Cantera  2.3.0
Public Member Functions | List of all members
LatticeSolidPhase Class Reference

A phase that is comprised of a fixed additive combination of other lattice phases. More...

#include <LatticeSolidPhase.h>

Inheritance diagram for LatticeSolidPhase:
[legend]
Collaboration diagram for LatticeSolidPhase:
[legend]

Public Member Functions

 LatticeSolidPhase ()
 Base empty constructor. More...
 
 LatticeSolidPhase (const LatticeSolidPhase &right)
 
LatticeSolidPhaseoperator= (const LatticeSolidPhase &right)
 
virtual ThermoPhaseduplMyselfAsThermoPhase () const
 Duplication routine for objects which inherit from ThermoPhase. More...
 
virtual int eosType () const
 Equation of state type flag. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual doublereal enthalpy_mole () const
 Return the Molar Enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Return the Molar Internal Energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Return the Molar Entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Return the Molar Gibbs energy. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Return the constant pressure heat capacity. Units: J/kmol/K. More...
 
virtual doublereal cv_mole () const
 Return the constant volume heat capacity. Units: J/kmol/K. More...
 
virtual doublereal pressure () const
 Report the Pressure. Units: Pa. More...
 
virtual void setPressure (doublereal p)
 Set the pressure at constant temperature. Units: Pa. More...
 
doublereal calcDensity ()
 Calculate the density of the solid mixture. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0 for each of the subphases. More...
 
virtual void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual doublereal moleFraction (const int k) const
 
virtual void getMassFractions (doublereal *const y) const
 
virtual doublereal massFraction (const int k) const
 
virtual void setMassFractions (const doublereal *const y)
 Set the mass fractions to the specified values and normalize them. More...
 
virtual void setMassFractions_NoNorm (const doublereal *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
virtual void getConcentrations (doublereal *const c) const
 
virtual doublereal concentration (int k) const
 
virtual void setConcentrations (const doublereal *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the species chemical potentials. Units: J/kmol. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Returns an array of partial molar enthalpies for the species in the mixture. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Returns an array of partial molar entropies of the species in the solution. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 returns an array of partial molar volumes of the species in the solution. More...
 
virtual void getStandardChemPotentials (doublereal *mu0) const
 Get the array of standard state chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
 ThermoPhase (const ThermoPhase &right)
 
ThermoPhaseoperator= (const ThermoPhase &right)
 
doublereal _RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *mu) const
 Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Return an array of partial molar internal energies for the species in the mixture. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vol) const
 Get the molar volumes of the species standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
virtual void setReferenceComposition (const doublereal *const x)
 Sets the reference composition. More...
 
virtual void getReferenceComposition (doublereal *const x) const
 Gets the reference composition. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *lambda_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
void setElementPotentials (const vector_fp &lambda)
 Stores the element potentials in the ThermoPhase object. More...
 
bool getElementPotentials (doublereal *lambda) const
 Returns the element potentials stored in the ThermoPhase object. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
void setSpeciesThermo (MultiSpeciesThermo *spthermo)
 Install a species thermodynamic property manager. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void installSlavePhases (XML_Node *phaseNode)
 Add in species from Slave phases. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &right)
 
Phaseoperator= (const Phase &right)
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
doublereal size (size_t k) const
 This routine returns the size of species k. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
std::string id () const
 Return the string id for the phase. More...
 
void setID (const std::string &id)
 Set the string id for the phase. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
doublereal moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
doublereal moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
doublereal massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
doublereal massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (doublereal *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const doublereal *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (doublereal *const y) const
 Get the species mass fractions. More...
 
const doublereal * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
void getConcentrations (doublereal *const c) const
 Get the species concentrations (kmol/m^3). More...
 
doublereal concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const doublereal * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual doublereal density () const
 Density (kg/m^3). More...
 
doublereal molarDensity () const
 Molar density (kmol/m^3). More...
 
doublereal molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setDensity (const doublereal density_)
 Set the internally stored density (kg/m^3) of the phase. More...
 
virtual void setMolarDensity (const doublereal molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setTemperature (const doublereal temp)
 Set the internally stored temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Thermodynamic Values for the Species Reference States

doublereal m_press
 Current value of the pressure. More...
 
doublereal m_molar_density
 Current value of the molar density. More...
 
std::vector< LatticePhase * > m_lattice
 Vector of sublattic ThermoPhase objects. More...
 
vector_fp m_x
 Vector of mole fractions. More...
 
vector_fp theta_
 Lattice stoichiometric coefficients. More...
 
vector_fp tmpV_
 Temporary vector. More...
 
std::vector< size_t > lkstart_
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
void setLatticeMoleFractionsByName (int n, const std::string &x)
 Set the Lattice mole fractions using a string. More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
void _updateThermo () const
 Update the reference thermodynamic functions. More...
 

Additional Inherited Members

- Protected Member Functions inherited from ThermoPhase
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermom_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
vector_fp m_lambdaRRT
 Vector of element potentials. Length equal to number of elements. More...
 
bool m_hasElementPotentials
 Boolean indicating whether there is a valid set of saved element potentials for this phase. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
vector_fp xMol_Ref
 Reference Mole Fraction Composition. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesSize
 Vector of species sizes. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 

Detailed Description

A phase that is comprised of a fixed additive combination of other lattice phases.

This is the main way Cantera describes semiconductors and other solid phases. This ThermoPhase object calculates its properties as a sum over other LatticePhase objects. Each of the LatticePhase objects is a ThermoPhase object by itself.

The results from this LatticeSolidPhase model reduces to the LatticePhase model when there is one lattice phase and the molar densities of the sublattice and the molar density within the LatticeSolidPhase have the same values.

The mole fraction vector is redefined witin the the LatticeSolidPhase object. Each of the mole fractions sum to one on each of the sublattices. The routine getMoleFraction() and setMoleFraction() have been redefined to use this convention.

Specification of Species Standard State Properties

The standard state properties are calculated in the normal way for each of the sublattices. The normal way here means that a thermodynamic polynomial in temperature is developed. Also, a constant volume approximation for the pressure dependence is assumed. All of these properties are on a Joules per kmol of sublattice constituent basis.

Specification of Solution Thermodynamic Properties

The sum over the LatticePhase objects is carried out by weighting each LatticePhase object value with the molar density (kmol m-3) of its LatticePhase. Then the resulting quantity is divided by the molar density of the total compound. The LatticeSolidPhase object therefore only contains a listing of the number of LatticePhase object that comprises the solid, and it contains a value for the molar density of the entire mixture. This is the same thing as saying that

\[ L_i = L^{solid} \theta_i \]

\( L_i \) is the molar volume of the ith lattice. \( L^{solid} \) is the molar volume of the entire solid. \( \theta_i \) is a fixed weighting factor for the ith lattice representing the lattice stoichiometric coefficient. For this object the \( \theta_i \) values are fixed.

Let's take FeS2 as an example, which may be thought of as a combination of two lattices: Fe and S lattice. The Fe sublattice has a molar density of 1 gmol cm-3. The S sublattice has a molar density of 2 gmol cm-3. We then define the LatticeSolidPhase object as having a nominal composition of FeS2, and having a molar density of 1 gmol cm-3. All quantities pertaining to the FeS2 compound will be have weights associated with the sublattices. The Fe sublattice will have a weight of 1.0 associated with it. The S sublattice will have a weight of 2.0 associated with it.

Specification of Solution Density Properties

Currently, molar density is not a constant within the object, even though the species molar volumes are a constant. The basic idea is that a swelling of one of the sublattices will result in a swelling of of all of the lattices. Therefore, the molar volumes of the individual lattices are not independent of one another.

The molar volume of the Lattice solid is calculated from the following formula

\[ V = \sum_i{ \theta_i V_i^{lattice}} \]

where \( V_i^{lattice} \) is the molar volume of the ith sublattice. This is calculated from the following standard formula.

\[ V_i = \sum_k{ X_k V_k} \]

where k is a species in the ith sublattice.

The mole fraction vector is redefined witin the the LatticeSolidPhase object. Each of the mole fractions sum to one on each of the sublattices. The routine getMoleFraction() and setMoleFraction() have been redefined to use this convention.

(This object is still under construction)

Definition at line 105 of file LatticeSolidPhase.h.

Constructor & Destructor Documentation

◆ LatticeSolidPhase()

Base empty constructor.

Definition at line 24 of file LatticeSolidPhase.cpp.

Referenced by LatticeSolidPhase::duplMyselfAsThermoPhase().

Member Function Documentation

◆ duplMyselfAsThermoPhase()

ThermoPhase * duplMyselfAsThermoPhase ( ) const
virtual

Duplication routine for objects which inherit from ThermoPhase.

This virtual routine can be used to duplicate ThermoPhase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.

These routines are basically wrappers around the derived copy constructor.

Deprecated:
To be removed after Cantera 2.3 for all classes derived from ThermoPhase.

Reimplemented from ThermoPhase.

Definition at line 61 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::LatticeSolidPhase().

◆ eosType()

virtual int eosType ( ) const
inlinevirtual

Equation of state type flag.

Returns cLatticeSolid, listed in mix_defs.h.

Deprecated:
To be removed after Cantera 2.3.

Reimplemented from ThermoPhase.

Definition at line 121 of file LatticeSolidPhase.h.

References Cantera::warn_deprecated().

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from ThermoPhase.

Definition at line 126 of file LatticeSolidPhase.h.

◆ minTemp()

doublereal minTemp ( size_t  k = npos) const
virtual

Minimum temperature for which the thermodynamic data for the species or phase are valid.

If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.

Parameters
kindex of the species. Default is -1, which will return the max of the min value over all species.

Reimplemented from ThermoPhase.

Definition at line 66 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::m_lattice, and Cantera::npos.

◆ maxTemp()

doublereal maxTemp ( size_t  k = npos) const
virtual

Maximum temperature for which the thermodynamic data for the species are valid.

If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.

Parameters
kindex of the species. Default is -1, which will return the min of the max value over all species.

Reimplemented from ThermoPhase.

Definition at line 83 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::m_lattice, and Cantera::npos.

◆ refPressure()

doublereal refPressure ( ) const
virtual

Returns the reference pressure in Pa.

This function is a wrapper that calls the species thermo refPressure function.

Reimplemented from ThermoPhase.

Definition at line 100 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::m_lattice.

◆ standardStateConvention()

virtual int standardStateConvention ( ) const
inlinevirtual

This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.

All of the thermo is determined by slave ThermoPhase routines.

Reimplemented from ThermoPhase.

Definition at line 140 of file LatticeSolidPhase.h.

References Cantera::cSS_CONVENTION_SLAVE.

◆ enthalpy_mole()

doublereal enthalpy_mole ( ) const
virtual

Return the Molar Enthalpy. Units: J/kmol.

The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde h(T,P) = {\sum_n \theta_n \tilde h_n(T,P) } \]

\( \tilde h_n(T,P) \) is the enthalpy of the nth lattice.

units J/kmol

Reimplemented from ThermoPhase.

Definition at line 105 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.

◆ intEnergy_mole()

doublereal intEnergy_mole ( ) const
virtual

Return the Molar Internal Energy. Units: J/kmol.

The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde u(T,P) = {\sum_n \theta_n \tilde u_n(T,P) } \]

\( \tilde u_n(T,P) \) is the internal energy of the nth lattice.

units J/kmol

Reimplemented from ThermoPhase.

Definition at line 115 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.

◆ entropy_mole()

doublereal entropy_mole ( ) const
virtual

Return the Molar Entropy. Units: J/kmol/K.

The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde s(T,P) = \sum_n \theta_n \tilde s_n(T,P) \]

\( \tilde s_n(T,P) \) is the molar entropy of the nth lattice.

units J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 125 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.

◆ gibbs_mole()

doublereal gibbs_mole ( ) const
virtual

Return the Molar Gibbs energy. Units: J/kmol.

The molar Gibbs free energy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice

\[ \tilde h(T,P) = {\sum_n \theta_n \tilde h_n(T,P) } \]

\( \tilde h_n(T,P) \) is the enthalpy of the nth lattice.

units J/kmol

Reimplemented from ThermoPhase.

Definition at line 135 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.

◆ cp_mole()

doublereal cp_mole ( ) const
virtual

Return the constant pressure heat capacity. Units: J/kmol/K.

