Cantera 2.6.0
Public Member Functions | Protected Member Functions | Private Attributes | List of all members

Class for single-component water. More...

#include <WaterSSTP.h>

Inheritance diagram for WaterSSTP:
[legend]
Collaboration diagram for WaterSSTP:
[legend]

Public Member Functions

 WaterSSTP (const std::string &inputFile="", const std::string &id="")
 Full constructor for a water phase. More...
 
 WaterSSTP (XML_Node &phaseRef, const std::string &id="")
 Full constructor for a water phase. More...
 
virtual std::string type () const
 String indicating the thermodynamic model implemented. More...
 
virtual std::string phaseOfMatter () const
 String indicating the mechanical phase of the matter in this Phase. More...
 
virtual doublereal critTemperature () const
 Critical temperature (K). More...
 
virtual doublereal critPressure () const
 Critical pressure (Pa). More...
 
virtual doublereal critDensity () const
 Critical density (kg/m3). More...
 
virtual doublereal satPressure (doublereal t)
 Return the saturation pressure given the temperature. More...
 
virtual bool compatibleWithMultiPhase () const
 Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations. More...
 
virtual doublereal vaporFraction () const
 Return the fraction of vapor at the current conditions. More...
 
virtual void setTemperature (const doublereal temp)
 Set the temperature of the phase. More...
 
virtual void setDensity (const doublereal dens)
 Set the density of the phase. More...
 
virtual void initThermo ()
 Initialize the ThermoPhase object after all species have been set up. More...
 
virtual void setParametersFromXML (const XML_Node &eosdata)
 Set equation of state parameter values from XML entries. More...
 
WaterPropsIAPWSgetWater ()
 Get a pointer to a changeable WaterPropsIAPWS object. More...
 
WaterPropsgetWaterProps ()
 Get a pointer to a changeable WaterPropsIAPWS object. More...
 
void _allowGasPhase (bool flag)
 Switch that enables calculations in the gas phase. More...
 
Molar Thermodynamic Properties of the Solution
virtual doublereal cv_mole () const
 Molar heat capacity at constant volume. Units: J/kmol/K. More...
 
Mechanical Equation of State Properties
virtual doublereal pressure () const
 Return the thermodynamic pressure (Pa). More...
 
virtual void setPressure (doublereal p)
 Set the internally stored pressure (Pa) at constant temperature and composition. More...
 
virtual doublereal isothermalCompressibility () const
 Returns the isothermal compressibility. Units: 1/Pa. More...
 
virtual doublereal thermalExpansionCoeff () const
 Return the volumetric thermal expansion coefficient. Units: 1/K. More...
 
virtual doublereal dthermalExpansionCoeffdT () const
 Return the derivative of the volumetric thermal expansion coefficient. More...
 
Properties of the Standard State of the Species in the Solution
virtual void getStandardChemPotentials (doublereal *gss) const
 Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution. More...
 
virtual void getGibbs_RT (doublereal *grt) const
 Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution. More...
 
virtual void getEnthalpy_RT (doublereal *hrt) const
 Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More...
 
virtual void getEntropy_R (doublereal *sr) const
 Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution. More...
 
virtual void getCp_R (doublereal *cpr) const
 Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution. More...
 
virtual void getIntEnergy_RT (doublereal *urt) const
 Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution. More...
 
Thermodynamic Values for the Species Reference State
virtual void getEnthalpy_RT_ref (doublereal *hrt) const
 
virtual void getGibbs_RT_ref (doublereal *grt) const
 Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getGibbs_ref (doublereal *g) const
 Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species. More...
 
virtual void getEntropy_R_ref (doublereal *er) const
 Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
virtual void getCp_R_ref (doublereal *cprt) const
 Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species. More...
 
virtual void getStandardVolumes_ref (doublereal *vol) const
 Get the molar volumes of the species reference states at the current T and P_ref of the solution. More...
 
- Public Member Functions inherited from SingleSpeciesTP
 SingleSpeciesTP ()
 Base empty constructor. More...
 
virtual bool isPure () const
 Return whether phase represents a pure (single species) substance. More...
 
virtual bool addSpecies (shared_ptr< Species > spec)
 
virtual doublereal enthalpy_mole () const
 Molar enthalpy. Units: J/kmol. More...
 
virtual doublereal intEnergy_mole () const
 Molar internal energy. Units: J/kmol. More...
 
virtual doublereal entropy_mole () const
 Molar entropy. Units: J/kmol/K. More...
 
virtual doublereal gibbs_mole () const
 Molar Gibbs function. Units: J/kmol. More...
 
virtual doublereal cp_mole () const
 Molar heat capacity at constant pressure. Units: J/kmol/K. More...
 
virtual void getActivities (doublereal *a) const
 Get the array of non-dimensional activities at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getActivityCoefficients (doublereal *ac) const
 Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
virtual void getChemPotentials_RT (doublereal *murt) const
 Get the array of non-dimensional species chemical potentials. More...
 
virtual void getChemPotentials (doublereal *mu) const
 Get the array of chemical potentials. More...
 
virtual void getPartialMolarEnthalpies (doublereal *hbar) const
 Get the species partial molar enthalpies. Units: J/kmol. More...
 
virtual void getPartialMolarIntEnergies (doublereal *ubar) const
 Get the species partial molar internal energies. Units: J/kmol. More...
 
virtual void getPartialMolarEntropies (doublereal *sbar) const
 Get the species partial molar entropy. Units: J/kmol K. More...
 
virtual void getPartialMolarCp (doublereal *cpbar) const
 Get the species partial molar Heat Capacities. Units: J/ kmol /K. More...
 
virtual void getPartialMolarVolumes (doublereal *vbar) const
 Get the species partial molar volumes. Units: m^3/kmol. More...
 
virtual void getPureGibbs (doublereal *gpure) const
 Get the Gibbs functions for the standard state of the species at the current T and P of the solution. More...
 
virtual void getStandardVolumes (doublereal *vbar) const
 Get the molar volumes of each species in their standard states at the current T and P of the solution. More...
 
virtual void setMassFractions (const doublereal *const y)
 Mass fractions are fixed, with Y[0] = 1.0. More...
 
virtual void setMoleFractions (const doublereal *const x)
 Mole fractions are fixed, with x[0] = 1.0. More...
 
virtual void setState_HP (double h, double p, double tol=1e-9)
 Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More...
 
virtual void setState_UV (double u, double v, double tol=1e-9)
 Set the specific internal energy (J/kg) and specific volume (m^3/kg). More...
 
virtual void setState_SP (double s, double p, double tol=1e-9)
 Set the specific entropy (J/kg/K) and pressure (Pa). More...
 
virtual void setState_SV (double s, double v, double tol=1e-9)
 Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More...
 
- Public Member Functions inherited from ThermoPhase
 ThermoPhase ()
 Constructor. More...
 
doublereal RT () const
 Return the Gas Constant multiplied by the current temperature. More...
 
double equivalenceRatio () const
 Compute the equivalence ratio for the current mixture from available oxygen and required oxygen. More...
 
virtual bool isIdeal () const
 Boolean indicating whether phase is ideal. More...
 
virtual doublereal refPressure () const
 Returns the reference pressure in Pa. More...
 
virtual doublereal minTemp (size_t k=npos) const
 Minimum temperature for which the thermodynamic data for the species or phase are valid. More...
 
doublereal Hf298SS (const size_t k) const
 Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More...
 
virtual void modifyOneHf298SS (const size_t k, const doublereal Hf298New)
 Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More...
 
virtual void resetHf298 (const size_t k=npos)
 Restore the original heat of formation of one or more species. More...
 
virtual doublereal maxTemp (size_t k=npos) const
 Maximum temperature for which the thermodynamic data for the species are valid. More...
 
bool chargeNeutralityNecessary () const
 Returns the chargeNeutralityNecessity boolean. More...
 
void setElectricPotential (doublereal v)
 Set the electric potential of this phase (V). More...
 
doublereal electricPotential () const
 Returns the electric potential of this phase (V). More...
 
virtual int activityConvention () const
 This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More...
 
virtual int standardStateConvention () const
 This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More...
 
virtual Units standardConcentrationUnits () const
 Returns the units of the "standard concentration" for this phase. More...
 
virtual void getActivityConcentrations (doublereal *c) const
 This method returns an array of generalized concentrations. More...
 
virtual doublereal standardConcentration (size_t k=0) const
 Return the standard concentration for the kth species. More...
 
virtual doublereal logStandardConc (size_t k=0) const
 Natural logarithm of the standard concentration of the kth species. More...
 
virtual void getLnActivityCoefficients (doublereal *lnac) const
 Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More...
 
void getElectrochemPotentials (doublereal *mu) const
 Get the species electrochemical potentials. More...
 
virtual void getIntEnergy_RT_ref (doublereal *urt) const
 Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More...
 
doublereal enthalpy_mass () const
 Specific enthalpy. Units: J/kg. More...
 
doublereal intEnergy_mass () const
 Specific internal energy. Units: J/kg. More...
 
doublereal entropy_mass () const
 Specific entropy. Units: J/kg/K. More...
 
doublereal gibbs_mass () const
 Specific Gibbs function. Units: J/kg. More...
 
doublereal cp_mass () const
 Specific heat at constant pressure. Units: J/kg/K. More...
 
doublereal cv_mass () const
 Specific heat at constant volume. Units: J/kg/K. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const doublereal *x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const compositionMap &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPX (doublereal t, doublereal p, const std::string &x)
 Set the temperature (K), pressure (Pa), and mole fractions. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const doublereal *y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const compositionMap &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TPY (doublereal t, doublereal p, const std::string &y)
 Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More...
 
virtual void setState_TP (doublereal t, doublereal p)
 Set the temperature (K) and pressure (Pa) More...
 
virtual void setState_PX (doublereal p, doublereal *x)
 Set the pressure (Pa) and mole fractions. More...
 
virtual void setState_PY (doublereal p, doublereal *y)
 Set the internally stored pressure (Pa) and mass fractions. More...
 
virtual void setState_ST (double s, double t, double tol=1e-9)
 Set the specific entropy (J/kg/K) and temperature (K). More...
 
virtual void setState_TV (double t, double v, double tol=1e-9)
 Set the temperature (K) and specific volume (m^3/kg). More...
 
virtual void setState_PV (double p, double v, double tol=1e-9)
 Set the pressure (Pa) and specific volume (m^3/kg). More...
 
virtual void setState_UP (double u, double p, double tol=1e-9)
 Set the specific internal energy (J/kg) and pressure (Pa). More...
 
virtual void setState_VH (double v, double h, double tol=1e-9)
 Set the specific volume (m^3/kg) and the specific enthalpy (J/kg) More...
 
virtual void setState_TH (double t, double h, double tol=1e-9)
 Set the temperature (K) and the specific enthalpy (J/kg) More...
 
virtual void setState_SH (double s, double h, double tol=1e-9)
 Set the specific entropy (J/kg/K) and the specific enthalpy (J/kg) More...
 
virtual void setState_RP (doublereal rho, doublereal p)
 Set the density (kg/m**3) and pressure (Pa) at constant composition. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const doublereal *x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const compositionMap &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPX (doublereal rho, doublereal p, const std::string &x)
 Set the density (kg/m**3), pressure (Pa) and mole fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const doublereal *y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const compositionMap &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState_RPY (doublereal rho, doublereal p, const std::string &y)
 Set the density (kg/m**3), pressure (Pa) and mass fractions. More...
 
virtual void setState (const AnyMap &state)
 Set the state using an AnyMap containing any combination of properties supported by the thermodynamic model. More...
 
void setMixtureFraction (double mixFrac, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
void setMixtureFraction (double mixFrac, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the mixture fraction = kg fuel / (kg oxidizer + kg fuel) More...
 
double mixtureFraction (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
double mixtureFraction (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar, const std::string &element="Bilger") const
 Compute the mixture fraction = kg fuel / (kg oxidizer + kg fuel) for the current mixture given fuel and oxidizer compositions. More...
 
void setEquivalenceRatio (double phi, const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
void setEquivalenceRatio (double phi, const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar)
 Set the mixture composition according to the equivalence ratio. More...
 
double equivalenceRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double equivalenceRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the equivalence ratio for the current mixture given the compositions of fuel and oxidizer. More...
 
double stoichAirFuelRatio (const double *fuelComp, const double *oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const std::string &fuelComp, const std::string &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
double stoichAirFuelRatio (const compositionMap &fuelComp, const compositionMap &oxComp, ThermoBasis basis=ThermoBasis::molar) const
 Compute the stoichiometric air to fuel ratio (kg oxidizer / kg fuel) given fuel and oxidizer compositions. More...
 
void equilibrate (const std::string &XY, const std::string &solver="auto", double rtol=1e-9, int max_steps=50000, int max_iter=100, int estimate_equil=0, int log_level=0)
 Equilibrate a ThermoPhase object. More...
 
virtual void setToEquilState (const doublereal *mu_RT)
 This method is used by the ChemEquil equilibrium solver. More...
 
virtual doublereal critVolume () const
 Critical volume (m3/kmol). More...
 
virtual doublereal critCompressibility () const
 Critical compressibility (unitless). More...
 
virtual doublereal satTemperature (doublereal p) const
 Return the saturation temperature given the pressure. More...
 
virtual void setState_Tsat (doublereal t, doublereal x)
 Set the state to a saturated system at a particular temperature. More...
 
virtual void setState_Psat (doublereal p, doublereal x)
 Set the state to a saturated system at a particular pressure. More...
 
void setState_TPQ (double T, double P, double Q)
 Set the temperature, pressure, and vapor fraction (quality). More...
 
virtual void modifySpecies (size_t k, shared_ptr< Species > spec)
 Modify the thermodynamic data associated with a species. More...
 
void saveSpeciesData (const size_t k, const XML_Node *const data)
 Store a reference pointer to the XML tree containing the species data for this phase. More...
 
const std::vector< const XML_Node * > & speciesData () const
 Return a pointer to the vector of XML nodes containing the species data for this phase. More...
 
virtual MultiSpeciesThermospeciesThermo (int k=-1)
 Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More...
 
virtual const MultiSpeciesThermospeciesThermo (int k=-1) const
 
void initThermoFile (const std::string &inputFile, const std::string &id)
 
virtual void initThermoXML (XML_Node &phaseNode, const std::string &id)
 Import and initialize a ThermoPhase object using an XML tree. More...
 
virtual void setParameters (int n, doublereal *const c)
 Set the equation of state parameters. More...
 
virtual void getParameters (int &n, doublereal *const c) const
 Get the equation of state parameters in a vector. More...
 
virtual void setParameters (const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
 Set equation of state parameters from an AnyMap phase description. More...
 
AnyMap parameters (bool withInput=true) const
 Returns the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
virtual void getSpeciesParameters (const std::string &name, AnyMap &speciesNode) const
 Get phase-specific parameters of a Species object such that an identical one could be reconstructed and added to this phase. More...
 
const AnyMapinput () const
 Access input data associated with the phase description. More...
 
AnyMapinput ()
 
virtual void setStateFromXML (const XML_Node &state)
 Set the initial state of the phase to the conditions specified in the state XML element. More...
 
virtual void invalidateCache ()
 Invalidate any cached values which are normally updated only when a change in state is detected. More...
 
virtual void getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const
 Get the change in activity coefficients wrt changes in state (temp, mole fraction, etc) along a line in parameter space or along a line in physical space. More...
 
virtual void getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const
 Get the array of ln mole fraction derivatives of the log activity coefficients - diagonal component only. More...
 
virtual void getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const
 Get the array of log species mole number derivatives of the log activity coefficients. More...
 
virtual void getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN)
 Get the array of derivatives of the log activity coefficients with respect to the log of the species mole numbers. More...
 
virtual void getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN)
 
virtual std::string report (bool show_thermo=true, doublereal threshold=-1e-14) const
 returns a summary of the state of the phase as a string More...
 
virtual void reportCSV (std::ofstream &csvFile) const
 returns a summary of the state of the phase to a comma separated file. More...
 
- Public Member Functions inherited from Phase
 Phase ()
 Default constructor. More...
 
 Phase (const Phase &)=delete
 
Phaseoperator= (const Phase &)=delete
 
XML_Nodexml () const
 Returns a const reference to the XML_Node that describes the phase. More...
 
void setXMLdata (XML_Node &xmlPhase)
 Stores the XML tree information for the current phase. More...
 
virtual bool hasPhaseTransition () const
 Return whether phase represents a substance with phase transitions. More...
 
virtual bool isCompressible () const
 Return whether phase represents a compressible substance. More...
 
virtual std::map< std::string, size_t > nativeState () const
 Return a map of properties defining the native state of a substance. More...
 
virtual std::vector< std::string > fullStates () const
 Return a vector containing full states defining a phase. More...
 
virtual std::vector< std::string > partialStates () const
 Return a vector of settable partial property sets within a phase. More...
 
virtual size_t stateSize () const
 Return size of vector defining internal state of the phase. More...
 
void saveState (vector_fp &state) const
 Save the current internal state of the phase. More...
 
virtual void saveState (size_t lenstate, doublereal *state) const
 Write to array 'state' the current internal state. More...
 
void restoreState (const vector_fp &state)
 Restore a state saved on a previous call to saveState. More...
 
virtual void restoreState (size_t lenstate, const doublereal *state)
 Restore the state of the phase from a previously saved state vector. More...
 
doublereal molecularWeight (size_t k) const
 Molecular weight of species k. More...
 
void getMolecularWeights (vector_fp &weights) const
 Copy the vector of molecular weights into vector weights. More...
 
void getMolecularWeights (doublereal *weights) const
 Copy the vector of molecular weights into array weights. More...
 
const vector_fpmolecularWeights () const
 Return a const reference to the internal vector of molecular weights. More...
 
void getCharges (double *charges) const
 Copy the vector of species charges into array charges. More...
 
doublereal elementalMassFraction (const size_t m) const
 Elemental mass fraction of element m. More...
 
doublereal elementalMoleFraction (const size_t m) const
 Elemental mole fraction of element m. More...
 
const double * moleFractdivMMW () const
 Returns a const pointer to the start of the moleFraction/MW array. More...
 
doublereal charge (size_t k) const
 Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More...
 
doublereal chargeDensity () const
 Charge density [C/m^3]. More...
 
size_t nDim () const
 Returns the number of spatial dimensions (1, 2, or 3) More...
 
void setNDim (size_t ndim)
 Set the number of spatial dimensions (1, 2, or 3). More...
 
virtual bool ready () const
 Returns a bool indicating whether the object is ready for use. More...
 
int stateMFNumber () const
 Return the State Mole Fraction Number. More...
 
bool caseSensitiveSpecies () const
 Returns true if case sensitive species names are enforced. More...
 
void setCaseSensitiveSpecies (bool cflag=true)
 Set flag that determines whether case sensitive species are enforced in look-up operations, for example speciesIndex. More...
 
virtual void setRoot (std::shared_ptr< Solution > root)
 Set root Solution holding all phase information. More...
 
vector_fp getCompositionFromMap (const compositionMap &comp) const
 Converts a compositionMap to a vector with entries for each species Species that are not specified are set to zero in the vector. More...
 
void massFractionsToMoleFractions (const double *Y, double *X) const
 Converts a mixture composition from mole fractions to mass fractions. More...
 
void moleFractionsToMassFractions (const double *X, double *Y) const
 Converts a mixture composition from mass fractions to mole fractions. More...
 
std::string name () const
 Return the name of the phase. More...
 
void setName (const std::string &nm)
 Sets the string name for the phase. More...
 
std::string elementName (size_t m) const
 Name of the element with index m. More...
 
size_t elementIndex (const std::string &name) const
 Return the index of element named 'name'. More...
 
const std::vector< std::string > & elementNames () const
 Return a read-only reference to the vector of element names. More...
 
doublereal atomicWeight (size_t m) const
 Atomic weight of element m. More...
 
doublereal entropyElement298 (size_t m) const
 Entropy of the element in its standard state at 298 K and 1 bar. More...
 
int atomicNumber (size_t m) const
 Atomic number of element m. More...
 
int elementType (size_t m) const
 Return the element constraint type Possible types include: More...
 
int changeElementType (int m, int elem_type)
 Change the element type of the mth constraint Reassigns an element type. More...
 
const vector_fpatomicWeights () const
 Return a read-only reference to the vector of atomic weights. More...
 
size_t nElements () const
 Number of elements. More...
 
void checkElementIndex (size_t m) const
 Check that the specified element index is in range. More...
 
void checkElementArraySize (size_t mm) const
 Check that an array size is at least nElements(). More...
 
doublereal nAtoms (size_t k, size_t m) const
 Number of atoms of element m in species k. More...
 
void getAtoms (size_t k, double *atomArray) const
 Get a vector containing the atomic composition of species k. More...
 
size_t speciesIndex (const std::string &name) const
 Returns the index of a species named 'name' within the Phase object. More...
 
std::string speciesName (size_t k) const
 Name of the species with index k. More...
 
std::string speciesSPName (int k) const
 Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More...
 
const std::vector< std::string > & speciesNames () const
 Return a const reference to the vector of species names. More...
 
size_t nSpecies () const
 Returns the number of species in the phase. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
void setMoleFractionsByName (const compositionMap &xMap)
 Set the species mole fractions by name. More...
 
void setMoleFractionsByName (const std::string &x)
 Set the mole fractions of a group of species by name. More...
 
void setMassFractionsByName (const compositionMap &yMap)
 Set the species mass fractions by name. More...
 
void setMassFractionsByName (const std::string &x)
 Set the species mass fractions by name. More...
 
void setState_TRX (doublereal t, doublereal dens, const doublereal *x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRX (doublereal t, doublereal dens, const compositionMap &x)
 Set the internally stored temperature (K), density, and mole fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const doublereal *y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TRY (doublereal t, doublereal dens, const compositionMap &y)
 Set the internally stored temperature (K), density, and mass fractions. More...
 
void setState_TNX (doublereal t, doublereal n, const doublereal *x)
 Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More...
 
void setState_TR (doublereal t, doublereal rho)
 Set the internally stored temperature (K) and density (kg/m^3) More...
 
void setState_TX (doublereal t, doublereal *x)
 Set the internally stored temperature (K) and mole fractions. More...
 
void setState_TY (doublereal t, doublereal *y)
 Set the internally stored temperature (K) and mass fractions. More...
 
void setState_RX (doublereal rho, doublereal *x)
 Set the density (kg/m^3) and mole fractions. More...
 
void setState_RY (doublereal rho, doublereal *y)
 Set the density (kg/m^3) and mass fractions. More...
 
compositionMap getMoleFractionsByName (double threshold=0.0) const
 Get the mole fractions by name. More...
 
double moleFraction (size_t k) const
 Return the mole fraction of a single species. More...
 
double moleFraction (const std::string &name) const
 Return the mole fraction of a single species. More...
 
compositionMap getMassFractionsByName (double threshold=0.0) const
 Get the mass fractions by name. More...
 
double massFraction (size_t k) const
 Return the mass fraction of a single species. More...
 
double massFraction (const std::string &name) const
 Return the mass fraction of a single species. More...
 
void getMoleFractions (double *const x) const
 Get the species mole fraction vector. More...
 
virtual void setMoleFractions_NoNorm (const double *const x)
 Set the mole fractions to the specified values without normalizing. More...
 
void getMassFractions (double *const y) const
 Get the species mass fractions. More...
 
const double * massFractions () const
 Return a const pointer to the mass fraction array. More...
 
virtual void setMassFractions_NoNorm (const double *const y)
 Set the mass fractions to the specified values without normalizing. More...
 
void getConcentrations (double *const c) const
 Get the species concentrations (kmol/m^3). More...
 
double concentration (const size_t k) const
 Concentration of species k. More...
 
virtual void setConcentrations (const double *const conc)
 Set the concentrations to the specified values within the phase. More...
 
virtual void setConcentrationsNoNorm (const double *const conc)
 Set the concentrations without ignoring negative concentrations. More...
 
doublereal temperature () const
 Temperature (K). More...
 
virtual double electronTemperature () const
 Electron Temperature (K) More...
 
virtual double density () const
 Density (kg/m^3). More...
 
double molarDensity () const
 Molar density (kmol/m^3). More...
 
double molarVolume () const
 Molar volume (m^3/kmol). More...
 
virtual void setMolarDensity (const double molarDensity)
 Set the internally stored molar density (kmol/m^3) of the phase. More...
 
virtual void setElectronTemperature (double etemp)
 Set the internally stored electron temperature of the phase (K). More...
 
doublereal mean_X (const doublereal *const Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal mean_X (const vector_fp &Q) const
 Evaluate the mole-fraction-weighted mean of an array Q. More...
 
doublereal meanMolecularWeight () const
 The mean molecular weight. Units: (kg/kmol) More...
 
doublereal sum_xlogx () const
 Evaluate \( \sum_k X_k \log X_k \). More...
 
size_t addElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS)
 Add an element. More...
 
void addSpeciesAlias (const std::string &name, const std::string &alias)
 Add a species alias (that is, a user-defined alternative species name). More...
 
virtual std::vector< std::string > findIsomers (const compositionMap &compMap) const
 Return a vector with isomers names matching a given composition map. More...
 
virtual std::vector< std::string > findIsomers (const std::string &comp) const
 Return a vector with isomers names matching a given composition string. More...
 
shared_ptr< Speciesspecies (const std::string &name) const
 Return the Species object for the named species. More...
 
shared_ptr< Speciesspecies (size_t k) const
 Return the Species object for species whose index is k. More...
 
void ignoreUndefinedElements ()
 Set behavior when adding a species containing undefined elements to just skip the species. More...
 
void addUndefinedElements ()
 Set behavior when adding a species containing undefined elements to add those elements to the phase. More...
 
void throwUndefinedElements ()
 Set the behavior when adding a species containing undefined elements to throw an exception. More...
 

Protected Member Functions

void _updateThermo () const
 
- Protected Member Functions inherited from SingleSpeciesTP
void _updateThermo () const
 
- Protected Member Functions inherited from ThermoPhase
virtual void getParameters (AnyMap &phaseNode) const
 Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using the newPhase(AnyMap&) function. More...
 
virtual void getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const
 Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More...
 
- Protected Member Functions inherited from Phase
void assertCompressible (const std::string &setter) const
 Ensure that phase is compressible. More...
 
void assignDensity (const double density_)
 Set the internally stored constant density (kg/m^3) of the phase. More...
 
void setMolecularWeight (const int k, const double mw)
 Set the molecular weight of a single species to a given value. More...
 
virtual void compositionChanged ()
 Apply changes to the state which are needed after the composition changes. More...
 

Private Attributes

WaterPropsIAPWS m_sub
 WaterPropsIAPWS that calculates the real properties of water. More...
 
std::unique_ptr< WaterPropsm_waterProps
 Pointer to the WaterProps object. More...
 
doublereal m_mw
 Molecular weight of Water -> Cantera assumption. More...
 
doublereal EW_Offset
 Offset constants used to obtain consistency with the NIST database. More...
 
doublereal SW_Offset
 Offset constant used to obtain consistency with NIST convention. More...
 
bool m_ready
 Boolean is true if object has been properly initialized for calculation. More...
 
bool m_allowGasPhase
 Since this phase represents a liquid (or supercritical) phase, it is an error to return a gas-phase answer. More...
 

Additional Inherited Members

- Protected Attributes inherited from SingleSpeciesTP
doublereal m_press
 The current pressure of the solution (Pa). It gets initialized to 1 atm. More...
 
doublereal m_p0
 
double m_h0_RT
 Dimensionless enthalpy at the (mtlast, m_p0) More...
 
double m_cp0_R
 Dimensionless heat capacity at the (mtlast, m_p0) More...
 
double m_s0_R
 Dimensionless entropy at the (mtlast, m_p0) More...
 
- Protected Attributes inherited from ThermoPhase
MultiSpeciesThermo m_spthermo
 Pointer to the calculation manager for species reference-state thermodynamic properties. More...
 
AnyMap m_input
 Data supplied via setParameters. More...
 
std::vector< const XML_Node * > m_speciesData
 Vector of pointers to the species databases. More...
 
doublereal m_phi
 Stored value of the electric potential for this phase. Units are Volts. More...
 
bool m_chargeNeutralityNecessary
 Boolean indicating whether a charge neutrality condition is a necessity. More...
 
int m_ssConvention
 Contains the standard state convention. More...
 
doublereal m_tlast
 last value of the temperature processed by reference state More...
 
- Protected Attributes inherited from Phase
ValueCache m_cache
 Cached for saved calculations within each ThermoPhase. More...
 
size_t m_kk
 Number of species in the phase. More...
 
size_t m_ndim
 Dimensionality of the phase. More...
 
vector_fp m_speciesComp
 Atomic composition of the species. More...
 
vector_fp m_speciesCharge
 Vector of species charges. length m_kk. More...
 
std::map< std::string, shared_ptr< Species > > m_species
 
UndefElement::behavior m_undefinedElementBehavior
 Flag determining behavior when adding species with an undefined element. More...
 
bool m_caseSensitiveSpecies
 Flag determining whether case sensitive species names are enforced. More...
 

Detailed Description

Class for single-component water.

This is designed to cover just the liquid and supercritical phases of water.

The reference is W. Wagner, A. Pruss, "The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," J. Phys. Chem. Ref. Dat, 31, 387, 2002.

Specification of Species Standard State Properties

The offsets used in the steam tables are different than NIST's. They assume u_liq(TP) = 0.0, s_liq(TP) = 0.0, where TP is the triple point conditions:

 -  u(273.16, rho)    = 0.0
 -  s(273.16, rho)    = 0.0
 -  psat(273.16)      = 611.655 Pascal
 -  rho(273.16, psat) = 999.793 kg m-3

These "steam table" assumptions are used by the WaterPropsIAPWS class. Therefore, offsets must be calculated to make the thermodynamic properties calculated within this class to be consistent with thermo properties within Cantera.

The thermodynamic base state for water is set to the NIST basis here by specifying constants, EW_Offset and SW_Offset, one for energy quantities and one for entropy quantities. The offsets are specified so that the following properties hold:

(From http://webbook.nist.gov)

The "o" here refers to a hypothetical ideal gas state. The way we achieve this in practice is to evaluate at a very low pressure and then use the theoretical ideal gas results to scale up to higher pressures:

Ho(1bar) = H(P0)

So(1bar) = S(P0) + RT ln(1bar/P0)

%Application within Kinetics Managers

This is unimplemented.

XML Example

Note: The XML input format is deprecated and will be removed in Cantera 3.0

An example of an XML Element named phase setting up a WaterSSTP object with id "water" is given below.

<!-- phase water -->
<phase dim="3" id="water">
<elementArray datasrc="elements.xml">O H </elementArray>
<speciesArray datasrc="#species_data">H2O</speciesArray>
<state>
<temperature units="K">300.0</temperature>
<pressure units="Pa">101325.0</pressure>
</state>
<thermo model="PureLiquidWater"/>
<kinetics model="none"/>
</phase>
doublereal temperature() const
Temperature (K).
Definition: Phase.h:654
virtual doublereal pressure() const
Return the thermodynamic pressure (Pa).
Definition: WaterSSTP.cpp:259

Note the model "PureLiquidWater" indicates the usage of the WaterSSTP object.

Definition at line 91 of file WaterSSTP.h.

Constructor & Destructor Documentation

◆ WaterSSTP() [1/2]

WaterSSTP ( const std::string &  inputFile = "",
const std::string &  id = "" 
)
explicit

Full constructor for a water phase.

Parameters
inputFileString name of the input file
idstring id of the phase name

Definition at line 18 of file WaterSSTP.cpp.

References ThermoPhase::initThermoFile().

◆ WaterSSTP() [2/2]

WaterSSTP ( XML_Node phaseRef,
const std::string &  id = "" 
)
explicit

Full constructor for a water phase.

Parameters
phaseRefXML node referencing the water phase.
idstring id of the phase name
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Definition at line 28 of file WaterSSTP.cpp.

References Cantera::importPhase().

Member Function Documentation

◆ type()

virtual std::string type ( ) const
inlinevirtual

String indicating the thermodynamic model implemented.

Usually corresponds to the name of the derived class, less any suffixes such as "Phase", TP", "VPSS", etc.

Reimplemented from SingleSpeciesTP.

Definition at line 112 of file WaterSSTP.h.

◆ phaseOfMatter()

std::string phaseOfMatter ( ) const
virtual

String indicating the mechanical phase of the matter in this Phase.

Options for the string are:

  • unspecified
  • supercritical
  • gas
  • liquid
  • solid
  • solid-liquid-mix
  • solid-gas-mix
  • liquid-gas-mix
  • solid-liquid-gas-mix

unspecified is the default and should be used when the Phase does not distinguish between mechanical phases or does not have enough information to determine which mechanical phase(s) are present.

Todo:
Needs to be implemented for all phase types. Currently only implemented for PureFluidPhase.

Reimplemented from ThermoPhase.

Definition at line 38 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::phaseState().

◆ cv_mole()

doublereal cv_mole ( ) const
virtual

Molar heat capacity at constant volume. Units: J/kmol/K.

Reimplemented from SingleSpeciesTP.

Definition at line 147 of file WaterSSTP.cpp.

References WaterPropsIAPWS::cv(), and WaterSSTP::m_sub.

◆ pressure()

doublereal pressure ( ) const
virtual

Return the thermodynamic pressure (Pa).

This method must be overloaded in derived classes. Within Cantera, the independent variable is either density or pressure. If the state is defined by temperature, density, and mass fractions, this method should use these values to implement the mechanical equation of state \( P(T, \rho, Y_1, \dots, Y_K) \). Alternatively, it returns a stored value.

Reimplemented from Phase.

Definition at line 259 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::pressure().

Referenced by WaterSSTP::dthermalExpansionCoeffdT(), WaterSSTP::getCp_R_ref(), WaterSSTP::getEnthalpy_RT_ref(), WaterSSTP::getEntropy_R_ref(), WaterSSTP::getGibbs_RT_ref(), and WaterSSTP::getStandardVolumes_ref().

◆ setPressure()

void setPressure ( doublereal  p)
virtual

Set the internally stored pressure (Pa) at constant temperature and composition.

This method must be reimplemented in derived classes, where it may involve the solution of a nonlinear equation. Within Cantera, the independent variable is either density or pressure. Therefore, this function may either solve for the density that will yield the desired input pressure or set an independent variable. The temperature and composition are held constant during this process.

Parameters
pinput Pressure (Pa)

Reimplemented from Phase.

Definition at line 264 of file WaterSSTP.cpp.

◆ isothermalCompressibility()

doublereal isothermalCompressibility ( ) const
virtual

Returns the isothermal compressibility. Units: 1/Pa.

The isothermal compressibility is defined as

\[ \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T \]

or

\[ \kappa_T = \frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_T \]

Reimplemented from ThermoPhase.

Definition at line 288 of file WaterSSTP.cpp.

References WaterPropsIAPWS::isothermalCompressibility(), and WaterSSTP::m_sub.

◆ thermalExpansionCoeff()

doublereal thermalExpansionCoeff ( ) const
virtual

Return the volumetric thermal expansion coefficient. Units: 1/K.

The thermal expansion coefficient is defined as

\[ \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P \]

Reimplemented from ThermoPhase.

Definition at line 293 of file WaterSSTP.cpp.

References WaterPropsIAPWS::coeffThermExp(), and WaterSSTP::m_sub.

◆ dthermalExpansionCoeffdT()

doublereal dthermalExpansionCoeffdT ( ) const
virtual

Return the derivative of the volumetric thermal expansion coefficient.

Units: 1/K2.

Definition at line 298 of file WaterSSTP.cpp.

References Phase::density(), and WaterSSTP::pressure().

◆ getStandardChemPotentials()

void getStandardChemPotentials ( doublereal *  mu) const
virtual

Get the array of chemical potentials at unit activity for the species at their standard states at the current T and P of the solution.

These are the standard state chemical potentials \( \mu^0_k(T,P) \). The values are evaluated at the current temperature and pressure of the solution

Parameters
muOutput vector of chemical potentials. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 133 of file WaterSSTP.cpp.

References WaterSSTP::EW_Offset, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_ready, WaterSSTP::m_sub, WaterSSTP::SW_Offset, and Phase::temperature().

◆ getGibbs_RT()

void getGibbs_RT ( doublereal *  grt) const
virtual

Get the nondimensional Gibbs functions for the species in their standard states at the current T and P of the solution.

Parameters
grtOutput vector of nondimensional standard state Gibbs free energies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 125 of file WaterSSTP.cpp.

References WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::Gibbs(), WaterSSTP::m_ready, WaterSSTP::m_sub, ThermoPhase::RT(), and WaterSSTP::SW_Offset.

◆ getEnthalpy_RT()

void getEnthalpy_RT ( doublereal *  hrt) const
virtual

Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution.

Parameters
hrtOutput vector of nondimensional standard state enthalpies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 110 of file WaterSSTP.cpp.

References WaterPropsIAPWS::enthalpy(), WaterSSTP::EW_Offset, WaterSSTP::m_sub, and ThermoPhase::RT().

◆ getEntropy_R()

void getEntropy_R ( doublereal *  sr) const
virtual

Get the array of nondimensional Entropy functions for the standard state species at the current T and P of the solution.

Parameters
srOutput vector of nondimensional standard state entropies. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 120 of file WaterSSTP.cpp.

References WaterPropsIAPWS::entropy(), Cantera::GasConstant, WaterSSTP::m_sub, and WaterSSTP::SW_Offset.

◆ getCp_R()

void getCp_R ( doublereal *  cpr) const
virtual

Get the nondimensional Heat Capacities at constant pressure for the species standard states at the current T and P of the solution.

Parameters
cprOutput vector of nondimensional standard state heat capacities. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 142 of file WaterSSTP.cpp.

References WaterPropsIAPWS::cp(), Cantera::GasConstant, and WaterSSTP::m_sub.

◆ getIntEnergy_RT()

void getIntEnergy_RT ( doublereal *  urt) const
virtual

Returns the vector of nondimensional Internal Energies of the standard state species at the current T and P of the solution.

Parameters
urtoutput vector of nondimensional standard state internal energies of the species. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 115 of file WaterSSTP.cpp.

References WaterSSTP::EW_Offset, Cantera::GasConstant, WaterPropsIAPWS::intEnergy(), and WaterSSTP::m_sub.

◆ getEnthalpy_RT_ref()

void getEnthalpy_RT_ref ( doublereal *  hrt) const
virtual

All functions in this group need to be overridden, because the m_spthermo MultiSpeciesThermo function is not adequate for the real equation of state.

Reimplemented from SingleSpeciesTP.

Definition at line 152 of file WaterSSTP.cpp.

References WaterSSTP::pressure().

◆ getGibbs_RT_ref()

void getGibbs_RT_ref ( doublereal *  grt) const
virtual

Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
grtOutput vector containing the nondimensional reference state Gibbs Free energies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 171 of file WaterSSTP.cpp.

References WaterSSTP::pressure().

Referenced by WaterSSTP::getGibbs_ref().

◆ getGibbs_ref()

void getGibbs_ref ( doublereal *  g) const
virtual

Returns the vector of the Gibbs function of the reference state at the current temperature of the solution and the reference pressure for the species.

Parameters
gOutput vector containing the reference state Gibbs Free energies. Length: m_kk. Units: J/kmol.

Reimplemented from SingleSpeciesTP.

Definition at line 191 of file WaterSSTP.cpp.

References WaterSSTP::getGibbs_RT_ref(), Phase::m_kk, and ThermoPhase::RT().

◆ getEntropy_R_ref()

void getEntropy_R_ref ( doublereal *  er) const
virtual

Returns the vector of nondimensional entropies of the reference state at the current temperature of the solution and the reference pressure for each species.

Parameters
erOutput vector containing the nondimensional reference state entropies. Length: m_kk.

Reimplemented from SingleSpeciesTP.

Definition at line 199 of file WaterSSTP.cpp.

References WaterSSTP::pressure().

◆ getCp_R_ref()

void getCp_R_ref ( doublereal *  cprt) const
virtual

Returns the vector of nondimensional constant pressure heat capacities of the reference state at the current temperature of the solution and reference pressure for each species.

Parameters
cprtOutput vector of nondimensional reference state heat capacities at constant pressure for the species. Length: m_kk

Reimplemented from SingleSpeciesTP.

Definition at line 221 of file WaterSSTP.cpp.

References WaterSSTP::pressure().

◆ getStandardVolumes_ref()

void getStandardVolumes_ref ( doublereal *  vol) const
virtual

Get the molar volumes of the species reference states at the current T and P_ref of the solution.

units = m^3 / kmol

Parameters
volOutput vector containing the standard state volumes. Length: m_kk.

Reimplemented from ThermoPhase.

Definition at line 241 of file WaterSSTP.cpp.

References WaterSSTP::pressure().

◆ critTemperature()

doublereal critTemperature ( ) const
virtual

Critical temperature (K).

Reimplemented from ThermoPhase.

Definition at line 315 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::Tcrit().

◆ critPressure()

doublereal critPressure ( ) const
virtual

Critical pressure (Pa).

Reimplemented from ThermoPhase.

Definition at line 320 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::Pcrit().

◆ critDensity()

doublereal critDensity ( ) const
virtual

Critical density (kg/m3).

Reimplemented from ThermoPhase.

Definition at line 325 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, and WaterPropsIAPWS::Rhocrit().

◆ satPressure()

doublereal satPressure ( doublereal  t)
virtual

Return the saturation pressure given the temperature.

Parameters
tTemperature (Kelvin)

Reimplemented from ThermoPhase.

Definition at line 347 of file WaterSSTP.cpp.

References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::psat(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().

◆ compatibleWithMultiPhase()

virtual bool compatibleWithMultiPhase ( ) const
inlinevirtual

Indicates whether this phase type can be used with class MultiPhase for equilibrium calculations.

Returns false for special phase types which already represent multi-phase mixtures, namely PureFluidPhase.

Reimplemented from ThermoPhase.

Definition at line 170 of file WaterSSTP.h.

◆ vaporFraction()

doublereal vaporFraction ( ) const
virtual

Return the fraction of vapor at the current conditions.

Below Tcrit, this routine will always return 0, by definition of the functionality of the routine. Above Tcrit, we query the density to toggle between 0 and 1.

Reimplemented from ThermoPhase.

Definition at line 355 of file WaterSSTP.cpp.

References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::Rhocrit(), WaterPropsIAPWS::Tcrit(), and Phase::temperature().

◆ setTemperature()

void setTemperature ( const doublereal  temp)
virtual

Set the temperature of the phase.

The density and composition of the phase is constant during this operator.

Parameters
tempTemperature (Kelvin)

Reimplemented from Phase.

Definition at line 330 of file WaterSSTP.cpp.

References Phase::density(), WaterSSTP::m_sub, WaterPropsIAPWS::setState_TR(), and Phase::setTemperature().

◆ setDensity()

void setDensity ( const doublereal  dens)
virtual

Set the density of the phase.

The temperature and composition of the phase is constant during this operator.

Parameters
densvalue of the density in kg m-3

Reimplemented from Phase.

Definition at line 341 of file WaterSSTP.cpp.

References WaterSSTP::m_sub, Phase::setDensity(), WaterPropsIAPWS::setState_TR(), and Phase::temperature().

◆ initThermo()

void initThermo ( )
virtual

Initialize the ThermoPhase object after all species have been set up.

Initialize.

This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. Derived classes which do override this function should call their parent class's implementation of this function as their last action.

When importing a CTML phase description, this method is called from initThermoXML(), which is called from importPhase(), just prior to returning from function importPhase().

When importing from an AnyMap phase description (or from a YAML file), this method is responsible for setting model parameters from the data stored in m_input.

Reimplemented from ThermoPhase.

Definition at line 45 of file WaterSSTP.cpp.

References Phase::atomicWeight(), Phase::elementIndex(), ThermoPhase::initThermo(), WaterSSTP::m_mw, Cantera::npos, and Phase::setMolecularWeight().

◆ setParametersFromXML()

void setParametersFromXML ( const XML_Node eosdata)
virtual

Set equation of state parameter values from XML entries.

This method is called by function importPhase() when processing a phase definition in an input file. It should be overloaded in subclasses to set any parameters that are specific to that particular phase model. Note, this method is called before the phase is initialized with elements and/or species.

Parameters
eosdataAn XML_Node object corresponding to the "thermo" entry for this phase in the input file.
Deprecated:
The XML input format is deprecated and will be removed in Cantera 3.0.

Reimplemented from ThermoPhase.

Definition at line 105 of file WaterSSTP.cpp.

References XML_Node::_require().

◆ getWater()

WaterPropsIAPWS * getWater ( )
inline

Get a pointer to a changeable WaterPropsIAPWS object.

Definition at line 204 of file WaterSSTP.h.

References WaterSSTP::m_sub.

◆ getWaterProps()

WaterProps * getWaterProps ( )
inline

Get a pointer to a changeable WaterPropsIAPWS object.

Definition at line 209 of file WaterSSTP.h.

References WaterSSTP::m_waterProps.

◆ _allowGasPhase()

void _allowGasPhase ( bool  flag)
inline

Switch that enables calculations in the gas phase.

Since this phase represents a liquid (or supercritical) phase, it is an error to return a gas-phase answer. The sole intended use for this member function is to check the thermodynamic consistency of the underlying WaterProps class with ideal-gas thermo functions.

Definition at line 220 of file WaterSSTP.h.

References WaterSSTP::m_allowGasPhase.

◆ _updateThermo()

void _updateThermo ( ) const
protected

This internal routine must be overridden because it is not applicable.

Member Data Documentation

◆ m_sub

WaterPropsIAPWS m_sub
mutableprivate

◆ m_waterProps

std::unique_ptr<WaterProps> m_waterProps
private

Pointer to the WaterProps object.

This class is used to house several approximation routines for properties of water. This object owns m_waterProps, and the WaterPropsIAPWS object used by WaterProps is m_sub, which is defined above.

Definition at line 239 of file WaterSSTP.h.

Referenced by WaterSSTP::getWaterProps().

◆ m_mw

doublereal m_mw
private

Molecular weight of Water -> Cantera assumption.

Definition at line 242 of file WaterSSTP.h.

Referenced by WaterSSTP::initThermo().

◆ EW_Offset

doublereal EW_Offset
private

Offset constants used to obtain consistency with the NIST database.

This is added to all internal energy and enthalpy results. units = J kmol-1.

Definition at line 249 of file WaterSSTP.h.

Referenced by WaterSSTP::getEnthalpy_RT(), WaterSSTP::getGibbs_RT(), WaterSSTP::getIntEnergy_RT(), and WaterSSTP::getStandardChemPotentials().

◆ SW_Offset

doublereal SW_Offset
private

Offset constant used to obtain consistency with NIST convention.

This is added to all internal entropy results. units = J kmol-1 K-1.

Definition at line 256 of file WaterSSTP.h.

Referenced by WaterSSTP::getEntropy_R(), WaterSSTP::getGibbs_RT(), and WaterSSTP::getStandardChemPotentials().

◆ m_ready

bool m_ready
private

Boolean is true if object has been properly initialized for calculation.

Definition at line 259 of file WaterSSTP.h.

Referenced by WaterSSTP::getGibbs_RT(), and WaterSSTP::getStandardChemPotentials().

◆ m_allowGasPhase

bool m_allowGasPhase
private

Since this phase represents a liquid (or supercritical) phase, it is an error to return a gas-phase answer.

However, if the below is true, then a gas-phase answer is allowed. This is used to check the thermodynamic consistency with ideal-gas thermo functions for example.

Definition at line 267 of file WaterSSTP.h.

Referenced by WaterSSTP::_allowGasPhase().


The documentation for this class was generated from the following files: