_j \nabla X_j} \]

Parameters
ldfstride of the fluxes array. Must be equal to or greater than the number of species.
fluxesVector of calculated fluxes

Definition at line 776 of file SimpleTransport.cpp.

References AssertThrow, Cantera::Boltzmann, DATA_PTR, SimpleTransport::doMigration_, SimpleTransport::getMixDiffCoeffs(), SimpleTransport::m_chargeSpecies, SimpleTransport::m_Grad_V, SimpleTransport::m_Grad_X, SimpleTransport::m_molefracs, SimpleTransport::m_nDim, Transport::m_nsp, SimpleTransport::m_spwork, SimpleTransport::m_temp, Transport::m_thermo, Transport::m_velocityBasis, Phase::massFractions(), Phase::molarDensity(), Phase::molecularWeights(), SimpleTransport::rhoVc, SimpleTransport::update_C(), SimpleTransport::update_T(), Cantera::VB_MASSAVG, and Cantera::VB_MOLEAVG.

Referenced by SimpleTransport::getSpeciesFluxes(), SimpleTransport::getSpeciesVdiff(), and SimpleTransport::getSpeciesVdiffES().

bool update_T ( void  )
protectedvirtual

Handles the effects of changes in the Temperature, internally within the object.

This is called whenever a transport property is requested. The first task is to check whether the temperature has changed since the last call to update_T(). If it hasn't then an immediate return is carried out.

Returns
Returns true if the temperature has changed, and false otherwise

Definition at line 988 of file SimpleTransport.cpp.

References Cantera::fp2str(), SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_diff_mix_ok, SimpleTransport::m_diff_temp_ok, SimpleTransport::m_temp, Transport::m_thermo, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, and Phase::temperature().

Referenced by SimpleTransport::getBinaryDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesViscosities(), SimpleTransport::thermalConductivity(), and SimpleTransport::viscosity().

bool update_C ( )
protectedvirtual

Handles the effects of changes in the mixture concentration.

This is called for every interface call to check whether the concentrations have changed. Concentrations change whenever the pressure or the mole fraction has changed. If it has changed, the recalculations should be done.

Note this should be a lightweight function since it's part of all of the interfaces.

Definition at line 886 of file SimpleTransport.cpp.

References SimpleTransport::concTot_, DATA_PTR, SimpleTransport::dens_, Phase::density(), Phase::getConcentrations(), Phase::getMoleFractions(), SimpleTransport::m_concentrations, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_diff_mix_ok, SimpleTransport::m_iStateMF, SimpleTransport::m_molefracs, Transport::m_nsp, SimpleTransport::m_press, Transport::m_thermo, SimpleTransport::m_visc_mix_ok, ckr::max(), Phase::meanMolecularWeight(), SimpleTransport::meanMolecularWeight_, ThermoPhase::pressure(), and Phase::stateMFNumber().

Referenced by SimpleTransport::getMixDiffCoeffs(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::thermalConductivity(), and SimpleTransport::viscosity().

void updateViscosity_T ( )
protected

Update the temperature-dependent viscosity terms.

Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule.

The flag m_visc_temp_ok is set to true.

Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule. The flag m_visc_ok is set to true.

Definition at line 975 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_coeffVisc_Ns, Transport::m_nsp, SimpleTransport::m_visc_mix_ok, SimpleTransport::m_visc_temp_ok, and SimpleTransport::m_viscSpecies.

Referenced by SimpleTransport::getSpeciesViscosities(), and SimpleTransport::viscosity().

void updateCond_T ( )
protected

Update the temperature-dependent parts of the mixture-averaged thermal conductivity.

Definition at line 927 of file SimpleTransport.cpp.

References SimpleTransport::compositionDepType_, SimpleTransport::m_coeffLambda_Ns, SimpleTransport::m_cond_mix_ok, SimpleTransport::m_cond_temp_ok, SimpleTransport::m_condSpecies, and Transport::m_nsp.

Referenced by SimpleTransport::thermalConductivity().

void updateViscosities_C ( )
protected

Update the concentration parts of the viscosities.

Update the pure-species viscosities.

Internal routine is run whenever the update_boolean is false. This routine will calculate internal values for the species viscosities.

Definition at line 964 of file SimpleTransport.cpp.

void updateDiff_T ( )
protected
doublereal err ( std::string  msg) const
private

Throw an exception if this method is invoked.

This probably indicates something is not yet implemented.

Parameters
msgIndicates the member function which is not implemented

Definition at line 1021 of file SimpleTransport.cpp.

References Cantera::int2str(), and SimpleTransport::model().

thermo_t& thermo ( )
inlineinherited

Phase object.

Every transport manager is designed to compute properties for a specific phase of a mixture, which might be a liquid solution, a gas mixture, a surface, etc. This method returns a reference to the object representing the phase itself.

Definition at line 239 of file TransportBase.h.

References Transport::m_thermo.

Referenced by Transport::setThermo().

bool ready ( )
inherited

Returns true if the transport manager is ready for use.

Definition at line 75 of file TransportBase.cpp.

References Transport::m_ready.

Referenced by Transport::finalize(), and Transport::setThermo().

void setNDim ( const int  ndim)
inherited

Set the number of dimensions to be expected in flux expressions.

Internal memory will be set with this value.

Parameters
ndimNumber of dimensions in flux expressions

Definition at line 83 of file TransportBase.cpp.

References Transport::m_nDim.

size_t nDim ( ) const
inlineinherited

Return the number of dimensions in flux expressions.

Returns
Returns the number of dimensions

Definition at line 261 of file TransportBase.h.

References Transport::m_nDim.

void checkSpeciesIndex ( size_t  k) const
inherited

Check that the specified species index is in range Throws an exception if k is greater than nSpecies()

Definition at line 88 of file TransportBase.cpp.

References Transport::m_nsp.

void checkSpeciesArraySize ( size_t  kk) const
inherited

Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().

Used before calls which take an array pointer.

Definition at line 95 of file TransportBase.cpp.

References Transport::m_nsp.

virtual doublereal bulkViscosity ( )
inlinevirtualinherited

The bulk viscosity in Pa-s.

The bulk viscosity is only non-zero in rare cases. Most transport managers either overload this method to return zero, or do not implement it, in which case an exception is thrown if called.

Reimplemented in WaterTransport, and FtnTransport.

Definition at line 303 of file TransportBase.h.

References Transport::err().

virtual doublereal ionConductivity ( )
inlinevirtualinherited

The ionic conductivity in 1/ohm/m.

Reimplemented in LiquidTransport.

Definition at line 310 of file TransportBase.h.

References Transport::err().

virtual void getSpeciesIonConductivity ( doublereal *const  ionCond)
inlinevirtualinherited

Returns the pure species ionic conductivity.

The units are 1/ohm/m and the length is the number of species

Parameters
ionCondVector of ionic conductivities

Reimplemented in LiquidTransport.

Definition at line 320 of file TransportBase.h.

References Transport::err().

virtual void mobilityRatio ( double *  mobRat)
inlinevirtualinherited

Returns the pointer to the mobility ratios of the species in the phase.

Parameters
mobRatReturns a matrix of mobility ratios for the current problem. The mobility ratio mobRat(i,j) is defined as the ratio of the mobility of species i to species j.

mobRat(i,j) = mu_i / mu_j

It is returned in fortran-ordering format. ie. it is returned as mobRat[k], where

k = j * nsp + i

The size of mobRat must be at least equal to nsp*nsp

Deprecated:
This doesn't seem to be the essential input; it should just be the mobility.

Reimplemented in LiquidTransport.

Definition at line 342 of file TransportBase.h.

References Transport::err().

virtual void getSpeciesMobilityRatio ( double **  mobRat)
inlinevirtualinherited

Returns the pure species limit of the mobility ratios.

The value is dimensionless and the length is the number of species

Parameters
mobRatVector of mobility ratios

Reimplemented in LiquidTransport.

Definition at line 352 of file TransportBase.h.

References Transport::err().

virtual void selfDiffusion ( doublereal *const  selfDiff)
inlinevirtualinherited

Returns the self diffusion coefficients of the species in the phase.

