Cantera
2.3.0
|
A phase that is comprised of a fixed additive combination of other lattice phases. More...
#include <LatticeSolidPhase.h>
Public Member Functions | |
LatticeSolidPhase () | |
Base empty constructor. More... | |
LatticeSolidPhase (const LatticeSolidPhase &right) | |
LatticeSolidPhase & | operator= (const LatticeSolidPhase &right) |
virtual ThermoPhase * | duplMyselfAsThermoPhase () const |
Duplication routine for objects which inherit from ThermoPhase. More... | |
virtual int | eosType () const |
Equation of state type flag. More... | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual doublereal | enthalpy_mole () const |
Return the Molar Enthalpy. Units: J/kmol. More... | |
virtual doublereal | intEnergy_mole () const |
Return the Molar Internal Energy. Units: J/kmol. More... | |
virtual doublereal | entropy_mole () const |
Return the Molar Entropy. Units: J/kmol/K. More... | |
virtual doublereal | gibbs_mole () const |
Return the Molar Gibbs energy. Units: J/kmol. More... | |
virtual doublereal | cp_mole () const |
Return the constant pressure heat capacity. Units: J/kmol/K. More... | |
virtual doublereal | cv_mole () const |
Return the constant volume heat capacity. Units: J/kmol/K. More... | |
virtual doublereal | pressure () const |
Report the Pressure. Units: Pa. More... | |
virtual void | setPressure (doublereal p) |
Set the pressure at constant temperature. Units: Pa. More... | |
doublereal | calcDensity () |
Calculate the density of the solid mixture. More... | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0 for each of the subphases. More... | |
virtual void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. More... | |
virtual doublereal | moleFraction (const int k) const |
virtual void | getMassFractions (doublereal *const y) const |
virtual doublereal | massFraction (const int k) const |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
virtual void | getConcentrations (doublereal *const c) const |
virtual doublereal | concentration (int k) const |
virtual void | setConcentrations (const doublereal *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
returns an array of partial molar volumes of the species in the solution. More... | |
virtual void | getStandardChemPotentials (doublereal *mu0) const |
Get the array of standard state chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
Return the standard concentration for the kth species. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
ThermoPhase (const ThermoPhase &right) | |
ThermoPhase & | operator= (const ThermoPhase &right) |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials These are partial molar Gibbs free energies. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. More... | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. More... | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
void | setSpeciesThermo (MultiSpeciesThermo *spthermo) |
Install a species thermodynamic property manager. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | installSlavePhases (XML_Node *phaseNode) |
Add in species from Slave phases. More... | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &right) | |
Phase & | operator= (const Phase &right) |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
doublereal | size (size_t k) const |
This routine returns the size of species k. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
doublereal | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
doublereal | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. More... | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). More... | |
doublereal | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual doublereal | density () const |
Density (kg/m^3). More... | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). More... | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setDensity (const doublereal density_) |
Set the internally stored density (kg/m^3) of the phase. More... | |
virtual void | setMolarDensity (const doublereal molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
virtual void | setTemperature (const doublereal temp) |
Set the internally stored temperature of the phase (K). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Thermodynamic Values for the Species Reference States | |
doublereal | m_press |
Current value of the pressure. More... | |
doublereal | m_molar_density |
Current value of the molar density. More... | |
std::vector< LatticePhase * > | m_lattice |
Vector of sublattic ThermoPhase objects. More... | |
vector_fp | m_x |
Vector of mole fractions. More... | |
vector_fp | theta_ |
Lattice stoichiometric coefficients. More... | |
vector_fp | tmpV_ |
Temporary vector. More... | |
std::vector< size_t > | lkstart_ |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
virtual void | initThermo () |
Initialize the ThermoPhase object after all species have been set up. More... | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
void | setLatticeMoleFractionsByName (int n, const std::string &x) |
Set the Lattice mole fractions using a string. More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
void | _updateThermo () const |
Update the reference thermodynamic functions. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
vector_fp | m_lambdaRRT |
Vector of element potentials. Length equal to number of elements. More... | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
vector_fp | xMol_Ref |
Reference Mole Fraction Composition. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesSize |
Vector of species sizes. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
A phase that is comprised of a fixed additive combination of other lattice phases.
This is the main way Cantera describes semiconductors and other solid phases. This ThermoPhase object calculates its properties as a sum over other LatticePhase objects. Each of the LatticePhase objects is a ThermoPhase object by itself.
The results from this LatticeSolidPhase model reduces to the LatticePhase model when there is one lattice phase and the molar densities of the sublattice and the molar density within the LatticeSolidPhase have the same values.
The mole fraction vector is redefined witin the the LatticeSolidPhase object. Each of the mole fractions sum to one on each of the sublattices. The routine getMoleFraction() and setMoleFraction() have been redefined to use this convention.
The standard state properties are calculated in the normal way for each of the sublattices. The normal way here means that a thermodynamic polynomial in temperature is developed. Also, a constant volume approximation for the pressure dependence is assumed. All of these properties are on a Joules per kmol of sublattice constituent basis.
The sum over the LatticePhase objects is carried out by weighting each LatticePhase object value with the molar density (kmol m-3) of its LatticePhase. Then the resulting quantity is divided by the molar density of the total compound. The LatticeSolidPhase object therefore only contains a listing of the number of LatticePhase object that comprises the solid, and it contains a value for the molar density of the entire mixture. This is the same thing as saying that
\[ L_i = L^{solid} \theta_i \]
\( L_i \) is the molar volume of the ith lattice. \( L^{solid} \) is the molar volume of the entire solid. \( \theta_i \) is a fixed weighting factor for the ith lattice representing the lattice stoichiometric coefficient. For this object the \( \theta_i \) values are fixed.
Let's take FeS2 as an example, which may be thought of as a combination of two lattices: Fe and S lattice. The Fe sublattice has a molar density of 1 gmol cm-3. The S sublattice has a molar density of 2 gmol cm-3. We then define the LatticeSolidPhase object as having a nominal composition of FeS2, and having a molar density of 1 gmol cm-3. All quantities pertaining to the FeS2 compound will be have weights associated with the sublattices. The Fe sublattice will have a weight of 1.0 associated with it. The S sublattice will have a weight of 2.0 associated with it.
Currently, molar density is not a constant within the object, even though the species molar volumes are a constant. The basic idea is that a swelling of one of the sublattices will result in a swelling of of all of the lattices. Therefore, the molar volumes of the individual lattices are not independent of one another.
The molar volume of the Lattice solid is calculated from the following formula
\[ V = \sum_i{ \theta_i V_i^{lattice}} \]
where \( V_i^{lattice} \) is the molar volume of the ith sublattice. This is calculated from the following standard formula.
\[ V_i = \sum_k{ X_k V_k} \]
where k is a species in the ith sublattice.
The mole fraction vector is redefined witin the the LatticeSolidPhase object. Each of the mole fractions sum to one on each of the sublattices. The routine getMoleFraction() and setMoleFraction() have been redefined to use this convention.
(This object is still under construction)
Definition at line 105 of file LatticeSolidPhase.h.
Base empty constructor.
Definition at line 24 of file LatticeSolidPhase.cpp.
Referenced by LatticeSolidPhase::duplMyselfAsThermoPhase().
|
virtual |
Duplication routine for objects which inherit from ThermoPhase.
This virtual routine can be used to duplicate ThermoPhase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.
These routines are basically wrappers around the derived copy constructor.
Reimplemented from ThermoPhase.
Definition at line 61 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::LatticeSolidPhase().
|
inlinevirtual |
Equation of state type flag.
Returns cLatticeSolid, listed in mix_defs.h.
Reimplemented from ThermoPhase.
Definition at line 121 of file LatticeSolidPhase.h.
References Cantera::warn_deprecated().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from ThermoPhase.
Definition at line 126 of file LatticeSolidPhase.h.
|
virtual |
Minimum temperature for which the thermodynamic data for the species or phase are valid.
If no argument is supplied, the value returned will be the lowest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo minTemp function.
k | index of the species. Default is -1, which will return the max of the min value over all species. |
Reimplemented from ThermoPhase.
Definition at line 66 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::m_lattice, and Cantera::npos.
|
virtual |
Maximum temperature for which the thermodynamic data for the species are valid.
If no argument is supplied, the value returned will be the highest temperature at which the data for all species are valid. Otherwise, the value will be only for species k. This function is a wrapper that calls the species thermo maxTemp function.
k | index of the species. Default is -1, which will return the min of the max value over all species. |
Reimplemented from ThermoPhase.
Definition at line 83 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::m_lattice, and Cantera::npos.
|
virtual |
Returns the reference pressure in Pa.
This function is a wrapper that calls the species thermo refPressure function.
Reimplemented from ThermoPhase.
Definition at line 100 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::m_lattice.
|
inlinevirtual |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based.
All of the thermo is determined by slave ThermoPhase routines.
Reimplemented from ThermoPhase.
Definition at line 140 of file LatticeSolidPhase.h.
References Cantera::cSS_CONVENTION_SLAVE.
|
virtual |
Return the Molar Enthalpy. Units: J/kmol.
The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice
\[ \tilde h(T,P) = {\sum_n \theta_n \tilde h_n(T,P) } \]
\( \tilde h_n(T,P) \) is the enthalpy of the nth lattice.
units J/kmol
Reimplemented from ThermoPhase.
Definition at line 105 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.
|
virtual |
Return the Molar Internal Energy. Units: J/kmol.
The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice
\[ \tilde u(T,P) = {\sum_n \theta_n \tilde u_n(T,P) } \]
\( \tilde u_n(T,P) \) is the internal energy of the nth lattice.
units J/kmol
Reimplemented from ThermoPhase.
Definition at line 115 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.
|
virtual |
Return the Molar Entropy. Units: J/kmol/K.
The molar enthalpy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice
\[ \tilde s(T,P) = \sum_n \theta_n \tilde s_n(T,P) \]
\( \tilde s_n(T,P) \) is the molar entropy of the nth lattice.
units J/kmol/K
Reimplemented from ThermoPhase.
Definition at line 125 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.
|
virtual |
Return the Molar Gibbs energy. Units: J/kmol.
The molar Gibbs free energy is determined by the following formula, where \( \theta_n \) is the lattice stoichiometric coefficient of the nth lattice
\[ \tilde h(T,P) = {\sum_n \theta_n \tilde h_n(T,P) } \]
\( \tilde h_n(T,P) \) is the enthalpy of the nth lattice.
units J/kmol
Reimplemented from ThermoPhase.
Definition at line 135 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.
|
virtual |
Return the constant pressure heat capacity. Units: J/kmol/K.
The molar constant pressure heat capacity is determined by the following formula, where \( C_n \) is the lattice molar density of the nth lattice, and \( C_T \) is the molar density of the solid compound.
\[ \tilde c_{p,n}(T,P) = \frac{\sum_n C_n \tilde c_{p,n}(T,P) }{C_T}, \]
\( \tilde c_{p,n}(T,P) \) is the heat capacity of the nth lattice.
units J/kmol/K
Reimplemented from ThermoPhase.
Definition at line 145 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::theta_.
Referenced by LatticeSolidPhase::cv_mole().
|
inlinevirtual |
Return the constant volume heat capacity. Units: J/kmol/K.
The molar constant volume heat capacity is determined by the following formula, where \( C_n \) is the lattice molar density of the nth lattice, and \( C_T \) is the molar density of the solid compound.
\[ \tilde c_{v,n}(T,P) = \frac{\sum_n C_n \tilde c_{v,n}(T,P) }{C_T}, \]
\( \tilde c_{v,n}(T,P) \) is the heat capacity of the nth lattice.
units J/kmol/K
Reimplemented from ThermoPhase.
Definition at line 235 of file LatticeSolidPhase.h.
References LatticeSolidPhase::cp_mole().
|
inlinevirtual |
Report the Pressure. Units: Pa.
This method simply returns the stored pressure value.
Reimplemented from ThermoPhase.
Definition at line 243 of file LatticeSolidPhase.h.
References LatticeSolidPhase::m_press.
|
virtual |
Set the pressure at constant temperature. Units: Pa.
p | Pressure (units - Pa) |
Reimplemented from ThermoPhase.
Definition at line 182 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::calcDensity(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::m_press.
doublereal calcDensity | ( | ) |
Calculate the density of the solid mixture.
The formula for this is
\[ \rho = \sum_n{ \rho_n \theta_n } \]
where \( \rho_n \) is the density of the nth sublattice
Definition at line 191 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::m_lattice, Phase::setDensity(), and LatticeSolidPhase::theta_.
Referenced by LatticeSolidPhase::setMoleFractions(), and LatticeSolidPhase::setPressure().
|
virtual |
Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0 for each of the subphases.
On input, the mole fraction vector is assumed to sum to one for each of the sublattices. The sublattices are updated with this mole fraction vector. The mole fractions are also stored within this object, after they are normalized to one by dividing by the number of sublattices.
x | Input vector of mole fractions. There is no restriction on the sum of the mole fraction vector. Internally, this object will pass portions of this vector to the sublattices which assume that the portions individually sum to one. Length is m_kk. |
Reimplemented from Phase.
Definition at line 201 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::calcDensity(), LatticeSolidPhase::m_lattice, LatticeSolidPhase::m_x, and Phase::setMoleFractions().
Referenced by LatticeSolidPhase::initThermo(), and LatticeSolidPhase::setLatticeMoleFractionsByName().
|
virtual |
Get the species mole fraction vector.
On output the mole fraction vector will sum to one for each of the subphases which make up this phase.
x | On return, x contains the mole fractions. Must have a length greater than or equal to the number of species. |
Definition at line 216 of file LatticeSolidPhase.cpp.
References Phase::getMoleFractions(), LatticeSolidPhase::m_lattice, and LatticeSolidPhase::m_x.
Referenced by LatticeSolidPhase::_updateThermo().
|
inlinevirtual |
Set the mass fractions to the specified values and normalize them.
[in] | y | Array of unnormalized mass fraction values. Length must be greater than or equal to the number of species. The Phase object will normalize this vector before storing its contents. |
Reimplemented from Phase.
Definition at line 302 of file LatticeSolidPhase.h.
|
inlinevirtual |
Set the mass fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
y | Input vector of mass fractions. Length is m_kk. |
Reimplemented from Phase.
Definition at line 306 of file LatticeSolidPhase.h.
|
inlinevirtual |
Set the concentrations to the specified values within the phase.
We set the concentrations here and therefore we set the overall density of the phase. We hold the temperature constant during this operation. Therefore, we have possibly changed the pressure of the phase by calling this routine.
[in] | conc | Array of concentrations in dimensional units. For bulk phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase. |
Reimplemented from Phase.
Definition at line 318 of file LatticeSolidPhase.h.
|
virtual |
This method returns an array of generalized concentrations.
\( C^a_k\) are defined such that \( a_k = C^a_k / C^0_k, \) where \( C^0_k \) is a standard concentration defined below and \( a_k \) are activities used in the thermodynamic functions. These activity (or generalized) concentrations are used by kinetics manager classes to compute the forward and reverse rates of elementary reactions. Note that they may or may not have units of concentration — they might be partial pressures, mole fractions, or surface coverages, for example.
c | Output array of generalized concentrations. The units depend upon the implementation of the reaction rate expressions within the phase. |
Reimplemented from ThermoPhase.
Definition at line 155 of file LatticeSolidPhase.cpp.
|
virtual |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
ac | Output vector of activity coefficients. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 165 of file LatticeSolidPhase.cpp.
References Phase::m_kk.
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
This returns the underlying lattice chemical potentials, as the units are kmol-1 of the sublattice species.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 244 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol). For this phase, the partial molar enthalpies are equal to the pure species enthalpies
\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]
The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
hbar | Output vector containing partial molar enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 255 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.
\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]
The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
sbar | Output vector containing partial molar entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 266 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
|
virtual |
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.
cpbar | Output vector of partial heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 277 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
|
virtual |
returns an array of partial molar volumes of the species in the solution.
Units: m^3 kmol-1.
For this solution, the partial molar volumes are equal to the constant species molar volumes.
vbar | Output vector of partial molar volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 288 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
|
virtual |
Get the array of standard state chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.
These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution.
This returns the underlying lattice standard chemical potentials, as the units are kmol-1 of the sublattice species.
mu0 | Output vector of chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 299 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
|
virtual |
Return the standard concentration for the kth species.
The standard concentration \( C^0_k \) used to normalize the activity (i.e., generalized) concentration. In many cases, this quantity will be the same for all species in a phase - for example, for an ideal gas \( C^0_k = P/\hat R T \). For this reason, this method returns a single value, instead of an array. However, for phases in which the standard concentration is species-specific (e.g. surface species of different sizes), this method may be called with an optional parameter indicating the species.
k | Optional parameter indicating the species. The default is to assume this refers to species 0. |
Reimplemented from ThermoPhase.
Definition at line 172 of file LatticeSolidPhase.cpp.
|
virtual |
Natural logarithm of the standard concentration of the kth species.
k | index of the species (defaults to zero) |
Reimplemented from ThermoPhase.
Definition at line 177 of file LatticeSolidPhase.cpp.
|
virtual |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 309 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), and LatticeSolidPhase::m_lattice.
Referenced by LatticeSolidPhase::getGibbs_ref().
|
virtual |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
g | Output vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 317 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::getGibbs_RT_ref(), Phase::m_kk, and ThermoPhase::RT().
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from ThermoPhase.
Definition at line 373 of file LatticeSolidPhase.cpp.
References ThermoPhase::addSpecies(), LatticeSolidPhase::m_x, and LatticeSolidPhase::tmpV_.
Referenced by LatticeSolidPhase::initThermo().
|
virtual |
Initialize the ThermoPhase object after all species have been set up.
Initialize.
This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().
Reimplemented from ThermoPhase.
Definition at line 325 of file LatticeSolidPhase.cpp.
References Phase::addElement(), LatticeSolidPhase::addSpecies(), Phase::atomicNumber(), Phase::atomicWeights(), CT_ELEM_TYPE_LATTICERATIO, Phase::elementName(), Phase::elementType(), Phase::entropyElement298(), ThermoPhase::initThermo(), LatticeSolidPhase::m_lattice, Phase::m_speciesComp, LatticeSolidPhase::m_x, Phase::nElements(), Phase::nSpecies(), LatticeSolidPhase::setMoleFractions(), Phase::species(), and LatticeSolidPhase::theta_.
|
virtual |
Set equation of state parameter values from XML entries.
This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.
eosdata | An XML_Node object corresponding to the "thermo" entry for this phase in the input file. |
Reimplemented from ThermoPhase.
Definition at line 414 of file LatticeSolidPhase.cpp.
References XML_Node::_require(), XML_Node::child(), Cantera::fpValueCheck(), XML_Node::getChildren(), Cantera::getPairs(), Phase::id(), LatticeSolidPhase::m_lattice, Cantera::newPhase(), and LatticeSolidPhase::theta_.
void setLatticeMoleFractionsByName | ( | int | n, |
const std::string & | x | ||
) |
Set the Lattice mole fractions using a string.
n | Integer value of the lattice whose mole fractions are being set |
x | string containing Name:value pairs that will specify the mole fractions of species on a particular lattice |
Definition at line 399 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::m_lattice, LatticeSolidPhase::m_x, and LatticeSolidPhase::setMoleFractions().
|
virtual |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1)
The 298K heat of formation is defined as the enthalpy change to create the standard state of the species from its constituent elements in their standard states at 298 K and 1 bar.
k | Species k |
Hf298New | Specify the new value of the Heat of Formation at 298K and 1 bar |
Reimplemented from ThermoPhase.
Definition at line 444 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), ThermoPhase::invalidateCache(), LatticeSolidPhase::m_lattice, and MultiSpeciesThermo::modifyOneHf298().
|
virtual |
Restore the original heat of formation of one or more species.
Resets changes made by modifyOneHf298SS(). If the species index is not specified, the heats of formation for all species are restored.
Reimplemented from ThermoPhase.
Definition at line 457 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::_updateThermo(), ThermoPhase::invalidateCache(), LatticeSolidPhase::m_lattice, and Cantera::npos.
|
private |
Update the reference thermodynamic functions.
Definition at line 383 of file LatticeSolidPhase.cpp.
References LatticeSolidPhase::getMoleFractions(), LatticeSolidPhase::m_lattice, LatticeSolidPhase::m_press, ThermoPhase::m_tlast, LatticeSolidPhase::m_x, and Phase::temperature().
Referenced by LatticeSolidPhase::cp_mole(), LatticeSolidPhase::enthalpy_mole(), LatticeSolidPhase::entropy_mole(), LatticeSolidPhase::getChemPotentials(), LatticeSolidPhase::getGibbs_RT_ref(), LatticeSolidPhase::getPartialMolarCp(), LatticeSolidPhase::getPartialMolarEnthalpies(), LatticeSolidPhase::getPartialMolarEntropies(), LatticeSolidPhase::getPartialMolarVolumes(), LatticeSolidPhase::getStandardChemPotentials(), LatticeSolidPhase::gibbs_mole(), LatticeSolidPhase::intEnergy_mole(), LatticeSolidPhase::modifyOneHf298SS(), and LatticeSolidPhase::resetHf298().
|
protected |
Current value of the pressure.
Definition at line 442 of file LatticeSolidPhase.h.
Referenced by LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::pressure(), and LatticeSolidPhase::setPressure().
|
protected |
Current value of the molar density.
Definition at line 445 of file LatticeSolidPhase.h.
|
protected |
Vector of sublattic ThermoPhase objects.
Definition at line 448 of file LatticeSolidPhase.h.
Referenced by LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::calcDensity(), LatticeSolidPhase::cp_mole(), LatticeSolidPhase::enthalpy_mole(), LatticeSolidPhase::entropy_mole(), LatticeSolidPhase::getChemPotentials(), LatticeSolidPhase::getGibbs_RT_ref(), LatticeSolidPhase::getMoleFractions(), LatticeSolidPhase::getPartialMolarCp(), LatticeSolidPhase::getPartialMolarEnthalpies(), LatticeSolidPhase::getPartialMolarEntropies(), LatticeSolidPhase::getPartialMolarVolumes(), LatticeSolidPhase::getStandardChemPotentials(), LatticeSolidPhase::gibbs_mole(), LatticeSolidPhase::initThermo(), LatticeSolidPhase::intEnergy_mole(), LatticeSolidPhase::maxTemp(), LatticeSolidPhase::minTemp(), LatticeSolidPhase::modifyOneHf298SS(), LatticeSolidPhase::refPressure(), LatticeSolidPhase::resetHf298(), LatticeSolidPhase::setLatticeMoleFractionsByName(), LatticeSolidPhase::setMoleFractions(), LatticeSolidPhase::setParametersFromXML(), and LatticeSolidPhase::setPressure().
|
mutableprotected |
Vector of mole fractions.
Note these mole fractions sum to one when summed over all phases. However, this is not what's passed down to the lower m_lattice objects.
Definition at line 455 of file LatticeSolidPhase.h.
Referenced by LatticeSolidPhase::_updateThermo(), LatticeSolidPhase::addSpecies(), LatticeSolidPhase::getMoleFractions(), LatticeSolidPhase::initThermo(), LatticeSolidPhase::setLatticeMoleFractionsByName(), and LatticeSolidPhase::setMoleFractions().
|
protected |
Lattice stoichiometric coefficients.
Definition at line 458 of file LatticeSolidPhase.h.
Referenced by LatticeSolidPhase::calcDensity(), LatticeSolidPhase::cp_mole(), LatticeSolidPhase::enthalpy_mole(), LatticeSolidPhase::entropy_mole(), LatticeSolidPhase::gibbs_mole(), LatticeSolidPhase::initThermo(), LatticeSolidPhase::intEnergy_mole(), and LatticeSolidPhase::setParametersFromXML().
|
mutableprotected |
Temporary vector.
Definition at line 461 of file LatticeSolidPhase.h.
Referenced by LatticeSolidPhase::addSpecies().