12#include <boost/algorithm/string.hpp>
27 double a0,
double a1,
double b)
35 size_t counter = k +
m_kk * k;
36 a_coeff_vec(0, counter) = a0;
37 a_coeff_vec(1, counter) = a1;
40 for (
size_t j = 0; j <
m_kk; j++) {
46 if (isnan(a_coeff_vec(0, j +
m_kk * j))) {
49 }
else if (isnan(a_coeff_vec(0, j +
m_kk * k))) {
52 double a0kj = sqrt(a_coeff_vec(0, j +
m_kk * j) * a0);
53 double a1kj = sqrt(a_coeff_vec(1, j +
m_kk * j) * a1);
54 a_coeff_vec(0, j +
m_kk * k) = a0kj;
55 a_coeff_vec(1, j +
m_kk * k) = a1kj;
56 a_coeff_vec(0, k +
m_kk * j) = a0kj;
57 a_coeff_vec(1, k +
m_kk * j) = a1kj;
60 a_coeff_vec.
getRow(0, a_vec_Curr_.data());
76 size_t counter1 = ki +
m_kk * kj;
77 size_t counter2 = kj +
m_kk * ki;
78 a_coeff_vec(0, counter1) = a_coeff_vec(0, counter2) = a0;
79 a_coeff_vec(1, counter1) = a_coeff_vec(1, counter2) = a1;
80 a_vec_Curr_[counter1] = a_vec_Curr_[counter2] = a0;
89 double sqt = sqrt(TKelvin);
94 double dadt = da_dt();
95 double fac = TKelvin * dadt - 3.0 *
m_a_current / 2.0;
97 +1.0/(
m_b_current * sqt) * log(vpb/mv) * (-0.5 * dadt));
105 double sqt = sqrt(TKelvin);
109 double dadt = da_dt();
110 double fac = TKelvin * dadt - 3.0 *
m_a_current / 2.0;
111 return (cvref - 1.0/(2.0 *
m_b_current * TKelvin * sqt) * log(vpb/mv)*fac
112 +1.0/(
m_b_current * sqt) * log(vpb/mv)*(-0.5*dadt));
139 for (
size_t k = 0; k <
m_kk; k++) {
141 for (
size_t i = 0; i <
m_kk; i++) {
142 size_t counter = k +
m_kk*i;
148 for (
size_t k = 0; k <
m_kk; k++) {
149 ac[k] = (-
RT() * log(pres * mv /
RT())
150 +
RT() * log(mv / vmb)
151 +
RT() * b_vec_Curr_[k] / vmb
157 for (
size_t k = 0; k <
m_kk; k++) {
158 ac[k] = exp(ac[k]/
RT());
167 for (
size_t k = 0; k <
m_kk; k++) {
169 mu[k] +=
RT()*(log(xx));
177 for (
size_t k = 0; k <
m_kk; k++) {
179 for (
size_t i = 0; i <
m_kk; i++) {
180 size_t counter = k +
m_kk*i;
187 for (
size_t k = 0; k <
m_kk; k++) {
188 mu[k] += (
RT() * log(pres/refP) -
RT() * log(pres * mv /
RT())
189 +
RT() * log(mv / vmb)
190 +
RT() * b_vec_Curr_[k] / vmb
207 double sqt = sqrt(TKelvin);
210 for (
size_t k = 0; k <
m_kk; k++) {
212 for (
size_t i = 0; i <
m_kk; i++) {
213 size_t counter = k +
m_kk*i;
217 for (
size_t k = 0; k <
m_kk; k++) {
218 dpdni_[k] =
RT()/vmb +
RT() * b_vec_Curr_[k] / (vmb * vmb) - 2.0 *
m_pp[k] / (sqt * mv * vpb)
219 +
m_a_current * b_vec_Curr_[k]/(sqt * mv * vpb * vpb);
221 double dadt = da_dt();
222 double fac = TKelvin * dadt - 3.0 *
m_a_current / 2.0;
224 for (
size_t k = 0; k <
m_kk; k++) {
226 for (
size_t i = 0; i <
m_kk; i++) {
227 size_t counter = k +
m_kk*i;
234 for (
size_t k = 0; k <
m_kk; k++) {
237 + b_vec_Curr_[k] / vpb / (
m_b_current * sqt) * fac);
238 hbar[k] = hbar[k] + hE_v;
239 hbar[k] -= fac2 *
dpdni_[k];
248 double sqt = sqrt(TKelvin);
252 for (
size_t k = 0; k <
m_kk; k++) {
256 for (
size_t k = 0; k <
m_kk; k++) {
258 for (
size_t i = 0; i <
m_kk; i++) {
259 size_t counter = k +
m_kk*i;
263 for (
size_t k = 0; k <
m_kk; k++) {
265 for (
size_t i = 0; i <
m_kk; i++) {
266 size_t counter = k +
m_kk*i;
271 double dadt = da_dt();
275 for (
size_t k = 0; k <
m_kk; k++) {
283 - 1.0 / (
m_b_current * sqt) * b_vec_Curr_[k] / vpb * fac
289 for (
size_t k = 0; k <
m_kk; k++) {
290 sbar[k] -= -m_partialMolarVolumes[k] *
dpdT_;
300 for (
size_t k = 0; k <
nSpecies(); k++) {
301 ubar[k] -= p * m_partialMolarVolumes[k];
307 for (
size_t k = 0; k <
m_kk; k++) {
309 for (
size_t i = 0; i <
m_kk; i++) {
310 size_t counter = k +
m_kk*i;
314 for (
size_t k = 0; k <
m_kk; k++) {
316 for (
size_t i = 0; i <
m_kk; i++) {
317 size_t counter = k +
m_kk*i;
326 for (
size_t k = 0; k <
m_kk; k++) {
329 - 2.0 *
m_pp[k] / (sqt * vpb)
334 vbar[k] = num / denom;
342 a_vec_Curr_.resize(
m_kk *
m_kk, 0.0);
346 b_vec_Curr_.push_back(NAN);
351 m_partialMolarVolumes.push_back(0.0);
361 std::unordered_map<string, AnyMap*> dbSpecies;
366 if (!isnan(a_coeff_vec(0, k +
m_kk * k))) {
369 bool foundCoeffs =
false;
371 if (data.hasKey(
"equation-of-state") &&
372 data[
"equation-of-state"].hasMapWhere(
"model",
"Redlich-Kwong"))
376 auto eos = data[
"equation-of-state"].getMapWhere(
377 "model",
"Redlich-Kwong");
379 if (eos.hasKey(
"a") && eos.hasKey(
"b")) {
380 double a0 = 0, a1 = 0;
381 if (eos[
"a"].isScalar()) {
382 a0 = eos.convert(
"a",
"Pa*m^6/kmol^2*K^0.5");
384 auto avec = eos[
"a"].asVector<
AnyValue>(2);
385 a0 = eos.units().convert(avec[0],
"Pa*m^6/kmol^2*K^0.5");
386 a1 = eos.units().convert(avec[1],
"Pa*m^6/kmol^2/K^0.5");
388 double b = eos.convert(
"b",
"m^3/kmol");
394 if (eos.hasKey(
"binary-a")) {
397 for (
auto& [name2, coeff] : binary_a) {
398 double a0 = 0, a1 = 0;
399 if (coeff.isScalar()) {
400 a0 = units.
convert(coeff,
"Pa*m^6/kmol^2*K^0.5");
402 auto avec = coeff.asVector<
AnyValue>(2);
403 a0 = units.convert(avec[0],
"Pa*m^6/kmol^2*K^0.5");
404 a1 = units.convert(avec[1],
"Pa*m^6/kmol^2/K^0.5");
416 double Tc = NAN, Pc = NAN;
417 if (data.hasKey(
"critical-parameters")) {
420 auto& critProps = data[
"critical-parameters"].as<
AnyMap>();
421 Tc = critProps.
convert(
"critical-temperature",
"K");
422 Pc = critProps.convert(
"critical-pressure",
"Pa");
426 if (critPropsDb.
empty()) {
428 dbSpecies = critPropsDb[
"species"].asMap(
"name");
432 auto ucName = boost::algorithm::to_upper_copy(
name);
433 if (dbSpecies.count(ucName)) {
434 auto& spec = *dbSpecies.at(ucName);
435 auto& critProps = spec[
"critical-parameters"].as<
AnyMap>();
436 Tc = critProps.
convert(
"critical-temperature",
"K");
437 Pc = critProps.convert(
"critical-pressure",
"Pa");
450 "No critical property or Redlich-Kwong parameters found "
451 "for species {}.",
name);
457 AnyMap& speciesNode)
const
462 auto& eosNode = speciesNode[
"equation-of-state"].getMapWhere(
463 "model",
"Redlich-Kwong",
true);
465 size_t counter = k +
m_kk * k;
466 if (a_coeff_vec(1, counter) != 0.0) {
467 vector<AnyValue> coeffs(2);
468 coeffs[0].setQuantity(a_coeff_vec(0, counter),
"Pa*m^6/kmol^2*K^0.5");
469 coeffs[1].setQuantity(a_coeff_vec(1, counter),
"Pa*m^6/kmol^2/K^0.5");
470 eosNode[
"a"] = std::move(coeffs);
472 eosNode[
"a"].setQuantity(a_coeff_vec(0, counter),
473 "Pa*m^6/kmol^2*K^0.5");
475 eosNode[
"b"].setQuantity(b_vec_Curr_[k],
"m^3/kmol");
477 auto& critProps = speciesNode[
"critical-parameters"];
478 double a = a_coeff_vec(0, k +
m_kk * k);
479 double b = b_vec_Curr_[k];
482 critProps[
"critical-temperature"].setQuantity(Tc,
"K");
483 critProps[
"critical-pressure"].setQuantity(Pc,
"Pa");
487 auto& eosNode = speciesNode[
"equation-of-state"].getMapWhere(
488 "model",
"Redlich-Kwong",
true);
491 if (coeffs.second == 0) {
492 bin_a[name2].setQuantity(coeffs.first,
"Pa*m^6/kmol^2*K^0.5");
494 vector<AnyValue> C(2);
495 C[0].setQuantity(coeffs.first,
"Pa*m^6/kmol^2*K^0.5");
496 C[1].setQuantity(coeffs.second,
"Pa*m^6/kmol^2/K^0.5");
497 bin_a[name2] = std::move(C);
500 eosNode[
"binary-a"] = std::move(bin_a);
509 double molarV = mmw / rho;
512 double dadt = da_dt();
514 double sqT = sqrt(T);
525 double molarV = mmw / rho;
528 double dadt = da_dt();
530 double sqT = sqrt(T);
541 double pres = std::max(
psatEst(TKelvin), presGuess);
543 bool foundLiq =
false;
545 while (m < 100 && !foundLiq) {
546 int nsol =
solveCubic(TKelvin, pres, atmp, btmp, Vroot);
547 if (nsol == 1 || nsol == 2) {
574 if (rhoguess == -1.0) {
575 if (phaseRequested >= FLUID_LIQUID_0) {
577 rhoguess = mmw / lqvol;
585 double volguess = mmw / rhoguess;
588 double molarVolLast = Vroot_[0];
590 if (phaseRequested >= FLUID_LIQUID_0) {
591 molarVolLast = Vroot_[0];
592 }
else if (phaseRequested == FLUID_GAS || phaseRequested == FLUID_SUPERCRIT) {
593 molarVolLast = Vroot_[2];
595 if (volguess > Vroot_[1]) {
596 molarVolLast = Vroot_[2];
598 molarVolLast = Vroot_[0];
601 }
else if (NSolns_ == 1) {
602 if (phaseRequested == FLUID_GAS || phaseRequested == FLUID_SUPERCRIT || phaseRequested == FLUID_UNDEFINED) {
603 molarVolLast = Vroot_[0];
607 }
else if (NSolns_ == -1) {
608 if (phaseRequested >= FLUID_LIQUID_0 || phaseRequested == FLUID_UNDEFINED || phaseRequested == FLUID_SUPERCRIT) {
609 molarVolLast = Vroot_[0];
610 }
else if (TKelvin > tcrit) {
611 molarVolLast = Vroot_[0];
616 molarVolLast = Vroot_[0];
619 return mmw / molarVolLast;
624 double sqt = sqrt(TKelvin);
630 double dpdv = (-
GasConstant * TKelvin / (vmb * vmb)
660 double sqt = sqrt(TKelvin);
663 double dadt = da_dt();
672 for (
size_t i = 0; i <
m_kk; i++) {
673 for (
size_t j = 0; j <
m_kk; j++) {
674 size_t counter = i *
m_kk + j;
675 a_vec_Curr_[counter] = a_coeff_vec(0,counter) + a_coeff_vec(1,counter) * temp;
682 for (
size_t i = 0; i <
m_kk; i++) {
684 for (
size_t j = 0; j <
m_kk; j++) {
690 fmt::memory_buffer b;
691 for (
size_t k = 0; k <
m_kk; k++) {
692 if (isnan(b_vec_Curr_[k])) {
700 throw CanteraError(
"RedlichKwongMFTP::updateMixingExpressions",
701 "Missing Redlich-Kwong coefficients for species: {}", to_string(b));
710 for (
size_t i = 0; i <
m_kk; i++) {
712 for (
size_t j = 0; j <
m_kk; j++) {
713 size_t counter = i *
m_kk + j;
714 double a_vec_Curr = a_coeff_vec(0,counter) + a_coeff_vec(1,counter) * temp;
719 for (
size_t i = 0; i <
m_kk; i++) {
721 for (
size_t j = 0; j <
m_kk; j++) {
722 size_t counter = i *
m_kk + j;
723 double a_vec_Curr = a_coeff_vec(0,counter);
730double RedlichKwongMFTP::da_dt()
const
734 for (
size_t i = 0; i <
m_kk; i++) {
735 for (
size_t j = 0; j <
m_kk; j++) {
736 size_t counter = i *
m_kk + j;
744void RedlichKwongMFTP::calcCriticalConditions(
double& pc,
double& tc,
double& vc)
const
748 for (
size_t i = 0; i <
m_kk; i++) {
749 for (
size_t j = 0; j <
m_kk; j++) {
750 size_t counter = i +
m_kk * j;
774 double sqrttc, f, dfdt, deltatc;
780 for (
int j = 0; j < 10; j++) {
784 deltatc = - f / dfdt;
788 throw CanteraError(
"RedlichKwongMFTP::calcCriticalConditions",
803 double sqt = sqrt(T);
804 double cn = - (
GasConstant * T * b / pres - a/(pres * sqt) + b * b);
805 double dn = - (a * b / (pres * sqt));
809 double tc = pow(tmp, pp);
813 int nSolnValues =
MixtureFugacityTP::solveCubic(T, pres, a, b, a, Vroot, an, bn, cn, dn, tc, vc);
Declaration for class Cantera::Species.
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
A map of string keys to values whose type can vary at runtime.
const UnitSystem & units() const
Return the default units that should be used to convert stored values.
bool empty() const
Return boolean indicating whether AnyMap is empty.
double convert(const string &key, const string &units) const
Convert the item stored by the given key to the units specified in units.
static AnyMap fromYamlFile(const string &name, const string &parent_name="")
Create an AnyMap from a YAML file.
A wrapper for a variable whose type is determined at runtime.
void getRow(size_t n, double *const rw)
Get the nth row and return it in a vector.
virtual void resize(size_t n, size_t m, double v=0.0)
Resize the array, and fill the new entries with 'v'.
Base class for exceptions thrown by Cantera classes.
double critPressure() const override
Critical pressure (Pa).
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
double critTemperature() const override
Critical temperature (K).
virtual void _updateReferenceStateThermo() const
Updates the reference state thermodynamic functions at the current T of the solution.
int solveCubic(double T, double pres, double a, double b, double aAlpha, double Vroot[3], double an, double bn, double cn, double dn, double tc, double vc) const
Solve the cubic equation of state.
vector< double > moleFractions_
Storage for the current values of the mole fractions of the species.
void getEntropy_R_ref(double *er) const override
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
void setTemperature(const double temp) override
Set the temperature of the phase.
virtual double psatEst(double TKelvin) const
Estimate for the saturation pressure.
void getStandardVolumes(double *vol) const override
Get the molar volumes of each species in their standard states at the current T and P of the solution...
vector< double > m_cp0_R
Temporary storage for dimensionless reference state heat capacities.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
double z() const
Calculate the value of z.
void getEnthalpy_RT_ref(double *hrt) const override
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
vector< double > m_workS
Vector of size m_kk, used as a temporary holding area.
size_t nSpecies() const
Returns the number of species in the phase.
size_t m_kk
Number of species in the phase.
size_t speciesIndex(const string &name, bool raise=true) const
Returns the index of a species named 'name' within the Phase object.
double temperature() const
Temperature (K).
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
string speciesName(size_t k) const
Name of the species with index k.
map< string, shared_ptr< Species > > m_species
Map of Species objects.
double moleFraction(size_t k) const
Return the mole fraction of a single species.
virtual double density() const
Density (kg/m^3).
double mean_X(const double *const Q) const
Evaluate the mole-fraction-weighted mean of an array Q.
shared_ptr< Species > species(const string &name) const
Return the Species object for the named species.
virtual double molarVolume() const
Molar volume (m^3/kmol).
string name() const
Return the name of the phase.
double dpdT_
The derivative of the pressure wrt the temperature.
void calculateAB(double temp, double &aCalc, double &bCalc) const
Calculate the a and the b parameters given the temperature.
double thermalExpansionCoeff() const override
Return the volumetric thermal expansion coefficient. Units: 1/K.
void setBinaryCoeffs(const string &species_i, const string &species_j, double a0, double a1)
Set values for the interaction parameter between two species.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials. Units: J/kmol.
double sresid() const override
Calculate the deviation terms for the total entropy of the mixture from the ideal gas mixture.
double soundSpeed() const override
Return the speed of sound. Units: m/s.
double pressure() const override
Return the thermodynamic pressure (Pa).
int m_formTempParam
Form of the temperature parameterization.
void getSpeciesParameters(const string &name, AnyMap &speciesNode) const override
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
RedlichKwongMFTP(const string &infile="", const string &id="")
Construct a RedlichKwongMFTP object from an input file.
static const double omega_b
Omega constant for b.
vector< double > m_pp
Temporary storage - length = m_kk.
void initThermo() override
Initialize the ThermoPhase object after all species have been set up.
void getPartialMolarVolumes(double *vbar) const override
Return an array of partial molar volumes for the species in the mixture.
double cv_mole() const override
Molar heat capacity at constant volume and composition [J/kmol/K].
void pressureDerivatives() const
Calculate dpdV and dpdT at the current conditions.
double isothermalCompressibility() const override
Returns the isothermal compressibility. Units: 1/Pa.
double hresid() const override
Calculate the deviation terms for the total enthalpy of the mixture from the ideal gas mixture.
static const double omega_a
Omega constant for a -> value of a in terms of critical properties.
double liquidVolEst(double TKelvin, double &pres) const override
Estimate for the molar volume of the liquid.
double dpdVCalc(double TKelvin, double molarVol, double &presCalc) const override
Calculate the pressure and the pressure derivative given the temperature and the molar volume.
static const double omega_vc
Omega constant for the critical molar volume.
vector< CoeffSource > m_coeffSource
For each species, specifies the source of the a and b coefficients.
void getPartialMolarIntEnergies(double *ubar) const override
Return an array of partial molar internal energies for the species in the mixture.
void updateMixingExpressions() override
Update the a and b parameters.
double cp_mole() const override
Molar heat capacity at constant pressure and composition [J/kmol/K].
double m_a_current
Value of a in the equation of state.
double standardConcentration(size_t k=0) const override
Returns the standard concentration , which is used to normalize the generalized concentration.
double dpdV_
The derivative of the pressure wrt the volume.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
double m_b_current
Value of b in the equation of state.
void getActivityCoefficients(double *ac) const override
Get the array of non-dimensional activity coefficients at the current solution temperature,...
double densityCalc(double T, double pressure, int phase, double rhoguess) override
Calculates the density given the temperature and the pressure and a guess at the density.
vector< double > dpdni_
Vector of derivatives of pressure wrt mole number.
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies of the species in the solution.
map< string, map< string, pair< double, double > > > m_binaryParameters
Explicitly-specified binary interaction parameters.
void setSpeciesCoeffs(const string &species, double a0, double a1, double b)
Set the pure fluid interaction parameters for a species.
int solveCubic(double T, double pres, double a, double b, double Vroot[3]) const
Prepare variables and call the function to solve the cubic equation of state.
double RT() const
Return the Gas Constant multiplied by the current temperature.
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
virtual void getSpeciesParameters(const string &name, AnyMap &speciesNode) const
Get phase-specific parameters of a Species object such that an identical one could be reconstructed a...
virtual double refPressure() const
Returns the reference pressure in Pa.
double convert(double value, const string &src, const string &dest) const
Convert value from the units of src to the units of dest.
void scale(InputIter begin, InputIter end, OutputIter out, S scale_factor)
Multiply elements of an array by a scale factor.
const double GasConstant
Universal Gas Constant [J/kmol/K].
Namespace for the Cantera kernel.
const double SmallNumber
smallest number to compare to zero.
Contains declarations for string manipulation functions within Cantera.
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...