Cantera  2.3.0
Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | List of all members

Base class for a phase with thermodynamic properties. More...

#include <ThermoPhase.h>

Inheritance diagram for ThermoPhase:
[legend]
Collaboration diagram for ThermoPhase:
[legend]

Public Member Functions

 ThermoPhase ()
 Constructor. More...
 
 ThermoPhase (const ThermoPhase &right)
 
ThermoPhaseoperator= (const ThermoPhase &right)
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication routine for objects which inherit from ThermoPhase. More...
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
Information Methods
virtual int eosType () const
 Equation of state type flag. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Mechanical Properties
virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
Electric Potential

The phase may be at some non-zero electrical potential.

These methods set or get the value of the electric potential.

void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
Activities, Standard States, and Activity Concentrations

The activity \(a_k\) of a species in solution is related to the chemical potential by

\[ \mu_k = \mu_k^0(T,P) + \hat R T \log a_k. \]

The quantity \(\mu_k^0(T,P)\) is the standard chemical potential at unit activity, which depends on temperature and pressure, but not on composition.

The activity is dimensionless.

virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
Partial Molar Properties of the Solution
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Return an array of partial molar heat capacities for the species in the mixture. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Return an array of partial molar volumes for the species in the mixture. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *mu) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference States
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
Specific Properties
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
Setting the State

These methods set all or part of the thermodynamic state.

virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
Chemical Equilibrium

Chemical equilibrium.

void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
Critical State Properties.

These methods are only implemented by subclasses that implement liquid-vapor equations of state.

virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
Saturation Properties.

These methods are only implemented by subclasses that implement full liquid-vapor equations of state.

virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
Initialization Methods - For Internal Use (ThermoPhase)
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (MultiSpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void installSlavePhases (XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
Derivatives of Thermodynamic Variables needed for Applications
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
Printing
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &right)
 
Phaseoperator= (const Phase &right)
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Member Functions

virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Protected Attributes

MultiSpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. Length equal to number of elements. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
vector_fp xMol_Ref
 Reference Mole Fraction Composition. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Private Member Functions

void setState_HPorUV (doublereal h, doublereal p, doublereal tol=1e-9, bool doUV=false)
 Carry out work in HP and UV calculations. More...
 
void setState_SPorSV (double s, double p, double tol=1e-9, bool doSV=false)
 Carry out work in SP and SV calculations. More...
 
void setState_conditional_TP (doublereal t, doublereal p, bool set_p)
 Helper function used by setState_HPorUV and setState_SPorSV. More...
 

Detailed Description

Base class for a phase with thermodynamic properties.

Class ThermoPhase is the base class for the family of classes that represent phases of matter of any type. It defines a common public interface, and implements a few methods. Most of the methods, however, are declared virtual and are meant to be overloaded in derived classes. The standard way used throughout Cantera to compute properties of phases of matter is through pointers of type ThermoPhase* that point to objects of subclasses of ThermoPhase.

Class ThermoPhase extends class Phase by adding methods to compute thermodynamic properties in addition to the ones (temperature, density, composition) that class Phase provides. The distinction is that the methods declared in ThermoPhase require knowing the particular equation of state of the phase of interest, while those of class Phase do not, since they only involve data values stored within the object.

Instances of subclasses of ThermoPhase should be created using the factory class ThermoFactory, not by calling the constructor directly. This allows new classes to be used with the various Cantera language interfaces.

To implement a new equation of state, derive a class from ThermoPhase and overload the virtual methods in ThermoPhase. Methods that are not needed can be left unimplemented, which will cause an exception to be thrown if it is called.

Relationship with the kinetics operator:

Describe activity coefficients.

Describe K_a, K_p, and K_c, These are three different equilibrium constants.

K_a is the calculation of the equilibrium constant from the standard state Gibbs free energy values. It is by definition dimensionless.

K_p is the calculation of the equilibrium constant from the reference state Gibbs free energy values. It is by definition dimensionless. The pressure dependence is handled entirely on the RHS of the equilibrium expression.

K_c is the equilibrium constant calculated from the activity concentrations. The dimensions depend on the number of products and reactants.

The kinetics manager requires the calculation of K_c for the calculation of the reverse rate constant

Definition at line 93 of file ThermoPhase.h.

Constructor & Destructor Documentation

◆ ThermoPhase() [1/2]

Constructor.

Note that ThermoPhase is meant to be used as a base class, so this constructor should not be called explicitly.

Definition at line 27 of file ThermoPhase.cpp.

Referenced by ThermoPhase::duplMyselfAsThermoPhase().

◆ ThermoPhase() [2/2]

ThermoPhase ( const ThermoPhase right)
Deprecated:
Copy constructor to be removed after Cantera 2.3 for all classes derived from ThermoPhase.

Definition at line 45 of file ThermoPhase.cpp.

References Cantera::warn_deprecated().

Member Function Documentation

◆ operator=()

ThermoPhase & operator= ( const ThermoPhase right)

◆ duplMyselfAsThermoPhase()

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication routine for objects which inherit from ThermoPhase.

This virtual routine can be used to duplicate ThermoPhase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.

These routines are basically wrappers around the derived copy constructor.

Deprecated:
To be removed after Cantera 2.3 for all classes derived from ThermoPhase.

Reimplemented in HMWSoln, DebyeHuckel, PhaseCombo_Interaction, IdealGasPhase, MargulesVPSSTP, RedlichKisterVPSSTP, MixedSolventElectrolyte, LatticePhase, MetalSHEelectrons, MolalityVPSSTP, FixedChemPotSSTP, StoichSubstance, SurfPhase, WaterSSTP, IonsFromNeutralVPSSTP, MineralEQ3, LatticeSolidPhase, IdealSolidSolnPhase, GibbsExcessVPSSTP, IdealMolalSoln, MixtureFugacityTP, MolarityIonicVPSSTP, SingleSpeciesTP, VPStandardStateTP, RedlichKwongMFTP, IdealSolnGasVPSS, SemiconductorPhase, EdgePhase, MetalPhase, PureFluidPhase, ConstDensityThermo, and MaskellSolidSolnPhase.

Definition at line 96 of file ThermoPhase.cpp.

References ThermoPhase::ThermoPhase(), and Cantera::warn_deprecated().

◆ eosType()

virtual int eosType ( ) const
inlinevirtual

Equation of state type flag.

The base class returns zero. Subclasses should define this to return a unique non-zero value. Constants defined for this purpose are listed in mix_defs.h.

Deprecated:
To be removed after Cantera 2.3. Use type() instead.

Reimplemented in HMWSoln, DebyeHuckel, PhaseCombo_Interaction, IdealGasPhase, LatticePhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, SurfPhase, IonsFromNeutralVPSSTP, WaterSSTP, MineralEQ3, LatticeSolidPhase, IdealSolidSolnPhase, SingleSpeciesTP, RedlichKwongMFTP, IdealSolnGasVPSS, SemiconductorPhase, MetalPhase, EdgePhase, PureFluidPhase, and ConstDensityThermo.

Definition at line 132 of file ThermoPhase.h.

References Cantera::warn_deprecated().

◆ type()

virtual std::string type ( ) const
inlinevirtual

◆ refPressure()

virtual doublereal refPressure ( ) const
inlinevirtual

◆ minTemp()

virtual doublereal minTemp ( size_t  k = npos) const
inlinevirtual

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 164 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and MultiSpeciesThermo::minTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupSolidTransport().

◆ Hf298SS()

doublereal Hf298SS ( const size_t  k) const
inline

Report the 298 K Heat of Formation of the standard state of one species (J kmol-1)

The 298K Heat of Formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kspecies index
Returns
the current value of the Heat of Formation at 298K and 1 bar

Definition at line 179 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and MultiSpeciesThermo::reportOneHf298().

Referenced by Reactor::addSensitivitySpeciesEnthalpy().

◆ modifyOneHf298SS()

virtual void modifyOneHf298SS ( const size_t  k,
const doublereal  Hf298New 
)
inlinevirtual

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kSpecies k
Hf298NewSpecify the new value of the Heat of Formation at 298K and 1 bar

Reimplemented in LatticeSolidPhase.

Definition at line 194 of file ThermoPhase.h.

References ThermoPhase::invalidateCache(), ThermoPhase::m_spthermo, and MultiSpeciesThermo::modifyOneHf298().

Referenced by Reactor::applySensitivity().

◆ resetHf298()

void resetHf298 ( const size_t  k = npos)
virtual

Restore the original heat of formation of one or more species.

Resets changes made by modifyOneHf298SS(). If the species index is not specified, the heats of formation for all species are restored.

Reimplemented in LatticeSolidPhase.

Definition at line 103 of file ThermoPhase.cpp.

References ThermoPhase::invalidateCache(), ThermoPhase::m_spthermo, Cantera::npos, Phase::nSpecies(), and MultiSpeciesThermo::resetHf298().

Referenced by Reactor::resetSensitivity().

◆ maxTemp()

virtual doublereal maxTemp ( size_t  k = npos) const
inlinevirtual

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented in LatticeSolidPhase.

Definition at line 217 of file ThermoPhase.h.

References ThermoPhase::m_spthermo, and MultiSpeciesThermo::maxTemp().

Referenced by MultiPhase::addPhase(), ChemEquil::equilibrate(), TransportFactory::setupLiquidTransport(), and TransportFactory::setupSolidTransport().

◆ chargeNeutralityNecessary()

bool chargeNeutralityNecessary ( ) const
inline

Returns the chargeNeutralityNecessity boolean.

Some phases must have zero net charge in order for their thermodynamics functions to be valid. If this is so, then the value returned from this function is true. If this is not the case, then this is false. Now, ideal gases have this parameter set to false, while solution with molality- based activity coefficients have this parameter set to true.

Definition at line 229 of file ThermoPhase.h.

References ThermoPhase::m_chargeNeutralityNecessary.

Referenced by Cantera::chargeNeutralityElement().

◆ enthalpy_mole()

virtual doublereal enthalpy_mole ( ) const
inlinevirtual

◆ intEnergy_mole()

virtual doublereal intEnergy_mole ( ) const
inlinevirtual

Molar internal energy. Units: J/kmol.

Reimplemented in SurfPhase, LatticeSolidPhase, IdealMolalSoln, SingleSpeciesTP, MetalPhase, and PureFluidPhase.

Definition at line 243 of file ThermoPhase.h.

References ThermoPhase::enthalpy_mole(), Phase::molarVolume(), and ThermoPhase::pressure().

Referenced by ThermoPhase::intEnergy_mass().

◆ entropy_mole()

virtual doublereal entropy_mole ( ) const
inlinevirtual

◆ gibbs_mole()

virtual doublereal gibbs_mole ( ) const
inlinevirtual

◆ cp_mole()

virtual doublereal cp_mole ( ) const
inlinevirtual

◆ cv_mole()

virtual doublereal cv_mole ( ) const
inlinevirtual

◆ pressure()

virtual doublereal pressure ( ) const
inlinevirtual

◆ isothermalCompressibility()

virtual doublereal isothermalCompressibility ( ) const
inlinevirtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented in IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, WaterSSTP, MineralEQ3, PureFluidPhase, and IdealSolnGasVPSS.

Definition at line 293 of file ThermoPhase.h.

Referenced by HMWSoln::cv_mole().

◆ thermalExpansionCoeff()

virtual doublereal thermalExpansionCoeff ( ) const
inlinevirtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented in IdealGasPhase, IdealMolalSoln, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, WaterSSTP, MineralEQ3, and PureFluidPhase.

Definition at line 304 of file ThermoPhase.h.

◆ setElectricPotential()

void setElectricPotential ( doublereal  v)
inline

Set the electric potential of this phase (V).

This is used by classes InterfaceKinetics and EdgeKinetics to compute the rates of charge-transfer reactions, and in computing the electrochemical potentials of the species.

Each phase may have its own electric potential.

Parameters
vInput value of the electric potential in Volts

Definition at line 327 of file ThermoPhase.h.

References ThermoPhase::m_phi.

◆ electricPotential()

doublereal electricPotential ( ) const
inline

Returns the electric potential of this phase (V).

Units are Volts (which are Joules/coulomb)

Definition at line 335 of file ThermoPhase.h.

References ThermoPhase::m_phi.

Referenced by InterfaceKinetics::_update_rates_phi(), ThermoPhase::getElectrochemPotentials(), Cantera::vcs_Cantera_to_vprob(), and Cantera::vcs_Cantera_update_vprob().

◆ activityConvention()

int activityConvention ( ) const
virtual

This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions.

Currently, there are two activity conventions:

  • Molar-based activities Unit activity of species at either a hypothetical pure solution of the species or at a hypothetical pure ideal solution at infinite dilution cAC_CONVENTION_MOLAR 0
    • default
  • Molality-based activities (unit activity of solutes at a hypothetical 1 molal solution referenced to infinite dilution at all pressures and temperatures). cAC_CONVENTION_MOLALITY 1

Reimplemented in MolalityVPSSTP.

Definition at line 114 of file ThermoPhase.cpp.

References Cantera::cAC_CONVENTION_MOLAR.

Referenced by vcs_MultiPhaseEquil::reportCSV(), and Cantera::vcs_Cantera_to_vprob().

◆ standardStateConvention()

int standardStateConvention ( ) const
virtual

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

Currently, there are two standard state conventions:

  • Temperature-based activities cSS_CONVENTION_TEMPERATURE 0
    • default
  • Variable Pressure and Temperature -based activities cSS_CONVENTION_VPSS 1
  • Thermodynamics is set via slave ThermoPhase objects with nothing being carried out at this ThermoPhase object level cSS_CONVENTION_SLAVE 2

Reimplemented in LatticeSolidPhase, MixtureFugacityTP, and VPStandardStateTP.

Definition at line 119 of file ThermoPhase.cpp.

References ThermoPhase::m_ssConvention.

Referenced by Cantera::importPhase().

◆ getActivityConcentrations()

virtual void getActivityConcentrations ( doublereal *  c) const
inlinevirtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticePhase, MolalityVPSSTP, LatticeSolidPhase, IdealSolidSolnPhase, IdealMolalSoln, MetalSHEelectrons, SurfPhase, FixedChemPotSSTP, StoichSubstance, MineralEQ3, GibbsExcessVPSSTP, RedlichKwongMFTP, MetalPhase, IdealSolnGasVPSS, PureFluidPhase, ConstDensityThermo, and MaskellSolidSolnPhase.

Definition at line 403 of file ThermoPhase.h.

Referenced by AqueousKinetics::_update_rates_C(), InterfaceKinetics::_update_rates_C(), ThermoPhase::getActivities(), and GasKinetics::update_rates_C().

◆ standardConcentration()

virtual doublereal standardConcentration ( size_t  k = 0) const
inlinevirtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticeSolidPhase, LatticePhase, MolalityVPSSTP, IdealSolidSolnPhase, IdealMolalSoln, MetalSHEelectrons, SurfPhase, FixedChemPotSSTP, StoichSubstance, MineralEQ3, GibbsExcessVPSSTP, RedlichKwongMFTP, IdealSolnGasVPSS, MetalPhase, PureFluidPhase, ConstDensityThermo, and MaskellSolidSolnPhase.

Definition at line 424 of file ThermoPhase.h.

Referenced by InterfaceKinetics::buildSurfaceArrhenius(), ThermoPhase::getActivities(), ThermoPhase::logStandardConc(), and InterfaceKinetics::updateExchangeCurrentQuantities().

◆ logStandardConc()

doublereal logStandardConc ( size_t  k = 0) const
virtual

Natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species (defaults to zero)

Reimplemented in LatticeSolidPhase, LatticePhase, MetalSHEelectrons, SurfPhase, FixedChemPotSSTP, StoichSubstance, MineralEQ3, GibbsExcessVPSSTP, MetalPhase, and MaskellSolidSolnPhase.

Definition at line 124 of file ThermoPhase.cpp.

References ThermoPhase::standardConcentration().

Referenced by AqueousKinetics::getEquilibriumConstants(), AqueousKinetics::updateKc(), and InterfaceKinetics::updateMu0().

◆ getActivities()

void getActivities ( doublereal *  a) const
virtual

Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration.

Note, for molality based formulations, this returns the molality based activities.

We resolve this function at this level by calling on the activityConcentration function. However, derived classes may want to override this default implementation.

Parameters
aOutput vector of activities. Length: m_kk.

Reimplemented in HMWSoln, DebyeHuckel, MolalityVPSSTP, IdealMolalSoln, GibbsExcessVPSSTP, SingleSpeciesTP, and PureFluidPhase.

Definition at line 129 of file ThermoPhase.cpp.

References ThermoPhase::getActivityConcentrations(), Phase::nSpecies(), and ThermoPhase::standardConcentration().

Referenced by ThermoPhase::getCsvReportData(), and vcs_MultiPhaseEquil::reportCSV().

◆ getActivityCoefficients()

virtual void getActivityCoefficients ( doublereal *  ac) const
inlinevirtual

Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented in IdealGasPhase, LatticePhase, MolalityVPSSTP, PhaseCombo_Interaction, IdealSolidSolnPhase, LatticeSolidPhase, MixedSolventElectrolyte, IonsFromNeutralVPSSTP, GibbsExcessVPSSTP, RedlichKwongMFTP, IdealSolnGasVPSS, SingleSpeciesTP, MaskellSolidSolnPhase, and ConstDensityThermo.

Definition at line 453 of file ThermoPhase.h.

References Phase::m_kk.

Referenced by ChemEquil::calcEmoles(), ThermoPhase::getCsvReportData(), ThermoPhase::getLnActivityCoefficients(), and vcs_MultiPhaseEquil::reportCSV().

◆ getLnActivityCoefficients()

void getLnActivityCoefficients ( doublereal *  lnac) const
virtual

Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
lnacOutput vector of ln activity coefficients. Length: m_kk.

Reimplemented in RedlichKisterVPSSTP, MargulesVPSSTP, and MolarityIonicVPSSTP.

Definition at line 137 of file ThermoPhase.cpp.

References ThermoPhase::getActivityCoefficients(), and Phase::m_kk.

Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().

◆ getChemPotentials_RT()

virtual void getChemPotentials_RT ( doublereal *  mu) const
inlinevirtual

Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies.

\( \mu_k / \hat R T \). Units: unitless

Parameters
muOutput vector of dimensionless chemical potentials. Length: m_kk.

Reimplemented in IdealSolidSolnPhase, RedlichKwongMFTP, MixtureFugacityTP, SingleSpeciesTP, MaskellSolidSolnPhase, and VPStandardStateTP.

Definition at line 481 of file ThermoPhase.h.

◆ getChemPotentials()

virtual void getChemPotentials ( doublereal *  mu) const
inlinevirtual

◆ getElectrochemPotentials()

void getElectrochemPotentials ( doublereal *  mu) const

Get the species electrochemical potentials.

These are partial molar quantities. This method adds a term \( F z_k \phi_p \) to each chemical potential. The electrochemical potential of species k in a phase p, \( \zeta_k \), is related to the chemical potential via the following equation,

\[ \zeta_{k}(T,P) = \mu_{k}(T,P) + F z_k \phi_p \]

Parameters
muOutput vector of species electrochemical potentials. Length: m_kk. Units: J/kmol

Definition at line 145 of file ThermoPhase.cpp.

References Phase::charge(), ThermoPhase::electricPotential(), ThermoPhase::getChemPotentials(), and Phase::m_kk.

Referenced by InterfaceKinetics::getDeltaElectrochemPotentials().

◆ getPartialMolarEnthalpies()

virtual void getPartialMolarEnthalpies ( doublereal *  hbar) const
inlinevirtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol)

Parameters
hbarOutput vector of species partial molar enthalpies. Length: m_kk. units are J/kmol.

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticePhase, IdealSolidSolnPhase, PhaseCombo_Interaction, LatticeSolidPhase, IdealMolalSoln, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, IonsFromNeutralVPSSTP, SurfPhase, RedlichKwongMFTP, SingleSpeciesTP, IdealSolnGasVPSS, MolarityIonicVPSSTP, MaskellSolidSolnPhase, and PureFluidPhase.

Definition at line 520 of file ThermoPhase.h.

Referenced by MolalityVPSSTP::getCsvReportData(), ThermoPhase::getCsvReportData(), BulkKinetics::getDeltaEnthalpy(), and InterfaceKinetics::getDeltaEnthalpy().

◆ getPartialMolarEntropies()

virtual void getPartialMolarEntropies ( doublereal *  sbar) const
inlinevirtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K.

Parameters
sbarOutput vector of species partial molar entropies. Length = m_kk. units are J/kmol/K.

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticePhase, IdealSolidSolnPhase, PhaseCombo_Interaction, IdealMolalSoln, LatticeSolidPhase, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, IonsFromNeutralVPSSTP, SurfPhase, SingleSpeciesTP, RedlichKwongMFTP, MolarityIonicVPSSTP, IdealSolnGasVPSS, MaskellSolidSolnPhase, and PureFluidPhase.

Definition at line 530 of file ThermoPhase.h.

Referenced by MolalityVPSSTP::getCsvReportData(), ThermoPhase::getCsvReportData(), BulkKinetics::getDeltaEntropy(), and InterfaceKinetics::getDeltaEntropy().

◆ getPartialMolarIntEnergies()

virtual void getPartialMolarIntEnergies ( doublereal *  ubar) const
inlinevirtual

Return an array of partial molar internal energies for the species in the mixture.

Units: J/kmol.

Parameters
ubarOutput vector of species partial molar internal energies. Length = m_kk. units are J/kmol.

Reimplemented in IdealGasPhase, SingleSpeciesTP, RedlichKwongMFTP, IdealSolnGasVPSS, and PureFluidPhase.

Definition at line 540 of file ThermoPhase.h.

Referenced by MolalityVPSSTP::getCsvReportData(), and ThermoPhase::getCsvReportData().

◆ getPartialMolarCp()

virtual void getPartialMolarCp ( doublereal *  cpbar) const
inlinevirtual

Return an array of partial molar heat capacities for the species in the mixture.

Units: J/kmol/K

Parameters
cpbarOutput vector of species partial molar heat capacities at constant pressure. Length = m_kk. units are J/kmol/K.

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticePhase, IdealSolidSolnPhase, PhaseCombo_Interaction, IdealMolalSoln, LatticeSolidPhase, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, SurfPhase, SingleSpeciesTP, RedlichKwongMFTP, MolarityIonicVPSSTP, IdealSolnGasVPSS, MaskellSolidSolnPhase, and PureFluidPhase.

Definition at line 551 of file ThermoPhase.h.

Referenced by IonsFromNeutralVPSSTP::cp_mole(), IonsFromNeutralVPSSTP::cv_mole(), MolalityVPSSTP::getCsvReportData(), and ThermoPhase::getCsvReportData().

◆ getPartialMolarVolumes()

virtual void getPartialMolarVolumes ( doublereal *  vbar) const
inlinevirtual

Return an array of partial molar volumes for the species in the mixture.

Units: m^3/kmol.

Parameters
vbarOutput vector of species partial molar volumes. Length = m_kk. units are m^3/kmol.

Reimplemented in HMWSoln, DebyeHuckel, IdealGasPhase, LatticePhase, IdealSolidSolnPhase, PhaseCombo_Interaction, LatticeSolidPhase, IdealMolalSoln, RedlichKisterVPSSTP, MargulesVPSSTP, FixedChemPotSSTP, MixedSolventElectrolyte, GibbsExcessVPSSTP, SurfPhase, SingleSpeciesTP, MolarityIonicVPSSTP, RedlichKwongMFTP, IdealSolnGasVPSS, MaskellSolidSolnPhase, and PureFluidPhase.

Definition at line 561 of file ThermoPhase.h.

Referenced by MolalityVPSSTP::getCsvReportData(), ThermoPhase::getCsvReportData(), and vcs_MultiPhaseEquil::reportCSV().

◆ getStandardChemPotentials()

virtual void getStandardChemPotentials ( doublereal *  mu) const
inlinevirtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented in IdealGasPhase, LatticePhase, IdealSolidSolnPhase, LatticeSolidPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, SurfPhase, MineralEQ3, WaterSSTP, MixtureFugacityTP, MaskellSolidSolnPhase, PureFluidPhase, MetalPhase, VPStandardStateTP, and ConstDensityThermo.

Definition at line 579 of file ThermoPhase.h.

Referenced by SingleSpeciesTP::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), SingleSpeciesTP::getChemPotentials_RT(), BulkKinetics::getDeltaSSGibbs(), InterfaceKinetics::getDeltaSSGibbs(), GasKinetics::getEquilibriumConstants(), AqueousKinetics::getEquilibriumConstants(), vcs_MultiPhaseEquil::reportCSV(), InterfaceKinetics::updateExchangeCurrentQuantities(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), and InterfaceKinetics::updateMu0().

◆ getEnthalpy_RT()

virtual void getEnthalpy_RT ( doublereal *  hrt) const
inlinevirtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented in IdealGasPhase, LatticePhase, IdealSolidSolnPhase, SurfPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, MineralEQ3, MixtureFugacityTP, WaterSSTP, PureFluidPhase, VPStandardStateTP, MetalPhase, and ConstDensityThermo.

Definition at line 589 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::enthalpy_RT(), BulkKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), and SingleSpeciesTP::getPartialMolarEnthalpies().

◆ getEntropy_R()

virtual void getEntropy_R ( doublereal *  sr) const
inlinevirtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented in IdealGasPhase, LatticePhase, IdealSolidSolnPhase, SurfPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, MineralEQ3, MixtureFugacityTP, WaterSSTP, PureFluidPhase, VPStandardStateTP, MetalPhase, and ConstDensityThermo.

Definition at line 599 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::entropy_R(), BulkKinetics::getDeltaSSEntropy(), InterfaceKinetics::getDeltaSSEntropy(), and SingleSpeciesTP::getPartialMolarEntropies().

◆ getGibbs_RT()

virtual void getGibbs_RT ( doublereal *  grt) const
inlinevirtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented in LatticePhase, IdealGasPhase, IdealSolidSolnPhase, SurfPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, MineralEQ3, MixtureFugacityTP, WaterSSTP, PureFluidPhase, VPStandardStateTP, and ConstDensityThermo.

Definition at line 609 of file ThermoPhase.h.

Referenced by SingleSpeciesTP::getPureGibbs(), and PDSS_IonsFromNeutral::gibbs_RT().

◆ getPureGibbs()

virtual void getPureGibbs ( doublereal *  gpure) const
inlinevirtual

Get the Gibbs functions for the standard state of the species at the current T and P of the solution.

Units are Joules/kmol

Parameters
gpureOutput vector of standard state Gibbs free energies. Length: m_kk.

Reimplemented in IdealGasPhase, IdealSolidSolnPhase, LatticePhase, SurfPhase, MixtureFugacityTP, SingleSpeciesTP, MaskellSolidSolnPhase, VPStandardStateTP, and ConstDensityThermo.

Definition at line 620 of file ThermoPhase.h.

◆ getIntEnergy_RT()

virtual void getIntEnergy_RT ( doublereal *  urt) const
inlinevirtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented in IdealGasPhase, IdealSolidSolnPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, MineralEQ3, MixtureFugacityTP, WaterSSTP, and VPStandardStateTP.

Definition at line 630 of file ThermoPhase.h.

Referenced by SingleSpeciesTP::getPartialMolarIntEnergies().

◆ getCp_R()

virtual void getCp_R ( doublereal *  cpr) const
inlinevirtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented in LatticePhase, IdealGasPhase, IdealSolidSolnPhase, SurfPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, MixtureFugacityTP, MineralEQ3, WaterSSTP, VPStandardStateTP, and ConstDensityThermo.

Definition at line 641 of file ThermoPhase.h.

Referenced by SingleSpeciesTP::cp_mole(), PDSS_IonsFromNeutral::cp_R(), and SingleSpeciesTP::getPartialMolarCp().

◆ getStandardVolumes()

virtual void getStandardVolumes ( doublereal *  vol) const
inlinevirtual

Get the molar volumes of the species standard states at the current T and P of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented in LatticePhase, IdealSolidSolnPhase, IdealGasPhase, SurfPhase, FixedChemPotSSTP, MixtureFugacityTP, SingleSpeciesTP, and VPStandardStateTP.

Definition at line 653 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::molarVolume().

◆ getEnthalpy_RT_ref()

virtual void getEnthalpy_RT_ref ( doublereal *  hrt) const
inlinevirtual

Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
hrtOutput vector containing the nondimensional reference state enthalpies. Length: m_kk.

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, SurfPhase, MixtureFugacityTP, FixedChemPotSSTP, SingleSpeciesTP, VPStandardStateTP, WaterSSTP, and PureFluidPhase.

Definition at line 668 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::enthalpy_RT_ref().

◆ getGibbs_RT_ref()

virtual void getGibbs_RT_ref ( doublereal *  grt) const
inlinevirtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented in LatticePhase, IdealSolidSolnPhase, IdealGasPhase, LatticeSolidPhase, SurfPhase, MixtureFugacityTP, FixedChemPotSSTP, SingleSpeciesTP, VPStandardStateTP, WaterSSTP, and PureFluidPhase.

Definition at line 679 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::gibbs_RT_ref().

◆ getGibbs_ref()

virtual void getGibbs_ref ( doublereal *  g) const
inlinevirtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented in LatticePhase, IdealSolidSolnPhase, IdealGasPhase, LatticeSolidPhase, MixtureFugacityTP, FixedChemPotSSTP, VPStandardStateTP, SingleSpeciesTP, WaterSSTP, and PureFluidPhase.

Definition at line 690 of file ThermoPhase.h.

◆ getEntropy_R_ref()

virtual void getEntropy_R_ref ( doublereal *  er) const
inlinevirtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MixtureFugacityTP, SurfPhase, FixedChemPotSSTP, VPStandardStateTP, SingleSpeciesTP, WaterSSTP, and PureFluidPhase.

Definition at line 701 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::entropy_R_ref().

◆ getIntEnergy_RT_ref()

virtual void getIntEnergy_RT_ref ( doublereal *  urt) const
inlinevirtual

Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
urtOutput vector of nondimensional reference state internal energies of the species. Length: m_kk

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, and MineralEQ3.

Definition at line 712 of file ThermoPhase.h.

◆ getCp_R_ref()

virtual void getCp_R_ref ( doublereal *  cprt) const
inlinevirtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented in IdealSolidSolnPhase, IdealGasPhase, MixtureFugacityTP, SurfPhase, FixedChemPotSSTP, VPStandardStateTP, SingleSpeciesTP, and WaterSSTP.

Definition at line 724 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::cp_R_ref(), and HighPressureGasTransport::thermalConductivity().

◆ getStandardVolumes_ref()

virtual void getStandardVolumes_ref ( doublereal *  vol) const
inlinevirtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented in IdealGasPhase, MixtureFugacityTP, VPStandardStateTP, and WaterSSTP.

Definition at line 736 of file ThermoPhase.h.

Referenced by PDSS_IonsFromNeutral::molarVolume_ref().

◆ setReferenceComposition()

void setReferenceComposition ( const doublereal *const  x)
virtual

Sets the reference composition.

Parameters
xMole fraction vector to set the reference composition to. If this is zero, then the reference mole fraction is set to the current mole fraction vector.
Deprecated:
Unused. To be removed after Cantera 2.3.

Definition at line 677 of file ThermoPhase.cpp.

References Phase::getMoleFractions(), Phase::m_kk, Cantera::warn_deprecated(), and ThermoPhase::xMol_Ref.

◆ getReferenceComposition()

void getReferenceComposition ( doublereal *const  x) const
virtual

Gets the reference composition.

The reference mole fraction is a safe mole fraction.

Parameters
xMole fraction vector containing the reference composition.
Deprecated:
Unused. To be removed after Cantera 2.3.

Definition at line 694 of file ThermoPhase.cpp.

References Cantera::warn_deprecated(), and ThermoPhase::xMol_Ref.

◆ enthalpy_mass()

doublereal enthalpy_mass ( ) const
inline

◆ intEnergy_mass()

doublereal intEnergy_mass ( ) const
inline

◆ entropy_mass()

doublereal entropy_mass ( ) const
inline

Specific entropy. Units: J/kg/K.

Definition at line 774 of file ThermoPhase.h.

References ThermoPhase::entropy_mole(), and Phase::meanMolecularWeight().

Referenced by ChemEquil::equilibrate(), SingleSpeciesTP::setState_SP(), and SingleSpeciesTP::setState_SV().

◆ gibbs_mass()

doublereal gibbs_mass ( ) const
inline

Specific Gibbs function. Units: J/kg.

Definition at line 779 of file ThermoPhase.h.

References ThermoPhase::gibbs_mole(), and Phase::meanMolecularWeight().

◆ cp_mass()

doublereal cp_mass ( ) const
inline

Specific heat at constant pressure. Units: J/kg/K.

Definition at line 784 of file ThermoPhase.h.

References ThermoPhase::cp_mole(), and Phase::meanMolecularWeight().

Referenced by SingleSpeciesTP::setState_HP(), SingleSpeciesTP::setState_SP(), and StFlow::updateThermo().

◆ cv_mass()

doublereal cv_mass ( ) const
inline

Specific heat at constant volume. Units: J/kg/K.

Definition at line 789 of file ThermoPhase.h.

References ThermoPhase::cv_mole(), and Phase::meanMolecularWeight().

Referenced by SingleSpeciesTP::setState_SV(), and SingleSpeciesTP::setState_UV().

◆ _RT()

doublereal _RT ( ) const
inline

Return the Gas Constant multiplied by the current temperature.

The units are Joules kmol-1.

Deprecated:
use RT() instead. To be removed after Cantera 2.3.

Definition at line 799 of file ThermoPhase.h.

References Cantera::GasConstant, Phase::temperature(), and Cantera::warn_deprecated().

◆ RT()

doublereal RT ( ) const
inline

Return the Gas Constant multiplied by the current temperature.

The units are Joules kmol-1

Definition at line 809 of file ThermoPhase.h.

References Cantera::GasConstant, and Phase::temperature().

Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolnGasVPSS::calcDensity(), InterfaceKinetics::checkPartialEquil(), ConstDensityThermo::enthalpy_mole(), MaskellSolidSolnPhase::enthalpy_mole(), RedlichKwongMFTP::enthalpy_mole(), IdealSolnGasVPSS::enthalpy_mole(), IdealSolidSolnPhase::enthalpy_mole(), LatticePhase::enthalpy_mole(), IdealGasPhase::enthalpy_mole(), ChemEquil::equilibrate(), RedlichKwongMFTP::getActivityCoefficients(), ConstDensityThermo::getChemPotentials(), MolarityIonicVPSSTP::getChemPotentials(), MaskellSolidSolnPhase::getChemPotentials(), IdealSolnGasVPSS::getChemPotentials(), RedlichKwongMFTP::getChemPotentials(), IonsFromNeutralVPSSTP::getChemPotentials(), SurfPhase::getChemPotentials(), MixedSolventElectrolyte::getChemPotentials(), MargulesVPSSTP::getChemPotentials(), RedlichKisterVPSSTP::getChemPotentials(), IdealMolalSoln::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials(), PhaseCombo_Interaction::getChemPotentials(), LatticePhase::getChemPotentials(), IdealGasPhase::getChemPotentials(), DebyeHuckel::getChemPotentials(), HMWSoln::getChemPotentials(), VPStandardStateTP::getChemPotentials_RT(), MaskellSolidSolnPhase::getChemPotentials_RT(), SingleSpeciesTP::getChemPotentials_RT(), MixtureFugacityTP::getChemPotentials_RT(), RedlichKwongMFTP::getChemPotentials_RT(), BulkKinetics::getDeltaSSEnthalpy(), InterfaceKinetics::getDeltaSSEnthalpy(), ThermoPhase::getElementPotentials(), PureFluidPhase::getEnthalpy_RT(), WaterSSTP::getEnthalpy_RT(), StoichSubstance::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT(), SurfPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), LatticePhase::getEnthalpy_RT(), FixedChemPotSSTP::getEnthalpy_RT_ref(), GasKinetics::getEquilibriumConstants(), AqueousKinetics::getEquilibriumConstants(), InterfaceKinetics::getEquilibriumConstants(), PureFluidPhase::getGibbs_ref(), WaterSSTP::getGibbs_ref(), SingleSpeciesTP::getGibbs_ref(), MixtureFugacityTP::getGibbs_ref(), LatticeSolidPhase::getGibbs_ref(), IdealGasPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_ref(), LatticePhase::getGibbs_ref(), PureFluidPhase::getGibbs_RT(), WaterSSTP::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT(), SurfPhase::getGibbs_RT(), IdealSolidSolnPhase::getGibbs_RT(), LatticePhase::getGibbs_RT(), FixedChemPotSSTP::getGibbs_RT_ref(), StoichSubstance::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), StoichSubstance::getIntEnergy_RT_ref(), MetalSHEelectrons::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), DebyeHuckel::getPartialMolarCp(), HMWSoln::getPartialMolarCp(), IdealSolnGasVPSS::getPartialMolarEnthalpies(), SingleSpeciesTP::getPartialMolarEnthalpies(), RedlichKwongMFTP::getPartialMolarEnthalpies(), SurfPhase::getPartialMolarEnthalpies(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), MixedSolventElectrolyte::getPartialMolarEnthalpies(), MargulesVPSSTP::getPartialMolarEnthalpies(), IdealMolalSoln::getPartialMolarEnthalpies(), IdealSolidSolnPhase::getPartialMolarEnthalpies(), LatticePhase::getPartialMolarEnthalpies(), IdealGasPhase::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEnthalpies(), HMWSoln::getPartialMolarEnthalpies(), DebyeHuckel::getPartialMolarEntropies(), HMWSoln::getPartialMolarEntropies(), IdealSolnGasVPSS::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarIntEnergies(), SingleSpeciesTP::getPartialMolarIntEnergies(), IdealGasPhase::getPartialMolarIntEnergies(), RedlichKwongMFTP::getPartialMolarVolumes(), DebyeHuckel::getPartialMolarVolumes(), HMWSoln::getPartialMolarVolumes(), ConstDensityThermo::getPureGibbs(), MaskellSolidSolnPhase::getPureGibbs(), SingleSpeciesTP::getPureGibbs(), MixtureFugacityTP::getPureGibbs(), LatticePhase::getPureGibbs(), IdealSolidSolnPhase::getPureGibbs(), IdealGasPhase::getPureGibbs(), VPStandardStateTP::getStandardChemPotentials(), MixtureFugacityTP::getStandardChemPotentials(), StoichSubstance::getStandardChemPotentials(), MetalSHEelectrons::getStandardChemPotentials(), LatticePhase::getStandardChemPotentials(), IdealGasPhase::getStandardChemPotentials(), MixtureFugacityTP::getStandardVolumes(), MixtureFugacityTP::getStandardVolumes_ref(), IdealGasPhase::getStandardVolumes_ref(), IdealSolidSolnPhase::gibbs_mole(), FixedChemPotSSTP::initThermoXML(), HMWSoln::relative_enthalpy(), ThermoPhase::setElementPotentials(), IdealGasPhase::setPressure(), IdealSolnGasVPSS::standardConcentration(), IdealGasPhase::standardConcentration(), AqueousKinetics::updateKc(), GasKinetics::updateKc(), InterfaceKinetics::updateKc(), InterfaceKinetics::updateMu0(), and MixtureFugacityTP::z().

◆ setPressure()

virtual void setPressure ( doublereal  p)
inlinevirtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is the density. Therefore, this function solves for the density that will yield the desired input pressure. The temperature and composition are held constant during this process.

Parameters
pinput Pressure (Pa)

Reimplemented in IdealGasPhase, LatticePhase, SurfPhase, MixtureFugacityTP, LatticeSolidPhase, MetalSHEelectrons, FixedChemPotSSTP, IdealSolidSolnPhase, StoichSubstance, WaterSSTP, MineralEQ3, VPStandardStateTP, MaskellSolidSolnPhase, IdealSolnGasVPSS, MetalPhase, PureFluidPhase, SemiconductorPhase, and ConstDensityThermo.

Definition at line 831 of file ThermoPhase.h.

Referenced by ChemEquil::calcEmoles(), ThermoPhase::setState_conditional_TP(), SingleSpeciesTP::setState_HP(), ThermoPhase::setState_PX(), ThermoPhase::setState_PY(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_TP(), and ThermoPhase::setStateFromXML().

◆ setState_TPX() [1/3]

void setState_TPX ( doublereal  t,
doublereal  p,
const doublereal *  x 
)
virtual

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Reimplemented in MixtureFugacityTP.

Definition at line 154 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), and ThermoPhase::setState_TP().

Referenced by MultiTransport::getMassFluxes(), DustyGasTransport::getMolarFluxes(), MultiPhase::setMoles(), and MultiPhase::setPhaseMoleFractions().

◆ setState_TPX() [2/3]

void setState_TPX ( doublereal  t,
doublereal  p,
const compositionMap x 
)
virtual

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xComposition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 160 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), and ThermoPhase::setState_TP().

◆ setState_TPX() [3/3]

void setState_TPX ( doublereal  t,
doublereal  p,
const std::string &  x 
)
virtual

Set the temperature (K), pressure (Pa), and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
xString containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 166 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), and ThermoPhase::setState_TP().

◆ setState_TPY() [1/3]

void setState_TPY ( doublereal  t,
doublereal  p,
const doublereal *  y 
)
virtual

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 172 of file ThermoPhase.cpp.

References Phase::setMassFractions(), and ThermoPhase::setState_TP().

◆ setState_TPY() [2/3]

void setState_TPY ( doublereal  t,
doublereal  p,
const compositionMap y 
)
virtual

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yComposition map of mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 178 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), and ThermoPhase::setState_TP().

◆ setState_TPY() [3/3]

void setState_TPY ( doublereal  t,
doublereal  p,
const std::string &  y 
)
virtual

Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase.

Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)
yString containing a composition map of the mass fractions. Species not in the composition map are assumed to have zero mass fraction

Definition at line 184 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), and ThermoPhase::setState_TP().

◆ setState_TP()

void setState_TP ( doublereal  t,
doublereal  p 
)
virtual

Set the temperature (K) and pressure (Pa)

Setting the pressure may involve the solution of a nonlinear equation.

Parameters
tTemperature (K)
pPressure (Pa)

Reimplemented in MixtureFugacityTP, and VPStandardStateTP.

Definition at line 190 of file ThermoPhase.cpp.

References ThermoPhase::setPressure(), and Phase::setTemperature().

Referenced by IonsFromNeutralVPSSTP::calcDensity(), ImplicitSurfChem::setCommonState_TP(), SingleSpeciesTP::setState_HP(), SingleSpeciesTP::setState_SP(), ThermoPhase::setState_TPX(), ThermoPhase::setState_TPY(), and FlowReactor::updateState().

◆ setState_PX()

void setState_PX ( doublereal  p,
doublereal *  x 
)
virtual

Set the pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Definition at line 232 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), and ThermoPhase::setPressure().

Referenced by IdealSolnGasVPSS::setToEquilState(), RedlichKwongMFTP::setToEquilState(), IdealGasPhase::setToEquilState(), and IdealSolidSolnPhase::setToEquilState().

◆ setState_PY()

void setState_PY ( doublereal  p,
doublereal *  y 
)
virtual

Set the internally stored pressure (Pa) and mass fractions.

Note, the temperature is held constant during this operation. Note, the mass fractions are set first before the pressure is set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
pPressure (Pa)
yVector of mass fractions. Length is equal to m_kk.

Definition at line 238 of file ThermoPhase.cpp.

References Phase::setMassFractions(), and ThermoPhase::setPressure().

◆ setState_HP()

void setState_HP ( double  h,
double  p,
double  tol = 1e-9 
)
virtual

Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase.

Parameters
hSpecific enthalpy (J/kg)
pPressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 244 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

Referenced by FlowReactor::updateState().

◆ setState_UV()

void setState_UV ( double  u,
double  v,
double  tol = 1e-9 
)
virtual

Set the specific internal energy (J/kg) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific internal energy and specific volume have the value of the input parameters.

Parameters
uspecific internal energy (J/kg)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 249 of file ThermoPhase.cpp.

References ThermoPhase::setState_HPorUV().

◆ setState_SP()

void setState_SP ( double  s,
double  p,
double  tol = 1e-9 
)
virtual

Set the specific entropy (J/kg/K) and pressure (Pa).

This function fixes the internal state of the phase so that the specific entropy and the pressure have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
pspecific pressure (Pa).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 453 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

◆ setState_SV()

void setState_SV ( double  s,
double  v,
double  tol = 1e-9 
)
virtual

Set the specific entropy (J/kg/K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the specific entropy and specific volume have the value of the input parameters.

Parameters
sspecific entropy (J/kg/K)
vspecific volume (m^3/kg).
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in SingleSpeciesTP, and PureFluidPhase.

Definition at line 458 of file ThermoPhase.cpp.

References ThermoPhase::setState_SPorSV().

◆ setState_ST()

virtual void setState_ST ( double  s,
double  t,
double  tol = 1e-9 
)
inlinevirtual

Set the specific entropy (J/kg/K) and temperature (K).

This function fixes the internal state of the phase so that the specific entropy and temperature have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
sspecific entropy (J/kg/K)
ttemperature (K)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1007 of file ThermoPhase.h.

◆ setState_TV()

virtual void setState_TV ( double  t,
double  v,
double  tol = 1e-9 
)
inlinevirtual

Set the temperature (K) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the temperature and specific volume have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
ttemperature (K)
vspecific volume (m^3/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1023 of file ThermoPhase.h.

◆ setState_PV()

virtual void setState_PV ( double  p,
double  v,
double  tol = 1e-9 
)
inlinevirtual

Set the pressure (Pa) and specific volume (m^3/kg).

This function fixes the internal state of the phase so that the pressure and specific volume have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
ppressure (Pa)
vspecific volume (m^3/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1039 of file ThermoPhase.h.

◆ setState_UP()

virtual void setState_UP ( double  u,
double  p,
double  tol = 1e-9 
)
inlinevirtual

Set the specific internal energy (J/kg) and pressure (Pa).

This function fixes the internal state of the phase so that the specific internal energy and pressure have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
uspecific internal energy (J/kg)
ppressure (Pa)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1055 of file ThermoPhase.h.

◆ setState_VH()

virtual void setState_VH ( double  v,
double  h,
double  tol = 1e-9 
)
inlinevirtual

Set the specific volume (m^3/kg) and the specific enthalpy (J/kg)

This function fixes the internal state of the phase so that the specific volume and the specific enthalpy have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
vspecific volume (m^3/kg)
hspecific enthalpy (J/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1071 of file ThermoPhase.h.

◆ setState_TH()

virtual void setState_TH ( double  t,
double  h,
double  tol = 1e-9 
)
inlinevirtual

Set the temperature (K) and the specific enthalpy (J/kg)

This function fixes the internal state of the phase so that the temperature and specific enthalpy have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
ttemperature (K)
hspecific enthalpy (J/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1087 of file ThermoPhase.h.

◆ setState_SH()

virtual void setState_SH ( double  s,
double  h,
double  tol = 1e-9 
)
inlinevirtual

Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg)

This function fixes the internal state of the phase so that the temperature and pressure have the value of the input parameters. This base class function will throw an exception if not overridden.

Parameters
sspecific entropy (J/kg/K)
hspecific enthalpy (J/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.

Reimplemented in PureFluidPhase.

Definition at line 1103 of file ThermoPhase.h.

◆ setState_RP()

virtual void setState_RP ( doublereal  rho,
doublereal  p 
)
inlinevirtual

Set the density (kg/m**3) and pressure (Pa) at constant composition.

This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is the density. Therefore, this function solves for the temperature that will yield the desired input pressure and density. The composition is held constant during this process.

This base class function will print an error, if not overridden.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)

Reimplemented in IdealGasPhase.

Definition at line 1120 of file ThermoPhase.h.

Referenced by ThermoPhase::setState_RPX(), and ThermoPhase::setState_RPY().

◆ setState_RPX() [1/3]

void setState_RPX ( doublereal  rho,
doublereal  p,
const doublereal *  x 
)
virtual

Set the density (kg/m**3), pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the density and pressure are set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
xVector of mole fractions. Length is equal to m_kk.

Definition at line 196 of file ThermoPhase.cpp.

References Phase::setMoleFractions(), and ThermoPhase::setState_RP().

◆ setState_RPX() [2/3]

void setState_RPX ( doublereal  rho,
doublereal  p,
const compositionMap x 
)
virtual

Set the density (kg/m**3), pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the density and pressure are set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
xComposition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 202 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), and ThermoPhase::setState_RP().

◆ setState_RPX() [3/3]

void setState_RPX ( doublereal  rho,
doublereal  p,
const std::string &  x 
)
virtual

Set the density (kg/m**3), pressure (Pa) and mole fractions.

Note, the mole fractions are set first before the density and pressure are set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
xString containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 208 of file ThermoPhase.cpp.

References Phase::setMoleFractionsByName(), and ThermoPhase::setState_RP().

◆ setState_RPY() [1/3]

void setState_RPY ( doublereal  rho,
doublereal  p,
const doublereal *  y 
)
virtual

Set the density (kg/m**3), pressure (Pa) and mass fractions.

Note, the mass fractions are set first before the density and pressure are set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
yVector of mole fractions. Length is equal to m_kk.

Definition at line 214 of file ThermoPhase.cpp.

References Phase::setMassFractions(), and ThermoPhase::setState_RP().

◆ setState_RPY() [2/3]

void setState_RPY ( doublereal  rho,
doublereal  p,
const compositionMap y 
)
virtual

Set the density (kg/m**3), pressure (Pa) and mass fractions.

Note, the mass fractions are set first before the density and pressure are set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
yComposition map of mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 220 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), and ThermoPhase::setState_RP().

◆ setState_RPY() [3/3]

void setState_RPY ( doublereal  rho,
doublereal  p,
const std::string &  y 
)
virtual

Set the density (kg/m**3), pressure (Pa) and mass fractions.

Note, the mass fractions are set first before the density and pressure are set. Setting the pressure may involve the solution of a nonlinear equation.

Parameters
rhoDensity (kg/m^3)
pPressure (Pa)
yString containing a composition map of the mole fractions. Species not in the composition map are assumed to have zero mole fraction

Definition at line 226 of file ThermoPhase.cpp.

References Phase::setMassFractionsByName(), and ThermoPhase::setState_RP().

◆ setState_HPorUV()

void setState_HPorUV ( doublereal  h,
doublereal  p,
doublereal  tol = 1e-9,
bool  doUV = false 
)
private

Carry out work in HP and UV calculations.

Parameters
hSpecific enthalpy or internal energy (J/kg)
pPressure (Pa) or specific volume (m^3/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.
doUVTrue if solving for UV, false for HP.

Definition at line 262 of file ThermoPhase.cpp.

Referenced by ThermoPhase::setState_HP(), and ThermoPhase::setState_UV().

◆ setState_SPorSV()

void setState_SPorSV ( double  s,
double  p,
double  tol = 1e-9,
bool  doSV = false 
)
private

Carry out work in SP and SV calculations.

Parameters
sSpecific entropy (J/kg)
pPressure (Pa) or specific volume (m^3/kg)
tolOptional parameter setting the tolerance of the calculation. Important for some applications where numerical Jacobians are being calculated.
doSVTrue if solving for SV, false for SP.

Definition at line 463 of file ThermoPhase.cpp.

Referenced by ThermoPhase::setState_SP(), and ThermoPhase::setState_SV().

◆ setState_conditional_TP()

void setState_conditional_TP ( doublereal  t,
doublereal  p,
bool  set_p 
)
private

Helper function used by setState_HPorUV and setState_SPorSV.

Sets the temperature and (if set_p is true) the pressure.

Definition at line 254 of file ThermoPhase.cpp.

References ThermoPhase::setPressure(), and Phase::setTemperature().

◆ critTemperature()

virtual doublereal critTemperature ( ) const
inlinevirtual

◆ critPressure()

virtual doublereal critPressure ( ) const
inlinevirtual

Critical pressure (Pa).

Reimplemented in WaterSSTP, RedlichKwongMFTP, and PureFluidPhase.

Definition at line 1336 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::psatEst().

◆ critVolume()

virtual doublereal critVolume ( ) const
inlinevirtual

Critical volume (m3/kmol).

Reimplemented in RedlichKwongMFTP.

Definition at line 1341 of file ThermoPhase.h.

◆ critCompressibility()

virtual doublereal critCompressibility ( ) const
inlinevirtual

Critical compressibility (unitless).

Reimplemented in RedlichKwongMFTP.

Definition at line 1346 of file ThermoPhase.h.

◆ critDensity()

virtual doublereal critDensity ( ) const
inlinevirtual

Critical density (kg/m3).

Reimplemented in WaterSSTP, RedlichKwongMFTP, and PureFluidPhase.

Definition at line 1351 of file ThermoPhase.h.

Referenced by MixtureFugacityTP::phaseState().

◆ satTemperature()

virtual doublereal satTemperature ( doublereal  p) const
inlinevirtual

Return the saturation temperature given the pressure.

Parameters
pPressure (Pa)

Reimplemented in PureFluidPhase.

Definition at line 1368 of file ThermoPhase.h.

◆ satPressure()

virtual doublereal satPressure ( doublereal  t)
inlinevirtual

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented in HMWSoln, MixtureFugacityTP, WaterSSTP, and PureFluidPhase.

Definition at line 1376 of file ThermoPhase.h.

Referenced by HighPressureGasTransport::viscosity().

◆ vaporFraction()

virtual doublereal vaporFraction ( ) const
inlinevirtual

Return the fraction of vapor at the current conditions.

Reimplemented in WaterSSTP, and PureFluidPhase.

Definition at line 1381 of file ThermoPhase.h.

◆ setState_Tsat()

virtual void setState_Tsat ( doublereal  t,
doublereal  x 
)
inlinevirtual

Set the state to a saturated system at a particular temperature.

Parameters
tTemperature (kelvin)
xFraction of vapor

Reimplemented in PureFluidPhase.

Definition at line 1390 of file ThermoPhase.h.

◆ setState_Psat()

virtual void setState_Psat ( doublereal  p,
doublereal  x 
)
inlinevirtual

Set the state to a saturated system at a particular pressure.

Parameters
pPressure (Pa)
xFraction of vapor

Reimplemented in PureFluidPhase.

Definition at line 1399 of file ThermoPhase.h.

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

◆ modifySpecies()

void modifySpecies ( size_t  k,
shared_ptr< Species spec 
)
virtual

Modify the thermodynamic data associated with a species.

The species name, elemental composition, and type of thermo parameterization must be unchanged. If there are Kinetics objects that depend on this phase, Kinetics::invalidateCache() should be called on those objects after calling this function.

Reimplemented from Phase.

Definition at line 730 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo, MultiSpeciesThermo::modifySpecies(), Phase::modifySpecies(), and Phase::speciesName().

◆ saveSpeciesData()

void saveSpeciesData ( const size_t  k,
const XML_Node *const  data 
)

Store a reference pointer to the XML tree containing the species data for this phase.

This is used to access data needed to construct transport manager later.

Parameters
kSpecies index
dataPointer to the XML_Node data containing information about the species in the phase.

Definition at line 746 of file ThermoPhase.cpp.

References ThermoPhase::m_speciesData.

Referenced by Cantera::importPhase().

◆ speciesData()

const std::vector< const XML_Node * > & speciesData ( ) const

Return a pointer to the vector of XML nodes containing the species data for this phase.

Definition at line 754 of file ThermoPhase.cpp.

References Phase::m_kk, and ThermoPhase::m_speciesData.

Referenced by TransportFactory::setupLiquidTransport().

◆ setSpeciesThermo()

void setSpeciesThermo ( MultiSpeciesThermo spthermo)

Install a species thermodynamic property manager.

The species thermodynamic property manager computes properties of the pure species for use in constructing solution properties. It is meant for internal use, and some classes derived from ThermoPhase may not use any species thermodynamic property manager. This method is called by function importPhase().

Parameters
spthermoinput pointer to the species thermodynamic property manager.
Deprecated:
Unused. To be removed after Cantera 2.3.

Definition at line 636 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo, and Cantera::warn_deprecated().

◆ speciesThermo()

MultiSpeciesThermo & speciesThermo ( int  k = -1)
virtual

Return a changeable reference to the calculation manager for species reference-state thermodynamic properties.

Parameters
kSpecies id. The default is -1, meaning return the default

Definition at line 646 of file ThermoPhase.cpp.

References ThermoPhase::m_spthermo.

Referenced by PDSS_ConstVol::constructPDSSXML(), PDSS_SSVol::constructPDSSXML(), PDSS_ConstVol::initThermo(), PDSS_IdealGas::initThermo(), PDSS_IonsFromNeutral::initThermo(), PDSS_SSVol::initThermo(), VPSSMgrFactory::newVPSSMgr(), and PDSS::PDSS().

◆ initThermoFile()

void initThermoFile ( const std::string &  inputFile,
const std::string &  id 
)
virtual

Initialize a ThermoPhase object using a ctml file.

Used to implement constructors for derived classes which take a a CTML filename and phase name as arguments.

Parameters
inputFileXML file containing the description of the phase
idOptional parameter identifying the name of the phase. If blank, the first XML phase element encountered will be used.

Definition at line 655 of file ThermoPhase.cpp.

References Cantera::findXMLPhase(), Cantera::get_XML_File(), and Cantera::importPhase().

Referenced by IonsFromNeutralVPSSTP::constructPhaseFile(), FixedChemPotSSTP::FixedChemPotSSTP(), IdealGasPhase::IdealGasPhase(), IdealMolalSoln::IdealMolalSoln(), IdealSolidSolnPhase::IdealSolidSolnPhase(), LatticePhase::LatticePhase(), MargulesVPSSTP::MargulesVPSSTP(), MetalSHEelectrons::MetalSHEelectrons(), MixedSolventElectrolyte::MixedSolventElectrolyte(), PhaseCombo_Interaction::PhaseCombo_Interaction(), RedlichKisterVPSSTP::RedlichKisterVPSSTP(), StoichSubstance::StoichSubstance(), SurfPhase::SurfPhase(), and WaterSSTP::WaterSSTP().

◆ initThermoXML()

void initThermoXML ( XML_Node phaseNode,
const std::string &  id 
)
virtual

Import and initialize a ThermoPhase object using an XML tree.

Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.

The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().

Parameters
phaseNodeThis object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase.
idID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id.

Reimplemented in HMWSoln, DebyeHuckel, LatticePhase, IdealSolidSolnPhase, PhaseCombo_Interaction, IdealMolalSoln, RedlichKisterVPSSTP, MargulesVPSSTP, IonsFromNeutralVPSSTP, MetalSHEelectrons, FixedChemPotSSTP, MixedSolventElectrolyte, StoichSubstance, VPStandardStateTP, MineralEQ3, WaterSSTP, RedlichKwongMFTP, MolarityIonicVPSSTP, IdealSolnGasVPSS, and MaskellSolidSolnPhase.

Definition at line 668 of file ThermoPhase.cpp.

References XML_Node::child(), Phase::getMoleFractions(), XML_Node::hasChild(), Phase::m_kk, ThermoPhase::setStateFromXML(), and ThermoPhase::xMol_Ref.

Referenced by Cantera::importPhase(), RedlichKwongMFTP::initThermoXML(), VPStandardStateTP::initThermoXML(), StoichSubstance::initThermoXML(), FixedChemPotSSTP::initThermoXML(), MetalSHEelectrons::initThermoXML(), IdealSolidSolnPhase::initThermoXML(), and LatticePhase::initThermoXML().

◆ initThermo()

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

Reimplemented in HMWSoln, MolalityVPSSTP, PhaseCombo_Interaction, LatticeSolidPhase, RedlichKisterVPSSTP, MargulesVPSSTP, IonsFromNeutralVPSSTP, MixedSolventElectrolyte, StoichSubstance, VPStandardStateTP, MolarityIonicVPSSTP, and PureFluidPhase.

Definition at line 701 of file ThermoPhase.cpp.

References Phase::m_kk, ThermoPhase::m_spthermo, and MultiSpeciesThermo::ready().

Referenced by Cantera::importPhase(), VPStandardStateTP::initThermo(), StoichSubstance::initThermo(), LatticeSolidPhase::initThermo(), and WaterSSTP::initThermoXML().

◆ installSlavePhases()

void installSlavePhases ( XML_Node phaseNode)
virtual

Add in species from Slave phases.

This hook is used for cSS_CONVENTION_SLAVE phases

Parameters
phaseNodeXML Element for the phase
Deprecated:
Unused. To be removed after Cantera 2.3.

Definition at line 709 of file ThermoPhase.cpp.

References Cantera::warn_deprecated().

◆ setParameters()

virtual void setParameters ( int  n,
doublereal *const  c 
)
inlinevirtual

Set the equation of state parameters.

The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients

Reimplemented in LatticePhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, SurfPhase, MineralEQ3, and ConstDensityThermo.

Definition at line 1530 of file ThermoPhase.h.

◆ getParameters()

virtual void getParameters ( int &  n,
doublereal *const  c 
) const
inlinevirtual

Get the equation of state parameters in a vector.

The number and meaning of these depends on the subclass.

Parameters
nnumber of parameters
carray of n coefficients

Reimplemented in LatticePhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, MineralEQ3, and ConstDensityThermo.

Definition at line 1540 of file ThermoPhase.h.

◆ setParametersFromXML()

virtual void setParametersFromXML ( const XML_Node eosdata)
inlinevirtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented in LatticePhase, LatticeSolidPhase, MetalSHEelectrons, FixedChemPotSSTP, StoichSubstance, SurfPhase, MineralEQ3, WaterSSTP, RedlichKwongMFTP, PureFluidPhase, IdealSolnGasVPSS, ConstDensityThermo, MetalPhase, SemiconductorPhase, and EdgePhase.

Definition at line 1554 of file ThermoPhase.h.

Referenced by Cantera::importPhase(), IdealSolnGasVPSS::setParametersFromXML(), and RedlichKwongMFTP::setParametersFromXML().

◆ setStateFromXML()

void setStateFromXML ( const XML_Node state)
virtual

Set the initial state of the phase to the conditions specified in the state XML element.

This method sets the temperature, pressure, and mole fraction vector to a set default value.

Parameters
stateAN XML_Node object corresponding to the "state" entry for this phase in the input file.

Reimplemented in MolalityVPSSTP, MixtureFugacityTP, and SurfPhase.

Definition at line 763 of file ThermoPhase.cpp.

References Cantera::getChildValue(), Cantera::getFloat(), XML_Node::hasChild(), Phase::setDensity(), Phase::setMassFractionsByName(), Phase::setMoleFractionsByName(), ThermoPhase::setPressure(), and Phase::setTemperature().

Referenced by ThermoPhase::initThermoXML(), and MolalityVPSSTP::setStateFromXML().

◆ invalidateCache()

void invalidateCache ( )
virtual

Invalidate any cached values which are normally updated only when a change in state is detected.

Reimplemented from Phase.

Reimplemented in MixtureFugacityTP, and VPStandardStateTP.

Definition at line 788 of file ThermoPhase.cpp.

References Phase::invalidateCache(), and ThermoPhase::m_tlast.

Referenced by VPStandardStateTP::invalidateCache(), MixtureFugacityTP::invalidateCache(), ThermoPhase::modifyOneHf298SS(), LatticeSolidPhase::modifyOneHf298SS(), ThermoPhase::resetHf298(), and LatticeSolidPhase::resetHf298().

◆ getdlnActCoeffds()

virtual void getdlnActCoeffds ( const doublereal  dTds,
const doublereal *const  dXds,
doublereal *  dlnActCoeffds 
) const
inlinevirtual

Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space.

Parameters
dTdsInput of temperature change along the path
dXdsInput vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one.
dlnActCoeffdsOutput vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk units are 1/units(s). if s is a physical coordinate then the units are 1/m.

Reimplemented in PhaseCombo_Interaction, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, and IonsFromNeutralVPSSTP.

Definition at line 1586 of file ThermoPhase.h.

Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds(), and LiquidTransport::update_Grad_lnAC().

◆ getdlnActCoeffdlnX_diag()

virtual void getdlnActCoeffdlnX_diag ( doublereal *  dlnActCoeffdlnX_diag) const
inlinevirtual

Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only.

For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction variable that represents the standard state. This quantity is to be used in conjunction with derivatives of that mole fraction variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnX_diagOutput vector of derivatives of the log Activity Coefficients wrt the mole fractions. length = m_kk

Reimplemented in PhaseCombo_Interaction, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, and IonsFromNeutralVPSSTP.

Definition at line 1606 of file ThermoPhase.h.

Referenced by IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().

◆ getdlnActCoeffdlnN_diag()

virtual void getdlnActCoeffdlnN_diag ( doublereal *  dlnActCoeffdlnN_diag) const
inlinevirtual

Get the array of log species mole number derivatives of the log activity coefficients.

For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the concentration- like variable (i.e. moles) that represents the standard state. This quantity is to be used in conjunction with derivatives of that species mole number variable when the derivative of the chemical potential is taken.

units = dimensionless

Parameters
dlnActCoeffdlnN_diagOutput vector of derivatives of the log Activity Coefficients. length = m_kk

Reimplemented in PhaseCombo_Interaction, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, IonsFromNeutralVPSSTP, MixtureFugacityTP, and VPStandardStateTP.

Definition at line 1626 of file ThermoPhase.h.

◆ getdlnActCoeffdlnN()

void getdlnActCoeffdlnN ( const size_t  ld,
doublereal *const  dlnActCoeffdlnN 
)
virtual

Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers.

Implementations should take the derivative of the logarithm of the activity coefficient with respect to a species log mole number (with all other species mole numbers held constant). The default treatment in the ThermoPhase object is to set this vector to zero.

units = 1 / kmol

dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the m-th species with respect to the number of moles of the k-th species.

\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]

Parameters
ldNumber of rows in the matrix
dlnActCoeffdlnNOutput vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk

Reimplemented in MolalityVPSSTP, PhaseCombo_Interaction, RedlichKisterVPSSTP, MargulesVPSSTP, MixedSolventElectrolyte, IonsFromNeutralVPSSTP, and GibbsExcessVPSSTP.

Definition at line 861 of file ThermoPhase.cpp.

References Phase::m_kk.

◆ report()

std::string report ( bool  show_thermo = true,
doublereal  threshold = -1e-14 
) const
virtual

returns a summary of the state of the phase as a string

Parameters
show_thermoIf true, extra information is printed out about the thermodynamic state of the system.
thresholdShow information about species with mole fractions greater than threshold.

Reimplemented in MolalityVPSSTP, MolarityIonicVPSSTP, and PureFluidPhase.

Definition at line 925 of file ThermoPhase.cpp.

Referenced by Cantera::operator<<().

◆ reportCSV()

void reportCSV ( std::ofstream &  csvFile) const
virtual

returns a summary of the state of the phase to a comma separated file.

To customize the data included in the report, derived classes should override the getCsvReportData method.

Parameters
csvFileofstream file to print comma separated data for the phase

Definition at line 1018 of file ThermoPhase.cpp.

References ThermoPhase::getCsvReportData(), Phase::getMoleFractions(), Phase::nSpecies(), Cantera::SmallNumber, and Phase::speciesName().

◆ getCsvReportData()

void getCsvReportData ( std::vector< std::string > &  names,
std::vector< vector_fp > &  data 
) const
protectedvirtual

Member Data Documentation

◆ m_spthermo

MultiSpeciesThermo* m_spthermo
protected

◆ m_speciesData

std::vector<const XML_Node*> m_speciesData
protected

Vector of pointers to the species databases.

This is used to access data needed to construct the transport manager and other properties later in the initialization process. We create a copy of the XML_Node data read in here. Therefore, we own this data.

Definition at line 1701 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), ThermoPhase::saveSpeciesData(), and ThermoPhase::speciesData().

◆ m_phi

doublereal m_phi
protected

Stored value of the electric potential for this phase. Units are Volts.

Definition at line 1704 of file ThermoPhase.h.

Referenced by ThermoPhase::electricPotential(), ThermoPhase::operator=(), and ThermoPhase::setElectricPotential().

◆ m_lambdaRRT

vector_fp m_lambdaRRT
protected

Vector of element potentials. Length equal to number of elements.

Definition at line 1707 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

◆ m_hasElementPotentials

bool m_hasElementPotentials
protected

Boolean indicating whether there is a valid set of saved element potentials for this phase.

Definition at line 1711 of file ThermoPhase.h.

Referenced by ThermoPhase::getElementPotentials(), ThermoPhase::operator=(), and ThermoPhase::setElementPotentials().

◆ m_chargeNeutralityNecessary

bool m_chargeNeutralityNecessary
protected

Boolean indicating whether a charge neutrality condition is a necessity.

Note, the charge neutrality condition is not a necessity for ideal gas phases. There may be a net charge in those phases, because the NASA polynomials for ionized species in Ideal gases take this condition into account. However, liquid phases usually require charge neutrality in order for their derived thermodynamics to be valid.

Definition at line 1721 of file ThermoPhase.h.

Referenced by ThermoPhase::chargeNeutralityNecessary(), and ThermoPhase::operator=().

◆ m_ssConvention

int m_ssConvention
protected

Contains the standard state convention.

Definition at line 1724 of file ThermoPhase.h.

Referenced by ThermoPhase::operator=(), and ThermoPhase::standardStateConvention().

◆ xMol_Ref

vector_fp xMol_Ref
protected

Reference Mole Fraction Composition.

Occasionally, the need arises to find a safe mole fraction vector to initialize the object to. This contains such a vector. The algorithm will pick up the mole fraction vector that is applied from the state XML file in the input file

Deprecated:
To be removed after Cantera 2.3.

Definition at line 1734 of file ThermoPhase.h.

Referenced by ThermoPhase::addSpecies(), ThermoPhase::getReferenceComposition(), ThermoPhase::initThermoXML(), and ThermoPhase::setReferenceComposition().

◆ m_tlast

doublereal m_tlast
mutableprotected

The documentation for this class was generated from the following files: