Cantera
2.0
|
Class MixTransport implements mixture-averaged transport properties for ideal gas mixtures. More...
#include <MixTransport.h>
Public Member Functions | |
MixTransport (const MixTransport &right) | |
Copy Constructor for the MixTransport object. | |
MixTransport & | operator= (const MixTransport &right) |
Assignment operator. | |
virtual Transport * | duplMyselfAsTransport () const |
Duplication routine for objects which inherit from Transport. | |
virtual | ~MixTransport () |
Destructor. | |
virtual int | model () const |
Return the model id for transport. | |
virtual void | getThermalDiffCoeffs (doublereal *const dt) |
Return the thermal diffusion coefficients. | |
virtual doublereal | thermalConductivity () |
Returns the mixture thermal conductivity (W/m /K) | |
virtual void | getMobilities (doublereal *const mobil) |
Get the Electrical mobilities (m^2/V/s). | |
virtual void | update_T () |
Update the internal parameters whenever the temperature has changed. | |
virtual void | update_C () |
Update the internal parameters whenever the concentrations have changed. | |
virtual void | getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual bool | initGas (GasTransportParams &tr) |
Initialize the transport object. | |
struct GasTransportData | getGasTransportData (int kspec) const |
Return a structure containing all of the pertinent parameters about a species that was used to construct the Transport properties in this object. | |
virtual doublereal | viscosity () |
Viscosity of the mixture (kg /m /s) | |
virtual void | getSpeciesViscosities (doublereal *const visc) |
Get the pure-species viscosities. | |
virtual void | getBinaryDiffCoeffs (const size_t ld, doublereal *const d) |
Returns the matrix of binary diffusion coefficients. | |
virtual void | getMixDiffCoeffs (doublereal *const d) |
Returns the Mixture-averaged diffusion coefficients [m^2/s]. | |
virtual void | getMixDiffCoeffsMole (doublereal *const d) |
Returns the mixture-averaged diffusion coefficients [m^2/s]. | |
virtual void | getMixDiffCoeffsMass (doublereal *const d) |
Returns the mixture-averaged diffusion coefficients [m^2/s]. | |
thermo_t & | thermo () |
Phase object. | |
bool | ready () |
Returns true if the transport manager is ready for use. | |
void | setNDim (const int ndim) |
Set the number of dimensions to be expected in flux expressions. | |
size_t | nDim () const |
Return the number of dimensions in flux expressions. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies() | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
virtual doublereal | getElectricConduct () |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) | |
virtual void | getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current) |
Compute the electric current density in A/m^2. | |
virtual void | getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. | |
virtual void | getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. | |
virtual void | getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes) |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes) |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMultiDiffCoeffs (const size_t ld, doublereal *const d) |
Return the Multicomponent diffusion coefficients. Units: [m^2/s]. | |
virtual void | setParameters (const int type, const int k, const doublereal *const p) |
Set model parameters for derived classes. | |
void | setVelocityBasis (VelocityBasis ivb) |
Sets the velocity basis. | |
VelocityBasis | getVelocityBasis () const |
Gets the velocity basis. | |
Transport Properties | |
virtual doublereal | bulkViscosity () |
The bulk viscosity in Pa-s. | |
virtual doublereal | ionConductivity () |
The ionic conductivity in 1/ohm/m. | |
virtual void | getSpeciesIonConductivity (doublereal *const ionCond) |
Returns the pure species ionic conductivity. | |
virtual void | mobilityRatio (double *mobRat) |
Returns the pointer to the mobility ratios of the species in the phase. | |
virtual void | getSpeciesMobilityRatio (double **mobRat) |
Returns the pure species limit of the mobility ratios. | |
virtual void | selfDiffusion (doublereal *const selfDiff) |
Returns the self diffusion coefficients of the species in the phase. | |
virtual void | getSpeciesSelfDiffusion (double **selfDiff) |
Returns the pure species self diffusion in solution of each species. | |
virtual doublereal | electricalConductivity () |
The electrical conductivity (Siemens/m). | |
virtual void | getFluidMobilities (doublereal *const mobil_f) |
Get the fluid mobilities (s kmol/kg). | |
Protected Member Functions | |
MixTransport () | |
Default constructor. | |
virtual void | updateViscosity_T () |
Update the temperature-dependent viscosity terms. | |
virtual void | updateSpeciesViscosities () |
Update the pure-species viscosities. | |
virtual void | updateDiff_T () |
Update the binary diffusion coefficients. | |
Transport manager construction | |
These methods are used internally during construction. | |
virtual bool | initLiquid (LiquidTransportParams &tr) |
Called by TransportFactory to set parameters. | |
void | setThermo (thermo_t &thermo) |
Specifies the ThermPhase object. | |
void | finalize () |
Enable the transport object for use. | |
Protected Attributes | |
vector_fp | m_molefracs |
Vector of species mole fractions. | |
doublereal | m_viscmix |
Internal storage for the viscosity of the mixture (kg /m /s) | |
bool | m_visc_ok |
Update boolean for mixture rule for the mixture viscosity. | |
bool | m_viscwt_ok |
Update boolean for the weighting factors for the mixture viscosity. | |
bool | m_spvisc_ok |
Update boolean for the species viscosities. | |
bool | m_bindiff_ok |
Update boolean for the binary diffusivities at unit pressure. | |
int | m_mode |
Type of the polynomial fits to temperature. | |
DenseMatrix | m_phi |
m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp | |
vector_fp | m_spwork |
work space length = m_kk | |
vector_fp | m_visc |
vector of species viscosities (kg /m /s). | |
std::vector< vector_fp > | m_visccoeffs |
Polynomial fits to the viscosity of each species. | |
vector_fp | m_mw |
Local copy of the species molecular weights. | |
DenseMatrix | m_wratjk |
Holds square roots of molecular weight ratios. | |
DenseMatrix | m_wratkj1 |
Holds square roots of molecular weight ratios. | |
vector_fp | m_sqvisc |
vector of square root of species viscosities sqrt(kg /m /s). | |
vector_fp | m_polytempvec |
Powers of the ln temperature, up to fourth order. | |
doublereal | m_temp |
Current value of the temperature at which the properties in this object are calculated (Kelvin). | |
doublereal | m_kbt |
Current value of Boltzman's constant times the temperature (Joules) | |
doublereal | m_sqrt_kbt |
current value of Boltzman's constant times the temperature. | |
doublereal | m_sqrt_t |
current value of temperature to 1/2 power | |
doublereal | m_logt |
Current value of the log of the temperature. | |
doublereal | m_t14 |
Current value of temperature to 1/4 power. | |
doublereal | m_t32 |
Current value of temperature to the 3/2 power. | |
std::vector< vector_fp > | m_diffcoeffs |
Polynomial fits to the binary diffusivity of each species. | |
DenseMatrix | m_bdiff |
Matrix of binary diffusion coefficients at the reference pressure and the current temperature Size is nsp x nsp. | |
thermo_t * | m_thermo |
pointer to the object representing the phase | |
bool | m_ready |
true if finalize has been called | |
size_t | m_nsp |
Number of species. | |
size_t | m_nDim |
Number of dimensions used in flux expressions. | |
int | m_velocityBasis |
Velocity basis from which diffusion velocities are computed. | |
Private Member Functions | |
doublereal | pressure_ig () const |
Calculate the pressure from the ideal gas law. | |
void | updateCond_T () |
Update the temperature dependent parts of the species thermal conductivities. | |
Private Attributes | |
std::vector< vector_fp > | m_condcoeffs |
Polynomial fits to the thermal conductivity of each species. | |
vector_fp | m_cond |
vector of species thermal conductivities (W/m /K) | |
doublereal | m_lambda |
Internal storage for the calculated mixture thermal conductivity. | |
bool | m_spcond_ok |
Update boolean for the species thermal conductivities. | |
bool | m_condmix_ok |
Update boolean for the mixture rule for the mixture thermal conductivity. | |
vector_fp | m_eps |
Lennard-Jones well-depth of the species in the current phase. | |
DenseMatrix | m_diam |
hard-sphere diameter for (i,j) collision | |
vector_fp | m_dipoleDiag |
The effective dipole moment for (i,j) collisions. | |
vector_fp | m_alpha |
Polarizability of each species in the phase. | |
vector_fp | m_crot |
Dimensionless rotational heat capacity of the species in the current phase. | |
vector_fp | m_zrot |
Rotational relaxation number for the species in the current phase. | |
bool | m_debug |
Debug flag - turns on more printing. | |
Friends | |
class | TransportFactory |
Class MixTransport implements mixture-averaged transport properties for ideal gas mixtures.
The model is based on that described by Kee, Coltrin, and Glarborg, "Theoretical and Practical Aspects of Chemically Reacting Flow Modeling."
The viscosity is computed using the Wilke mixture rule (kg /m /s)
\[ \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}. \]
Here \( \mu_k \) is the viscosity of pure species k, and
\[ \Phi_{k,j} = \frac{\left[1 + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2} {\sqrt{8}\sqrt{1 + M_k/M_j}} \]
The thermal conductivity is computed from the following mixture rule:
\[ \lambda = 0.5 \left( \sum_k X_k \lambda_k + \frac{1}{\sum_k X_k/\lambda_k} \right) \]
It's used to compute the flux of energy due to a thermal gradient
\[ j_T = - \lambda \nabla T \]
The flux of energy has units of energy (kg m2 /s2) per second per area.
The units of lambda are W / m K which is equivalent to kg m / s^3 K.
Definition at line 67 of file MixTransport.h.
|
protected |
Default constructor.
Definition at line 30 of file MixTransport.cpp.
Referenced by MixTransport::duplMyselfAsTransport().
MixTransport | ( | const MixTransport & | right | ) |
Copy Constructor for the MixTransport object.
right | LiquidTransport to be copied |
Definition at line 46 of file MixTransport.cpp.
|
inlinevirtual |
Destructor.
Definition at line 105 of file MixTransport.h.
MixTransport & operator= | ( | const MixTransport & | right | ) |
Assignment operator.
This is NOT a virtual function.
right | Reference to LiquidTransport object to be copied into the current one. |
Definition at line 71 of file MixTransport.cpp.
References MixTransport::m_alpha, MixTransport::m_cond, MixTransport::m_condcoeffs, MixTransport::m_condmix_ok, MixTransport::m_crot, MixTransport::m_debug, MixTransport::m_diam, MixTransport::m_dipoleDiag, MixTransport::m_eps, MixTransport::m_lambda, MixTransport::m_spcond_ok, and MixTransport::m_zrot.
|
virtual |
Duplication routine for objects which inherit from Transport.
This virtual routine can be used to duplicate Transport objects inherited from Transport even if the application only has a pointer to Transport to work with.
These routines are basically wrappers around the derived copy constructor.
Reimplemented from Transport.
Definition at line 103 of file MixTransport.cpp.
References MixTransport::MixTransport().
|
inlinevirtual |
Return the model id for transport.
Reimplemented from Transport.
Definition at line 111 of file MixTransport.h.
|
virtual |
Return the thermal diffusion coefficients.
For this approximation, these are all zero.
Eqns. (12.168) shows how they are used in an expression for the species flux.
dt | Vector of thermal diffusion coefficients. Units = kg/m/s |
Reimplemented from Transport.
Definition at line 193 of file MixTransport.cpp.
References Transport::m_nsp.
|
virtual |
Returns the mixture thermal conductivity (W/m /K)
The thermal conductivity is computed from the following mixture rule:
\[ \lambda = 0.5 \left( \sum_k X_k \lambda_k + \frac{1}{\sum_k X_k/\lambda_k} \right) \]
It's used to compute the flux of energy due to a thermal gradient
\[ j_T = - \lambda \nabla T \]
The flux of energy has units of energy (kg m2 /s2) per second per area.
The units of lambda are W / m K which is equivalent to kg m / s^3 K.
Reimplemented from Transport.
Definition at line 165 of file MixTransport.cpp.
References MixTransport::m_cond, MixTransport::m_condmix_ok, MixTransport::m_lambda, GasTransport::m_molefracs, Transport::m_nsp, MixTransport::m_spcond_ok, MixTransport::update_C(), MixTransport::update_T(), and MixTransport::updateCond_T().
|
virtual |
Get the Electrical mobilities (m^2/V/s).
This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by Faraday's constant.
Here, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^e_k = \frac{F D_k}{R T} \]
mobil | Returns the mobilities of the species in array mobil . The array must be dimensioned at least as large as the number of species. |
Reimplemented from Transport.
Definition at line 137 of file MixTransport.cpp.
References Cantera::Boltzmann, DATA_PTR, GasTransport::getMixDiffCoeffs(), Transport::m_nsp, GasTransport::m_spwork, and GasTransport::m_temp.
|
virtual |
Update the internal parameters whenever the temperature has changed.
This is called whenever a transport property is requested if the temperature has changed since the last call to update_T().
Reimplemented from GasTransport.
Definition at line 259 of file MixTransport.cpp.
References Cantera::fp2str(), GasTransport::m_bindiff_ok, MixTransport::m_condmix_ok, MixTransport::m_spcond_ok, GasTransport::m_temp, Transport::m_thermo, and Phase::temperature().
Referenced by MixTransport::getSpeciesFluxes(), and MixTransport::thermalConductivity().
|
virtual |
Update the internal parameters whenever the concentrations have changed.
This is called whenever a transport property is requested if the concentrations have changed since the last call to update_C().
Implements GasTransport.
Definition at line 281 of file MixTransport.cpp.
References DATA_PTR, Phase::getMoleFractions(), MixTransport::m_condmix_ok, GasTransport::m_molefracs, Transport::m_nsp, Transport::m_thermo, GasTransport::m_visc_ok, ckr::max(), and MIN_X.
Referenced by MixTransport::getSpeciesFluxes(), and MixTransport::thermalConductivity().
|
virtual |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned fluxes are kg m-2 s-1.
The diffusive mass flux of species k is computed from
\[ \vec{j}_k = -n M_k D_k \nabla X_k. \]
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Reimplemented from Transport.
Definition at line 225 of file MixTransport.cpp.
References DATA_PTR, GasTransport::getMixDiffCoeffs(), Transport::m_nsp, GasTransport::m_spwork, Transport::m_thermo, Phase::massFractions(), Phase::molarDensity(), Phase::molecularWeights(), MixTransport::update_C(), and MixTransport::update_T().
|
virtual |
Initialize the transport object.
Here we change all of the internal dimensions to be sufficient. We get the object ready to do property evaluations.
tr | Transport parameters for all of the species in the phase. |
Reimplemented from GasTransport.
Definition at line 110 of file MixTransport.cpp.
References GasTransportParams::alpha, GasTransportParams::condcoeffs, GasTransportParams::crot, GasTransportParams::diam, GasTransportParams::dipole, GasTransportParams::eps, GasTransport::initGas(), MixTransport::m_alpha, MixTransport::m_cond, MixTransport::m_condcoeffs, MixTransport::m_condmix_ok, MixTransport::m_crot, MixTransport::m_diam, MixTransport::m_dipoleDiag, MixTransport::m_eps, Transport::m_nsp, MixTransport::m_spcond_ok, MixTransport::m_zrot, and GasTransportParams::zrot.
|
read |
Return a structure containing all of the pertinent parameters about a species that was used to construct the Transport properties in this object.
kspec | Species number to obtain the properties from. |
Definition at line 322 of file MixTransport.cpp.
References Cantera::Boltzmann, GasTransportData::diameter, GasTransportData::dipoleMoment, GasTransportData::geometry, GasTransportData::polarizability, GasTransportData::rotRelaxNumber, GasTransportData::speciesName, Cantera::SqrtTen, and GasTransportData::wellDepth.
|
inlineprivate |
Calculate the pressure from the ideal gas law.
Definition at line 232 of file MixTransport.h.
References Cantera::GasConstant, Transport::m_thermo, Phase::molarDensity(), and Phase::temperature().
|
private |
Update the temperature dependent parts of the species thermal conductivities.
These are evaluated from the polynomial fits of the temperature and are assumed to be independent of pressure
Definition at line 302 of file MixTransport.cpp.
References Cantera::dot4(), Cantera::dot5(), MixTransport::m_cond, MixTransport::m_condcoeffs, MixTransport::m_condmix_ok, GasTransport::m_mode, Transport::m_nsp, GasTransport::m_polytempvec, MixTransport::m_spcond_ok, and GasTransport::m_sqrt_t.
Referenced by MixTransport::thermalConductivity().
|
virtualinherited |
Viscosity of the mixture (kg /m /s)
The viscosity is computed using the Wilke mixture rule (kg /m /s)
\[ \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}. \]
Here \( \mu_k \) is the viscosity of pure species k, and
\[ \Phi_{k,j} = \frac{\left[1 + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2} {\sqrt{8}\sqrt{1 + M_k/M_j}} \]
Reimplemented from Transport.
Definition at line 166 of file GasTransport.cpp.
References DATA_PTR, GasTransport::m_molefracs, Transport::m_nsp, GasTransport::m_phi, GasTransport::m_spwork, GasTransport::m_visc, GasTransport::m_visc_ok, GasTransport::m_viscmix, GasTransport::m_viscwt_ok, Cantera::multiply(), and GasTransport::updateViscosity_T().
|
inlinevirtualinherited |
Get the pure-species viscosities.
Reimplemented from Transport.
Definition at line 44 of file GasTransport.h.
References GasTransport::m_visc, and GasTransport::updateViscosity_T().
|
virtualinherited |
Returns the matrix of binary diffusion coefficients.
d[ld*j + i] = rp * m_bdiff(i,j);
ld | offset of rows in the storage |
d | output vector of diffusion coefficients. Units of m**2 / s |
Reimplemented from Transport.
Definition at line 257 of file GasTransport.cpp.
References GasTransport::m_bdiff, GasTransport::m_bindiff_ok, Transport::m_nsp, Transport::m_thermo, ThermoPhase::pressure(), and GasTransport::updateDiff_T().
|
virtualinherited |
Returns the Mixture-averaged diffusion coefficients [m^2/s].
Returns the mixture averaged diffusion coefficients for a gas, appropriate for calculating the mass averaged diffusive flux with respect to the mass averaged velocity using gradients of the mole fraction. Note, for the single species case or the pure fluid case the routine returns the self-diffusion coefficient. This is needed to avoid a Nan result in the formula below.
This is Eqn. 12.180 from "Chemically Reacting Flow"
\[ D_{km}' = \frac{\left( \bar{M} - X_k M_k \right)}{ \bar{\qquad M \qquad } } {\left( \sum_{j \ne k} \frac{X_j}{D_{kj}} \right) }^{-1} \]
[out] | d | Vector of mixture diffusion coefficients, \( D_{km}' \) , for each species (m^2/s). length m_nsp |
Reimplemented from Transport.
Definition at line 274 of file GasTransport.cpp.
References GasTransport::m_bdiff, GasTransport::m_bindiff_ok, GasTransport::m_molefracs, GasTransport::m_mw, Transport::m_nsp, Transport::m_thermo, Phase::meanMolecularWeight(), ThermoPhase::pressure(), and GasTransport::updateDiff_T().
Referenced by MixTransport::getMobilities(), and MixTransport::getSpeciesFluxes().
|
virtualinherited |
Returns the mixture-averaged diffusion coefficients [m^2/s].
These are the coefficients for calculating the molar diffusive fluxes from the species mole fraction gradients, computed according to Eq. 12.176 in "Chemically Reacting Flow":
\[ D_{km}^* = \frac{1-X_k}{\sum_{j \ne k}^K X_j/\mathcal{D}_{kj}} \]
[out] | d | vector of mixture-averaged diffusion coefficients for each species, length m_nsp. |
Reimplemented from Transport.
Definition at line 309 of file GasTransport.cpp.
References GasTransport::m_bdiff, GasTransport::m_bindiff_ok, GasTransport::m_molefracs, Transport::m_nsp, Transport::m_thermo, ThermoPhase::pressure(), and GasTransport::updateDiff_T().
|
virtualinherited |
Returns the mixture-averaged diffusion coefficients [m^2/s].
These are the coefficients for calculating the diffusive mass fluxes from the species mass fraction gradients, computed according to Eq. 12.178 in "Chemically Reacting Flow":
\[ \frac{1}{D_{km}} = \sum_{j \ne k}^K \frac{X_j}{\mathcal{D}_{kj}} + //! \frac{X_k}{1-Y_k} \sum_{j \ne k}^K \frac{Y_j}{\mathcal{D}_{kj}} \]
[out] | d | vector of mixture-averaged diffusion coefficients for each species, length m_nsp. |
Reimplemented from Transport.
Definition at line 339 of file GasTransport.cpp.
References GasTransport::m_bdiff, GasTransport::m_bindiff_ok, GasTransport::m_molefracs, GasTransport::m_mw, Transport::m_nsp, Transport::m_thermo, Phase::meanMolecularWeight(), ThermoPhase::pressure(), and GasTransport::updateDiff_T().
|
protectedvirtualinherited |
Update the temperature-dependent viscosity terms.
Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule. The flag m_visc_ok is set to true.
The formula for the weighting function is from Poling and Prausnitz, Eq. (9-5.14):
\[ \phi_{ij} = \frac{ \left[ 1 + \left( \mu_i / \mu_j \right)^{1/2} \left( M_j / M_i \right)^{1/4} \right]^2 } {\left[ 8 \left( 1 + M_i / M_j \right) \right]^{1/2}} \]
Definition at line 190 of file GasTransport.cpp.
References GasTransport::m_mw, Transport::m_nsp, GasTransport::m_phi, GasTransport::m_spvisc_ok, GasTransport::m_sqvisc, GasTransport::m_visc, GasTransport::m_viscwt_ok, GasTransport::m_wratjk, GasTransport::m_wratkj1, Cantera::SqrtEight, and GasTransport::updateSpeciesViscosities().
Referenced by GasTransport::getSpeciesViscosities(), and GasTransport::viscosity().
|
protectedvirtualinherited |
Update the pure-species viscosities.
These are evaluated from the polynomial fits of the temperature and are assumed to be independent of pressure.
Definition at line 213 of file GasTransport.cpp.
References Cantera::dot4(), Cantera::dot5(), GasTransport::m_mode, Transport::m_nsp, GasTransport::m_polytempvec, GasTransport::m_spvisc_ok, GasTransport::m_sqvisc, GasTransport::m_t14, GasTransport::m_visc, and GasTransport::m_visccoeffs.
Referenced by MultiTransport::updateThermal_T(), and GasTransport::updateViscosity_T().
|
protectedvirtualinherited |
Update the binary diffusion coefficients.
These are evaluated from the polynomial fits of the temperature at the unit pressure of 1 Pa.
Definition at line 231 of file GasTransport.cpp.
References Cantera::dot4(), Cantera::dot5(), GasTransport::m_bdiff, GasTransport::m_bindiff_ok, GasTransport::m_diffcoeffs, GasTransport::m_mode, Transport::m_nsp, GasTransport::m_polytempvec, GasTransport::m_sqrt_t, and GasTransport::m_temp.
Referenced by GasTransport::getBinaryDiffCoeffs(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MultiTransport::getSpeciesFluxes(), and MultiTransport::updateThermal_T().
|
inlineinherited |
Phase object.
Every transport manager is designed to compute properties for a specific phase of a mixture, which might be a liquid solution, a gas mixture, a surface, etc. This method returns a reference to the object representing the phase itself.
Definition at line 239 of file TransportBase.h.
References Transport::m_thermo.
Referenced by Transport::setThermo().
|
inherited |
Returns true if the transport manager is ready for use.
Definition at line 75 of file TransportBase.cpp.
References Transport::m_ready.
Referenced by Transport::finalize(), and Transport::setThermo().
|
inherited |
Set the number of dimensions to be expected in flux expressions.
Internal memory will be set with this value.
ndim | Number of dimensions in flux expressions |
Definition at line 83 of file TransportBase.cpp.
References Transport::m_nDim.
|
inlineinherited |
Return the number of dimensions in flux expressions.
Definition at line 261 of file TransportBase.h.
References Transport::m_nDim.
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()
Definition at line 88 of file TransportBase.cpp.
References Transport::m_nsp.
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 95 of file TransportBase.cpp.
References Transport::m_nsp.
|
inlinevirtualinherited |
The bulk viscosity in Pa-s.
The bulk viscosity is only non-zero in rare cases. Most transport managers either overload this method to return zero, or do not implement it, in which case an exception is thrown if called.
Reimplemented in WaterTransport, and FtnTransport.
Definition at line 303 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The ionic conductivity in 1/ohm/m.
Reimplemented in LiquidTransport.
Definition at line 310 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species ionic conductivity.
The units are 1/ohm/m and the length is the number of species
ionCond | Vector of ionic conductivities |
Reimplemented in LiquidTransport.
Definition at line 320 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pointer to the mobility ratios of the species in the phase.
mobRat | Returns a matrix of mobility ratios for the current problem. The mobility ratio mobRat(i,j) is defined as the ratio of the mobility of species i to species j. |
mobRat(i,j) = mu_i / mu_j
It is returned in fortran-ordering format. ie. it is returned as mobRat[k], where
k = j * nsp + i
The size of mobRat must be at least equal to nsp*nsp
Reimplemented in LiquidTransport.
Definition at line 342 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species limit of the mobility ratios.
The value is dimensionless and the length is the number of species
mobRat | Vector of mobility ratios |
Reimplemented in LiquidTransport.
Definition at line 352 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the self diffusion coefficients of the species in the phase.
The self diffusion coefficient is the diffusion coefficient of a tracer species at the current temperature and composition of the species. Therefore, the dilute limit of transport is assumed for the tracer species. The effective formula may be calculated from the stefan-maxwell formulation by adding another row for the tracer species, assigning all D's to be equal to the respective species D's, and then taking the limit as the tracer species mole fraction goes to zero. The corresponding flux equation for the tracer species k in units of kmol m-2 s-1 is.
\[ J_k = - D^{sd}_k \frac{C_k}{R T} \nabla \mu_k \]
The derivative is taken at constant T and P.
The self diffusion calculation is handled by subclasses of LiquidTranInteraction as specified in the input file. These in turn employ subclasses of LTPspecies to determine the individual species self diffusion coeffs.
selfDiff | Vector of self-diffusion coefficients Length = number of species in phase units = m**2 s-1 |
Reimplemented in LiquidTransport.
Definition at line 382 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species self diffusion in solution of each species.
The pure species molar volumes are evaluated using the appropriate subclasses of LTPspecies as specified in the input file.
selfDiff | array of length "number of species" to hold returned self diffusion coeffs. |
Reimplemented in LiquidTransport.
Definition at line 396 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The electrical conductivity (Siemens/m).
Reimplemented in SolidTransport, and FtnTransport.
Definition at line 413 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the fluid mobilities (s kmol/kg).
This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^f_k = \frac{D_k}{R T} \]
mobil_f | Returns the mobilities of the species in array mobil . The array must be dimensioned at least as large as the number of species. |
Reimplemented in LiquidTransport, SimpleTransport, and AqueousTransport.
Definition at line 457 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)
The electrical conductivity, \( \sigma \), relates the electric current density, J, to the electric field, E.
\[ \vec{J} = \sigma \vec{E} \]
We assume here that the mixture electrical conductivity is an isotropic quantity, at this stage. Tensors may be included at a later time.
The conductivity is the reciprocal of the resistivity.
The units are Siemens m-1, where 1 S = 1 A / volt = 1 s^3 A^2 /kg /m^2
Reimplemented in LiquidTransport.
Definition at line 482 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the electric current density in A/m^2.
Calculates the electric current density as a vector, given the gradients of the field variables.
ndim | The number of spatial dimensions (1, 2, or 3). |
grad_T | The temperature gradient (ignored in this model). |
ldx | Leading dimension of the grad_X array. |
grad_X | The gradient of the mole fraction |
ldf | Leading dimension of the grad_V and current vectors. |
grad_V | The electrostatic potential gradient. |
current | The electric current in A/m^2. This is a vector of length ndim |
Reimplemented in LiquidTransport.
Definition at line 500 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
Units for the returned fluxes are kg m-2 s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Definition at line 560 of file TransportBase.h.
References Transport::getSpeciesFluxes().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned velocities are m s-1
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 593 of file TransportBase.h.
References Transport::err().
Referenced by Transport::getSpeciesVdiffES().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential.
Units for the returned velocities are m s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 625 of file TransportBase.h.
References Transport::getSpeciesVdiff().
|
inlinevirtualinherited |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
cfluxes | Output array containing the diffusive molar fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kmol/m^2/s]. |
Reimplemented in MultiTransport, and DustyGasTransport.
Definition at line 650 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
mfluxes | Output array containing the diffusive mass fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kg/m^2/s]. |
Reimplemented in MultiTransport.
Definition at line 671 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Return the Multicomponent diffusion coefficients. Units: [m^2/s].
If the transport manager implements a multicomponent diffusion model, then this method returns the array of multicomponent diffusion coefficients. Otherwise it throws an exception.
ld | The dimension of the inner loop of d (usually equal to m_nsp) |
d | flat vector of diffusion coefficients, fortran ordering. d[ld*j+i] is the D_ij diffusion coefficient (the diffusion coefficient for species i due to species j). |
Reimplemented in DustyGasTransport, and MultiTransport.
Definition at line 721 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
virtualinherited |
Set model parameters for derived classes.
This method may be derived in subclasses to set model-specific parameters. The primary use of this class is to set parameters while in the middle of a calculation without actually having to dynamically cast the base Transport pointer.
type | Specifies the type of parameters to set 0 : Diffusion coefficient 1 : Thermal Conductivity The rest are currently unused. |
k | Species index to set the parameters on |
p | Vector of parameters. The length of the vector varies with the parameterization |
Reimplemented in DustyGasTransport, and SolidTransport.
Definition at line 105 of file TransportBase.cpp.
References Transport::err().
|
inlineinherited |
Sets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
ivb | Species the velocity basis |
Definition at line 777 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineinherited |
Gets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
Definition at line 789 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineprotectedvirtualinherited |
Called by TransportFactory to set parameters.
This is called by classes that use the liquid phase parameter list to initialize themselves.
tr | Reference to the parameter list that will be used to initialize the class |
Reimplemented in AqueousTransport, SimpleTransport, and LiquidTransport.
Definition at line 832 of file TransportBase.h.
References Transport::err().
Referenced by TransportFactory::initLiquidTransport().
|
protectedinherited |
Specifies the ThermPhase object.
thermo | Reference to the ThermoPhase object that the transport object will use |
Definition at line 112 of file TransportBase.cpp.
References Transport::m_nsp, Transport::m_thermo, Phase::nSpecies(), Transport::ready(), and Transport::thermo().
Referenced by TransportFactory::newTransport().
|
protectedinherited |
Enable the transport object for use.
Once finalize() has been called, the transport manager should be ready to compute any supported transport property, and no further modifications to the model parameters should be made.
Definition at line 136 of file TransportBase.cpp.
References Transport::m_ready, and Transport::ready().
|
private |
Polynomial fits to the thermal conductivity of each species.
m_condcoeffs[k] is vector of polynomial coefficients for species k that fits the thermal conductivity
Definition at line 252 of file MixTransport.h.
Referenced by MixTransport::initGas(), MixTransport::operator=(), and MixTransport::updateCond_T().
|
private |
vector of species thermal conductivities (W/m /K)
These are used in wilke's rule to calculate the viscosity of the solution units = W /m /K = kg m /s^3 /K. length = m_kk
Definition at line 260 of file MixTransport.h.
Referenced by MixTransport::initGas(), MixTransport::operator=(), MixTransport::thermalConductivity(), and MixTransport::updateCond_T().
|
private |
Internal storage for the calculated mixture thermal conductivity.
Units = W /m /K
Definition at line 266 of file MixTransport.h.
Referenced by MixTransport::operator=(), and MixTransport::thermalConductivity().
|
private |
Update boolean for the species thermal conductivities.
Definition at line 269 of file MixTransport.h.
Referenced by MixTransport::initGas(), MixTransport::operator=(), MixTransport::thermalConductivity(), MixTransport::update_T(), and MixTransport::updateCond_T().
|
private |
Update boolean for the mixture rule for the mixture thermal conductivity.
Definition at line 272 of file MixTransport.h.
Referenced by MixTransport::initGas(), MixTransport::operator=(), MixTransport::thermalConductivity(), MixTransport::update_C(), MixTransport::update_T(), and MixTransport::updateCond_T().
|
private |
Lennard-Jones well-depth of the species in the current phase.
Not used in this routine -> just a passthrough
length is the number of species in the phase Units are Joules (Note this is not Joules/kmol) (note, no kmol -> this is a per molecule amount)
Definition at line 281 of file MixTransport.h.
Referenced by MixTransport::initGas(), and MixTransport::operator=().
|
private |
hard-sphere diameter for (i,j) collision
Not used in this routine -> just a passthrough
diam(i,j) = 0.5*(tr.sigma[i] + tr.sigma[j]); Units are m (note, no kmol -> this is a per molecule amount)
Length nsp * nsp. This is a symmetric matrix.
Definition at line 292 of file MixTransport.h.
Referenced by MixTransport::initGas(), and MixTransport::operator=().
|
private |
The effective dipole moment for (i,j) collisions.
tr.dipoleMoment has units of Debye's. A Debye is 10-18 cm3/2 erg1/2
Not used in this routine -> just a passthrough
tr.dipole(i,i) = 1.e-25 * SqrtTen * trdat.dipoleMoment; tr.dipole(i,j) = sqrt(tr.dipole(i,i)*tr.dipole(j,j)); Units are in Debye (note, no kmol -> this is a per molecule amount)
Length nsp. We store only the diagonal component here.
Definition at line 306 of file MixTransport.h.
Referenced by MixTransport::initGas(), and MixTransport::operator=().
|
private |
Polarizability of each species in the phase.
Not used in this routine -> just a passthrough
Length = nsp Units = m^3
Definition at line 315 of file MixTransport.h.
Referenced by MixTransport::initGas(), and MixTransport::operator=().
|
private |
Dimensionless rotational heat capacity of the species in the current phase.
Not used in this routine -> just a passthrough
These values are 0, 1 and 1.5 for single-molecule, linear, and nonlinear species respectively length is the number of species in the phase units are dimensionless (Cr / R)
Definition at line 325 of file MixTransport.h.
Referenced by MixTransport::initGas(), and MixTransport::operator=().
|
private |
Rotational relaxation number for the species in the current phase.
Not used in this routine -> just a passthrough
length is the number of species in the phase units are dimensionless
Definition at line 334 of file MixTransport.h.
Referenced by MixTransport::initGas(), and MixTransport::operator=().
|
private |
Debug flag - turns on more printing.
Definition at line 337 of file MixTransport.h.
Referenced by MixTransport::operator=().
|
protectedinherited |
Vector of species mole fractions.
These are processed so that all mole fractions are >= MIN_X. Length = m_kk.
Definition at line 136 of file GasTransport.h.
Referenced by MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MultiTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::solveLMatrixEquation(), MixTransport::thermalConductivity(), MixTransport::update_C(), MultiTransport::update_C(), and GasTransport::viscosity().
|
protectedinherited |
Internal storage for the viscosity of the mixture (kg /m /s)
Definition at line 139 of file GasTransport.h.
Referenced by GasTransport::viscosity().
|
protectedinherited |
Update boolean for mixture rule for the mixture viscosity.
Definition at line 142 of file GasTransport.h.
Referenced by GasTransport::initGas(), MixTransport::update_C(), and GasTransport::viscosity().
|
protectedinherited |
Update boolean for the weighting factors for the mixture viscosity.
Definition at line 145 of file GasTransport.h.
Referenced by GasTransport::initGas(), GasTransport::updateViscosity_T(), and GasTransport::viscosity().
|
protectedinherited |
Update boolean for the species viscosities.
Definition at line 148 of file GasTransport.h.
Referenced by GasTransport::initGas(), GasTransport::updateSpeciesViscosities(), and GasTransport::updateViscosity_T().
|
protectedinherited |
Update boolean for the binary diffusivities at unit pressure.
Definition at line 151 of file GasTransport.h.
Referenced by GasTransport::getBinaryDiffCoeffs(), GasTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), GasTransport::initGas(), MixTransport::update_T(), and GasTransport::updateDiff_T().
|
protectedinherited |
Type of the polynomial fits to temperature.
CK_Mode means Chemkin mode. Currently CA_Mode is used which are different types of fits to temperature.
Definition at line 155 of file GasTransport.h.
Referenced by GasTransport::initGas(), MultiTransport::model(), MixTransport::updateCond_T(), GasTransport::updateDiff_T(), GasTransport::updateSpeciesViscosities(), and MultiTransport::updateThermal_T().
|
protectedinherited |
m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp
Definition at line 158 of file GasTransport.h.
Referenced by GasTransport::initGas(), GasTransport::updateViscosity_T(), and GasTransport::viscosity().
|
protectedinherited |
work space length = m_kk
Definition at line 161 of file GasTransport.h.
Referenced by MultiTransport::getMassFluxes(), MixTransport::getMobilities(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), GasTransport::initGas(), and GasTransport::viscosity().
|
protectedinherited |
vector of species viscosities (kg /m /s).
These are used in Wilke's rule to calculate the viscosity of the solution. length = m_kk.
Definition at line 165 of file GasTransport.h.
Referenced by GasTransport::getSpeciesViscosities(), GasTransport::initGas(), GasTransport::updateSpeciesViscosities(), MultiTransport::updateThermal_T(), GasTransport::updateViscosity_T(), and GasTransport::viscosity().
|
protectedinherited |
Polynomial fits to the viscosity of each species.
m_visccoeffs[k] is the vector of polynomial coefficients for species k that fits the viscosity as a function of temperature.
Definition at line 170 of file GasTransport.h.
Referenced by GasTransport::initGas(), and GasTransport::updateSpeciesViscosities().
|
protectedinherited |
Local copy of the species molecular weights.
Definition at line 173 of file GasTransport.h.
Referenced by MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), GasTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), MultiTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::updateThermal_T(), and GasTransport::updateViscosity_T().
|
protectedinherited |
Holds square roots of molecular weight ratios.
m_wratjk(j,k) = sqrt(mw[j]/mw[k]) j < k m_wratjk(k,j) = sqrt(sqrt(mw[j]/mw[k])) j < k
Definition at line 180 of file GasTransport.h.
Referenced by GasTransport::initGas(), and GasTransport::updateViscosity_T().
|
protectedinherited |
Holds square roots of molecular weight ratios.
m_wratjk1(j,k) = sqrt(1.0 + mw[k]/mw[j]) j < k
Definition at line 186 of file GasTransport.h.
Referenced by GasTransport::initGas(), and GasTransport::updateViscosity_T().
|
protectedinherited |
vector of square root of species viscosities sqrt(kg /m /s).
These are used in Wilke's rule to calculate the viscosity of the solution. length = m_kk.
Definition at line 191 of file GasTransport.h.
Referenced by GasTransport::initGas(), GasTransport::updateSpeciesViscosities(), and GasTransport::updateViscosity_T().
|
protectedinherited |
Powers of the ln temperature, up to fourth order.
Definition at line 194 of file GasTransport.h.
Referenced by MixTransport::updateCond_T(), GasTransport::updateDiff_T(), and GasTransport::updateSpeciesViscosities().
|
protectedinherited |
Current value of the temperature at which the properties in this object are calculated (Kelvin).
Definition at line 198 of file GasTransport.h.
Referenced by MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::getMassFluxes(), MixTransport::getMobilities(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::update_T(), MultiTransport::update_T(), GasTransport::updateDiff_T(), and MultiTransport::updateThermal_T().
|
protectedinherited |
Current value of Boltzman's constant times the temperature (Joules)
Definition at line 201 of file GasTransport.h.
Referenced by MultiTransport::updateThermal_T().
|
protectedinherited |
current value of Boltzman's constant times the temperature.
(Joules) to 1/2 power
Definition at line 205 of file GasTransport.h.
|
protectedinherited |
current value of temperature to 1/2 power
Definition at line 208 of file GasTransport.h.
Referenced by MixTransport::updateCond_T(), GasTransport::updateDiff_T(), and MultiTransport::updateThermal_T().
|
protectedinherited |
Current value of the log of the temperature.
Definition at line 211 of file GasTransport.h.
Referenced by MultiTransport::updateThermal_T().
|
protectedinherited |
Current value of temperature to 1/4 power.
Definition at line 214 of file GasTransport.h.
Referenced by GasTransport::updateSpeciesViscosities().
|
protectedinherited |
Current value of temperature to the 3/2 power.
Definition at line 217 of file GasTransport.h.
|
protectedinherited |
Polynomial fits to the binary diffusivity of each species.
m_diffcoeff[ic] is vector of polynomial coefficients for species i species j that fits the binary diffusion coefficient. The relationship between i j and ic is determined from the following algorithm:
int ic = 0; for (i = 0; i < m_nsp; i++) { for (j = i; j < m_nsp; j++) { ic++; } }
Definition at line 232 of file GasTransport.h.
Referenced by GasTransport::initGas(), and GasTransport::updateDiff_T().
|
protectedinherited |
Matrix of binary diffusion coefficients at the reference pressure and the current temperature Size is nsp x nsp.
Definition at line 236 of file GasTransport.h.
Referenced by MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), GasTransport::getBinaryDiffCoeffs(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MultiTransport::getSpeciesFluxes(), GasTransport::initGas(), GasTransport::updateDiff_T(), and MultiTransport::updateThermal_T().
|
protectedinherited |
pointer to the object representing the phase
Definition at line 857 of file TransportBase.h.
Referenced by SolidTransport::electricalConductivity(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getLiquidTransportData(), MultiTransport::getMassFluxes(), SolidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), SolidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), WaterTransport::initTP(), Transport::operator=(), MixTransport::pressure_ig(), SolidTransport::setParameters(), Transport::setThermo(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), Transport::thermo(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().
|
protectedinherited |
true if finalize has been called
Definition at line 860 of file TransportBase.h.
Referenced by Transport::finalize(), Transport::operator=(), Transport::ready(), and Transport::Transport().
|
protectedinherited |
Number of species.
Definition at line 863 of file TransportBase.h.
Referenced by Transport::checkSpeciesArraySize(), Transport::checkSpeciesIndex(), DustyGasTransport::eval_H_matrix(), MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::eval_L1000(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), LiquidTransport::getBinaryDiffCoeffs(), SimpleTransport::getBinaryDiffCoeffs(), LiquidTransport::getElectricConduct(), LiquidTransport::getElectricCurrent(), AqueousTransport::getFluidMobilities(), SimpleTransport::getFluidMobilities(), LiquidTransport::getFluidMobilities(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), LiquidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MixTransport::getMobilities(), AqueousTransport::getMobilities(), SimpleTransport::getMobilities(), LiquidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), DustyGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesMobilityRatio(), LiquidTransport::getSpeciesSelfDiffusion(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), LiquidTransport::getSpeciesVdiffExt(), MultiTransport::getThermalDiffCoeffs(), MixTransport::getThermalDiffCoeffs(), AqueousTransport::getThermalDiffCoeffs(), SimpleTransport::getThermalDiffCoeffs(), LiquidTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::initGas(), MixTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), LiquidTransport::mobilityRatio(), Transport::operator=(), LiquidTransport::selfDiffusion(), AqueousTransport::set_Grad_X(), SimpleTransport::set_Grad_X(), LiquidTransport::set_Grad_X(), Transport::setThermo(), MultiTransport::solveLMatrixEquation(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), MultiTransport::thermalConductivity(), MixTransport::thermalConductivity(), AqueousTransport::thermalConductivity(), SimpleTransport::thermalConductivity(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), DustyGasTransport::updateBinaryDiffCoeffs(), MixTransport::updateCond_T(), SimpleTransport::updateCond_T(), AqueousTransport::updateCond_T(), LiquidTransport::updateCond_T(), GasTransport::updateDiff_T(), SimpleTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), LiquidTransport::updateHydrodynamicRadius_T(), LiquidTransport::updateIonConductivity_T(), DustyGasTransport::updateKnudsenDiffCoeffs(), LiquidTransport::updateMobilityRatio_T(), LiquidTransport::updateSelfDiffusion_T(), GasTransport::updateSpeciesViscosities(), AqueousTransport::updateSpeciesViscosities(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), GasTransport::updateViscosity_T(), SimpleTransport::updateViscosity_T(), AqueousTransport::updateViscosity_T(), LiquidTransport::updateViscosity_T(), GasTransport::viscosity(), AqueousTransport::viscosity(), SimpleTransport::viscosity(), and LiquidTransport::~LiquidTransport().
|
protectedinherited |
Number of dimensions used in flux expressions.
Definition at line 866 of file TransportBase.h.
Referenced by Transport::nDim(), Transport::operator=(), Transport::setNDim(), and Transport::Transport().
|
protectedinherited |
Velocity basis from which diffusion velocities are computed.
Defaults to the mass averaged basis = -2
Definition at line 870 of file TransportBase.h.
Referenced by SimpleTransport::getSpeciesFluxesExt(), Transport::getVelocityBasis(), LiquidTransport::initLiquid(), Transport::operator=(), Transport::setVelocityBasis(), LiquidTransport::stefan_maxwell_solve(), and Transport::Transport().