The self diffusion coefficient is the diffusion coefficient of a tracer species at the current temperature and composition of the species. Therefore, the dilute limit of transport is assumed for the tracer species. The effective formula may be calculated from the stefan-maxwell formulation by adding another row for the tracer species, assigning all D's to be equal to the respective species D's, and then taking the limit as the tracer species mole fraction goes to zero. The corresponding flux equation for the tracer species k in units of kmol m-2 s-1 is.

\[ J_k = - D^{sd}_k \frac{C_k}{R T} \nabla \mu_k \]

The derivative is taken at constant T and P.

The self diffusion calculation is handled by subclasses of LiquidTranInteraction as specified in the input file. These in turn employ subclasses of LTPspecies to determine the individual species self diffusion coeffs.

Parameters
selfDiffVector of self-diffusion coefficients Length = number of species in phase units = m**2 s-1

Reimplemented in LiquidTransport.

Definition at line 382 of file TransportBase.h.

References Transport::err().

virtual void getSpeciesSelfDiffusion ( double **  selfDiff)
inlinevirtualinherited

Returns the pure species self diffusion in solution of each species.

The pure species molar volumes are evaluated using the appropriate subclasses of LTPspecies as specified in the input file.

Parameters
selfDiffarray of length "number of species" to hold returned self diffusion coeffs.

Reimplemented in LiquidTransport.

Definition at line 396 of file TransportBase.h.

References Transport::err().

virtual doublereal electricalConductivity ( )
inlinevirtualinherited

The electrical conductivity (Siemens/m).

Reimplemented in SolidTransport, and FtnTransport.

Definition at line 413 of file TransportBase.h.

References Transport::err().

virtual doublereal getElectricConduct ( )
inlinevirtualinherited

Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)

The electrical conductivity, \( \sigma \), relates the electric current density, J, to the electric field, E.

\[ \vec{J} = \sigma \vec{E} \]

We assume here that the mixture electrical conductivity is an isotropic quantity, at this stage. Tensors may be included at a later time.

The conductivity is the reciprocal of the resistivity.

The units are Siemens m-1, where 1 S = 1 A / volt = 1 s^3 A^2 /kg /m^2

Reimplemented in LiquidTransport.

Definition at line 482 of file TransportBase.h.

References Transport::err().

virtual void getElectricCurrent ( int  ndim,
const doublereal *  grad_T,
int  ldx,
const doublereal *  grad_X,
int  ldf,
const doublereal *  grad_V,
doublereal *  current 
)
inlinevirtualinherited

Compute the electric current density in A/m^2.

Calculates the electric current density as a vector, given the gradients of the field variables.

Parameters
ndimThe number of spatial dimensions (1, 2, or 3).
grad_TThe temperature gradient (ignored in this model).
ldxLeading dimension of the grad_X array.
grad_XThe gradient of the mole fraction
ldfLeading dimension of the grad_V and current vectors.
grad_VThe electrostatic potential gradient.
currentThe electric current in A/m^2. This is a vector of length ndim

Reimplemented in LiquidTransport.

Definition at line 500 of file TransportBase.h.

References Transport::err().

virtual void getSpeciesFluxesES ( size_t  ndim,
const doublereal *  grad_T,
size_t  ldx,
const doublereal *  grad_X,
size_t  ldf,
const doublereal *  grad_Phi,
doublereal *  fluxes 
)
inlinevirtualinherited

Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.

Units for the returned fluxes are kg m-2 s-1.

Parameters
ndimNumber of dimensions in the flux expressions
grad_TGradient of the temperature (length = ndim)
ldxLeading dimension of the grad_X array (usually equal to m_nsp but not always)
grad_XGradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim
ldfLeading dimension of the fluxes array (usually equal to m_nsp but not always)
grad_PhiGradients of the electrostatic potential (length = ndim)
fluxesOutput of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim

Definition at line 560 of file TransportBase.h.

References Transport::getSpeciesFluxes().

virtual void getMolarFluxes ( const doublereal *const  state1,
const doublereal *const  state2,
const doublereal  delta,
doublereal *const  cfluxes 
)
inlinevirtualinherited

Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.

Parameters
state1Array of temperature, density, and mass fractions for state 1.
state2Array of temperature, density, and mass fractions for state 2.
deltaDistance from state 1 to state 2 (m).
cfluxesOutput array containing the diffusive molar fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kmol/m^2/s].

Reimplemented in MultiTransport, and DustyGasTransport.

Definition at line 650 of file TransportBase.h.

References Transport::err().

virtual void getMassFluxes ( const doublereal *  state1,
const doublereal *  state2,
doublereal  delta,
doublereal *  mfluxes 
)
inlinevirtualinherited

Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.

Parameters
state1Array of temperature, density, and mass fractions for state 1.
state2Array of temperature, density, and mass fractions for state 2.
deltaDistance from state 1 to state 2 (m).
mfluxesOutput array containing the diffusive mass fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kg/m^2/s].

Reimplemented in MultiTransport.

Definition at line 671 of file TransportBase.h.

References Transport::err().

virtual void getMultiDiffCoeffs ( const size_t  ld,
doublereal *const  d 
)
inlinevirtualinherited

Return the Multicomponent diffusion coefficients. Units: [m^2/s].

If the transport manager implements a multicomponent diffusion model, then this method returns the array of multicomponent diffusion coefficients. Otherwise it throws an exception.

Parameters
ldThe dimension of the inner loop of d (usually equal to m_nsp)
dflat vector of diffusion coefficients, fortran ordering. d[ld*j+i] is the D_ij diffusion coefficient (the diffusion coefficient for species i due to species j).

Reimplemented in DustyGasTransport, and MultiTransport.

Definition at line 721 of file TransportBase.h.

References Transport::err().

Referenced by StFlow::updateTransport().

virtual void getMixDiffCoeffsMole ( doublereal *const  d)
inlinevirtualinherited

Returns a vector of mixture averaged diffusion coefficients.

Reimplemented in GasTransport.

Definition at line 744 of file TransportBase.h.

References Transport::err().

virtual void getMixDiffCoeffsMass ( doublereal *const  d)
inlinevirtualinherited

Returns a vector of mixture averaged diffusion coefficients.

Reimplemented in GasTransport.

Definition at line 749 of file TransportBase.h.

References Transport::err().

void setParameters ( const int  type,
const int  k,
const doublereal *const  p 
)
virtualinherited

Set model parameters for derived classes.

This method may be derived in subclasses to set model-specific parameters. The primary use of this class is to set parameters while in the middle of a calculation without actually having to dynamically cast the base Transport pointer.

Parameters
typeSpecifies the type of parameters to set 0 : Diffusion coefficient 1 : Thermal Conductivity The rest are currently unused.
kSpecies index to set the parameters on
pVector of parameters. The length of the vector varies with the parameterization

Reimplemented in DustyGasTransport, and SolidTransport.

Definition at line 105 of file TransportBase.cpp.

References Transport::err().

void setVelocityBasis ( VelocityBasis  ivb)
inlineinherited

Sets the velocity basis.

What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.

Parameters
ivbSpecies the velocity basis

Definition at line 777 of file TransportBase.h.

References Transport::m_velocityBasis.

VelocityBasis getVelocityBasis ( ) const
inlineinherited

Gets the velocity basis.

What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.

Returns
Returns the velocity basis

Definition at line 789 of file TransportBase.h.

References Transport::m_velocityBasis.

virtual bool initGas ( GasTransportParams tr)
inlineprotectedvirtualinherited

Called by TransportFactory to set parameters.

Called by TransportFactory to set parameters.

This is called by classes that use the gas phase parameter list to initialize themselves.

Parameters
trReference to the parameter list that will be used to initialize the class

Reimplemented in MixTransport, MultiTransport, and GasTransport.

Definition at line 819 of file TransportBase.h.

References Transport::err().

Referenced by TransportFactory::initTransport().

void setThermo ( thermo_t thermo)
protectedinherited

Specifies the ThermPhase object.

Parameters
thermoReference to the ThermoPhase object that the transport object will use

Definition at line 112 of file TransportBase.cpp.

References Transport::m_nsp, Transport::m_thermo, Phase::nSpecies(), Transport::ready(), and Transport::thermo().

Referenced by TransportFactory::newTransport().

void finalize ( )
protectedinherited

Enable the transport object for use.

Once finalize() has been called, the transport manager should be ready to compute any supported transport property, and no further modifications to the model parameters should be made.

Definition at line 136 of file TransportBase.cpp.

References Transport::m_ready, and Transport::ready().

Member Data Documentation

int tempDepType_
private

Temperature dependence type.

The following coefficients are allowed to have simple temperature dependencies: mixture viscosity mixture thermal conductivity diffusitivy

Types of temperature dependencies: 0 - Independent of temperature (only one implemented so far) 1 - extended arrhenius form 2 - polynomial in temperature form

Definition at line 610 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=().

int compositionDepType_
private

Composition dependence of the transport properties.

The following coefficients are allowed to have simple composition dependencies mixture viscosity mixture thermal conductivity

Types of composition dependencies 0 - Solvent values (i.e., species 0) contributes only 1 - linear combination of mole fractions;

Definition at line 624 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::thermalConductivity(), SimpleTransport::updateCond_T(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

bool useHydroRadius_
private

Boolean indicating whether to use the hydrodynamic radius formulation.

If true, then the diffusion coefficient is calculated from the hydrodynamic radius.

Definition at line 631 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), and SimpleTransport::updateDiff_T().

bool doMigration_
private

Boolean indicating whether electro-migration term should be added.

Definition at line 638 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::operator=(), and SimpleTransport::set_Grad_V().

doublereal m_tmin
private

Minimum temperature applicable to the transport property eval.

Definition at line 641 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::operator=().

doublereal m_tmax
private

Maximum temperature applicable to the transport property evaluator.

Definition at line 644 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::operator=().

vector_fp m_mw
private

Local Copy of the molecular weights of the species.

Length is Equal to the number of species in the mechanism.

Definition at line 650 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::operator=().

std::vector<LTPspecies*> m_coeffVisc_Ns
private

Pure species viscosities in Arrhenius temperature-dependent form.

Definition at line 653 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::updateViscosity_T(), and SimpleTransport::~SimpleTransport().

std::vector<LTPspecies*> m_coeffLambda_Ns
private

Pure species thermal conductivities in Arrhenius temperature-dependent form.

Definition at line 659 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::updateCond_T(), and SimpleTransport::~SimpleTransport().

std::vector<LTPspecies*> m_coeffDiff_Ns
private

Pure species viscosities in Arrhenius temperature-dependent form.

Definition at line 663 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::updateDiff_T(), and SimpleTransport::~SimpleTransport().

std::vector<LTPspecies*> m_coeffHydroRadius_Ns
private
vector_fp m_Grad_X
private

Internal value of the gradient of the mole fraction vector.

Note, this is the only gradient value that can and perhaps should reflect the true state of the mole fractions in the application solution vector. In other words no cropping or massaging of the values to make sure they are above zero should occur. - developing ....

m_nsp is the number of species in the fluid k is the species index n is the dimensional index (x, y, or z). It has a length equal to m_nDim

m_Grad_X[n*m_nsp + k]

Definition at line 685 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), SimpleTransport::operator=(), and SimpleTransport::set_Grad_X().

vector_fp m_Grad_T
private

Internal value of the gradient of the Temperature vector.

Generally, if a transport property needs this in its evaluation it will look to this place to get it.

No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.

Definition at line 697 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), and SimpleTransport::set_Grad_T().

vector_fp m_Grad_P
private

Internal value of the gradient of the Pressure vector.

Generally, if a transport property needs this in its evaluation it will look to this place to get it.

No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.

Definition at line 709 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), and SimpleTransport::operator=().

vector_fp m_Grad_V
private

Internal value of the gradient of the Electric Voltage.

Generally, if a transport property needs this in its evaluation it will look to this place to get it.

No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.

Definition at line 721 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), SimpleTransport::operator=(), and SimpleTransport::set_Grad_V().

vector_fp m_diffSpecies
private

Vector of Species Diffusivities.

Depends on the temperature. We have set the pressure dependence to zero for this liquid phase constituitve model

units m2/s

Definition at line 735 of file SimpleTransport.h.

Referenced by SimpleTransport::getBinaryDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), SimpleTransport::initLiquid(), SimpleTransport::operator=(), and SimpleTransport::updateDiff_T().

vector_fp m_viscSpecies
private

Species viscosities.

Viscosity of the species Length = number of species

Depends on the temperature. We have set the pressure dependence to zero for this model

controlling update boolean -> m_visc_temp_ok

Definition at line 747 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesViscosities(), SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

vector_fp m_condSpecies
private

Internal value of the species individual thermal conductivities.

Then a mixture rule is applied to get the solution conductivities

Depends on the temperature and perhaps pressure, but not the species concentrations

controlling update boolean -> m_cond_temp_ok

Definition at line 758 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::thermalConductivity(), and SimpleTransport::updateCond_T().

int m_iStateMF
private

State of the mole fraction vector.

Definition at line 761 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::update_C().

vector_fp m_molefracs
private

Local copy of the mole fractions of the species in the phase.

The mole fractions here are assumed to be bounded by 0.0 and 1.0 and they are assumed to add up to one exactly. This mole fraction vector comes from the ThermoPhase object. Derivative quantities from this are referred to as bounded.

Update info? length = m_nsp

Definition at line 773 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::thermalConductivity(), SimpleTransport::update_C(), and SimpleTransport::viscosity().

vector_fp m_concentrations
private

Local copy of the concentrations of the species in the phase.

The concentrations are consistent with the m_molefracs vector which is bounded and sums to one.

Update info? length = m_nsp

Definition at line 784 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), and SimpleTransport::update_C().

doublereal concTot_
private

Local copy of the total concentration.

This is consistent with the m_concentrations[] and m_molefracs[] vector.

Definition at line 791 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::update_C().

doublereal meanMolecularWeight_
private

Mean molecular weight.

Definition at line 794 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::update_C().

doublereal dens_
private

Density.

Definition at line 797 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::update_C().

vector_fp m_chargeSpecies
private

Local copy of the charge of each species.

Contains the charge of each species (length m_nsp)

Definition at line 803 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::initLiquid(), and SimpleTransport::operator=().

doublereal m_temp
private

Current Temperature -> locally stored.

This is used to test whether new temperature computations should be performed.

Definition at line 810 of file SimpleTransport.h.

Referenced by SimpleTransport::getFluidMobilities(), SimpleTransport::getMobilities(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::operator=(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

doublereal m_press
private

Current value of the pressure.

Definition at line 814 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::update_C().

doublereal m_lambda
private

Saved value of the mixture thermal conductivity.

Definition at line 818 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::thermalConductivity().

doublereal m_viscmix
private

Saved value of the mixture viscosity.

Definition at line 821 of file SimpleTransport.h.

Referenced by SimpleTransport::operator=(), and SimpleTransport::viscosity().

vector_fp m_spwork
private
bool m_visc_mix_ok
private

Boolean indicating that the top-level mixture viscosity is current.

This is turned false for every change in T, P, or C.

Definition at line 838 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::update_C(), SimpleTransport::update_T(), SimpleTransport::updateViscosity_T(), and SimpleTransport::viscosity().

bool m_visc_temp_ok
private
bool m_diff_mix_ok
private

Boolean indicating that mixture diffusion coeffs are current.

Definition at line 844 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::update_C(), SimpleTransport::update_T(), and SimpleTransport::updateDiff_T().

bool m_diff_temp_ok
private
bool m_cond_temp_ok
private

Flag to indicate that the pure species conductivities are current wrt the temperature.

Definition at line 851 of file SimpleTransport.h.

Referenced by SimpleTransport::initLiquid(), SimpleTransport::operator=(), SimpleTransport::thermalConductivity(), SimpleTransport::update_T(), and SimpleTransport::updateCond_T().

bool m_cond_mix_ok
private
size_t m_nDim
private
double rhoVc[3]
private

Temporary variable that stores the rho Vc value.

Definition at line 864 of file SimpleTransport.h.

Referenced by SimpleTransport::getSpeciesFluxesExt().

thermo_t* m_thermo
protectedinherited

pointer to the object representing the phase

Definition at line 857 of file TransportBase.h.

Referenced by SolidTransport::electricalConductivity(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getLiquidTransportData(), MultiTransport::getMassFluxes(), SolidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), SolidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), WaterTransport::initTP(), Transport::operator=(), MixTransport::pressure_ig(), SolidTransport::setParameters(), Transport::setThermo(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), Transport::thermo(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().

bool m_ready
protectedinherited

true if finalize has been called

Definition at line 860 of file TransportBase.h.

Referenced by Transport::finalize(), Transport::operator=(), Transport::ready(), and Transport::Transport().

size_t m_nsp
protectedinherited

Number of species.

Definition at line 863 of file TransportBase.h.

Referenced by Transport::checkSpeciesArraySize(), Transport::checkSpeciesIndex(), DustyGasTransport::eval_H_matrix(), MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::eval_L1000(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), LiquidTransport::getBinaryDiffCoeffs(), SimpleTransport::getBinaryDiffCoeffs(), LiquidTransport::getElectricConduct(), LiquidTransport::getElectricCurrent(), AqueousTransport::getFluidMobilities(), SimpleTransport::getFluidMobilities(), LiquidTransport::getFluidMobilities(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), LiquidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MixTransport::getMobilities(), AqueousTransport::getMobilities(), SimpleTransport::getMobilities(), LiquidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), DustyGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesMobilityRatio(), LiquidTransport::getSpeciesSelfDiffusion(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), LiquidTransport::getSpeciesVdiffExt(), MultiTransport::getThermalDiffCoeffs(), MixTransport::getThermalDiffCoeffs(), AqueousTransport::getThermalDiffCoeffs(), SimpleTransport::getThermalDiffCoeffs(), LiquidTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::initGas(), MixTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), LiquidTransport::mobilityRatio(), Transport::operator=(), LiquidTransport::selfDiffusion(), AqueousTransport::set_Grad_X(), SimpleTransport::set_Grad_X(), LiquidTransport::set_Grad_X(), Transport::setThermo(), MultiTransport::solveLMatrixEquation(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), MultiTransport::thermalConductivity(), MixTransport::thermalConductivity(), AqueousTransport::thermalConductivity(), SimpleTransport::thermalConductivity(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), DustyGasTransport::updateBinaryDiffCoeffs(), MixTransport::updateCond_T(), SimpleTransport::updateCond_T(), AqueousTransport::updateCond_T(), LiquidTransport::updateCond_T(), GasTransport::updateDiff_T(), SimpleTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), LiquidTransport::updateHydrodynamicRadius_T(), LiquidTransport::updateIonConductivity_T(), DustyGasTransport::updateKnudsenDiffCoeffs(), LiquidTransport::updateMobilityRatio_T(), LiquidTransport::updateSelfDiffusion_T(), GasTransport::updateSpeciesViscosities(), AqueousTransport::updateSpeciesViscosities(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), GasTransport::updateViscosity_T(), SimpleTransport::updateViscosity_T(), AqueousTransport::updateViscosity_T(), LiquidTransport::updateViscosity_T(), GasTransport::viscosity(), AqueousTransport::viscosity(), SimpleTransport::viscosity(), and LiquidTransport::~LiquidTransport().

int m_velocityBasis
protectedinherited

Velocity basis from which diffusion velocities are computed.

Defaults to the mass averaged basis = -2

Definition at line 870 of file TransportBase.h.

Referenced by SimpleTransport::getSpeciesFluxesExt(), Transport::getVelocityBasis(), LiquidTransport::initLiquid(), Transport::operator=(), Transport::setVelocityBasis(), LiquidTransport::stefan_maxwell_solve(), and Transport::Transport().


The documentation for this class was generated from the following files: