Cantera  3.1.0
Loading...
Searching...
No Matches
LatticeSolidPhase Class Reference

A phase that is comprised of a fixed additive combination of other lattice phases. More...

#include <LatticeSolidPhase.h>

Inheritance diagram for LatticeSolidPhase:
[legend]

Detailed Description

A phase that is comprised of a fixed additive combination of other lattice phases.

This is the main way Cantera describes semiconductors and other solid phases. This ThermoPhase object calculates its properties as a sum over other LatticePhase objects. Each of the LatticePhase objects is a ThermoPhase object by itself.

The results from this LatticeSolidPhase model reduces to the LatticePhase model when there is one lattice phase and the molar densities of the sublattice and the molar density within the LatticeSolidPhase have the same values.

The mole fraction vector is redefined within the LatticeSolidPhase object. Each of the mole fractions sum to one on each of the sublattices. The routine getMoleFraction() and setMoleFraction() have been redefined to use this convention.

Specification of Species Standard State Properties

The standard state properties are calculated in the normal way for each of the sublattices. The normal way here means that a thermodynamic polynomial in temperature is developed. Also, a constant volume approximation for the pressure dependence is assumed. All of these properties are on a Joules per kmol of sublattice constituent basis.

Specification of Solution Thermodynamic Properties

The sum over the LatticePhase objects is carried out by weighting each LatticePhase object value with the molar density (kmol m-3) of its LatticePhase. Then the resulting quantity is divided by the molar density of the total compound. The LatticeSolidPhase object therefore only contains a listing of the number of LatticePhase object that comprises the solid, and it contains a value for the molar density of the entire mixture. This is the same thing as saying that

\[ L_i = L^{solid} \theta_i \]

\( L_i \) is the molar volume of the ith lattice. \( L^{solid} \) is the molar volume of the entire solid. \( \theta_i \) is a fixed weighting factor for the ith lattice representing the lattice stoichiometric coefficient. For this object the \( \theta_i \) values are fixed.

Let's take FeS2 as an example, which may be thought of as a combination of two lattices: Fe and S lattice. The Fe sublattice has a molar density of 1 gmol cm-3. The S sublattice has a molar density of 2 gmol cm-3. We then define the LatticeSolidPhase object as having a nominal composition of FeS2, and having a molar density of 1 gmol cm-3. All quantities pertaining to the FeS2 compound will be have weights associated with the sublattices. The Fe sublattice will have a weight of 1.0 associated with it. The S sublattice will have a weight of 2.0 associated with it.

Specification of Solution Density Properties

Currently, molar density is not a constant within the object, even though the species molar volumes are a constant. The basic idea is that a swelling of one of the sublattices will result in a swelling of of all of the lattices. Therefore, the molar volumes of the individual lattices are not independent of one another.

The molar volume of the Lattice solid is calculated from the following formula

\[ V = \sum_i{ \theta_i V_i^{lattice}} \]

where \( V_i^{lattice} \) is the molar volume of the ith sublattice. This is calculated from the following standard formula.

\[ V_i = \sum_k{ X_k V_k} \]

where k is a species in the ith sublattice.

The mole fraction vector is redefined within the the LatticeSolidPhase object. Each of the mole fractions sum to one on each of the sublattices. The routine getMoleFraction() and setMoleFraction() have been redefined to use this convention.

(This object is still under construction)

Definition at line 104 of file LatticeSolidPhase.h.

Public Member Functions

 LatticeSolidPhase ()=default
 Base empty constructor.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
string phaseOfMatter () const override
 String indicating the mechanical phase of the matter in this Phase.
 
bool isCompressible () const override
 Return whether phase represents a compressible substance.
 
map< string, size_t > nativeState () const override
 Return a map of properties defining the native state of a substance.
 
double minTemp (size_t k=npos) const override
 Minimum temperature for which the thermodynamic data for the species or phase are valid.
 
double maxTemp (size_t k=npos) const override
 Maximum temperature for which the thermodynamic data for the species are valid.
 
double refPressure () const override
 Returns the reference pressure in Pa.
 
int standardStateConvention () const override
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
 
double enthalpy_mole () const override
 Return the Molar Enthalpy. Units: J/kmol.
 
double intEnergy_mole () const override
 Return the Molar Internal Energy. Units: J/kmol.
 
double entropy_mole () const override
 Return the Molar Entropy. Units: J/kmol/K.
 
double gibbs_mole () const override
 Return the Molar Gibbs energy. Units: J/kmol.
 
double cp_mole () const override
 Return the constant pressure heat capacity. Units: J/kmol/K.
 
double cv_mole () const override
 Return the constant volume heat capacity. Units: J/kmol/K.
 
double pressure () const override
 Report the Pressure. Units: Pa.
 
void setPressure (double p) override
 Set the pressure at constant temperature. Units: Pa.
 
double calcDensity ()
 Calculate the density of the solid mixture.
 
void setMoleFractions (const double *const x) override
 Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0 for each of the subphases.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
void setMassFractions (const double *const y) override
 Set the mass fractions to the specified values and normalize them.
 
void setMassFractions_NoNorm (const double *const y) override
 Set the mass fractions to the specified values without normalizing.
 
void getConcentrations (double *const c) const override
 Get the species concentrations (kmol/m^3).
 
double concentration (size_t k) const override
 Concentration of species k.
 
void setConcentrations (const double *const conc) override
 Set the concentrations to the specified values within the phase.
 
Units standardConcentrationUnits () const override
 Returns the units of the "standard concentration" for this phase.
 
void getActivityConcentrations (double *c) const override
 This method returns an array of generalized concentrations.
 
void getActivityCoefficients (double *ac) const override
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getChemPotentials (double *mu) const override
 Get the species chemical potentials. Units: J/kmol.
 
void getPartialMolarEnthalpies (double *hbar) const override
 Returns an array of partial molar enthalpies for the species in the mixture.
 
void getPartialMolarEntropies (double *sbar) const override
 Returns an array of partial molar entropies of the species in the solution.
 
void getPartialMolarCp (double *cpbar) const override
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
 
void getPartialMolarVolumes (double *vbar) const override
 returns an array of partial molar volumes of the species in the solution.
 
void getStandardChemPotentials (double *mu0) const override
 Get the array of standard state chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
 
double standardConcentration (size_t k=0) const override
 Return the standard concentration for the kth species.
 
double logStandardConc (size_t k=0) const override
 Natural logarithm of the standard concentration of the kth species.
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void addLattice (shared_ptr< ThermoPhase > lattice)
 Add a lattice to this phase.
 
void setLatticeStoichiometry (const Composition &comp)
 Set the lattice stoichiometric coefficients, \( \theta_i \).
 
void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) override
 Set equation of state parameters from an AnyMap phase description.
 
void initThermo () override
 Initialize the ThermoPhase object after all species have been set up.
 
void getParameters (AnyMap &phaseNode) const override
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
void getSpeciesParameters (const string &name, AnyMap &speciesNode) const override
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.
 
void setLatticeMoleFractionsByName (int n, const string &x)
 Set the Lattice mole fractions using a string.
 
void modifyOneHf298SS (const size_t k, const double Hf298New) override
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
 
void resetHf298 (const size_t k=npos) override
 Restore the original heat of formation of one or more species.
 
Thermodynamic Values for the Species Reference States
void getGibbs_RT_ref (double *grt) const override
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
void getGibbs_ref (double *g) const override
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()=default
 Constructor.
 
double RT () const
 Return the Gas Constant multiplied by the current temperature.
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen.
 
virtual AnyMap getAuxiliaryData ()
 Return intermediate or model-specific parameters used by particular derived classes.
 
string type () const override
 String indicating the thermodynamic model implemented.
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal.
 
double Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean.
 
virtual double isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa.
 
virtual double thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K.
 
virtual double soundSpeed () const
 Return the speed of sound. Units: m/s.
 
void setElectricPotential (double v)
 Set the electric potential of this phase (V).
 
double electricPotential () const
 Returns the electric potential of this phase (V).
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.
 
virtual void getActivities (double *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.
 
virtual void getLnActivityCoefficients (double *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.
 
void getElectrochemPotentials (double *mu) const
 Get the species electrochemical potentials.
 
virtual void getPartialMolarIntEnergies (double *ubar) const
 Return an array of partial molar internal energies for the species in the mixture.
 
virtual void getEnthalpy_RT (double *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.
 
virtual void getEntropy_R (double *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.
 
virtual void getGibbs_RT (double *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.
 
virtual void getPureGibbs (double *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
 
virtual void getIntEnergy_RT (double *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
 
virtual void getCp_R (double *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.
 
virtual void getStandardVolumes (double *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution.
 
virtual void getEnthalpy_RT_ref (double *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
 
virtual void getEntropy_R_ref (double *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void getIntEnergy_RT_ref (double *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
 
virtual void getCp_R_ref (double *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
 
virtual void getStandardVolumes_ref (double *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution.
 
double enthalpy_mass () const
 Specific enthalpy. Units: J/kg.
 
double intEnergy_mass () const
 Specific internal energy. Units: J/kg.
 
double entropy_mass () const
 Specific entropy. Units: J/kg/K.
 
double gibbs_mass () const
 Specific Gibbs function. Units: J/kg.
 
double cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K.
 
double cv_mass () const
 Specific heat at constant volume. Units: J/kg/K.
 
virtual void setState_TPX (double t, double p, const double *x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const Composition &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPX (double t, double p, const string &x)
 Set the temperature (K), pressure (Pa), and mole fractions.
 
virtual void setState_TPY (double t, double p, const double *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const Composition &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TPY (double t, double p, const string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.
 
virtual void setState_TP (double t, double p)
 Set the temperature (K) and pressure (Pa)
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg).
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa).
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg).
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K).
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg).
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg).
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa).
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg)
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)
 
virtual void setState_DP (double rho, double p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition.
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model.
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
void setMixtureFraction (double mixFrac, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel)
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
double mixtureFraction (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar, const string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions.
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
void setEquivalenceRatio (double phi, const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio.
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double equivalenceRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer.
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const string &fuelComp, const string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
double stoichAirFuelRatio (const Composition &fuelComp, const Composition &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions.
 
void equilibrate (const string &XY, const string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object.
 
virtual void setToEquilState (const double *mu_RT)
 This method is used by the ChemEquil equilibrium solver.
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.
 
virtual double critTemperature () const
 Critical temperature (K).
 
virtual double critPressure () const
 Critical pressure (Pa).
 
virtual double critVolume () const
 Critical volume (m3/kmol).
 
virtual double critCompressibility () const
 Critical compressibility (unitless).
 
virtual double critDensity () const
 Critical density (kg/m3).
 
virtual double satTemperature (double p) const
 Return the saturation temperature given the pressure.
 
virtual double satPressure (double t)
 Return the saturation pressure given the temperature.
 
virtual double vaporFraction () const
 Return the fraction of vapor at the current conditions.
 
virtual void setState_Tsat (double t, double x)
 Set the state to a saturated system at a particular temperature.
 
virtual void setState_Psat (double p, double x)
 Set the state to a saturated system at a particular pressure.
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality).
 
bool addSpecies (shared_ptr< Species > spec) override
 Add a Species to this Phase.
 
void modifySpecies (size_t k, shared_ptr< Species > spec) override
 Modify the thermodynamic data associated with a species.
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const string &inputFile, const string &id)
 Initialize a ThermoPhase object using an input file.
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
const AnyMapinput () const
 Access input data associated with the phase description.
 
AnyMapinput ()
 
void invalidateCache () override
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
virtual void getdlnActCoeffds (const double dTds, const double *const dXds, double *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.
 
virtual void getdlnActCoeffdlnX_diag (double *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.
 
virtual void getdlnActCoeffdlnN_diag (double *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients.
 
virtual void getdlnActCoeffdlnN (const size_t ld, double *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, double *const dlnActCoeffdlnN)
 
virtual string report (bool show_thermo=true, double threshold=-1e-14) const
 returns a summary of the state of the phase as a string
 
- Public Member Functions inherited from Phase
 Phase ()=default
 Default constructor.
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance.
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions.
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance.
 
virtual map< string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance.
 
string nativeMode () const
 Return string acronym representing the native state of a Phase.
 
virtual vector< string > fullStates () const
 Return a vector containing full states defining a phase.
 
virtual vector< string > partialStates () const
 Return a vector of settable partial property sets within a phase.
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase.
 
void saveState (vector< double > &state) const
 Save the current internal state of the phase.
 
virtual void saveState (size_t lenstate, double *state) const
 Write to array 'state' the current internal state.
 
void restoreState (const vector< double > &state)
 Restore a state saved on a previous call to saveState.
 
virtual void restoreState (size_t lenstate, const double *state)
 Restore the state of the phase from a previously saved state vector.
 
double molecularWeight (size_t k) const
 Molecular weight of species k.
 
void getMolecularWeights (double *weights) const
 Copy the vector of molecular weights into array weights.
 
const vector< double > & molecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
const vector< double > & inverseMolecularWeights () const
 Return a const reference to the internal vector of molecular weights.
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges.
 
virtual void setMolesNoTruncate (const double *const N)
 Set the state of the object with moles in [kmol].
 
double elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m.
 
double elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m.
 
double charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge.
 
double chargeDensity () const
 Charge density [C/m^3].
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3)
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3).
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use.
 
int stateMFNumber () const
 Return the State Mole Fraction Number.
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected.
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced.
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex.
 
vector< double > getCompositionFromMap (const Composition &comp) const
 Converts a Composition to a vector with entries for each species Species that are not specified are set to zero in the vector.
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions.
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions.
 
string name () const
 Return the name of the phase.
 
void setName (const string &nm)
 Sets the string name for the phase.
 
string elementName (size_t m) const
 Name of the element with index m.
 
size_t elementIndex (const string &name) const
 Return the index of element named 'name'.
 
const vector< string > & elementNames () const
 Return a read-only reference to the vector of element names.
 
double atomicWeight (size_t m) const
 Atomic weight of element m.
 
double entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar.
 
int atomicNumber (size_t m) const
 Atomic number of element m.
 
int elementType (size_t m) const
 Return the element constraint type Possible types include:
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type.
 
const vector< double > & atomicWeights () const
 Return a read-only reference to the vector of atomic weights.
 
size_t nElements () const
 Number of elements.
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range.
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements().
 
double nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k.
 
size_t speciesIndex (const string &name) const
 Returns the index of a species named 'name' within the Phase object.
 
string speciesName (size_t k) const
 Name of the species with index k.
 
const vector< string > & speciesNames () const
 Return a const reference to the vector of species names.
 
size_t nSpecies () const
 Returns the number of species in the phase.
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range.
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies().
 
void setMoleFractionsByName (const Composition &xMap)
 Set the species mole fractions by name.
 
void setMoleFractionsByName (const string &x)
 Set the mole fractions of a group of species by name.
 
void setMassFractionsByName (const Composition &yMap)
 Set the species mass fractions by name.
 
void setMassFractionsByName (const string &x)
 Set the species mass fractions by name.
 
void setState_TD (double t, double rho)
 Set the internally stored temperature (K) and density (kg/m^3)
 
Composition getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name.
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species.
 
double moleFraction (const string &name) const
 Return the mole fraction of a single species.
 
Composition getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name.
 
double massFraction (size_t k) const
 Return the mass fraction of a single species.
 
double massFraction (const string &name) const
 Return the mass fraction of a single species.
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector.
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing.
 
void getMassFractions (double *const y) const
 Get the species mass fractions.
 
const double * massFractions () const
 Return a const pointer to the mass fraction array.
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations.
 
double temperature () const
 Temperature (K).
 
virtual double electronTemperature () const
 Electron Temperature (K)
 
virtual double density () const
 Density (kg/m^3).
 
virtual double molarDensity () const
 Molar density (kmol/m^3).
 
virtual double molarVolume () const
 Molar volume (m^3/kmol).
 
virtual void setDensity (const double density_)
 Set the internally stored density (kg/m^3) of the phase.
 
virtual void setTemperature (double temp)
 Set the internally stored temperature of the phase (K).
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K).
 
double mean_X (const double *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double mean_X (const vector< double > &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q.
 
double meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol)
 
double sum_xlogx () const
 Evaluate \( \sum_k X_k \ln X_k \).
 
size_t addElement (const string &symbol, double weight=-12345.0, int atomicNumber=0, double entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element.
 
void addSpeciesAlias (const string &name, const string &alias)
 Add a species alias (that is, a user-defined alternative species name).
 
void addSpeciesLock ()
 Lock species list to prevent addition of new species.
 
void removeSpeciesLock ()
 Decrement species lock counter.
 
virtual vector< string > findIsomers (const Composition &compMap) const
 Return a vector with isomers names matching a given composition map.
 
virtual vector< string > findIsomers (const string &comp) const
 Return a vector with isomers names matching a given composition string.
 
shared_ptr< Speciesspecies (const string &name) const
 Return the Species object for the named species.
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k.
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species.
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase.
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception.
 

Protected Attributes

double m_press = -1.0
 Current value of the pressure.
 
double m_molar_density = 0.0
 Current value of the molar density.
 
vector< shared_ptr< ThermoPhase > > m_lattice
 Vector of sublattice ThermoPhase objects.
 
vector< double > m_x
 Vector of mole fractions.
 
vector< double > theta_
 Lattice stoichiometric coefficients.
 
vector< double > tmpV_
 Temporary vector.
 
vector< size_t > lkstart_
 
AnyMap m_rootNode
 Root node of the AnyMap which contains this phase definition.
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties.
 
AnyMap m_input
 Data supplied via setParameters.
 
double m_phi = 0.0
 Stored value of the electric potential for this phase. Units are Volts.
 
bool m_chargeNeutralityNecessary = false
 Boolean indicating whether a charge neutrality condition is a necessity.
 
int m_ssConvention = cSS_CONVENTION_TEMPERATURE
 Contains the standard state convention.
 
double m_tlast = 0.0
 last value of the temperature processed by reference state
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase.
 
size_t m_kk = 0
 Number of species in the phase.
 
size_t m_ndim = 3
 Dimensionality of the phase.
 
vector< double > m_speciesComp
 Atomic composition of the species.
 
vector< double > m_speciesCharge
 Vector of species charges. length m_kk.
 
map< string, shared_ptr< Species > > m_species
 Map of Species objects.
 
size_t m_nSpeciesLocks = 0
 Reference counter preventing species addition.
 
UndefElement::behavior m_undefinedElementBehavior = UndefElement::add
 Flag determining behavior when adding species with an undefined element.
 
bool m_caseSensitiveSpecies = false
 Flag determining whether case sensitive species names are enforced.
 

Private Member Functions

void _updateThermo () const
 Update the reference thermodynamic functions.
 

Additional Inherited Members

virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.
 
- Protected Member Functions inherited from Phase
void assertCompressible (const string &setter) const
 Ensure that phase is compressible.
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase.
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value.
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes.
 

Constructor & Destructor Documentation

◆ LatticeSolidPhase()

LatticeSolidPhase ( )
default

Base empty constructor.

Member Function Documentation

◆ type()

string type ( ) const
inlineoverridevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Since
Starting in Cantera 3.0, the name returned by this method corresponds to the canonical name used in the YAML input format.

Reimplemented from Phase.

Definition at line 110 of file LatticeSolidPhase.h.

◆ phaseOfMatter()

string phaseOfMatter ( ) const
inlineoverridevirtual

String indicating the mechanical phase of the matter in this Phase.

LatticeSolid phases only represent solids.

Reimplemented from ThermoPhase.

Definition at line 118 of file LatticeSolidPhase.h.

◆ isCompressible()

bool isCompressible ( ) const
inlineoverridevirtual

Return whether phase represents a compressible substance.

Reimplemented from Phase.

Definition at line 122 of file LatticeSolidPhase.h.

◆ nativeState()

map< string, size_t > nativeState ( ) const
inlineoverridevirtual

Return a map of properties defining the native state of a substance.

By default, entries include "T", "D", "Y" for a compressible substance and "T", "P", "Y" for an incompressible substance, with offsets 0, 1 and 2, respectively. Mass fractions "Y" are omitted for pure species. In all cases, offsets into the state vector are used by saveState() and restoreState().

Reimplemented from Phase.

Definition at line 126 of file LatticeSolidPhase.h.

◆ minTemp()

double minTemp ( size_t  k = npos) const
overridevirtual

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented from ThermoPhase.

Definition at line 26 of file LatticeSolidPhase.cpp.

◆ maxTemp()

double maxTemp ( size_t  k = npos) const
overridevirtual

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented from ThermoPhase.

Definition at line 42 of file LatticeSolidPhase.cpp.

◆ refPressure()

double refPressure ( ) const
overridevirtual

Returns the reference pressure in Pa.

This function is a wrapper that calls the species thermo refPressure function.

Reimplemented from ThermoPhase.

Definition at line 58 of file LatticeSolidPhase.cpp.

◆ standardStateConvention()

int standardStateConvention ( ) const
inlineoverridevirtual

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

All of the thermo is determined by slave ThermoPhase routines.

Reimplemented from ThermoPhase.

Definition at line 140 of file LatticeSolidPhase.h.

◆ enthalpy_mole()

double enthalpy_mole ( ) const
overridevirtual

Return the Molar Enthalpy. Units: J/kmol.

The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde h(T,P) = {\sum_n \theta_n \tilde h_n(T,P) } \]

\( \tilde h_n(T,P) \) is the enthalpy of the nth lattice.

units J/kmol

Reimplemented from ThermoPhase.

Definition at line 63 of file LatticeSolidPhase.cpp.

◆ intEnergy_mole()

double intEnergy_mole ( ) const
overridevirtual

Return the Molar Internal Energy. Units: J/kmol.

The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde u(T,P) = {\sum_n \theta_n \tilde u_n(T,P) } \]

\( \tilde u_n(T,P) \) is the internal energy of the nth lattice.

units J/kmol

Reimplemented from ThermoPhase.

Definition at line 73 of file LatticeSolidPhase.cpp.

◆ entropy_mole()

double entropy_mole ( ) const
overridevirtual

Return the Molar Entropy. Units: J/kmol/K.

The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde s(T,P) = \sum_n \theta_n \tilde s_n(T,P) \]

\( \tilde s_n(T,P) \) is the molar entropy of the nth lattice.

units J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 83 of file LatticeSolidPhase.cpp.

◆ gibbs_mole()

double gibbs_mole ( ) const
overridevirtual

Return the Molar Gibbs energy. Units: J/kmol.

The molar Gibbs free energy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde h(T,P) = {\sum_n \theta_n \tilde h_n(T,P) } \]

\( \tilde h_n(T,P) \) is the enthalpy of the nth lattice.

units J/kmol

Reimplemented from ThermoPhase.

Definition at line 93 of file LatticeSolidPhase.cpp.

◆ cp_mole()

double cp_mole ( ) const
overridevirtual

Return the constant pressure heat capacity. Units: J/kmol/K.

The molar constant pressure heat capacity is determined by the following formula, where \( C_n \) is the lattice molar density of the nth lattice, and \( C_T \) is the molar density of the solid compound.

\[ \tilde c_{p,n}(T,P) = \frac{\sum_n C_n \tilde c_{p,n}(T,P) }{C_T}, \]

\( \tilde c_{p,n}(T,P) \) is the heat capacity of the nth lattice.

units J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 103 of file LatticeSolidPhase.cpp.

◆ cv_mole()

double cv_mole ( ) const
inlineoverridevirtual

Return the constant volume heat capacity. Units: J/kmol/K.

The molar constant volume heat capacity is determined by the following formula, where \( C_n \) is the lattice molar density of the nth lattice, and \( C_T \) is the molar density of the solid compound.

\[ \tilde c_{v,n}(T,P) = \frac{\sum_n C_n \tilde c_{v,n}(T,P) }{C_T}, \]

\( \tilde c_{v,n}(T,P) \) is the heat capacity of the nth lattice.

units J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 235 of file LatticeSolidPhase.h.

◆ pressure()

double pressure ( ) const
inlineoverridevirtual

Report the Pressure. Units: Pa.

This method simply returns the stored pressure value.

Reimplemented from Phase.

Definition at line 243 of file LatticeSolidPhase.h.

◆ setPressure()

void setPressure ( double  p)
overridevirtual

Set the pressure at constant temperature. Units: Pa.

Parameters
pPressure (units - Pa)

Reimplemented from Phase.

Definition at line 145 of file LatticeSolidPhase.cpp.

◆ calcDensity()

double calcDensity ( )

Calculate the density of the solid mixture.

The formula for this is

\[ \rho = \sum_n{ \rho_n \theta_n } \]

where \( \rho_n \) is the density of the nth sublattice

Definition at line 154 of file LatticeSolidPhase.cpp.

◆ setMoleFractions()

void setMoleFractions ( const double *const  x)
overridevirtual

Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0 for each of the subphases.

On input, the mole fraction vector is assumed to sum to one for each of the sublattices. The sublattices are updated with this mole fraction vector. The mole fractions are also stored within this object, after they are normalized to one by dividing by the number of sublattices.

Parameters
xInput vector of mole fractions. There is no restriction on the sum of the mole fraction vector. Internally, this object will pass portions of this vector to the sublattices which assume that the portions individually sum to one. Length is m_kk.

Reimplemented from Phase.

Definition at line 164 of file LatticeSolidPhase.cpp.

◆ getMoleFractions()

void getMoleFractions ( double *const  x) const

Get the species mole fraction vector.

On output the mole fraction vector will sum to one for each of the subphases which make up this phase.

Parameters
xOn return, x contains the mole fractions. Must have a length greater than or equal to the number of species.
Todo:
This method shadows but does not override Phase::getMoleFractions(). The LatticeSolidPhase class should be revised to avoid needing to override the methods for getting composition. See https://github.com/Cantera/cantera/issues/1310 for additional information.

Definition at line 179 of file LatticeSolidPhase.cpp.

◆ setMassFractions()

void setMassFractions ( const double *const  y)
inlineoverridevirtual

Set the mass fractions to the specified values and normalize them.

Parameters
[in]yArray of unnormalized mass fraction values. Length must be greater than or equal to the number of species. The Phase object will normalize this vector before storing its contents.

Reimplemented from Phase.

Definition at line 295 of file LatticeSolidPhase.h.

◆ setMassFractions_NoNorm()

void setMassFractions_NoNorm ( const double *const  y)
inlineoverridevirtual

Set the mass fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
yInput vector of mass fractions. Length is m_kk.

Reimplemented from Phase.

Definition at line 299 of file LatticeSolidPhase.h.

◆ getConcentrations()

void getConcentrations ( double *const  c) const
inlineoverridevirtual

Get the species concentrations (kmol/m^3).

Parameters
[out]cThe vector of species concentrations. Units are kmol/m^3. The length of the vector must be greater than or equal to the number of species within the phase.

Reimplemented from Phase.

Definition at line 303 of file LatticeSolidPhase.h.

◆ concentration()

double concentration ( size_t  k) const
inlineoverridevirtual

Concentration of species k.

If k is outside the valid range, an exception will be thrown.

Parameters
[in]kIndex of the species within the phase.
Returns
the concentration of species k (kmol m-3).

Reimplemented from Phase.

Definition at line 307 of file LatticeSolidPhase.h.

◆ setConcentrations()

void setConcentrations ( const double *const  conc)
inlineoverridevirtual

Set the concentrations to the specified values within the phase.

We set the concentrations here and therefore we set the overall density of the phase. We hold the temperature constant during this operation. Therefore, we have possibly changed the pressure of the phase by calling this routine.

Parameters
[in]concArray of concentrations in dimensional units. For bulk phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase.

Reimplemented from Phase.

Definition at line 311 of file LatticeSolidPhase.h.

◆ standardConcentrationUnits()

Units standardConcentrationUnits ( ) const
overridevirtual

Returns the units of the "standard concentration" for this phase.

These are the units of the values returned by the functions getActivityConcentrations() and standardConcentration(), which can vary between different ThermoPhase-derived classes, or change within a single class depending on input options. See the documentation for standardConcentration() for the derived class for specific details.

Reimplemented from ThermoPhase.

Definition at line 113 of file LatticeSolidPhase.cpp.

◆ getActivityConcentrations()

void getActivityConcentrations ( double *  c) const
overridevirtual

This method returns an array of generalized concentrations.

\( C^a_k \) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 118 of file LatticeSolidPhase.cpp.

◆ getActivityCoefficients()

void getActivityCoefficients ( double *  ac) const
overridevirtual

Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 128 of file LatticeSolidPhase.cpp.

◆ getChemPotentials()

void getChemPotentials ( double *  mu) const
overridevirtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

This returns the underlying lattice chemical potentials, as the units are kmol-1 of the sublattice species.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 207 of file LatticeSolidPhase.cpp.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( double *  hbar) const
overridevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol). For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
hbarOutput vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 218 of file LatticeSolidPhase.cpp.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( double *  sbar) const
overridevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R \ln(X_k) \]

The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
sbarOutput vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 229 of file LatticeSolidPhase.cpp.

◆ getPartialMolarCp()

void getPartialMolarCp ( double *  cpbar) const
overridevirtual

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters
cpbarOutput vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 240 of file LatticeSolidPhase.cpp.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( double *  vbar) const
overridevirtual

returns an array of partial molar volumes of the species in the solution.

Units: m^3 kmol-1.

For this solution, the partial molar volumes are equal to the constant species molar volumes.

Parameters
vbarOutput vector of partial molar volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 251 of file LatticeSolidPhase.cpp.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( double *  mu0) const
overridevirtual

Get the array of standard state chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution.

This returns the underlying lattice standard chemical potentials, as the units are kmol-1 of the sublattice species.

Parameters
mu0Output vector of chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 262 of file LatticeSolidPhase.cpp.

◆ standardConcentration()

double standardConcentration ( size_t  k = 0) const
overridevirtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (that is, generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (such as surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented from ThermoPhase.

Definition at line 135 of file LatticeSolidPhase.cpp.

◆ logStandardConc()

double logStandardConc ( size_t  k = 0) const
overridevirtual

Natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 140 of file LatticeSolidPhase.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( double *  grt) const
overridevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 272 of file LatticeSolidPhase.cpp.

◆ getGibbs_ref()

void getGibbs_ref ( double *  g) const
overridevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 280 of file LatticeSolidPhase.cpp.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
overridevirtual

Add a Species to this Phase.

Returns true if the species was successfully added, or false if the species was ignored.

Derived classes which need to size arrays according to the number of species should overload this method. The derived class implementation should call the base class method, and, if this returns true (indicating that the species has been added), adjust their array sizes accordingly.

See also
ignoreUndefinedElements addUndefinedElements throwUndefinedElements

Reimplemented from Phase.

Definition at line 343 of file LatticeSolidPhase.cpp.

◆ addLattice()

void addLattice ( shared_ptr< ThermoPhase lattice)

Add a lattice to this phase.

Definition at line 349 of file LatticeSolidPhase.cpp.

◆ setLatticeStoichiometry()

void setLatticeStoichiometry ( const Composition comp)

Set the lattice stoichiometric coefficients, \( \theta_i \).

Definition at line 376 of file LatticeSolidPhase.cpp.

◆ setParameters()

void setParameters ( const AnyMap phaseNode,
const AnyMap rootNode = AnyMap() 
)
overridevirtual

Set equation of state parameters from an AnyMap phase description.

Phases that need additional parameters from the root node should override this method.

Reimplemented from ThermoPhase.

Definition at line 288 of file LatticeSolidPhase.cpp.

◆ initThermo()

void initThermo ( )
overridevirtual

Initialize the ThermoPhase object after all species have been set up.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing from an AnyMap phase description (or from a YAML file), setupPhase() adds all the species, stores the input data in m_input, and then calls this method to set model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 295 of file LatticeSolidPhase.cpp.

◆ getParameters()

void getParameters ( AnyMap phaseNode) const
overridevirtual

Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newThermo(AnyMap&) function.

This does not include user-defined fields available in input().

Reimplemented from ThermoPhase.

Definition at line 310 of file LatticeSolidPhase.cpp.

◆ getSpeciesParameters()

void getSpeciesParameters ( const string &  name,
AnyMap speciesNode 
) const
overridevirtual

Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase.

Parameters
nameName of the species
speciesNodeMapping to be populated with parameters

Reimplemented from ThermoPhase.

Definition at line 330 of file LatticeSolidPhase.cpp.

◆ setLatticeMoleFractionsByName()

void setLatticeMoleFractionsByName ( int  n,
const string &  x 
)

Set the Lattice mole fractions using a string.

Parameters
nInteger value of the lattice whose mole fractions are being set
xstring containing Name:value pairs that will specify the mole fractions of species on a particular lattice

Definition at line 412 of file LatticeSolidPhase.cpp.

◆ modifyOneHf298SS()

void modifyOneHf298SS ( const size_t  k,
const double  Hf298New 
)
overridevirtual

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kSpecies k
Hf298NewSpecify the new value of the Heat of Formation at 298K and 1 bar

Reimplemented from ThermoPhase.

Definition at line 427 of file LatticeSolidPhase.cpp.

◆ resetHf298()

void resetHf298 ( const size_t  k = npos)
overridevirtual

Restore the original heat of formation of one or more species.

Resets changes made by modifyOneHf298SS(). If the species index is not specified, the heats of formation for all species are restored.

Reimplemented from ThermoPhase.

Definition at line 440 of file LatticeSolidPhase.cpp.

◆ _updateThermo()

void _updateThermo ( ) const
private

Update the reference thermodynamic functions.

Definition at line 396 of file LatticeSolidPhase.cpp.

Member Data Documentation

◆ m_press

double m_press = -1.0
protected

Current value of the pressure.

Definition at line 446 of file LatticeSolidPhase.h.

◆ m_molar_density

double m_molar_density = 0.0
protected

Current value of the molar density.

Definition at line 449 of file LatticeSolidPhase.h.

◆ m_lattice

vector<shared_ptr<ThermoPhase> > m_lattice
protected

Vector of sublattice ThermoPhase objects.

Definition at line 452 of file LatticeSolidPhase.h.

◆ m_x

vector<double> m_x
mutableprotected

Vector of mole fractions.

Note these mole fractions sum to one when summed over all phases. However, this is not what's passed down to the lower m_lattice objects.

Definition at line 459 of file LatticeSolidPhase.h.

◆ theta_

vector<double> theta_
protected

Lattice stoichiometric coefficients.

Definition at line 462 of file LatticeSolidPhase.h.

◆ tmpV_

vector<double> tmpV_
mutableprotected

Temporary vector.

Definition at line 465 of file LatticeSolidPhase.h.

◆ lkstart_

vector<size_t> lkstart_
protected

Definition at line 467 of file LatticeSolidPhase.h.

◆ m_rootNode

AnyMap m_rootNode
protected

Root node of the AnyMap which contains this phase definition.

Used to look up the phase definitions for the constituent phases.

Definition at line 471 of file LatticeSolidPhase.h.


The documentation for this class was generated from the following files: