Cantera
2.3.0
|
Class IdealSolidSolnPhase represents a condensed phase ideal solution compound. More...
#include <IdealSolidSolnPhase.h>
Public Member Functions | |
IdealSolidSolnPhase (int formCG=0) | |
Constructor for IdealSolidSolnPhase. More... | |
IdealSolidSolnPhase (const std::string &infile, const std::string &id="", int formCG=0) | |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file. More... | |
IdealSolidSolnPhase (XML_Node &root, const std::string &id="", int formCG=0) | |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database. More... | |
IdealSolidSolnPhase (const IdealSolidSolnPhase &) | |
IdealSolidSolnPhase & | operator= (const IdealSolidSolnPhase &) |
virtual ThermoPhase * | duplMyselfAsThermoPhase () const |
Duplication routine for objects which inherit from ThermoPhase. More... | |
virtual int | eosType () const |
Equation of state flag. More... | |
virtual std::string | type () const |
String indicating the thermodynamic model implemented. More... | |
Molar Thermodynamic Properties of the Solution | |
virtual doublereal | enthalpy_mole () const |
Molar enthalpy of the solution. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy of the solution. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs free energy of the solution. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure of the solution. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume of the solution. More... | |
Mechanical Equation of State Properties | |
In this equation of state implementation, the density is a function only of the mole fractions. Therefore, it can't be an independent variable. Instead, the pressure is used as the independent variable. Functions which try to set the thermodynamic state by calling setDensity() may cause an exception to be thrown. | |
virtual doublereal | pressure () const |
Pressure. More... | |
virtual void | setPressure (doublereal p) |
Set the pressure at constant temperature. More... | |
void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More... | |
virtual void | setDensity (const doublereal rho) |
Overridden setDensity() function is necessary because the density is not an independent variable. More... | |
virtual void | setMolarDensity (const doublereal rho) |
Overridden setMolarDensity() function is necessary because the density is not an independent variable. More... | |
Chemical Potentials and Activities | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the standard state chemical potential at unit activity. It may depend on the pressure and the temperature. However, it may not depend on the mole fractions of the species in the solid solution. The activities are related to the generalized concentrations, \(\tilde C_k\), and standard concentrations, \(C^0_k\), by the following formula: \[ a_k = \frac{\tilde C_k}{C^0_k} \] The generalized concentrations are used in the kinetics classes to describe the rates of progress of reactions involving the species. Their formulation depends upon the specification of the rate constants for reaction, especially the units used in specifying the rate constants. The bridge between the thermodynamic equilibrium expressions that use a_k and the kinetics expressions which use the generalized concentrations is provided by the multiplicative factor of the standard concentrations. | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns the array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k) const |
The standard concentration \( C^0_k \) used to normalize the generalized concentration. More... | |
virtual doublereal | referenceConcentration (int k) const |
The reference (ie standard) concentration \( C^0_k \) used to normalize the generalized concentration. More... | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of species activity coefficients. More... | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. More... | |
virtual void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \). More... | |
Partial Molar Properties of the Solution | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies of the species in the solution. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
returns an array of partial molar volumes of the species in the solution. More... | |
Properties of the Standard State of the Species in the Solution | |
virtual void | getStandardChemPotentials (doublereal *mu0) const |
Get the standard state chemical potentials of the species. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the nondimensional Entropies for the species standard states at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution. More... | |
virtual void | getPureGibbs (doublereal *gpure) const |
Get the Gibbs functions for the pure species at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of the species standard states at the current T and P of the solution. More... | |
Thermodynamic Values for the Species Reference States | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getEntropy_R_ref (doublereal *er) const |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | getCp_R_ref (doublereal *cprt) const |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More... | |
const vector_fp & | enthalpy_RT_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More... | |
const vector_fp & | gibbs_RT_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More... | |
const vector_fp & | entropy_R_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More... | |
const vector_fp & | cp_R_ref () const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature. More... | |
virtual void | setPotentialEnergy (int k, doublereal pe) |
virtual doublereal | potentialEnergy (int k) const |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
ThermoPhase (const ThermoPhase &right) | |
ThermoPhase & | operator= (const ThermoPhase &right) |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
doublereal | RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const size_t k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const size_t k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual void | resetHf298 (const size_t k=npos) |
Restore the original heat of formation of one or more species. More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. Units: J/kmol. More... | |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getActivities (doublereal *a) const |
Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. More... | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. Units: J/kg. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. Units: J/kg. More... | |
doublereal | entropy_mass () const |
Specific entropy. Units: J/kg/K. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. Units: J/kg. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. Units: J/kg/K. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. Units: J/kg/K. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (double h, double p, double tol=1e-9) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (double u, double v, double tol=1e-9) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (double s, double p, double tol=1e-9) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (double s, double v, double tol=1e-9) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
virtual void | setState_ST (double s, double t, double tol=1e-9) |
Set the specific entropy (J/kg/K) and temperature (K). More... | |
virtual void | setState_TV (double t, double v, double tol=1e-9) |
Set the temperature (K) and specific volume (m^3/kg). More... | |
virtual void | setState_PV (double p, double v, double tol=1e-9) |
Set the pressure (Pa) and specific volume (m^3/kg). More... | |
virtual void | setState_UP (double u, double p, double tol=1e-9) |
Set the specific internal energy (J/kg) and pressure (Pa). More... | |
virtual void | setState_VH (double v, double h, double tol=1e-9) |
Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More... | |
virtual void | setState_TH (double t, double h, double tol=1e-9) |
Set the temperature (K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_SH (double s, double h, double tol=1e-9) |
Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More... | |
virtual void | setState_RP (doublereal rho, doublereal p) |
Set the density (kg/m**3) and pressure (Pa) at constant composition. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const doublereal *x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const compositionMap &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPX (doublereal rho, doublereal p, const std::string &x) |
Set the density (kg/m**3), pressure (Pa) and mole fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const doublereal *y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const compositionMap &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
virtual void | setState_RPY (doublereal rho, doublereal p, const std::string &y) |
Set the density (kg/m**3), pressure (Pa) and mass fractions. More... | |
void | equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0) |
Equilibrate a ThermoPhase object. More... | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. More... | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. More... | |
virtual bool | compatibleWithMultiPhase () const |
Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critVolume () const |
Critical volume (m3/kmol). More... | |
virtual doublereal | critCompressibility () const |
Critical compressibility (unitless). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
virtual void | modifySpecies (size_t k, shared_ptr< Species > spec) |
Modify the thermodynamic data associated with a species. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
void | setSpeciesThermo (MultiSpeciesThermo *spthermo) |
Install a species thermodynamic property manager. More... | |
virtual MultiSpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | initThermo () |
Initialize the ThermoPhase object after all species have been set up. More... | |
virtual void | installSlavePhases (XML_Node *phaseNode) |
Add in species from Slave phases. More... | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | invalidateCache () |
Invalidate any cached values which are normally updated only when a change in state is detected. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log species mole number derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true, doublereal threshold=-1e-14) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
Phase (const Phase &right) | |
Phase & | operator= (const Phase &right) |
XML_Node & | xml () const |
Returns a const reference to the XML_Node that describes the phase. More... | |
void | setXMLdata (XML_Node &xmlPhase) |
Stores the XML tree information for the current phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase. More... | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
doublereal | size (size_t k) const |
This routine returns the size of species k. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual bool | ready () const |
Returns a bool indicating whether the object is ready for use. More... | |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
void | setMoleFractionsByName (const compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (const compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, const compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
compositionMap | getMoleFractionsByName (double threshold=0.0) const |
Get the mole fractions by name. More... | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
doublereal | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
compositionMap | getMassFractionsByName (double threshold=0.0) const |
Get the mass fractions by name. More... | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
doublereal | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. More... | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values. More... | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. More... | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values and normalize them. More... | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). More... | |
doublereal | concentration (const size_t k) const |
Concentration of species k. More... | |
virtual void | setConcentrations (const doublereal *const conc) |
Set the concentrations to the specified values within the phase. More... | |
virtual void | setConcentrationsNoNorm (const double *const conc) |
Set the concentrations without ignoring negative concentrations. More... | |
doublereal | elementalMassFraction (const size_t m) const |
Elemental mass fraction of element m. More... | |
doublereal | elementalMoleFraction (const size_t m) const |
Elemental mole fraction of element m. More... | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual doublereal | density () const |
Density (kg/m^3). More... | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). More... | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setTemperature (const doublereal temp) |
Set the internally stored temperature of the phase (K). More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_X (const vector_fp &Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
size_t | addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element. More... | |
shared_ptr< Species > | species (const std::string &name) const |
Return the Species object for the named species. More... | |
shared_ptr< Species > | species (size_t k) const |
Return the Species object for species whose index is k. More... | |
void | ignoreUndefinedElements () |
Set behavior when adding a species containing undefined elements to just skip the species. More... | |
void | addUndefinedElements () |
Set behavior when adding a species containing undefined elements to add those elements to the phase. More... | |
void | throwUndefinedElements () |
Set the behavior when adding a species containing undefined elements to throw an exception. More... | |
Protected Member Functions | |
virtual void | compositionChanged () |
Apply changes to the state which are needed after the composition changes. More... | |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
Protected Attributes | |
int | m_formGC |
Format for the generalized concentrations. More... | |
doublereal | m_Pref |
Value of the reference pressure for all species in this phase. More... | |
doublereal | m_Pcurrent |
m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure. More... | |
vector_fp | m_speciesMolarVolume |
Vector of molar volumes for each species in the solution. More... | |
vector_fp | m_h0_RT |
Vector containing the species reference enthalpies at T = m_tlast. More... | |
vector_fp | m_cp0_R |
Vector containing the species reference constant pressure heat capacities at T = m_tlast. More... | |
vector_fp | m_g0_RT |
Vector containing the species reference Gibbs functions at T = m_tlast. More... | |
vector_fp | m_s0_R |
Vector containing the species reference entropies at T = m_tlast. More... | |
vector_fp | m_expg0_RT |
Vector containing the species reference exp(-G/RT) functions at T = m_tlast. More... | |
vector_fp | m_pe |
Vector of potential energies for the species. More... | |
vector_fp | m_pp |
Temporary array used in equilibrium calculations. More... | |
Protected Attributes inherited from ThermoPhase | |
MultiSpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. Units are Volts. More... | |
vector_fp | m_lambdaRRT |
Vector of element potentials. Length equal to number of elements. More... | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
vector_fp | xMol_Ref |
Reference Mole Fraction Composition. More... | |
doublereal | m_tlast |
last value of the temperature processed by reference state More... | |
Protected Attributes inherited from Phase | |
ValueCache | m_cache |
Cached for saved calculations within each ThermoPhase. More... | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesSize |
Vector of species sizes. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
std::map< std::string, shared_ptr< Species > > | m_species |
UndefElement::behavior | m_undefinedElementBehavior |
Flag determining behavior when adding species with an undefined element. More... | |
Utility Functions | |
virtual bool | addSpecies (shared_ptr< Species > spec) |
virtual void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object using an XML tree. More... | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
double | speciesMolarVolume (int k) const |
Report the molar volume of species k. More... | |
void | getSpeciesMolarVolumes (doublereal *smv) const |
Fill in a return vector containing the species molar volumes. More... | |
void | _updateThermo () const |
This function gets called for every call to functions in this class. More... | |
Class IdealSolidSolnPhase represents a condensed phase ideal solution compound.
The phase and the pure species phases which comprise the standard states of the species are assumed to have zero volume expansivity and zero isothermal compressibility. Each species does, however, have constant but distinct partial molar volumes equal to their pure species molar volumes. The class derives from class ThermoPhase, and overloads the virtual methods defined there with ones that use expressions appropriate for ideal solution mixtures.
The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and in the XML file. The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.
Definition at line 49 of file IdealSolidSolnPhase.h.
IdealSolidSolnPhase | ( | int | formCG = 0 | ) |
Constructor for IdealSolidSolnPhase.
The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the XML data file.
formCG | This parameter initializes the m_formGC variable. |
Definition at line 22 of file IdealSolidSolnPhase.cpp.
Referenced by IdealSolidSolnPhase::duplMyselfAsThermoPhase().
IdealSolidSolnPhase | ( | const std::string & | infile, |
const std::string & | id = "" , |
||
int | formCG = 0 |
||
) |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an ASCII input file.
This constructor will also fully initialize the object. The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor or read from the XML data file.
infile | File name for the XML datafile containing information for this phase |
id | The name of this phase. This is used to look up the phase in the XML datafile. |
formCG | This parameter initializes the m_formGC variable. |
Definition at line 33 of file IdealSolidSolnPhase.cpp.
References ThermoPhase::initThermoFile().
IdealSolidSolnPhase | ( | XML_Node & | root, |
const std::string & | id = "" , |
||
int | formCG = 0 |
||
) |
Construct and initialize an IdealSolidSolnPhase ThermoPhase object directly from an XML database.
The generalized concentrations can have three different forms depending on the value of the member attribute m_formGC, which is supplied in the constructor and/or read from the data file.
root | XML tree containing a description of the phase. The tree must be positioned at the XML element named phase with id, "id", on input to this routine. |
id | The name of this phase. This is used to look up the phase in the XML datafile. |
formCG | This parameter initializes the m_formGC variable. |
Definition at line 46 of file IdealSolidSolnPhase.cpp.
References Cantera::importPhase().
|
virtual |
Duplication routine for objects which inherit from ThermoPhase.
This virtual routine can be used to duplicate ThermoPhase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.
These routines are basically wrappers around the derived copy constructor.
Reimplemented from ThermoPhase.
Definition at line 84 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::IdealSolidSolnPhase().
|
virtual |
Equation of state flag.
Returns a value depending upon the value of m_formGC, which is defined at instantiation.
Reimplemented from ThermoPhase.
Definition at line 89 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC, and Cantera::warn_deprecated().
|
inlinevirtual |
String indicating the thermodynamic model implemented.
Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.
Reimplemented from ThermoPhase.
Definition at line 104 of file IdealSolidSolnPhase.h.
|
virtual |
Molar enthalpy of the solution.
Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity and zero isothermal compressibility:
\[ \hat h(T,P) = \sum_k X_k \hat h^0_k(T) + (P - P_{ref}) (\sum_k X_k \hat V^0_k) \]
The reference-state pure-species enthalpies at the reference pressure Pref \( \hat h^0_k(T) \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
Reimplemented from ThermoPhase.
Definition at line 113 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::m_Pref, Phase::mean_X(), Phase::molarDensity(), IdealSolidSolnPhase::pressure(), and ThermoPhase::RT().
|
virtual |
Molar entropy of the solution.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat s(T, P, X_k) = \sum_k X_k \hat s^0_k(T) - \hat R \sum_k X_k log(X_k) \]
The reference-state pure-species entropies \( \hat s^0_k(T,p_{ref}) \) are computed by the species thermodynamic property manager. The pure species entropies are independent of pressure since the volume expansivities are equal to zero.
Reimplemented from ThermoPhase.
Definition at line 119 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::mean_X(), and Phase::sum_xlogx().
|
virtual |
Molar Gibbs free energy of the solution.
Units: J/kmol. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat g(T, P) = \sum_k X_k \hat g^0_k(T,P) + \hat R T \sum_k X_k log(X_k) \]
The reference-state pure-species Gibbs free energies \( \hat g^0_k(T) \) are computed by the species thermodynamic property manager, while the standard state Gibbs free energies \( \hat g^0_k(T,P) \) are computed by the member function, gibbs_RT().
Reimplemented from ThermoPhase.
Definition at line 124 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::mean_X(), ThermoPhase::RT(), and Phase::sum_xlogx().
|
virtual |
Molar heat capacity at constant pressure of the solution.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat c_p(T,P) = \sum_k X_k \hat c^0_{p,k}(T) . \]
The heat capacity is independent of pressure. The reference-state pure- species heat capacities \( \hat c^0_{p,k}(T) \) are computed by the species thermodynamic property manager.
Reimplemented from ThermoPhase.
Definition at line 129 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::cp_R_ref(), Cantera::GasConstant, and Phase::mean_X().
Referenced by IdealSolidSolnPhase::cv_mole().
|
inlinevirtual |
Molar heat capacity at constant volume of the solution.
Units: J/kmol/K. For an ideal, constant partial molar volume solution mixture with pure species phases which exhibit zero volume expansivity:
\[ \hat c_v(T,P) = \hat c_p(T,P) \]
The two heat capacities are equal.
Reimplemented from ThermoPhase.
Definition at line 177 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::cp_mole().
|
inlinevirtual |
Pressure.
Units: Pa. For this incompressible system, we return the internally stored independent value of the pressure.
Reimplemented from ThermoPhase.
Definition at line 196 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::m_Pcurrent.
Referenced by IdealSolidSolnPhase::enthalpy_mole().
|
virtual |
Set the pressure at constant temperature.
Units: Pa. This method sets a constant within the object. The mass density is not a function of pressure.
p | Input Pressure (Pa) |
Reimplemented from ThermoPhase.
Definition at line 159 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and IdealSolidSolnPhase::m_Pcurrent.
void calcDensity | ( | ) |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input.
The formula for this is
\[ \rho = \frac{\sum_k{X_k W_k}}{\sum_k{X_k V_k}} \]
where \(X_k\) are the mole fractions, \(W_k\) are the molecular weights, and \(V_k\) are the pure species molar volumes.
Note, the basis behind this formula is that in an ideal solution the partial molar volumes are equal to the pure species molar volumes. We have additionally specified in this class that the pure species molar volumes are independent of temperature and pressure.
Definition at line 136 of file IdealSolidSolnPhase.cpp.
References Cantera::dot(), IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFractdivMMW(), and Phase::setDensity().
Referenced by IdealSolidSolnPhase::compositionChanged(), and IdealSolidSolnPhase::setPressure().
|
virtual |
Overridden setDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition
May have to adjust the strategy here to make the eos for these materials slightly compressible, in order to create a condition where the density is a function of the pressure.
rho | Input density |
Reimplemented from Phase.
Definition at line 148 of file IdealSolidSolnPhase.cpp.
References Phase::density().
|
virtual |
Overridden setMolarDensity() function is necessary because the density is not an independent variable.
This function will now throw an error condition.
rho | Input Density |
Reimplemented from Phase.
Definition at line 165 of file IdealSolidSolnPhase.cpp.
|
virtual |
This method returns the array of generalized concentrations.
The generalized concentrations are used in the evaluation of the rates of progress for reactions involving species in this phase. The generalized concentration divided by the standard concentration is also equal to the activity of species.
For this implementation the activity is defined to be the mole fraction of the species. The generalized concentration is defined to be equal to the mole fraction divided by the partial molar volume. The generalized concentrations for species in this phase therefore have units of kmol/m^3. Rate constants must reflect this fact.
On a general note, the following must be true. For an ideal solution, the generalized concentration must consist of the mole fraction multiplied by a constant. The constant may be fairly arbitrarily chosen, with differences adsorbed into the reaction rate expression. 1/V_N, 1/V_k, or 1 are equally good, as long as the standard concentration is adjusted accordingly. However, it must be a constant (and not the concentration, btw, which is a function of the mole fractions) in order for the ideal solution properties to hold at the same time having the standard concentration to be independent of the mole fractions.
In this implementation the form of the generalized concentrations depend upon the member attribute, m_formGC.
HKM Note: We have absorbed the pressure dependence of the pure species state into the thermodynamics functions. Therefore the standard state on which the activities are based depend on both temperature and pressure. If we hadn't, it would have appeared in this function in a very awkward exp[] format.
c | Pointer to array of doubles of length m_kk, which on exit will contain the generalized concentrations. |
Reimplemented from ThermoPhase.
Definition at line 179 of file IdealSolidSolnPhase.cpp.
|
virtual |
The standard concentration \( C^0_k \) used to normalize the generalized concentration.
In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. This is the inverse of the species molar volume. Units for the standard concentration are kmol/m^3.
k | Species number: this is a require parameter, a change from the ThermoPhase base class, where it was an optional parameter. |
Reimplemented from ThermoPhase.
Definition at line 203 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC, Phase::m_kk, and IdealSolidSolnPhase::m_speciesMolarVolume.
|
virtual |
The reference (ie standard) concentration \( C^0_k \) used to normalize the generalized concentration.
In many cases, this quantity will be the same for all species in a phase. However, for this case, we will return a distinct concentration for each species. (clone of the standard concentration -> suggest changing the name). This is the inverse of the species molar volume.
k | Species index. |
Definition at line 215 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, and Cantera::warn_deprecated().
|
virtual |
Get the array of species activity coefficients.
ac | output vector of activity coefficients. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 231 of file IdealSolidSolnPhase.cpp.
References Phase::m_kk.
|
virtual |
Get the species chemical potentials.
Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution.
\[ \mu_k = \mu^{ref}_k(T) + V_k * (p - p_o) + R T ln(X_k) \]
or another way to phrase this is
\[ \mu_k = \mu^o_k(T,p) + R T ln(X_k) \]
where \( \mu^o_k(T,p) = \mu^{ref}_k(T) + V_k * (p - p_o)\)
mu | Output vector of chemical potentials. |
Reimplemented from ThermoPhase.
Definition at line 238 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), ThermoPhase::RT(), and Cantera::SmallNumber.
|
virtual |
Get the array of non-dimensional species solution chemical potentials at the current T and P \(\mu_k / \hat R T \).
\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k + RT ln(X_k) \]
where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).
mu | Output vector of dimensionless chemical potentials. Length = m_kk. |
Reimplemented from ThermoPhase.
Definition at line 249 of file IdealSolidSolnPhase.cpp.
References Cantera::GasConstant, IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, Phase::moleFraction(), Cantera::SmallNumber, and Phase::temperature().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol). For this phase, the partial molar enthalpies are equal to the pure species enthalpies
\[ \bar h_k(T,P) = \hat h^{ref}_k(T) + (P - P_{ref}) \hat V^0_k \]
The reference-state pure-species enthalpies, \( \hat h^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
hbar | Output vector containing partial molar enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 262 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), ThermoPhase::RT(), and Cantera::scale().
|
virtual |
Returns an array of partial molar entropies of the species in the solution.
Units: J/kmol/K. For this phase, the partial molar entropies are equal to the pure species entropies plus the ideal solution contribution.
\[ \bar s_k(T,P) = \hat s^0_k(T) - R log(X_k) \]
The reference-state pure-species entropies, \( \hat s^{ref}_k(T) \), at the reference pressure, \( P_{ref} \), are computed by the species thermodynamic property manager. They are polynomial functions of temperature.
sbar | Output vector containing partial molar entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 268 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::entropy_R_ref(), Cantera::GasConstant, Phase::m_kk, Phase::moleFraction(), and Cantera::SmallNumber.
|
virtual |
Returns an array of partial molar Heat Capacities at constant pressure of the species in the solution.
Units: J/kmol/K. For this phase, the partial molar heat capacities are equal to the standard state heat capacities.
cpbar | Output vector of partial heat capacities. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 277 of file IdealSolidSolnPhase.cpp.
References Cantera::GasConstant, IdealSolidSolnPhase::getCp_R(), and Phase::m_kk.
|
virtual |
returns an array of partial molar volumes of the species in the solution.
Units: m^3 kmol-1.
For this solution, the partial molar volumes are equal to the constant species molar volumes.
vbar | Output vector of partial molar volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 285 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::getStandardVolumes().
|
inlinevirtual |
Get the standard state chemical potentials of the species.
This is the array of chemical potentials at unit activity \( \mu^0_k(T,P) \). We define these here as the chemical potentials of the pure species at the temperature and pressure of the solution. This function is used in the evaluation of the equilibrium constant Kc. Therefore, Kc will also depend on T and P. This is the norm for liquid and solid systems.
units = J / kmol
mu0 | Output vector of standard state chemical potentials. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 468 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::getPureGibbs().
|
virtual |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution.
We assume an incompressible constant partial molar volume here:
\[ h^0_k(T,P) = h^{ref}_k(T) + (P - P_{ref}) * V_k \]
where \(V_k\) is the molar volume of pure species k. \( h^{ref}_k(T)\) is the enthalpy of the pure species k at the reference pressure, \(P_{ref}\).
hrt | Vector of length m_kk, which on return hrt[k] will contain the nondimensional standard state enthalpy of species k. |
Reimplemented from ThermoPhase.
Definition at line 310 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().
|
virtual |
Get the nondimensional Entropies for the species standard states at the current T and P of the solution.
Note, this is equal to the reference state entropies due to the zero volume expansivity: i.e., (dS/dP)_T = (dV/dT)_P = 0.0
sr | Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state entropy for species k. |
Reimplemented from ThermoPhase.
Definition at line 319 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::entropy_R_ref().
|
virtual |
Get the nondimensional Gibbs function for the species standard states at the current T and P of the solution.
\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]
where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).
grt | Vector of length m_kk, which on return sr[k] will contain the nondimensional standard state Gibbs function for species k. |
Reimplemented from ThermoPhase.
Definition at line 301 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().
|
virtual |
Get the Gibbs functions for the pure species at the current T and P of the solution.
We assume an incompressible constant partial molar volume here:
\[ \mu^0_k(T,P) = \mu^{ref}_k(T) + (P - P_{ref}) * V_k \]
where \(V_k\) is the molar volume of pure species k. \( \mu^{ref}_k(T)\) is the chemical potential of pure species k at the reference pressure, \(P_{ref}\).
gpure | Output vector of Gibbs functions for species. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 292 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pcurrent, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().
Referenced by IdealSolidSolnPhase::getStandardChemPotentials().
|
virtual |
Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.
urt | output vector of nondimensional standard state internal energies of the species. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 325 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().
|
virtual |
Get the nondimensional heat capacity at constant pressure function for the species standard states at the current T and P of the solution.
\[ Cp^0_k(T,P) = Cp^{ref}_k(T) \]
where \(V_k\) is the molar volume of pure species k. \( Cp^{ref}_k(T)\) is the constant pressure heat capacity of species k at the reference pressure, \(p_{ref}\).
cpr | Vector of length m_kk, which on return cpr[k] will contain the nondimensional constant pressure heat capacity for species k. |
Reimplemented from ThermoPhase.
Definition at line 334 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::cp_R_ref().
Referenced by IdealSolidSolnPhase::getPartialMolarCp().
|
virtual |
Get the molar volumes of the species standard states at the current T and P of the solution.
units = m^3 / kmol
vol | Output vector containing the standard state volumes. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 340 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_speciesMolarVolume.
Referenced by IdealSolidSolnPhase::getPartialMolarVolumes().
|
virtual |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species.
hrt | Output vector containing the nondimensional reference state enthalpies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 347 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_h0_RT, and Phase::m_kk.
|
virtual |
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.
grt | Output vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 355 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, and Phase::m_kk.
|
virtual |
Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.
g | Output vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol. |
Reimplemented from ThermoPhase.
Definition at line 363 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_g0_RT, Phase::m_kk, and ThermoPhase::RT().
|
virtual |
Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.
er | Output vector containing the nondimensional reference state entropies. Length: m_kk. |
Reimplemented from ThermoPhase.
Definition at line 381 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), Phase::m_kk, and IdealSolidSolnPhase::m_s0_R.
|
virtual |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species.
urt | Output vector of nondimensional reference state internal energies of the species. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 372 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::enthalpy_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::RT().
|
virtual |
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.
cprt | Output vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk |
Reimplemented from ThermoPhase.
Definition at line 389 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::m_cp0_R, and Phase::m_kk.
const vector_fp & enthalpy_RT_ref | ( | ) | const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 397 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_h0_RT.
Referenced by IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), and IdealSolidSolnPhase::getPartialMolarEnthalpies().
|
inline |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 574 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_g0_RT.
Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::gibbs_mole(), and IdealSolidSolnPhase::setToEquilState().
const vector_fp & entropy_R_ref | ( | ) | const |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 403 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_s0_R.
Referenced by IdealSolidSolnPhase::entropy_mole(), IdealSolidSolnPhase::getEntropy_R(), and IdealSolidSolnPhase::getPartialMolarEntropies().
|
inline |
Returns a reference to the vector of nondimensional enthalpies of the reference state at the current temperature.
Real reason for its existence is that it also checks to see if a recalculation of the reference thermodynamics functions needs to be done.
Definition at line 593 of file IdealSolidSolnPhase.h.
References IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::m_cp0_R.
Referenced by IdealSolidSolnPhase::cp_mole(), and IdealSolidSolnPhase::getCp_R().
|
virtual |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. They are not normally used in application programs. To see how they are used, see importPhase().
Reimplemented from ThermoPhase.
Definition at line 411 of file IdealSolidSolnPhase.cpp.
References ThermoPhase::addSpecies(), IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_expg0_RT, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_pe, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, IdealSolidSolnPhase::m_s0_R, IdealSolidSolnPhase::m_speciesMolarVolume, and ThermoPhase::refPressure().
|
virtual |
Import and initialize a ThermoPhase object using an XML tree.
Here we read extra information about the XML description of a phase. Regular information about elements and species and their reference state thermodynamic information have already been read at this point. For example, we do not need to call this function for ideal gas equations of state. This function is called from importPhase() after the elements and the species are initialized with default ideal solution level data.
The default implementation in ThermoPhase calls the virtual function initThermo() and then sets the "state" of the phase by looking for an XML element named "state", and then interpreting its contents by calling the virtual function setStateFromXML().
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from ThermoPhase.
Definition at line 435 of file IdealSolidSolnPhase.cpp.
References XML_Node::attrib(), XML_Node::child(), XML_Node::findByAttr(), XML_Node::findByName(), Cantera::get_XML_NameID(), Cantera::getFloat(), XML_Node::hasChild(), XML_Node::id(), ThermoPhase::initThermoXML(), IdealSolidSolnPhase::m_formGC, Phase::m_kk, IdealSolidSolnPhase::m_speciesMolarVolume, XML_Node::root(), and Phase::speciesName().
|
virtual |
This method is used by the ChemEquil equilibrium solver.
It sets the state such that the chemical potentials satisfy
\[ \frac{\mu_k}{\hat R T} = \sum_m A_{k,m} \left(\frac{\lambda_m} {\hat R T}\right) \]
where \( \lambda_m \) is the element potential of element m. The temperature is unchanged. Any phase (ideal or not) that implements this method can be equilibrated by ChemEquil.
lambda_RT | Input vector of dimensionless element potentials The length is equal to nElements(). |
Reimplemented from ThermoPhase.
Definition at line 493 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::gibbs_RT_ref(), Phase::m_kk, IdealSolidSolnPhase::m_pp, IdealSolidSolnPhase::m_Pref, Phase::nAtoms(), Phase::nElements(), and ThermoPhase::setState_PX().
double speciesMolarVolume | ( | int | k | ) | const |
Report the molar volume of species k.
units - \( m^3 kmol^-1 \)
k | species index |
Definition at line 510 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_speciesMolarVolume.
void getSpeciesMolarVolumes | ( | doublereal * | smv | ) | const |
Fill in a return vector containing the species molar volumes.
units - \( m^3 kmol^-1 \)
smv | output vector containing species molar volumes. Length: m_kk. |
Definition at line 515 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_speciesMolarVolume.
|
protectedvirtual |
Apply changes to the state which are needed after the composition changes.
This function is called after any call to setMassFractions(), setMoleFractions(), or similar. For phases which need to execute a callback after any change to the composition, it should be done by overriding this function rather than overriding all of the composition- setting functions. Derived class implementations of compositionChanged() should call the parent class method as well.
Reimplemented from Phase.
Definition at line 171 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::calcDensity(), and Phase::compositionChanged().
|
private |
This function gets called for every call to functions in this class.
It checks to see whether the temperature has changed and thus the reference thermodynamics functions for all of the species must be recalculated. If the temperature has changed, the species thermo manager is called to recalculate G, Cp, H, and S at the current temperature.
Definition at line 520 of file IdealSolidSolnPhase.cpp.
References IdealSolidSolnPhase::m_cp0_R, IdealSolidSolnPhase::m_g0_RT, IdealSolidSolnPhase::m_h0_RT, Phase::m_kk, IdealSolidSolnPhase::m_pe, IdealSolidSolnPhase::m_s0_R, ThermoPhase::m_spthermo, ThermoPhase::m_tlast, ThermoPhase::RT(), Phase::temperature(), and MultiSpeciesThermo::update().
Referenced by IdealSolidSolnPhase::cp_R_ref(), IdealSolidSolnPhase::enthalpy_RT_ref(), IdealSolidSolnPhase::entropy_R_ref(), IdealSolidSolnPhase::getCp_R_ref(), IdealSolidSolnPhase::getEnthalpy_RT_ref(), IdealSolidSolnPhase::getEntropy_R_ref(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT_ref(), and IdealSolidSolnPhase::gibbs_RT_ref().
|
protected |
Format for the generalized concentrations.
m_formGC | GeneralizedConc | StandardConc |
---|---|---|
0 (default) | X_k | 1.0 |
1 | X_k / V_k | 1.0 / V_k |
2 | X_k / V_N | 1.0 / V_N |
The value and form of the generalized concentration will affect reaction rate constants involving species in this phase.
Definition at line 651 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::eosType(), IdealSolidSolnPhase::initThermoXML(), IdealSolidSolnPhase::referenceConcentration(), and IdealSolidSolnPhase::standardConcentration().
|
protected |
Value of the reference pressure for all species in this phase.
The T dependent polynomials are evaluated at the reference pressure. Note, because this is a single value, all species are required to have the same reference pressure.
Definition at line 659 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::enthalpy_mole(), IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPureGibbs(), and IdealSolidSolnPhase::setToEquilState().
|
protected |
m_Pcurrent = The current pressure Since the density isn't a function of pressure, but only of the mole fractions, we need to independently specify the pressure.
The density variable which is inherited as part of the State class, m_dens, is always kept current whenever T, P, or X[] change.
Definition at line 668 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::pressure(), and IdealSolidSolnPhase::setPressure().
|
protected |
Vector of molar volumes for each species in the solution.
Species molar volumes \( m^3 kmol^-1 \)
Definition at line 674 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::calcDensity(), IdealSolidSolnPhase::getChemPotentials(), IdealSolidSolnPhase::getChemPotentials_RT(), IdealSolidSolnPhase::getEnthalpy_RT(), IdealSolidSolnPhase::getGibbs_RT(), IdealSolidSolnPhase::getIntEnergy_RT(), IdealSolidSolnPhase::getIntEnergy_RT_ref(), IdealSolidSolnPhase::getPureGibbs(), IdealSolidSolnPhase::getSpeciesMolarVolumes(), IdealSolidSolnPhase::getStandardVolumes(), IdealSolidSolnPhase::initThermoXML(), IdealSolidSolnPhase::referenceConcentration(), IdealSolidSolnPhase::speciesMolarVolume(), and IdealSolidSolnPhase::standardConcentration().
|
mutableprotected |
Vector containing the species reference enthalpies at T = m_tlast.
Definition at line 677 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::enthalpy_RT_ref(), and IdealSolidSolnPhase::getEnthalpy_RT_ref().
|
mutableprotected |
Vector containing the species reference constant pressure heat capacities at T = m_tlast.
Definition at line 681 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::cp_R_ref(), and IdealSolidSolnPhase::getCp_R_ref().
|
mutableprotected |
Vector containing the species reference Gibbs functions at T = m_tlast.
Definition at line 684 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::getGibbs_ref(), IdealSolidSolnPhase::getGibbs_RT_ref(), and IdealSolidSolnPhase::gibbs_RT_ref().
|
mutableprotected |
Vector containing the species reference entropies at T = m_tlast.
Definition at line 687 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), IdealSolidSolnPhase::addSpecies(), IdealSolidSolnPhase::entropy_R_ref(), and IdealSolidSolnPhase::getEntropy_R_ref().
|
mutableprotected |
Vector containing the species reference exp(-G/RT) functions at T = m_tlast.
Definition at line 691 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::addSpecies().
|
mutableprotected |
Vector of potential energies for the species.
Definition at line 694 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::_updateThermo(), and IdealSolidSolnPhase::addSpecies().
|
mutableprotected |
Temporary array used in equilibrium calculations.
Definition at line 697 of file IdealSolidSolnPhase.h.
Referenced by IdealSolidSolnPhase::addSpecies(), and IdealSolidSolnPhase::setToEquilState().