The molar constant pressure heat capacity is determined by the following formula, where \( C_n \) is the lattice molar density of the nth lattice, and \( C_T \) is the molar density of the solid compound.

\[ \tilde c_{p,n}(T,P) = \frac{\sum_n C_n \tilde c_{p,n}(T,P) }{C_T}, \]

\( \tilde c_{p,n}(T,P) \) is the heat capacity of the nth lattice.

units J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 145 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.

Referenced by LatticeSolidPhase::cv_mole().

◆ cv_mole()

virtual doublereal cv_mole ( ) const
inlinevirtual

Return the constant volume heat capacity. Units: J/kmol/K.

The molar constant volume heat capacity is determined by the following formula, where \( C_n \) is the lattice molar density of the nth lattice, and \( C_T \) is the molar density of the solid compound.

\[ \tilde c_{v,n}(T,P) = \frac{\sum_n C_n \tilde c_{v,n}(T,P) }{C_T}, \]

\( \tilde c_{v,n}(T,P) \) is the heat capacity of the nth lattice.

units J/kmol/K

Reimplemented from ThermoPhase.

Definition at line 235 of file LatticeSolidPhase.h.

References LatticeSolidPhase::cp_mole().

◆ pressure()

virtual doublereal pressure ( ) const
inlinevirtual

Report the Pressure. Units: Pa.

This method simply returns the stored pressure value.

Reimplemented from ThermoPhase.

Definition at line 243 of file LatticeSolidPhase.h.

References LatticeSolidPhase::m_press.

◆ setPressure()

void setPressure ( doublereal  p)
virtual

Set the pressure at constant temperature. Units: Pa.

Parameters
pPressure (units - Pa)

Reimplemented from ThermoPhase.

Definition at line 182 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::calcDensity(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::m_press.

◆ calcDensity()

doublereal calcDensity ( )

Calculate the density of the solid mixture.

The formula for this is

\[ \rho = \sum_n{ \rho_n \theta_n } \]

where \( \rho_n \) is the density of the nth sublattice

Definition at line 191 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::m_lattice, Phase::setDensity(), and LatticeSolidPhase::theta_.

Referenced by LatticeSolidPhase::setMoleFractions(), and LatticeSolidPhase::setPressure().

◆ setMoleFractions()

void setMoleFractions ( const doublereal *const  x)
virtual

Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0 for each of the subphases.

On input, the mole fraction vector is assumed to sum to one for each of the sublattices. The sublattices are updated with this mole fraction vector. The mole fractions are also stored within this object, after they are normalized to one by dividing by the number of sublattices.

Parameters
xInput vector of mole fractions. There is no restriction on the sum of the mole fraction vector. Internally, this object will pass portions of this vector to the sublattices which assume that the portions individually sum to one. Length is m_kk.

Reimplemented from Phase.

Definition at line 201 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::calcDensity(), LatticeSolidPhase::m_lattice, LatticeSolidPhase::m_x, and Phase::setMoleFractions().

Referenced by LatticeSolidPhase::initThermo(), and LatticeSolidPhase::setLatticeMoleFractionsByName().

◆ getMoleFractions()

void getMoleFractions ( doublereal *const  x) const
virtual

Get the species mole fraction vector.

On output the mole fraction vector will sum to one for each of the subphases which make up this phase.

Parameters
xOn return, x contains the mole fractions. Must have a length greater than or equal to the number of species.

Definition at line 216 of file LatticeSolidPhase.cpp.

References Phase::getMoleFractions(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::m_x.

Referenced by LatticeSolidPhase::_updateThermo().

◆ setMassFractions()

virtual void setMassFractions ( const doublereal *const  y)
inlinevirtual

Set the mass fractions to the specified values and normalize them.

Parameters
[in]yArray of unnormalized mass fraction values. Length must be greater than or equal to the number of species. The Phase object will normalize this vector before storing its contents.

Reimplemented from Phase.

Definition at line 302 of file LatticeSolidPhase.h.

◆ setMassFractions_NoNorm()

virtual void setMassFractions_NoNorm ( const doublereal *const  y)
inlinevirtual

Set the mass fractions to the specified values without normalizing.

This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.

Parameters
yInput vector of mass fractions. Length is m_kk.

Reimplemented from Phase.

Definition at line 306 of file LatticeSolidPhase.h.

◆ setConcentrations()

virtual void setConcentrations ( const doublereal *const  conc)
inlinevirtual

Set the concentrations to the specified values within the phase.

We set the concentrations here and therefore we set the overall density of the phase. We hold the temperature constant during this operation. Therefore, we have possibly changed the pressure of the phase by calling this routine.

Parameters
[in]concArray of concentrations in dimensional units. For bulk phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase.

Reimplemented from Phase.

Definition at line 318 of file LatticeSolidPhase.h.

◆ getActivityConcentrations()

void getActivityConcentrations ( doublereal *  c) const
virtual

This method returns an array of generalized concentrations.

\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.

Parameters
cOutput array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase.

Reimplemented from ThermoPhase.

Definition at line 155 of file LatticeSolidPhase.cpp.

◆ getActivityCoefficients()

void getActivityCoefficients ( doublereal *  ac) const
virtual

Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.

Parameters
acOutput vector of activity coefficients. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 165 of file LatticeSolidPhase.cpp.

References Phase::m_kk.

◆ getChemPotentials()

void getChemPotentials ( doublereal *  mu) const
virtual

Get the species chemical potentials. Units: J/kmol.

This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.

This returns the underlying lattice chemical potentials, as the units are kmol-1 of the sublattice species.

Parameters
muOutput vector of species chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 244 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

◆ getPartialMolarEnthalpies()

void getPartialMolarEnthalpies ( doublereal *  hbar) const
virtual

Returns an array of partial molar enthalpies for the species in the mixture.

Units (J/kmol). For this phase, the partial molar enthalpies are equal to the pure species enthalpies

\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]

The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
hbarOutput vector containing partial molar enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 255 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

◆ getPartialMolarEntropies()

void getPartialMolarEntropies ( doublereal *  sbar) const
virtual

Returns an array of partial molar entropies of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.

\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]

The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.

See also
MultiSpeciesThermo
Parameters
sbarOutput vector containing partial molar entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 266 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

◆ getPartialMolarCp()

void getPartialMolarCp ( doublereal *  cpbar) const
virtual

Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.

Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.

Parameters
cpbarOutput vector of partial heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 277 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

◆ getPartialMolarVolumes()

void getPartialMolarVolumes ( doublereal *  vbar) const
virtual

returns an array of partial molar volumes of the species in the solution.

Units: m^3 kmol-1.

For this solution, the partial molar volumes are equal to the constant species molar volumes.

Parameters
vbarOutput vector of partial molar volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 288 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

◆ getStandardChemPotentials()

void getStandardChemPotentials ( doublereal *  mu0) const
virtual

Get the array of standard state chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution.

This returns the underlying lattice standard chemical potentials, as the units are kmol-1 of the sublattice species.

Parameters
mu0Output vector of chemical potentials. Length: m_kk. Units: J/kmol

Reimplemented from ThermoPhase.

Definition at line 299 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

◆ standardConcentration()

doublereal standardConcentration ( size_t  k = 0) const
virtual

Return the standard concentration for the kth species.

The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.

Parameters
kOptional parameter indicating the species. The default is to assume this refers to species 0.
Returns
Returns the standard concentration. The units are by definition dependent on the ThermoPhase and kinetics manager representation.

Reimplemented from ThermoPhase.

Definition at line 172 of file LatticeSolidPhase.cpp.

◆ logStandardConc()

doublereal logStandardConc ( size_t  k = 0) const
virtual

Natural logarithm of the standard concentration of the kth species.

Parameters
kindex of the species (defaults to zero)

Reimplemented from ThermoPhase.

Definition at line 177 of file LatticeSolidPhase.cpp.

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 309 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.

Referenced by LatticeSolidPhase::getGibbs_ref().

◆ getGibbs_ref()

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from ThermoPhase.

Definition at line 317 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::getGibbs_RT_ref(), Phase::m_kk, and ThermoPhase::RT().

◆ addSpecies()

bool addSpecies ( shared_ptr< Species spec)
virtual

The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().

Reimplemented from ThermoPhase.

Definition at line 373 of file LatticeSolidPhase.cpp.

References ThermoPhase::addSpecies(), LatticeSolidPhase::m_x, and LatticeSolidPhase::tmpV_.

Referenced by LatticeSolidPhase::initThermo().

◆ initThermo()

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

Reimplemented from ThermoPhase.

Definition at line 325 of file LatticeSolidPhase.cpp.

References Phase::addElement(), LatticeSolidPhase::addSpecies(), Phase::atomicNumber(), Phase::atomicWeights(), CT_ELEM_TYPE_LATTICERATIO, Phase::elementName(), Phase::elementType(), Phase::entropyElement298(), ThermoPhase::initThermo(), LatticeSolidPhase::m_lattice, Phase::m_speciesComp, LatticeSolidPhase::m_x, Phase::nElements(), Phase::nSpecies(), LatticeSolidPhase::setMoleFractions(), Phase::species(), and LatticeSolidPhase::theta_.

◆ setParametersFromXML()

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.

Reimplemented from ThermoPhase.

Definition at line 414 of file LatticeSolidPhase.cpp.

References XML_Node::_require(), XML_Node::child(), Cantera::fpValueCheck(), XML_Node::getChildren(), Cantera::getPairs(), Phase::id(), LatticeSolidPhase::m_lattice, Cantera::newPhase(), and LatticeSolidPhase::theta_.

◆ setLatticeMoleFractionsByName()

void setLatticeMoleFractionsByName ( int  n,
const std::string &  x 
)

Set the Lattice mole fractions using a string.

Parameters
nInteger value of the lattice whose mole fractions are being set
xstring containing Name:value pairs that will specify the mole fractions of species on a particular lattice

Definition at line 399 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::m_lattice, LatticeSolidPhase::m_x, and LatticeSolidPhase::setMoleFractions().

◆ modifyOneHf298SS()

void modifyOneHf298SS ( const size_t  k,
const doublereal  Hf298New 
)
virtual

Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)

The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.

Parameters
kSpecies k
Hf298NewSpecify the new value of the Heat of Formation at 298K and 1 bar

Reimplemented from ThermoPhase.

Definition at line 444 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), ThermoPhase::invalidateCache(), LatticeSolidPhase::m_lattice, and MultiSpeciesThermo::modifyOneHf298().

◆ resetHf298()

void resetHf298 ( const size_t  k = npos)
virtual

Restore the original heat of formation of one or more species.

Resets changes made by modifyOneHf298SS(). If the species index is not specified, the heats of formation for all species are restored.

Reimplemented from ThermoPhase.

Definition at line 457 of file LatticeSolidPhase.cpp.

References LatticeSolidPhase::_updateThermo(), ThermoPhase::invalidateCache(), LatticeSolidPhase::m_lattice, and Cantera::npos.

◆ _updateThermo()

void _updateThermo ( ) const
private

Member Data Documentation

◆ m_press

doublereal m_press
protected

Current value of the pressure.

Definition at line 442 of file LatticeSolidPhase.h.

Referenced by LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::pressure(), and LatticeSolidPhase::setPressure().

◆ m_molar_density

doublereal m_molar_density
protected

Current value of the molar density.

Definition at line 445 of file LatticeSolidPhase.h.

◆ m_lattice

std::vector<LatticePhase*> m_lattice
protected

◆ m_x

vector_fp m_x
mutableprotected

Vector of mole fractions.

Note these mole fractions sum to one when summed over all phases. However, this is not what's passed down to the lower m_lattice objects.

Definition at line 455 of file LatticeSolidPhase.h.

Referenced by LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::addSpecies(), LatticeSolidPhase::getMoleFractions(), LatticeSolidPhase::initThermo(), LatticeSolidPhase::setLatticeMoleFractionsByName(), and LatticeSolidPhase::setMoleFractions().

◆ theta_

vector_fp theta_
protected

◆ tmpV_

vector_fp tmpV_
mutableprotected

Temporary vector.

Definition at line 461 of file LatticeSolidPhase.h.

Referenced by LatticeSolidPhase::addSpecies().


The documentation for this class was generated from the following files: