Cantera
2.0
|
Class AqueousTransport implements mixture-averaged transport properties for brine phases. More...
#include <AqueousTransport.h>
Public Member Functions | |
AqueousTransport () | |
default constructor | |
virtual | ~AqueousTransport () |
virtual destructor | |
virtual int | model () const |
Return the model id for this transport parameterization. | |
virtual doublereal | viscosity () |
Returns the viscosity of the solution. | |
virtual void | getSpeciesViscosities (doublereal *const visc) |
Returns the pure species viscosities. | |
virtual void | getThermalDiffCoeffs (doublereal *const dt) |
Return a vector of Thermal diffusion coefficients [kg/m/sec]. | |
virtual doublereal | thermalConductivity () |
Return the thermal conductivity of the solution. | |
virtual void | getBinaryDiffCoeffs (const size_t ld, doublereal *const d) |
Returns the binary diffusion coefficients. | |
virtual void | getMixDiffCoeffs (doublereal *const d) |
Get the Mixture diffusion coefficients. | |
virtual void | getMobilities (doublereal *const mobil_e) |
Get the Electrical mobilities (m^2/V/s). | |
virtual void | getFluidMobilities (doublereal *const mobil_f) |
Get the fluid mobilities (s kmol/kg). | |
virtual void | set_Grad_V (const doublereal *const grad_V) |
Specify the value of the gradient of the voltage. | |
virtual void | set_Grad_T (const doublereal *const grad_T) |
Specify the value of the gradient of the temperature. | |
virtual void | set_Grad_X (const doublereal *const grad_X) |
Specify the value of the gradient of the MoleFractions. | |
virtual void | update_T () |
Handles the effects of changes in the Temperature, internally within the object. | |
virtual void | update_C () |
Handles the effects of changes in the mixture concentration. | |
virtual void | getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes) |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesFluxesExt (size_t ldf, doublereal *const fluxes) |
Return the species diffusive mass fluxes wrt to the specified averaged velocity,. | |
virtual bool | initLiquid (LiquidTransportParams &tr) |
Initialize the transport object. | |
class LiquidTransportData | getLiquidTransportData (int k) |
Return a structure containing all of the pertinent parameters about a species that was used to construct the Transport properties in this object. | |
void | stefan_maxwell_solve () |
Solve the stefan_maxell equations for the diffusive fluxes. | |
virtual Transport * | duplMyselfAsTransport () const |
Duplication routine for objects which inherit from Transport. | |
thermo_t & | thermo () |
Phase object. | |
bool | ready () |
Returns true if the transport manager is ready for use. | |
void | setNDim (const int ndim) |
Set the number of dimensions to be expected in flux expressions. | |
size_t | nDim () const |
Return the number of dimensions in flux expressions. | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies() | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). | |
virtual doublereal | getElectricConduct () |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) | |
virtual void | getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current) |
Compute the electric current density in A/m^2. | |
virtual void | getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. | |
virtual void | getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. | |
virtual void | getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. | |
virtual void | getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes) |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes) |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. | |
virtual void | getMultiDiffCoeffs (const size_t ld, doublereal *const d) |
Return the Multicomponent diffusion coefficients. Units: [m^2/s]. | |
virtual void | getMixDiffCoeffsMole (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | getMixDiffCoeffsMass (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. | |
virtual void | setParameters (const int type, const int k, const doublereal *const p) |
Set model parameters for derived classes. | |
void | setVelocityBasis (VelocityBasis ivb) |
Sets the velocity basis. | |
VelocityBasis | getVelocityBasis () const |
Gets the velocity basis. | |
Transport Properties | |
virtual doublereal | bulkViscosity () |
The bulk viscosity in Pa-s. | |
virtual doublereal | ionConductivity () |
The ionic conductivity in 1/ohm/m. | |
virtual void | getSpeciesIonConductivity (doublereal *const ionCond) |
Returns the pure species ionic conductivity. | |
virtual void | mobilityRatio (double *mobRat) |
Returns the pointer to the mobility ratios of the species in the phase. | |
virtual void | getSpeciesMobilityRatio (double **mobRat) |
Returns the pure species limit of the mobility ratios. | |
virtual void | selfDiffusion (doublereal *const selfDiff) |
Returns the self diffusion coefficients of the species in the phase. | |
virtual void | getSpeciesSelfDiffusion (double **selfDiff) |
Returns the pure species self diffusion in solution of each species. | |
virtual doublereal | electricalConductivity () |
The electrical conductivity (Siemens/m). | |
Protected Member Functions | |
Transport manager construction | |
These methods are used internally during construction. | |
virtual bool | initGas (GasTransportParams &tr) |
Called by TransportFactory to set parameters. | |
void | setThermo (thermo_t &thermo) |
Specifies the ThermPhase object. | |
void | finalize () |
Enable the transport object for use. | |
Protected Attributes | |
thermo_t * | m_thermo |
pointer to the object representing the phase | |
bool | m_ready |
true if finalize has been called | |
size_t | m_nsp |
Number of species. | |
int | m_velocityBasis |
Velocity basis from which diffusion velocities are computed. | |
Private Member Functions | |
void | updateViscosity_T () |
Update the temperature-dependent viscosity terms. | |
void | updateCond_T () |
Update the temperature-dependent parts of the mixture-averaged thermal conductivity. | |
void | updateSpeciesViscosities () |
Update the species viscosities. | |
void | updateDiff_T () |
Update the binary diffusion coefficients wrt T. | |
Private Attributes | |
doublereal | m_tmin |
Minimum temperature applicable to the transport property eval. | |
doublereal | m_tmax |
Maximum temperature applicable to the transport property evaluator. | |
vector_fp | m_mw |
Local Copy of the molecular weights of the species. | |
std::vector< vector_fp > | m_visccoeffs |
Polynomial coefficients of the viscosity. | |
std::vector< vector_fp > | m_condcoeffs |
Polynomial coefficients of the conductivities. | |
std::vector< vector_fp > | m_diffcoeffs |
Polynomial coefficients of the binary diffusion coefficients. | |
vector_fp | m_Grad_X |
Internal value of the gradient of the mole fraction vector. | |
vector_fp | m_Grad_T |
Internal value of the gradient of the Temperature vector. | |
vector_fp | m_Grad_V |
Internal value of the gradient of the Electric Voltage. | |
vector_fp | m_Grad_mu |
Gradient of the electrochemical potential. | |
DenseMatrix | m_bdiff |
Array of Binary Diffusivities. | |
vector_fp | m_visc |
Species viscosities. | |
vector_fp | m_sqvisc |
Sqrt of the species viscosities. | |
vector_fp | m_cond |
Internal value of the species individual thermal conductivities. | |
vector_fp | m_polytempvec |
Polynomials of the log of the temperature. | |
int | m_iStateMF |
State of the mole fraction vector. | |
vector_fp | m_molefracs |
Local copy of the mole fractions of the species in the phase. | |
vector_fp | m_concentrations |
Local copy of the concentrations of the species in the phase. | |
vector_fp | m_chargeSpecies |
Local copy of the charge of each species. | |
DenseMatrix | m_DiffCoeff_StefMax |
Stefan-Maxwell Diffusion Coefficients at T, P and C. | |
DenseMatrix | m_phi |
viscosity weighting functions | |
DenseMatrix | m_wratjk |
Matrix of the ratios of the species molecular weights. | |
DenseMatrix | m_wratkj1 |
Matrix of the ratios of the species molecular weights. | |
Array2D | m_B |
RHS to the stefan-maxwell equation. | |
DenseMatrix | m_A |
Matrix for the stefan maxwell equation. | |
vector_fp | m_eps |
Internal storage for the species LJ well depth. | |
vector_fp | m_alpha |
Internal storage for species polarizability. | |
doublereal | m_temp |
Current Temperature -> locally stored. | |
doublereal | m_logt |
Current log(T) | |
doublereal | m_kbt |
Current value of kT. | |
doublereal | m_sqrt_t |
Current Temperature **0.5. | |
doublereal | m_t14 |
Current Temperature **0.25. | |
doublereal | m_t32 |
Current Temperature **1.5. | |
doublereal | m_sqrt_kbt |
Current temperature function. | |
doublereal | m_press |
Current value of the pressure. | |
Array2D | m_flux |
Solution of the flux system. | |
doublereal | m_lambda |
saved value of the mixture thermal conductivity | |
doublereal | m_viscmix |
Saved value of the mixture viscosity. | |
vector_fp | m_spwork |
work space of size m_nsp | |
bool | m_viscmix_ok |
Boolean indicating that mixture viscosity is current. | |
bool | m_viscwt_ok |
Boolean indicating that weight factors wrt viscosity is current. | |
bool | m_spvisc_ok |
Flag to indicate that the pure species viscosities are current wrt the temperature. | |
bool | m_diffmix_ok |
Boolean indicating that mixture diffusion coeffs are current. | |
bool | m_bindiff_ok |
Boolean indicating that binary diffusion coeffs are current. | |
bool | m_spcond_ok |
Flag to indicate that the pure species conductivities are current wrt the temperature. | |
bool | m_condmix_ok |
Boolean indicating that mixture conductivity is current. | |
int | m_mode |
Mode for fitting the species viscosities. | |
DenseMatrix | m_diam |
Internal storage for the diameter - diameter species interactions. | |
bool | m_debug |
Debugging flags. | |
size_t | m_nDim |
Number of dimensions. | |
Friends | |
class | TransportFactory |
Class AqueousTransport implements mixture-averaged transport properties for brine phases.
The model is based on that described by Newman, Electrochemical Systems
The velocity of species i may be described by the following equation p. 297 (12.1)
\[ c_i \nabla \mu_i = R T \sum_j \frac{c_i c_j}{c_T D_{ij}} (\mathbf{v}_j - \mathbf{v}_i) \]
This as written is degenerate by 1 dof.
To fix this we must add in the definition of the mass averaged velocity of the solution. We will call the simple bold-faced \(\mathbf{v} \) symbol the mass-averaged velocity. Then, the relation between \(\mathbf{v}\) and the individual species velocities is \(\mathbf{v}_i\)
\[ \rho_i \mathbf{v}_i = \rho_i \mathbf{v} + \mathbf{j}_i \]
where \(\mathbf{j}_i\) are the diffusional fluxes of species i with respect to the mass averaged velocity and
\[ \sum_i \mathbf{j}_i = 0 \]
and
\[ \sum_i \rho_i \mathbf{v}_i = \rho \mathbf{v} \]
Using these definitions, we can write
\[ \mathbf{v}_i = \mathbf{v} + \frac{\mathbf{j}_i}{\rho_i} \]
\[ c_i \nabla \mu_i = R T \sum_j \frac{c_i c_j}{c_T D_{ij}} (\frac{\mathbf{j}_j}{\rho_j} - \frac{\mathbf{j}_i}{\rho_i}) = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]
The equations that we actually solve are
\[ c_i \nabla \mu_i = = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]
and we replace the 0th equation with the following:
\[ \sum_i \mathbf{j}_i = 0 \]
When there are charged species, we replace the rhs with the gradient of the electrochemical potential to obtain the modified equation
\[ c_i \nabla \mu_i + c_i F z_i \nabla \Phi = R T \sum_j \frac{1}{D_{ij}} (\frac{x_i \mathbf{j}_j}{M_j} - \frac{x_j \mathbf{j}_i}{M_i}) \]
With this formulation we may solve for the diffusion velocities, without having to worry about what the mass averaged velocity is.
The viscosity calculation may be broken down into two parts. In the first part, the viscosity of the pure species are calculated In the second part, a mixing rule is applied, based on the Wilkes correlation, to yield the mixture viscosity.
Definition at line 122 of file AqueousTransport.h.
AqueousTransport | ( | ) |
default constructor
Definition at line 34 of file AqueousTransport.cpp.
|
inlinevirtual |
virtual destructor
Definition at line 131 of file AqueousTransport.h.
|
inlinevirtual |
Return the model id for this transport parameterization.
Reimplemented from Transport.
Definition at line 134 of file AqueousTransport.h.
|
virtual |
Returns the viscosity of the solution.
The viscosity is computed using the Wilke mixture rule.
\[ \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}. \]
Here \( \mu_k \) is the viscosity of pure species k, and
\[ \Phi_{k,j} = \frac{\left[1 + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2} {\sqrt{8}\sqrt{1 + M_k/M_j}} \]
Controlling update boolean m_viscmix_ok
Reimplemented from Transport.
Definition at line 143 of file AqueousTransport.cpp.
References DATA_PTR, AqueousTransport::m_molefracs, Transport::m_nsp, AqueousTransport::m_phi, AqueousTransport::m_spwork, AqueousTransport::m_visc, AqueousTransport::m_viscmix, AqueousTransport::m_viscmix_ok, AqueousTransport::m_viscwt_ok, Cantera::multiply(), AqueousTransport::update_C(), AqueousTransport::update_T(), and AqueousTransport::updateViscosity_T().
|
virtual |
Returns the pure species viscosities.
Controlling update boolean = m_viscwt_ok
visc | Vector of species viscosities |
Reimplemented from Transport.
Definition at line 174 of file AqueousTransport.cpp.
References AqueousTransport::m_visc, and AqueousTransport::updateViscosity_T().
|
virtual |
Return a vector of Thermal diffusion coefficients [kg/m/sec].
The thermal diffusion coefficient \( D^T_k \) is defined so that the diffusive mass flux of species k induced by the local temperature gradient is given by the following formula
\[ M_k J_k = -D^T_k \nabla \ln T. \]
The thermal diffusion coefficient can be either positive or negative.
In this method we set it to zero.
dt | On return, dt will contain the species thermal diffusion coefficients. Dimension dt at least as large as the number of species. Units are kg/m/s. |
Reimplemented from Transport.
Definition at line 298 of file AqueousTransport.cpp.
References Transport::m_nsp.
|
virtual |
Return the thermal conductivity of the solution.
The thermal conductivity is computed from the following mixture rule:
\[ \lambda = 0.5 \left( \sum_k X_k \lambda_k + \frac{1}{\sum_k X_k/\lambda_k}\right) \]
Controlling update boolean = m_condmix_ok
Reimplemented from Transport.
Definition at line 261 of file AqueousTransport.cpp.
References AqueousTransport::m_cond, AqueousTransport::m_condmix_ok, AqueousTransport::m_lambda, AqueousTransport::m_molefracs, Transport::m_nsp, AqueousTransport::m_spcond_ok, AqueousTransport::update_C(), AqueousTransport::update_T(), and AqueousTransport::updateCond_T().
|
virtual |
Returns the binary diffusion coefficients.
ld | |
d |
Reimplemented from Transport.
Definition at line 180 of file AqueousTransport.cpp.
References AqueousTransport::m_bdiff, AqueousTransport::m_bindiff_ok, Transport::m_nsp, Transport::m_thermo, ThermoPhase::pressure(), AqueousTransport::update_T(), and AqueousTransport::updateDiff_T().
|
virtual |
Get the Mixture diffusion coefficients.
Mixture-averaged diffusion coefficients [m^2/s].
d | vector of mixture diffusion coefficients units = m2 s-1. length = number of species |
For the single species case or the pure fluid case the routine returns the self-diffusion coefficient. This is need to avoid a Nan result in the formula below.
Reimplemented from Transport.
Definition at line 397 of file AqueousTransport.cpp.
References AqueousTransport::m_bdiff, AqueousTransport::m_bindiff_ok, AqueousTransport::m_molefracs, AqueousTransport::m_mw, Transport::m_nsp, AqueousTransport::m_press, Transport::m_thermo, Phase::meanMolecularWeight(), AqueousTransport::update_C(), AqueousTransport::update_T(), and AqueousTransport::updateDiff_T().
Referenced by AqueousTransport::getFluidMobilities(), AqueousTransport::getMobilities(), and AqueousTransport::getSpeciesFluxesExt().
|
virtual |
Get the Electrical mobilities (m^2/V/s).
This function returns the electrical mobilities. In some formulations this is equal to the normal mobility multiplied by faraday's constant.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^e_k = \frac{F D_k}{R T} \]
mobil_e | Returns the mobilities of the species in array mobil_e . The array must be dimensioned at least as large as the number of species. |
Reimplemented from Transport.
Definition at line 214 of file AqueousTransport.cpp.
References Cantera::Boltzmann, DATA_PTR, AqueousTransport::getMixDiffCoeffs(), Transport::m_nsp, AqueousTransport::m_spwork, and AqueousTransport::m_temp.
|
virtual |
Get the fluid mobilities (s kmol/kg).
This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^f_k = \frac{D_k}{R T} \]
mobil_f | Returns the mobilities of the species in array mobil_f . The array must be dimensioned at least as large as the number of species. |
Reimplemented from Transport.
Definition at line 223 of file AqueousTransport.cpp.
References DATA_PTR, Cantera::GasConstant, AqueousTransport::getMixDiffCoeffs(), Transport::m_nsp, AqueousTransport::m_spwork, and AqueousTransport::m_temp.
|
virtual |
Specify the value of the gradient of the voltage.
grad_V | Gradient of the voltage (length num dimensions); |
Definition at line 232 of file AqueousTransport.cpp.
References AqueousTransport::m_Grad_V, and AqueousTransport::m_nDim.
|
virtual |
Specify the value of the gradient of the temperature.
grad_T | Gradient of the temperature (length num dimensions); |
Definition at line 239 of file AqueousTransport.cpp.
References AqueousTransport::m_Grad_T, and AqueousTransport::m_nDim.
Referenced by AqueousTransport::getSpeciesFluxes().
|
virtual |
Specify the value of the gradient of the MoleFractions.
grad_X | Gradient of the mole fractions(length nsp * num dimensions); |
Definition at line 246 of file AqueousTransport.cpp.
References AqueousTransport::m_Grad_X, AqueousTransport::m_nDim, and Transport::m_nsp.
Referenced by AqueousTransport::getSpeciesFluxes().
|
virtual |
Handles the effects of changes in the Temperature, internally within the object.
This is called whenever a transport property is requested. The first task is to check whether the temperature has changed since the last call to update_T(). If it hasn't then an immediate return is carried out.
Definition at line 446 of file AqueousTransport.cpp.
References Cantera::Boltzmann, Cantera::fp2str(), AqueousTransport::m_bindiff_ok, AqueousTransport::m_condmix_ok, AqueousTransport::m_diffmix_ok, AqueousTransport::m_iStateMF, AqueousTransport::m_kbt, AqueousTransport::m_logt, AqueousTransport::m_polytempvec, AqueousTransport::m_spcond_ok, AqueousTransport::m_spvisc_ok, AqueousTransport::m_sqrt_kbt, AqueousTransport::m_sqrt_t, AqueousTransport::m_t14, AqueousTransport::m_t32, AqueousTransport::m_temp, Transport::m_thermo, AqueousTransport::m_viscmix_ok, AqueousTransport::m_viscwt_ok, and Phase::temperature().
Referenced by AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), AqueousTransport::getSpeciesFluxesExt(), AqueousTransport::thermalConductivity(), and AqueousTransport::viscosity().
|
virtual |
Handles the effects of changes in the mixture concentration.
This is called the first time any transport property is requested from Mixture after the concentrations have changed.
This is called the first time any transport property is requested from Mixture after the concentrations have changed.
Definition at line 493 of file AqueousTransport.cpp.
References DATA_PTR, Phase::getMoleFractions(), AqueousTransport::m_condmix_ok, AqueousTransport::m_diffmix_ok, AqueousTransport::m_molefracs, Transport::m_nsp, AqueousTransport::m_press, Transport::m_thermo, AqueousTransport::m_viscmix_ok, ckr::max(), MIN_X, and ThermoPhase::pressure().
Referenced by AqueousTransport::getMixDiffCoeffs(), AqueousTransport::getSpeciesFluxesExt(), AqueousTransport::thermalConductivity(), and AqueousTransport::viscosity().
|
virtual |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned fluxes are kg m-2 s-1.
Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Reimplemented from Transport.
Definition at line 327 of file AqueousTransport.cpp.
References AqueousTransport::getSpeciesFluxesExt(), AqueousTransport::set_Grad_T(), and AqueousTransport::set_Grad_X().
|
virtual |
Return the species diffusive mass fluxes wrt to the specified averaged velocity,.
This method acts similarly to getSpeciesFluxesES() but requires all gradients to be preset using methods set_Grad_X(), set_Grad_V(), set_Grad_T(). See the documentation of getSpeciesFluxesES() for details.
units = kg/m2/s
Internally, gradients in the in mole fraction, temperature and electrostatic potential contribute to the diffusive flux
The diffusive mass flux of species k is computed from the following formula
\[ j_k = - \rho M_k D_k \nabla X_k - Y_k V_c \]
where V_c is the correction velocity
\[ V_c = - \sum_j {\rho M_j D_j \nabla X_j} \]
ldf | Stride of the fluxes array. Must be equal to or greater than the number of species. |
fluxes | Output of the diffusive fluxes. Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Definition at line 363 of file AqueousTransport.cpp.
References DATA_PTR, AqueousTransport::getMixDiffCoeffs(), AqueousTransport::m_Grad_X, AqueousTransport::m_nDim, Transport::m_nsp, AqueousTransport::m_spwork, Transport::m_thermo, Phase::massFractions(), Phase::molarDensity(), Phase::molecularWeights(), AqueousTransport::update_C(), and AqueousTransport::update_T().
Referenced by AqueousTransport::getSpeciesFluxes().
|
virtual |
Initialize the transport object.
Here we change all of the internal dimensions to be sufficient. We get the object ready to do property evaluations.
tr | Transport parameters for all of the species in the phase. |
Reimplemented from Transport.
Definition at line 65 of file AqueousTransport.cpp.
References AqueousTransport::m_bdiff, AqueousTransport::m_cond, AqueousTransport::m_condmix_ok, AqueousTransport::m_diffmix_ok, AqueousTransport::m_Grad_mu, AqueousTransport::m_Grad_T, AqueousTransport::m_Grad_V, AqueousTransport::m_Grad_X, AqueousTransport::m_mode, AqueousTransport::m_molefracs, AqueousTransport::m_mw, AqueousTransport::m_nDim, Transport::m_nsp, AqueousTransport::m_phi, AqueousTransport::m_polytempvec, AqueousTransport::m_spcond_ok, AqueousTransport::m_spvisc_ok, AqueousTransport::m_spwork, AqueousTransport::m_sqvisc, Transport::m_thermo, AqueousTransport::m_tmax, AqueousTransport::m_tmin, AqueousTransport::m_visc, AqueousTransport::m_viscmix_ok, AqueousTransport::m_viscwt_ok, AqueousTransport::m_wratjk, AqueousTransport::m_wratkj1, ThermoPhase::maxTemp(), ThermoPhase::minTemp(), TransportParams::mode_, Phase::molecularWeights(), Phase::nSpecies(), DenseMatrix::resize(), and TransportParams::thermo.
LiquidTransportData getLiquidTransportData | ( | int | k | ) |
Return a structure containing all of the pertinent parameters about a species that was used to construct the Transport properties in this object.
k | Species number to obtain the properties about. |
Definition at line 632 of file AqueousTransport.cpp.
References Transport::m_thermo, LiquidTransportData::speciesName, and Phase::speciesName().
void stefan_maxwell_solve | ( | ) |
Solve the stefan_maxell equations for the diffusive fluxes.
Definition at line 646 of file AqueousTransport.cpp.
References DATA_PTR, Cantera::GasConstant, Phase::getMoleFractions(), AqueousTransport::m_A, AqueousTransport::m_B, AqueousTransport::m_chargeSpecies, AqueousTransport::m_concentrations, AqueousTransport::m_DiffCoeff_StefMax, AqueousTransport::m_flux, AqueousTransport::m_Grad_mu, AqueousTransport::m_Grad_V, AqueousTransport::m_Grad_X, AqueousTransport::m_molefracs, Transport::m_nsp, Transport::m_thermo, Phase::molecularWeights(), Array2D::ptrColumn(), Array2D::resize(), Cantera::solve(), and Phase::temperature().
|
private |
Update the temperature-dependent viscosity terms.
Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule.
The flag m_visc_ok is set to true.
Definition at line 603 of file AqueousTransport.cpp.
References AqueousTransport::m_mw, Transport::m_nsp, AqueousTransport::m_phi, AqueousTransport::m_spvisc_ok, AqueousTransport::m_sqvisc, AqueousTransport::m_visc, AqueousTransport::m_viscwt_ok, AqueousTransport::m_wratjk, AqueousTransport::m_wratkj1, Cantera::SqrtEight, and AqueousTransport::updateSpeciesViscosities().
Referenced by AqueousTransport::getSpeciesViscosities(), and AqueousTransport::viscosity().
|
private |
Update the temperature-dependent parts of the mixture-averaged thermal conductivity.
Definition at line 530 of file AqueousTransport.cpp.
References Cantera::dot4(), Cantera::dot5(), AqueousTransport::m_cond, AqueousTransport::m_condcoeffs, AqueousTransport::m_condmix_ok, AqueousTransport::m_mode, Transport::m_nsp, AqueousTransport::m_polytempvec, AqueousTransport::m_spcond_ok, and AqueousTransport::m_sqrt_t.
Referenced by AqueousTransport::thermalConductivity().
|
private |
Update the species viscosities.
Internal routine is run whenever the update_boolean m_spvisc_ok is false. This routine will calculate internal values for the species viscosities.
Definition at line 580 of file AqueousTransport.cpp.
References Cantera::dot4(), Cantera::dot5(), AqueousTransport::m_mode, Transport::m_nsp, AqueousTransport::m_polytempvec, AqueousTransport::m_spvisc_ok, AqueousTransport::m_sqvisc, AqueousTransport::m_t14, AqueousTransport::m_visc, and AqueousTransport::m_visccoeffs.
Referenced by AqueousTransport::updateViscosity_T().
|
private |
Update the binary diffusion coefficients wrt T.
These are evaluated from the polynomial fits at unit pressure (1 Pa).
Definition at line 549 of file AqueousTransport.cpp.
References Cantera::dot4(), Cantera::dot5(), AqueousTransport::m_bdiff, AqueousTransport::m_bindiff_ok, AqueousTransport::m_diffcoeffs, AqueousTransport::m_diffmix_ok, AqueousTransport::m_mode, Transport::m_nsp, AqueousTransport::m_polytempvec, AqueousTransport::m_sqrt_t, and AqueousTransport::m_temp.
Referenced by AqueousTransport::getBinaryDiffCoeffs(), and AqueousTransport::getMixDiffCoeffs().
|
virtualinherited |
Duplication routine for objects which inherit from Transport.
This virtual routine can be used to duplicate Transport objects inherited from Transport even if the application only has a pointer to Transport to work with.
These routines are basically wrappers around the derived copy constructor.
Reimplemented in SimpleTransport, LiquidTransport, DustyGasTransport, MixTransport, WaterTransport, and SolidTransport.
Definition at line 64 of file TransportBase.cpp.
References Transport::Transport().
|
inlineinherited |
Phase object.
Every transport manager is designed to compute properties for a specific phase of a mixture, which might be a liquid solution, a gas mixture, a surface, etc. This method returns a reference to the object representing the phase itself.
Definition at line 239 of file TransportBase.h.
References Transport::m_thermo.
Referenced by Transport::setThermo().
|
inherited |
Returns true if the transport manager is ready for use.
Definition at line 75 of file TransportBase.cpp.
References Transport::m_ready.
Referenced by Transport::finalize(), and Transport::setThermo().
|
inherited |
Set the number of dimensions to be expected in flux expressions.
Internal memory will be set with this value.
ndim | Number of dimensions in flux expressions |
Definition at line 83 of file TransportBase.cpp.
References Transport::m_nDim.
|
inlineinherited |
Return the number of dimensions in flux expressions.
Definition at line 261 of file TransportBase.h.
References Transport::m_nDim.
|
inherited |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()
Definition at line 88 of file TransportBase.cpp.
References Transport::m_nsp.
|
inherited |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies().
Used before calls which take an array pointer.
Definition at line 95 of file TransportBase.cpp.
References Transport::m_nsp.
|
inlinevirtualinherited |
The bulk viscosity in Pa-s.
The bulk viscosity is only non-zero in rare cases. Most transport managers either overload this method to return zero, or do not implement it, in which case an exception is thrown if called.
Reimplemented in WaterTransport, and FtnTransport.
Definition at line 303 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The ionic conductivity in 1/ohm/m.
Reimplemented in LiquidTransport.
Definition at line 310 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species ionic conductivity.
The units are 1/ohm/m and the length is the number of species
ionCond | Vector of ionic conductivities |
Reimplemented in LiquidTransport.
Definition at line 320 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pointer to the mobility ratios of the species in the phase.
mobRat | Returns a matrix of mobility ratios for the current problem. The mobility ratio mobRat(i,j) is defined as the ratio of the mobility of species i to species j. |
mobRat(i,j) = mu_i / mu_j
It is returned in fortran-ordering format. ie. it is returned as mobRat[k], where
k = j * nsp + i
The size of mobRat must be at least equal to nsp*nsp
Reimplemented in LiquidTransport.
Definition at line 342 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species limit of the mobility ratios.
The value is dimensionless and the length is the number of species
mobRat | Vector of mobility ratios |
Reimplemented in LiquidTransport.
Definition at line 352 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the self diffusion coefficients of the species in the phase.
The self diffusion coefficient is the diffusion coefficient of a tracer species at the current temperature and composition of the species. Therefore, the dilute limit of transport is assumed for the tracer species. The effective formula may be calculated from the stefan-maxwell formulation by adding another row for the tracer species, assigning all D's to be equal to the respective species D's, and then taking the limit as the tracer species mole fraction goes to zero. The corresponding flux equation for the tracer species k in units of kmol m-2 s-1 is.
\[ J_k = - D^{sd}_k \frac{C_k}{R T} \nabla \mu_k \]
The derivative is taken at constant T and P.
The self diffusion calculation is handled by subclasses of LiquidTranInteraction as specified in the input file. These in turn employ subclasses of LTPspecies to determine the individual species self diffusion coeffs.
selfDiff | Vector of self-diffusion coefficients Length = number of species in phase units = m**2 s-1 |
Reimplemented in LiquidTransport.
Definition at line 382 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns the pure species self diffusion in solution of each species.
The pure species molar volumes are evaluated using the appropriate subclasses of LTPspecies as specified in the input file.
selfDiff | array of length "number of species" to hold returned self diffusion coeffs. |
Reimplemented in LiquidTransport.
Definition at line 396 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
The electrical conductivity (Siemens/m).
Reimplemented in SolidTransport, and FtnTransport.
Definition at line 413 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)
The electrical conductivity, \( \sigma \), relates the electric current density, J, to the electric field, E.
\[ \vec{J} = \sigma \vec{E} \]
We assume here that the mixture electrical conductivity is an isotropic quantity, at this stage. Tensors may be included at a later time.
The conductivity is the reciprocal of the resistivity.
The units are Siemens m-1, where 1 S = 1 A / volt = 1 s^3 A^2 /kg /m^2
Reimplemented in LiquidTransport.
Definition at line 482 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Compute the electric current density in A/m^2.
Calculates the electric current density as a vector, given the gradients of the field variables.
ndim | The number of spatial dimensions (1, 2, or 3). |
grad_T | The temperature gradient (ignored in this model). |
ldx | Leading dimension of the grad_X array. |
grad_X | The gradient of the mole fraction |
ldf | Leading dimension of the grad_V and current vectors. |
grad_V | The electrostatic potential gradient. |
current | The electric current in A/m^2. This is a vector of length ndim |
Reimplemented in LiquidTransport.
Definition at line 500 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
Units for the returned fluxes are kg m-2 s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
fluxes | Output of the diffusive mass fluxes Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Definition at line 560 of file TransportBase.h.
References Transport::getSpeciesFluxes().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned velocities are m s-1
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 593 of file TransportBase.h.
References Transport::err().
Referenced by Transport::getSpeciesVdiffES().
|
inlinevirtualinherited |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential.
Units for the returned velocities are m s-1.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
grad_Phi | Gradients of the electrostatic potential (length = ndim) |
Vdiff | Output of the diffusive velocities wrt the mass-averaged velocity Flat vector with the m_nsp in the inner loop. length = ldx * ndim units are m / s. |
Reimplemented in LiquidTransport, and SimpleTransport.
Definition at line 625 of file TransportBase.h.
References Transport::getSpeciesVdiff().
|
inlinevirtualinherited |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
cfluxes | Output array containing the diffusive molar fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kmol/m^2/s]. |
Reimplemented in MultiTransport, and DustyGasTransport.
Definition at line 650 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.
state1 | Array of temperature, density, and mass fractions for state 1. |
state2 | Array of temperature, density, and mass fractions for state 2. |
delta | Distance from state 1 to state 2 (m). |
mfluxes | Output array containing the diffusive mass fluxes of species from state1 to state2. This is a flat vector with the m_nsp in the inner loop. length = ldx * ndim. Units are [kg/m^2/s]. |
Reimplemented in MultiTransport.
Definition at line 671 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Return the Multicomponent diffusion coefficients. Units: [m^2/s].
If the transport manager implements a multicomponent diffusion model, then this method returns the array of multicomponent diffusion coefficients. Otherwise it throws an exception.
ld | The dimension of the inner loop of d (usually equal to m_nsp) |
d | flat vector of diffusion coefficients, fortran ordering. d[ld*j+i] is the D_ij diffusion coefficient (the diffusion coefficient for species i due to species j). |
Reimplemented in DustyGasTransport, and MultiTransport.
Definition at line 721 of file TransportBase.h.
References Transport::err().
Referenced by StFlow::updateTransport().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport.
Definition at line 744 of file TransportBase.h.
References Transport::err().
|
inlinevirtualinherited |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport.
Definition at line 749 of file TransportBase.h.
References Transport::err().
|
virtualinherited |
Set model parameters for derived classes.
This method may be derived in subclasses to set model-specific parameters. The primary use of this class is to set parameters while in the middle of a calculation without actually having to dynamically cast the base Transport pointer.
type | Specifies the type of parameters to set 0 : Diffusion coefficient 1 : Thermal Conductivity The rest are currently unused. |
k | Species index to set the parameters on |
p | Vector of parameters. The length of the vector varies with the parameterization |
Reimplemented in DustyGasTransport, and SolidTransport.
Definition at line 105 of file TransportBase.cpp.
References Transport::err().
|
inlineinherited |
Sets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
ivb | Species the velocity basis |
Definition at line 777 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineinherited |
Gets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
Definition at line 789 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlineprotectedvirtualinherited |
Called by TransportFactory to set parameters.
Called by TransportFactory to set parameters.
This is called by classes that use the gas phase parameter list to initialize themselves.
tr | Reference to the parameter list that will be used to initialize the class |
Reimplemented in MixTransport, MultiTransport, and GasTransport.
Definition at line 819 of file TransportBase.h.
References Transport::err().
Referenced by TransportFactory::initTransport().
|
protectedinherited |
Specifies the ThermPhase object.
thermo | Reference to the ThermoPhase object that the transport object will use |
Definition at line 112 of file TransportBase.cpp.
References Transport::m_nsp, Transport::m_thermo, Phase::nSpecies(), Transport::ready(), and Transport::thermo().
Referenced by TransportFactory::newTransport().
|
protectedinherited |
Enable the transport object for use.
Once finalize() has been called, the transport manager should be ready to compute any supported transport property, and no further modifications to the model parameters should be made.
Definition at line 136 of file TransportBase.cpp.
References Transport::m_ready, and Transport::ready().
|
private |
Minimum temperature applicable to the transport property eval.
Definition at line 378 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid().
|
private |
Maximum temperature applicable to the transport property evaluator.
Definition at line 381 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid().
|
private |
Local Copy of the molecular weights of the species.
Length is Equal to the number of species in the mechanism.
Definition at line 387 of file AqueousTransport.h.
Referenced by AqueousTransport::getMixDiffCoeffs(), AqueousTransport::initLiquid(), and AqueousTransport::updateViscosity_T().
|
private |
Polynomial coefficients of the viscosity.
These express the temperature dependence of the pure species viscosities.
Definition at line 393 of file AqueousTransport.h.
Referenced by AqueousTransport::updateSpeciesViscosities().
|
private |
Polynomial coefficients of the conductivities.
These express the temperature dependence of the pure species conductivities
Definition at line 399 of file AqueousTransport.h.
Referenced by AqueousTransport::updateCond_T().
|
private |
Polynomial coefficients of the binary diffusion coefficients.
These express the temperature dependence of the binary diffusivities. An overall pressure dependence is then added.
Definition at line 406 of file AqueousTransport.h.
Referenced by AqueousTransport::updateDiff_T().
|
private |
Internal value of the gradient of the mole fraction vector.
m_nsp is the number of species in the fluid k is the species index n is the dimensional index (x, y, or z). It has a length equal to m_nDim
m_Grad_X[n*m_nsp + k]
Definition at line 418 of file AqueousTransport.h.
Referenced by AqueousTransport::getSpeciesFluxesExt(), AqueousTransport::initLiquid(), AqueousTransport::set_Grad_X(), and AqueousTransport::stefan_maxwell_solve().
|
private |
Internal value of the gradient of the Temperature vector.
Generally, if a transport property needs this in its evaluation it will look to this place to get it.
No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.
Definition at line 430 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), and AqueousTransport::set_Grad_T().
|
private |
Internal value of the gradient of the Electric Voltage.
Generally, if a transport property needs this in its evaluation it will look to this place to get it.
No internal property is precalculated based on gradients. Gradients are assumed to be freshly updated before every property call.
Definition at line 442 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::set_Grad_V(), and AqueousTransport::stefan_maxwell_solve().
|
private |
Gradient of the electrochemical potential.
m_nsp is the number of species in the fluid k is the species index n is the dimensional index (x, y, or z)
m_Grad_mu[n*m_nsp + k]
Definition at line 452 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), and AqueousTransport::stefan_maxwell_solve().
|
private |
Array of Binary Diffusivities.
This has a size equal to nsp x nsp It is a symmetric matrix. D_ii is undefined.
units m2/sec
Definition at line 464 of file AqueousTransport.h.
Referenced by AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), AqueousTransport::initLiquid(), and AqueousTransport::updateDiff_T().
|
private |
Species viscosities.
Viscosity of the species Length = number of species
Depends on the temperature and perhaps pressure, but not the species concentrations
controlling update boolean -> m_spvisc_ok
Definition at line 476 of file AqueousTransport.h.
Referenced by AqueousTransport::getSpeciesViscosities(), AqueousTransport::initLiquid(), AqueousTransport::updateSpeciesViscosities(), AqueousTransport::updateViscosity_T(), and AqueousTransport::viscosity().
|
private |
Sqrt of the species viscosities.
The sqrt(visc) is used in the mixing formulas Length = m_nsp
Depends on the temperature and perhaps pressure, but not the species concentrations
controlling update boolean m_spvisc_ok
Definition at line 488 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::updateSpeciesViscosities(), and AqueousTransport::updateViscosity_T().
|
private |
Internal value of the species individual thermal conductivities.
Then a mixture rule is applied to get the solution conductivities
Depends on the temperature and perhaps pressure, but not the species concentrations
controlling update boolean -> m_spcond_ok
Definition at line 499 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::thermalConductivity(), and AqueousTransport::updateCond_T().
|
private |
Polynomials of the log of the temperature.
Definition at line 502 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::update_T(), AqueousTransport::updateCond_T(), AqueousTransport::updateDiff_T(), and AqueousTransport::updateSpeciesViscosities().
|
private |
State of the mole fraction vector.
Definition at line 505 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T().
|
private |
Local copy of the mole fractions of the species in the phase.
Update info? length = m_nsp
Definition at line 512 of file AqueousTransport.h.
Referenced by AqueousTransport::getMixDiffCoeffs(), AqueousTransport::initLiquid(), AqueousTransport::stefan_maxwell_solve(), AqueousTransport::thermalConductivity(), AqueousTransport::update_C(), and AqueousTransport::viscosity().
|
private |
Local copy of the concentrations of the species in the phase.
Update info? length = m_nsp
Definition at line 519 of file AqueousTransport.h.
Referenced by AqueousTransport::stefan_maxwell_solve().
|
private |
Local copy of the charge of each species.
Contains the charge of each species (length m_nsp)
Definition at line 525 of file AqueousTransport.h.
Referenced by AqueousTransport::stefan_maxwell_solve().
|
private |
Stefan-Maxwell Diffusion Coefficients at T, P and C.
These diffusion coefficients are considered to be a function of Temperature, Pressure, and Concentration.
Definition at line 532 of file AqueousTransport.h.
Referenced by AqueousTransport::stefan_maxwell_solve().
|
private |
viscosity weighting functions
Definition at line 535 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::updateViscosity_T(), and AqueousTransport::viscosity().
|
private |
Matrix of the ratios of the species molecular weights.
m_wratjk(i,j) = (m_mw[j]/m_mw[k])**0.25
Definition at line 541 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), and AqueousTransport::updateViscosity_T().
|
private |
Matrix of the ratios of the species molecular weights.
m_wratkj1(i,j) = (1.0 + m_mw[k]/m_mw[j])**0.5
Definition at line 547 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), and AqueousTransport::updateViscosity_T().
|
private |
RHS to the stefan-maxwell equation.
Definition at line 550 of file AqueousTransport.h.
Referenced by AqueousTransport::stefan_maxwell_solve().
|
private |
Matrix for the stefan maxwell equation.
Definition at line 553 of file AqueousTransport.h.
Referenced by AqueousTransport::stefan_maxwell_solve().
|
private |
Internal storage for the species LJ well depth.
Definition at line 556 of file AqueousTransport.h.
|
private |
Internal storage for species polarizability.
Definition at line 559 of file AqueousTransport.h.
|
private |
Current Temperature -> locally stored.
This is used to test whether new temperature computations should be performed.
Definition at line 566 of file AqueousTransport.h.
Referenced by AqueousTransport::getFluidMobilities(), AqueousTransport::getMobilities(), AqueousTransport::update_T(), and AqueousTransport::updateDiff_T().
|
private |
Current log(T)
Definition at line 569 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T().
|
private |
Current value of kT.
Definition at line 572 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T().
|
private |
Current Temperature **0.5.
Definition at line 575 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T(), AqueousTransport::updateCond_T(), and AqueousTransport::updateDiff_T().
|
private |
Current Temperature **0.25.
Definition at line 578 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T(), and AqueousTransport::updateSpeciesViscosities().
|
private |
Current Temperature **1.5.
Definition at line 581 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T().
|
private |
Current temperature function.
This is equal to sqrt(Boltzmann * T)
Definition at line 587 of file AqueousTransport.h.
Referenced by AqueousTransport::update_T().
|
private |
Current value of the pressure.
Definition at line 590 of file AqueousTransport.h.
Referenced by AqueousTransport::getMixDiffCoeffs(), and AqueousTransport::update_C().
|
private |
Solution of the flux system.
Definition at line 593 of file AqueousTransport.h.
Referenced by AqueousTransport::stefan_maxwell_solve().
|
private |
saved value of the mixture thermal conductivity
Definition at line 596 of file AqueousTransport.h.
Referenced by AqueousTransport::thermalConductivity().
|
private |
Saved value of the mixture viscosity.
Definition at line 599 of file AqueousTransport.h.
Referenced by AqueousTransport::viscosity().
|
private |
work space of size m_nsp
Definition at line 602 of file AqueousTransport.h.
Referenced by AqueousTransport::getFluidMobilities(), AqueousTransport::getMobilities(), AqueousTransport::getSpeciesFluxesExt(), AqueousTransport::initLiquid(), and AqueousTransport::viscosity().
|
private |
Boolean indicating that mixture viscosity is current.
Definition at line 634 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::update_C(), AqueousTransport::update_T(), and AqueousTransport::viscosity().
|
private |
Boolean indicating that weight factors wrt viscosity is current.
Definition at line 637 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::update_T(), AqueousTransport::updateViscosity_T(), and AqueousTransport::viscosity().
|
private |
Flag to indicate that the pure species viscosities are current wrt the temperature.
Definition at line 641 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::update_T(), AqueousTransport::updateSpeciesViscosities(), and AqueousTransport::updateViscosity_T().
|
private |
Boolean indicating that mixture diffusion coeffs are current.
Definition at line 644 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::update_C(), AqueousTransport::update_T(), and AqueousTransport::updateDiff_T().
|
private |
Boolean indicating that binary diffusion coeffs are current.
Definition at line 647 of file AqueousTransport.h.
Referenced by AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), AqueousTransport::update_T(), and AqueousTransport::updateDiff_T().
|
private |
Flag to indicate that the pure species conductivities are current wrt the temperature.
Definition at line 651 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::thermalConductivity(), AqueousTransport::update_T(), and AqueousTransport::updateCond_T().
|
private |
Boolean indicating that mixture conductivity is current.
Definition at line 654 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::thermalConductivity(), AqueousTransport::update_C(), AqueousTransport::update_T(), and AqueousTransport::updateCond_T().
|
private |
Mode for fitting the species viscosities.
Either it's CK_Mode or it's cantera mode in CK_Mode visc is fitted to a polynomial in Cantera mode sqrt(visc) is fitted.
Definition at line 662 of file AqueousTransport.h.
Referenced by AqueousTransport::initLiquid(), AqueousTransport::updateCond_T(), AqueousTransport::updateDiff_T(), and AqueousTransport::updateSpeciesViscosities().
|
private |
Internal storage for the diameter - diameter species interactions.
Definition at line 666 of file AqueousTransport.h.
|
private |
Debugging flags.
Turn on to get debugging information
Definition at line 672 of file AqueousTransport.h.
|
private |
Number of dimensions.
Either 1, 2, or 3
Definition at line 678 of file AqueousTransport.h.
Referenced by AqueousTransport::getSpeciesFluxesExt(), AqueousTransport::initLiquid(), AqueousTransport::set_Grad_T(), AqueousTransport::set_Grad_V(), and AqueousTransport::set_Grad_X().
|
protectedinherited |
pointer to the object representing the phase
Definition at line 857 of file TransportBase.h.
Referenced by SolidTransport::electricalConductivity(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), AqueousTransport::getLiquidTransportData(), MultiTransport::getMassFluxes(), SolidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), SolidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), GasTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), WaterTransport::initTP(), Transport::operator=(), MixTransport::pressure_ig(), SolidTransport::setParameters(), Transport::setThermo(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), SolidTransport::thermalConductivity(), Transport::thermo(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), MixTransport::update_T(), MultiTransport::update_T(), AqueousTransport::update_T(), SimpleTransport::update_T(), LiquidTransport::update_T(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), and DustyGasTransport::updateTransport_T().
|
protectedinherited |
true if finalize has been called
Definition at line 860 of file TransportBase.h.
Referenced by Transport::finalize(), Transport::operator=(), Transport::ready(), and Transport::Transport().
|
protectedinherited |
Number of species.
Definition at line 863 of file TransportBase.h.
Referenced by Transport::checkSpeciesArraySize(), Transport::checkSpeciesIndex(), DustyGasTransport::eval_H_matrix(), MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::eval_L1000(), GasTransport::getBinaryDiffCoeffs(), AqueousTransport::getBinaryDiffCoeffs(), LiquidTransport::getBinaryDiffCoeffs(), SimpleTransport::getBinaryDiffCoeffs(), LiquidTransport::getElectricConduct(), LiquidTransport::getElectricCurrent(), AqueousTransport::getFluidMobilities(), SimpleTransport::getFluidMobilities(), LiquidTransport::getFluidMobilities(), MultiTransport::getMassFluxes(), GasTransport::getMixDiffCoeffs(), AqueousTransport::getMixDiffCoeffs(), SimpleTransport::getMixDiffCoeffs(), LiquidTransport::getMixDiffCoeffs(), GasTransport::getMixDiffCoeffsMass(), GasTransport::getMixDiffCoeffsMole(), MixTransport::getMobilities(), AqueousTransport::getMobilities(), SimpleTransport::getMobilities(), LiquidTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMultiDiffCoeffs(), DustyGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MixTransport::getSpeciesFluxes(), AqueousTransport::getSpeciesFluxesExt(), SimpleTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesFluxesExt(), LiquidTransport::getSpeciesMobilityRatio(), LiquidTransport::getSpeciesSelfDiffusion(), SimpleTransport::getSpeciesVdiff(), SimpleTransport::getSpeciesVdiffES(), LiquidTransport::getSpeciesVdiffExt(), MultiTransport::getThermalDiffCoeffs(), MixTransport::getThermalDiffCoeffs(), AqueousTransport::getThermalDiffCoeffs(), SimpleTransport::getThermalDiffCoeffs(), LiquidTransport::getThermalDiffCoeffs(), GasTransport::initGas(), MultiTransport::initGas(), MixTransport::initGas(), DustyGasTransport::initialize(), LiquidTransport::initLiquid(), SimpleTransport::initLiquid(), AqueousTransport::initLiquid(), LiquidTransport::mobilityRatio(), Transport::operator=(), LiquidTransport::selfDiffusion(), AqueousTransport::set_Grad_X(), SimpleTransport::set_Grad_X(), LiquidTransport::set_Grad_X(), Transport::setThermo(), MultiTransport::solveLMatrixEquation(), AqueousTransport::stefan_maxwell_solve(), LiquidTransport::stefan_maxwell_solve(), MultiTransport::thermalConductivity(), MixTransport::thermalConductivity(), AqueousTransport::thermalConductivity(), SimpleTransport::thermalConductivity(), Transport::Transport(), MixTransport::update_C(), MultiTransport::update_C(), AqueousTransport::update_C(), SimpleTransport::update_C(), LiquidTransport::update_C(), LiquidTransport::update_Grad_lnAC(), DustyGasTransport::updateBinaryDiffCoeffs(), MixTransport::updateCond_T(), SimpleTransport::updateCond_T(), AqueousTransport::updateCond_T(), LiquidTransport::updateCond_T(), GasTransport::updateDiff_T(), SimpleTransport::updateDiff_T(), AqueousTransport::updateDiff_T(), LiquidTransport::updateHydrodynamicRadius_T(), LiquidTransport::updateIonConductivity_T(), DustyGasTransport::updateKnudsenDiffCoeffs(), LiquidTransport::updateMobilityRatio_T(), LiquidTransport::updateSelfDiffusion_T(), GasTransport::updateSpeciesViscosities(), AqueousTransport::updateSpeciesViscosities(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), GasTransport::updateViscosity_T(), SimpleTransport::updateViscosity_T(), AqueousTransport::updateViscosity_T(), LiquidTransport::updateViscosity_T(), GasTransport::viscosity(), AqueousTransport::viscosity(), SimpleTransport::viscosity(), and LiquidTransport::~LiquidTransport().
|
protectedinherited |
Velocity basis from which diffusion velocities are computed.
Defaults to the mass averaged basis = -2
Definition at line 870 of file TransportBase.h.
Referenced by SimpleTransport::getSpeciesFluxesExt(), Transport::getVelocityBasis(), LiquidTransport::initLiquid(), Transport::operator=(), Transport::setVelocityBasis(), LiquidTransport::stefan_maxwell_solve(), and Transport::Transport().