Cantera  2.5.1
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members

Class GasTransport implements some functions and properties that are shared by the MixTransport and MultiTransport classes. More...

#include <GasTransport.h>

Inheritance diagram for GasTransport:
[legend]
Collaboration diagram for GasTransport:
[legend]

Public Member Functions

virtual doublereal viscosity ()
 Viscosity of the mixture (kg /m /s) More...
 
virtual void getSpeciesViscosities (doublereal *const visc)
 Get the pure-species viscosities. More...
 
virtual void getBinaryDiffCoeffs (const size_t ld, doublereal *const d)
 Returns the matrix of binary diffusion coefficients. More...
 
virtual void getMixDiffCoeffs (doublereal *const d)
 Returns the Mixture-averaged diffusion coefficients [m^2/s]. More...
 
virtual void getMixDiffCoeffsMole (doublereal *const d)
 Returns the mixture-averaged diffusion coefficients [m^2/s]. More...
 
virtual void getMixDiffCoeffsMass (doublereal *const d)
 Returns the mixture-averaged diffusion coefficients [m^2/s]. More...
 
virtual void init (thermo_t *thermo, int mode=0, int log_level=0)
 Initialize a transport manager. More...
 
- Public Member Functions inherited from Transport
 Transport (thermo_t *thermo=0, size_t ndim=1)
 Constructor. More...
 
 Transport (const Transport &)=delete
 
Transportoperator= (const Transport &)=delete
 
virtual std::string transportType () const
 Identifies the Transport object type. More...
 
thermo_tthermo ()
 
bool ready ()
 
void setNDim (const int ndim)
 Set the number of dimensions to be expected in flux expressions. More...
 
size_t nDim () const
 Return the number of dimensions in flux expressions. More...
 
void checkSpeciesIndex (size_t k) const
 Check that the specified species index is in range. More...
 
void checkSpeciesArraySize (size_t kk) const
 Check that an array size is at least nSpecies(). More...
 
virtual doublereal bulkViscosity ()
 The bulk viscosity in Pa-s. More...
 
virtual doublereal ionConductivity ()
 The ionic conductivity in 1/ohm/m. More...
 
virtual void getSpeciesIonConductivity (doublereal *const ionCond)
 Returns the pure species ionic conductivity. More...
 
virtual void mobilityRatio (double *mobRat)
 Returns the pointer to the mobility ratios of the species in the phase. More...
 
virtual void getSpeciesMobilityRatio (double **mobRat)
 Returns the pure species limit of the mobility ratios. More...
 
virtual doublereal thermalConductivity ()
 Returns the mixture thermal conductivity in W/m/K. More...
 
virtual doublereal electricalConductivity ()
 The electrical conductivity (Siemens/m). More...
 
virtual void getMobilities (doublereal *const mobil_e)
 Get the Electrical mobilities (m^2/V/s). More...
 
virtual void getFluidMobilities (doublereal *const mobil_f)
 Get the fluid mobilities (s kmol/kg). More...
 
virtual doublereal getElectricConduct ()
 Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) More...
 
virtual void getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current)
 Compute the electric current density in A/m^2. More...
 
virtual void getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes)
 Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature. More...
 
virtual void getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes)
 Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. More...
 
virtual void getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff)
 Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. More...
 
virtual void getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff)
 Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. More...
 
virtual void getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes)
 Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. More...
 
virtual void getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes)
 Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. More...
 
virtual void getThermalDiffCoeffs (doublereal *const dt)
 Return a vector of Thermal diffusion coefficients [kg/m/sec]. More...
 
virtual void getMultiDiffCoeffs (const size_t ld, doublereal *const d)
 Return the Multicomponent diffusion coefficients. Units: [m^2/s]. More...
 
virtual void setParameters (const int type, const int k, const doublereal *const p)
 Set model parameters for derived classes. More...
 
void setVelocityBasis (VelocityBasis ivb)
 Sets the velocity basis. More...
 
VelocityBasis getVelocityBasis () const
 Gets the velocity basis. More...
 
virtual void setThermo (thermo_t &thermo)
 Specifies the ThermoPhase object. More...
 
virtual void setRoot (std::shared_ptr< Solution > root)
 Set root Solution holding all phase information. More...
 

Protected Member Functions

 GasTransport (ThermoPhase *thermo=0)
 
virtual void update_T ()
 
virtual void update_C ()=0
 
virtual void updateViscosity_T ()
 Update the temperature-dependent viscosity terms. More...
 
virtual void updateSpeciesViscosities ()
 Update the pure-species viscosities. More...
 
virtual void updateDiff_T ()
 Update the binary diffusion coefficients. More...
 
Initialization
virtual void setupCollisionParameters ()
 Setup parameters for a new kinetic-theory-based transport manager for low-density gases. More...
 
void setupCollisionIntegral ()
 Setup range for polynomial fits to collision integrals of Monchick & Mason. More...
 
void getTransportData ()
 Read the transport database. More...
 
void makePolarCorrections (size_t i, size_t j, doublereal &f_eps, doublereal &f_sigma)
 Corrections for polar-nonpolar binary diffusion coefficients. More...
 
void fitCollisionIntegrals (MMCollisionInt &integrals)
 Generate polynomial fits to collision integrals. More...
 
virtual void fitProperties (MMCollisionInt &integrals)
 Generate polynomial fits to the viscosity and conductivity. More...
 
virtual void fitDiffCoeffs (MMCollisionInt &integrals)
 Generate polynomial fits to the binary diffusion coefficients. More...
 
void getBinDiffCorrection (doublereal t, MMCollisionInt &integrals, size_t k, size_t j, doublereal xk, doublereal xj, doublereal &fkj, doublereal &fjk)
 Second-order correction to the binary diffusion coefficients. More...
 
- Protected Member Functions inherited from Transport
void finalize ()
 Enable the transport object for use. More...
 

Protected Attributes

vector_fp m_molefracs
 Vector of species mole fractions. More...
 
doublereal m_viscmix
 Internal storage for the viscosity of the mixture (kg /m /s) More...
 
bool m_visc_ok
 Update boolean for mixture rule for the mixture viscosity. More...
 
bool m_viscwt_ok
 Update boolean for the weighting factors for the mixture viscosity. More...
 
bool m_spvisc_ok
 Update boolean for the species viscosities. More...
 
bool m_bindiff_ok
 Update boolean for the binary diffusivities at unit pressure. More...
 
int m_mode
 Type of the polynomial fits to temperature. More...
 
DenseMatrix m_phi
 m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp More...
 
vector_fp m_spwork
 work space length = m_kk More...
 
vector_fp m_visc
 vector of species viscosities (kg /m /s). More...
 
std::vector< vector_fpm_visccoeffs
 Polynomial fits to the viscosity of each species. More...
 
vector_fp m_mw
 Local copy of the species molecular weights. More...
 
DenseMatrix m_wratjk
 Holds square roots of molecular weight ratios. More...
 
DenseMatrix m_wratkj1
 Holds square roots of molecular weight ratios. More...
 
vector_fp m_sqvisc
 vector of square root of species viscosities sqrt(kg /m /s). More...
 
vector_fp m_polytempvec
 Powers of the ln temperature, up to fourth order. More...
 
doublereal m_temp
 Current value of the temperature at which the properties in this object are calculated (Kelvin). More...
 
doublereal m_kbt
 Current value of Boltzmann constant times the temperature (Joules) More...
 
doublereal m_sqrt_kbt
 current value of Boltzmann constant times the temperature. More...
 
doublereal m_sqrt_t
 current value of temperature to 1/2 power More...
 
doublereal m_logt
 Current value of the log of the temperature. More...
 
doublereal m_t14
 Current value of temperature to 1/4 power. More...
 
doublereal m_t32
 Current value of temperature to the 3/2 power. More...
 
std::vector< vector_fpm_diffcoeffs
 Polynomial fits to the binary diffusivity of each species. More...
 
DenseMatrix m_bdiff
 Matrix of binary diffusion coefficients at the reference pressure and the current temperature Size is nsp x nsp. More...
 
std::vector< vector_fpm_condcoeffs
 temperature fits of the heat conduction More...
 
std::vector< vector_intm_poly
 Indices for the (i,j) interaction in collision integral fits. More...
 
std::vector< vector_fpm_omega22_poly
 Fit for omega22 collision integral. More...
 
std::vector< vector_fpm_astar_poly
 Fit for astar collision integral. More...
 
std::vector< vector_fpm_bstar_poly
 Fit for bstar collision integral. More...
 
std::vector< vector_fpm_cstar_poly
 Fit for cstar collision integral. More...
 
vector_fp m_zrot
 Rotational relaxation number for each species. More...
 
vector_fp m_crot
 Dimensionless rotational heat capacity of each species. More...
 
std::vector< bool > m_polar
 Vector of booleans indicating whether a species is a polar molecule. More...
 
vector_fp m_alpha
 Polarizability of each species in the phase. More...
 
vector_fp m_eps
 Lennard-Jones well-depth of the species in the current phase. More...
 
vector_fp m_sigma
 Lennard-Jones diameter of the species in the current phase. More...
 
DenseMatrix m_reducedMass
 This is the reduced mass of the interaction between species i and j. More...
 
DenseMatrix m_diam
 hard-sphere diameter for (i,j) collision More...
 
DenseMatrix m_epsilon
 The effective well depth for (i,j) collisions. More...
 
DenseMatrix m_dipole
 The effective dipole moment for (i,j) collisions. More...
 
DenseMatrix m_delta
 Reduced dipole moment of the interaction between two species. More...
 
vector_fp m_w_ac
 Pitzer acentric factor. More...
 
vector_fp m_disp
 Dispersion coefficient. More...
 
vector_fp m_quad_polar
 Quadrupole polarizability. More...
 
int m_log_level
 Level of verbose printing during initialization. More...
 
- Protected Attributes inherited from Transport
thermo_tm_thermo
 pointer to the object representing the phase More...
 
bool m_ready
 true if finalize has been called More...
 
size_t m_nsp
 Number of species. More...
 
size_t m_nDim
 Number of dimensions used in flux expressions. More...
 
int m_velocityBasis
 Velocity basis from which diffusion velocities are computed. More...
 
std::weak_ptr< Solutionm_root
 reference to Solution More...
 

Detailed Description

Class GasTransport implements some functions and properties that are shared by the MixTransport and MultiTransport classes.

References

Definition at line 30 of file GasTransport.h.

Member Function Documentation

◆ viscosity()

doublereal viscosity ( )
virtual

Viscosity of the mixture (kg /m /s)

The viscosity is computed using the Wilke mixture rule (kg /m /s)

\[ \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}. \]

Here \( \mu_k \) is the viscosity of pure species k, and

\[ \Phi_{k,j} = \frac{\left[1 + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2} {\sqrt{8}\sqrt{1 + M_k/M_j}} \]

Returns
the viscosity of the mixture (units = Pa s = kg /m /s)
See also
updateViscosity_T();

Reimplemented from Transport.

Reimplemented in IonGasTransport, and HighPressureGasTransport.

Definition at line 73 of file GasTransport.cpp.

References Cantera::multiply().

◆ getSpeciesViscosities()

virtual void getSpeciesViscosities ( doublereal *const  visc)
inlinevirtual

Get the pure-species viscosities.

Reimplemented from Transport.

Definition at line 56 of file GasTransport.h.

References GasTransport::m_visc, and GasTransport::updateViscosity_T().

◆ getBinaryDiffCoeffs()

void getBinaryDiffCoeffs ( const size_t  ld,
doublereal *const  d 
)
virtual

Returns the matrix of binary diffusion coefficients.

d[ld*j + i] = rp * m_bdiff(i,j);

Parameters
ldoffset of rows in the storage
doutput vector of diffusion coefficients. Units of m**2 / s

Reimplemented from Transport.

Reimplemented in HighPressureGasTransport.

Definition at line 162 of file GasTransport.cpp.

◆ getMixDiffCoeffs()

void getMixDiffCoeffs ( doublereal *const  d)
virtual

Returns the Mixture-averaged diffusion coefficients [m^2/s].

Returns the mixture averaged diffusion coefficients for a gas, appropriate for calculating the mass averaged diffusive flux with respect to the mass averaged velocity using gradients of the mole fraction. Note, for the single species case or the pure fluid case the routine returns the self-diffusion coefficient. This is needed to avoid a Nan result in the formula below.

This is Eqn. 12.180 from "Chemically Reacting Flow"

\[ D_{km}' = \frac{\left( \bar{M} - X_k M_k \right)}{ \bar{\qquad M \qquad } } {\left( \sum_{j \ne k} \frac{X_j}{D_{kj}} \right) }^{-1} \]

Parameters
[out]dVector of mixture diffusion coefficients, \( D_{km}' \) , for each species (m^2/s). length m_nsp

Reimplemented from Transport.

Reimplemented in UnityLewisTransport, and IonGasTransport.

Definition at line 180 of file GasTransport.cpp.

Referenced by MixTransport::getMobilities(), and MixTransport::getSpeciesFluxes().

◆ getMixDiffCoeffsMole()

void getMixDiffCoeffsMole ( doublereal *const  d)
virtual

Returns the mixture-averaged diffusion coefficients [m^2/s].

These are the coefficients for calculating the molar diffusive fluxes from the species mole fraction gradients, computed according to Eq. 12.176 in "Chemically Reacting Flow":

\[ D_{km}^* = \frac{1-X_k}{\sum_{j \ne k}^K X_j/\mathcal{D}_{kj}} \]

Parameters
[out]dvector of mixture-averaged diffusion coefficients for each species, length m_nsp.

Reimplemented from Transport.

Reimplemented in UnityLewisTransport.

Definition at line 211 of file GasTransport.cpp.

◆ getMixDiffCoeffsMass()

void getMixDiffCoeffsMass ( doublereal *const  d)
virtual

Returns the mixture-averaged diffusion coefficients [m^2/s].

These are the coefficients for calculating the diffusive mass fluxes from the species mass fraction gradients, computed according to Eq. 12.178 in "Chemically Reacting Flow":

\[ \frac{1}{D_{km}} = \sum_{j \ne k}^K \frac{X_j}{\mathcal{D}_{kj}} + \frac{X_k}{1-Y_k} \sum_{j \ne k}^K \frac{Y_j}{\mathcal{D}_{kj}} \]

Parameters
[out]dvector of mixture-averaged diffusion coefficients for each species, length m_nsp.

Reimplemented from Transport.

Reimplemented in UnityLewisTransport.

Definition at line 241 of file GasTransport.cpp.

◆ init()

void init ( thermo_t thermo,
int  mode = 0,
int  log_level = 0 
)
virtual

Initialize a transport manager.

This routine sets up a transport manager. It calculates the collision integrals and populates species-dependent data structures.

Parameters
thermoPointer to the ThermoPhase object
modeChemkin compatible mode or not. This alters the specification of the collision integrals. defaults to no.
log_levelDefaults to zero, no logging

Reimplemented from Transport.

Reimplemented in MultiTransport, MixTransport, and IonGasTransport.

Definition at line 274 of file GasTransport.cpp.

References Phase::nSpecies().

Referenced by MixTransport::init(), and MultiTransport::init().

◆ updateViscosity_T()

void updateViscosity_T ( )
protectedvirtual

Update the temperature-dependent viscosity terms.

Updates the array of pure species viscosities, and the weighting functions in the viscosity mixture rule. The flag m_visc_ok is set to true.

The formula for the weighting function is from Poling and Prausnitz, Eq. (9-5.14):

\[ \phi_{ij} = \frac{ \left[ 1 + \left( \mu_i / \mu_j \right)^{1/2} \left( M_j / M_i \right)^{1/4} \right]^2 } {\left[ 8 \left( 1 + M_i / M_j \right) \right]^{1/2}} \]

Definition at line 97 of file GasTransport.cpp.

Referenced by GasTransport::getSpeciesViscosities().

◆ updateSpeciesViscosities()

void updateSpeciesViscosities ( )
protectedvirtual

Update the pure-species viscosities.

These are evaluated from the polynomial fits of the temperature and are assumed to be independent of pressure.

Definition at line 118 of file GasTransport.cpp.

References Cantera::dot4(), and Cantera::dot5().

Referenced by MultiTransport::updateThermal_T().

◆ updateDiff_T()

void updateDiff_T ( )
protectedvirtual

Update the binary diffusion coefficients.

These are evaluated from the polynomial fits of the temperature at the unit pressure of 1 Pa.

Definition at line 136 of file GasTransport.cpp.

References Cantera::dot4(), and Cantera::dot5().

Referenced by HighPressureGasTransport::getBinaryDiffCoeffs(), MultiTransport::getMassFluxes(), HighPressureGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), and MultiTransport::updateThermal_T().

◆ setupCollisionParameters()

void setupCollisionParameters ( )
protectedvirtual

Setup parameters for a new kinetic-theory-based transport manager for low-density gases.

Definition at line 306 of file GasTransport.cpp.

References Cantera::Avogadro, Cantera::epsilon_0, and Cantera::Pi.

◆ setupCollisionIntegral()

void setupCollisionIntegral ( )
protected

Setup range for polynomial fits to collision integrals of Monchick & Mason.

Definition at line 365 of file GasTransport.cpp.

References Cantera::Boltzmann, Cantera::debuglog(), and MMCollisionInt::init().

◆ getTransportData()

void getTransportData ( )
protected

Read the transport database.

Read transport property data from a file for a list of species. Given the name of a file containing transport property parameters and a list of species names.

Definition at line 395 of file GasTransport.cpp.

References GasTransportData::acentric_factor, GasTransportData::diameter, GasTransportData::dipole, GasTransportData::dispersion_coefficient, GasTransportData::geometry, GasTransportData::polarizability, GasTransportData::quadrupole_polarizability, GasTransportData::rotational_relaxation, and GasTransportData::well_depth.

◆ makePolarCorrections()

void makePolarCorrections ( size_t  i,
size_t  j,
doublereal &  f_eps,
doublereal &  f_sigma 
)
protected

Corrections for polar-nonpolar binary diffusion coefficients.

Calculate corrections to the well depth parameter and the diameter for use in computing the binary diffusion coefficient of polar-nonpolar pairs. For more information about this correction, see Dixon-Lewis, Proc. Royal Society (1968).

Parameters
iSpecies one - this is a bimolecular correction routine
jspecies two - this is a bimolecular correction routine
f_epsMultiplicative correction factor to be applied to epsilon(i,j)
f_sigmaMultiplicative correction factor to be applied to diam(i,j)

Definition at line 426 of file GasTransport.cpp.

References Cantera::epsilon_0, and Cantera::Pi.

◆ fitCollisionIntegrals()

void fitCollisionIntegrals ( MMCollisionInt integrals)
protected

Generate polynomial fits to collision integrals.

Parameters
integralsinterpolator for the collision integrals

Definition at line 451 of file GasTransport.cpp.

References COLL_INT_POLY_DEGREE, and Cantera::writelog().

◆ fitProperties()

void fitProperties ( MMCollisionInt integrals)
protectedvirtual

Generate polynomial fits to the viscosity and conductivity.

If CK_mode, then the fits are of the form

\[ \log(\eta(i)) = \sum_{n = 0}^3 a_n(i) (\log T)^n \]

Otherwise the fits are of the form

\[ \eta(i)/sqrt(k_BT) = \sum_{n = 0}^4 a_n(i) (\log T)^n \]

Parameters
integralsinterpolator for the collision integrals

Definition at line 499 of file GasTransport.cpp.

References Cantera::Avogadro, Cantera::Boltzmann, Cantera::GasConstant, Cantera::Pi, Cantera::poly3(), Cantera::poly4(), Cantera::polyfit(), Cantera::vec2str(), Cantera::writelog(), and Cantera::writelogf().

◆ fitDiffCoeffs()

void fitDiffCoeffs ( MMCollisionInt integrals)
protectedvirtual

Generate polynomial fits to the binary diffusion coefficients.

If CK_mode, then the fits are of the form

\[ \log(D(i,j)) = \sum_{n = 0}^3 a_n(i,j) (\log T)^n \]

Otherwise the fits are of the form

\[ D(i,j)/sqrt(k_BT)) = \sum_{n = 0}^4 a_n(i,j) (\log T)^n \]

Parameters
integralsinterpolator for the collision integrals

Reimplemented in IonGasTransport.

Definition at line 678 of file GasTransport.cpp.

References Cantera::Boltzmann, Cantera::Pi, Cantera::poly3(), Cantera::poly4(), Cantera::polyfit(), Cantera::vec2str(), Cantera::writelog(), and Cantera::writelogf().

◆ getBinDiffCorrection()

void getBinDiffCorrection ( doublereal  t,
MMCollisionInt integrals,
size_t  k,
size_t  j,
doublereal  xk,
doublereal  xj,
doublereal &  fkj,
doublereal &  fjk 
)
protected

Second-order correction to the binary diffusion coefficients.

Calculate second-order corrections to binary diffusion coefficient pair (dkj, djk). At first order, the binary diffusion coefficients are independent of composition, and d(k,j) = d(j,k). But at second order, there is a weak dependence on composition, with the result that d(k,j) != d(j,k). This method computes the multiplier by which the first-order binary diffusion coefficient should be multiplied to produce the value correct to second order. The expressions here are taken from Marerro and Mason, J. Phys. Chem. Ref. Data, vol. 1, p. 3 (1972).

Parameters
tTemperature (K)
integralsinterpolator for the collision integrals
kindex of first species
jindex of second species
xkMole fraction of species k
xjMole fraction of species j
fkjmultiplier for d(k,j)
fjkmultiplier for d(j,k)
Note
This method is not used currently.

Definition at line 757 of file GasTransport.cpp.

References Cantera::Boltzmann.

Member Data Documentation

◆ m_molefracs

vector_fp m_molefracs
protected

Vector of species mole fractions.

These are processed so that all mole fractions are >= Tiny. Length = m_kk.

Definition at line 252 of file GasTransport.h.

Referenced by MultiTransport::getMassFluxes(), MultiTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), MultiTransport::getThermalDiffCoeffs(), MixTransport::thermalConductivity(), MixTransport::update_C(), and MultiTransport::update_C().

◆ m_viscmix

doublereal m_viscmix
protected

Internal storage for the viscosity of the mixture (kg /m /s)

Definition at line 255 of file GasTransport.h.

◆ m_visc_ok

bool m_visc_ok
protected

Update boolean for mixture rule for the mixture viscosity.

Definition at line 258 of file GasTransport.h.

Referenced by MixTransport::update_C().

◆ m_viscwt_ok

bool m_viscwt_ok
protected

Update boolean for the weighting factors for the mixture viscosity.

Definition at line 261 of file GasTransport.h.

◆ m_spvisc_ok

bool m_spvisc_ok
protected

Update boolean for the species viscosities.

Definition at line 264 of file GasTransport.h.

◆ m_bindiff_ok

bool m_bindiff_ok
protected

Update boolean for the binary diffusivities at unit pressure.

Definition at line 267 of file GasTransport.h.

Referenced by HighPressureGasTransport::getMultiDiffCoeffs(), and MixTransport::update_T().

◆ m_mode

int m_mode
protected

Type of the polynomial fits to temperature.

CK_Mode means Chemkin mode. Currently CA_Mode is used which are different types of fits to temperature.

Definition at line 271 of file GasTransport.h.

Referenced by MixTransport::transportType(), MultiTransport::transportType(), MixTransport::updateCond_T(), and MultiTransport::updateThermal_T().

◆ m_phi

DenseMatrix m_phi
protected

m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp

Definition at line 274 of file GasTransport.h.

◆ m_spwork

vector_fp m_spwork
protected

◆ m_visc

vector_fp m_visc
protected

vector of species viscosities (kg /m /s).

These are used in Wilke's rule to calculate the viscosity of the solution. length = m_kk.

Definition at line 281 of file GasTransport.h.

Referenced by GasTransport::getSpeciesViscosities(), and MultiTransport::updateThermal_T().

◆ m_visccoeffs

std::vector<vector_fp> m_visccoeffs
protected

Polynomial fits to the viscosity of each species.

m_visccoeffs[k] is the vector of polynomial coefficients for species k that fits the viscosity as a function of temperature.

Definition at line 286 of file GasTransport.h.

◆ m_mw

vector_fp m_mw
protected

◆ m_wratjk

DenseMatrix m_wratjk
protected

Holds square roots of molecular weight ratios.

m_wratjk(j,k) = sqrt(mw[j]/mw[k]) j < k
m_wratjk(k,j) = sqrt(sqrt(mw[j]/mw[k])) j < k
DenseMatrix m_wratjk
Holds square roots of molecular weight ratios.
Definition: GasTransport.h:298

Definition at line 298 of file GasTransport.h.

◆ m_wratkj1

DenseMatrix m_wratkj1
protected

Holds square roots of molecular weight ratios.

m_wratjk1(j,k) = sqrt(1.0 + mw[k]/mw[j]) j < k

Definition at line 304 of file GasTransport.h.

◆ m_sqvisc

vector_fp m_sqvisc
protected

vector of square root of species viscosities sqrt(kg /m /s).

These are used in Wilke's rule to calculate the viscosity of the solution. length = m_kk.

Definition at line 309 of file GasTransport.h.

◆ m_polytempvec

vector_fp m_polytempvec
protected

Powers of the ln temperature, up to fourth order.

Definition at line 312 of file GasTransport.h.

Referenced by MixTransport::updateCond_T().

◆ m_temp

doublereal m_temp
protected

◆ m_kbt

doublereal m_kbt
protected

Current value of Boltzmann constant times the temperature (Joules)

Definition at line 319 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_sqrt_kbt

doublereal m_sqrt_kbt
protected

current value of Boltzmann constant times the temperature.

(Joules) to 1/2 power

Definition at line 323 of file GasTransport.h.

◆ m_sqrt_t

doublereal m_sqrt_t
protected

current value of temperature to 1/2 power

Definition at line 326 of file GasTransport.h.

Referenced by MixTransport::updateCond_T(), and MultiTransport::updateThermal_T().

◆ m_logt

doublereal m_logt
protected

Current value of the log of the temperature.

Definition at line 329 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_t14

doublereal m_t14
protected

Current value of temperature to 1/4 power.

Definition at line 332 of file GasTransport.h.

◆ m_t32

doublereal m_t32
protected

Current value of temperature to the 3/2 power.

Definition at line 335 of file GasTransport.h.

◆ m_diffcoeffs

std::vector<vector_fp> m_diffcoeffs
protected

Polynomial fits to the binary diffusivity of each species.

m_diffcoeff[ic] is vector of polynomial coefficients for species i species j that fits the binary diffusion coefficient. The relationship between i j and ic is determined from the following algorithm:

 int ic = 0;
 for (i = 0; i < m_nsp; i++) {
    for (j = i; j < m_nsp; j++) {
      ic++;
    }
 }

Definition at line 350 of file GasTransport.h.

◆ m_bdiff

DenseMatrix m_bdiff
protected

Matrix of binary diffusion coefficients at the reference pressure and the current temperature Size is nsp x nsp.

Definition at line 354 of file GasTransport.h.

Referenced by MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), HighPressureGasTransport::getBinaryDiffCoeffs(), MultiTransport::getMassFluxes(), HighPressureGasTransport::getMultiDiffCoeffs(), MultiTransport::getSpeciesFluxes(), and MultiTransport::updateThermal_T().

◆ m_condcoeffs

std::vector<vector_fp> m_condcoeffs
protected

temperature fits of the heat conduction

Dimensions are number of species (nsp) polynomial order of the collision integral fit (degree+1).

Definition at line 361 of file GasTransport.h.

Referenced by MixTransport::updateCond_T().

◆ m_poly

std::vector<vector_int> m_poly
protected

Indices for the (i,j) interaction in collision integral fits.

m_poly[i][j] contains the index for (i,j) interactions in m_omega22_poly, m_astar_poly, m_bstar_poly, and m_cstar_poly.

Definition at line 368 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_omega22_poly

std::vector<vector_fp> m_omega22_poly
protected

Fit for omega22 collision integral.

m_omega22_poly[m_poly[i][j]] is the vector of polynomial coefficients (length degree+1) for the collision integral fit for the species pair (i,j).

Definition at line 376 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_astar_poly

std::vector<vector_fp> m_astar_poly
protected

Fit for astar collision integral.

m_astar_poly[m_poly[i][j]] is the vector of polynomial coefficients (length degree+1) for the collision integral fit for the species pair (i,j).

Definition at line 384 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_bstar_poly

std::vector<vector_fp> m_bstar_poly
protected

Fit for bstar collision integral.

m_bstar_poly[m_poly[i][j]] is the vector of polynomial coefficients (length degree+1) for the collision integral fit for the species pair (i,j).

Definition at line 392 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_cstar_poly

std::vector<vector_fp> m_cstar_poly
protected

Fit for cstar collision integral.

m_bstar_poly[m_poly[i][j]] is the vector of polynomial coefficients (length degree+1) for the collision integral fit for the species pair (i,j).

Definition at line 400 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_zrot

vector_fp m_zrot
protected

Rotational relaxation number for each species.

length is the number of species in the phase. units are dimensionless

Definition at line 406 of file GasTransport.h.

Referenced by MultiTransport::updateThermal_T().

◆ m_crot

vector_fp m_crot
protected

Dimensionless rotational heat capacity of each species.

These values are 0, 1 and 1.5 for single-molecule, linear, and nonlinear species respectively length is the number of species in the phase. Dimensionless (Cr / R)

Definition at line 414 of file GasTransport.h.

◆ m_polar

std::vector<bool> m_polar
protected

Vector of booleans indicating whether a species is a polar molecule.

Length is nsp

Definition at line 420 of file GasTransport.h.

◆ m_alpha

vector_fp m_alpha
protected

Polarizability of each species in the phase.

Length = nsp. Units = m^3

Definition at line 426 of file GasTransport.h.

◆ m_eps

vector_fp m_eps
protected

Lennard-Jones well-depth of the species in the current phase.

length is the number of species in the phase. Units are Joules (Note this is not Joules/kmol) (note, no kmol -> this is a per molecule amount)

Definition at line 433 of file GasTransport.h.

Referenced by MultiTransport::init(), and MultiTransport::updateThermal_T().

◆ m_sigma

vector_fp m_sigma
protected

Lennard-Jones diameter of the species in the current phase.

length is the number of species in the phase. units are in meters.

Definition at line 439 of file GasTransport.h.

◆ m_reducedMass

DenseMatrix m_reducedMass
protected

This is the reduced mass of the interaction between species i and j.

reducedMass(i,j) = mw[i] * mw[j] / (Avogadro * (mw[i] + mw[j]));

Units are kg (note, no kmol -> this is a per molecule amount)

Length nsp * nsp. This is a symmetric matrix

Definition at line 449 of file GasTransport.h.

◆ m_diam

DenseMatrix m_diam
protected

hard-sphere diameter for (i,j) collision

diam(i,j) = 0.5*(sigma[i] + sigma[j]); Units are m (note, no kmol -> this is a per molecule amount)

Length nsp * nsp. This is a symmetric matrix.

Definition at line 458 of file GasTransport.h.

◆ m_epsilon

DenseMatrix m_epsilon
protected

The effective well depth for (i,j) collisions.

epsilon(i,j) = sqrt(eps[i]*eps[j]);
Units are Joules (note, no kmol -> this is a per molecule amount)

Length nsp * nsp. This is a symmetric matrix.

Definition at line 467 of file GasTransport.h.

Referenced by MultiTransport::init().

◆ m_dipole

DenseMatrix m_dipole
protected

The effective dipole moment for (i,j) collisions.

Given dipoleMoment in Debye (a Debye is 3.335e-30 C-m):

dipole(i,i) = 1.e-21 / lightSpeed * dipoleMoment; dipole(i,j) = sqrt(dipole(i,i) * dipole(j,j)); (note, no kmol -> this is a per molecule amount)

Length nsp * nsp. This is a symmetric matrix.

Definition at line 479 of file GasTransport.h.

◆ m_delta

DenseMatrix m_delta
protected

Reduced dipole moment of the interaction between two species.

This is the reduced dipole moment of the interaction between two species 0.5 * dipole(i,j)^2 / (4 * Pi * epsilon_0 * epsilon(i,j) * d^3);

Length nsp * nsp .This is a symmetric matrix

Definition at line 488 of file GasTransport.h.

◆ m_w_ac

vector_fp m_w_ac
protected

Pitzer acentric factor.

Length is the number of species in the phase. Dimensionless.

Definition at line 494 of file GasTransport.h.

Referenced by HighPressureGasTransport::thermalConductivity().

◆ m_disp

vector_fp m_disp
protected

Dispersion coefficient.

Definition at line 497 of file GasTransport.h.

◆ m_quad_polar

vector_fp m_quad_polar
protected

Quadrupole polarizability.

Definition at line 500 of file GasTransport.h.

◆ m_log_level

int m_log_level
protected

Level of verbose printing during initialization.

Definition at line 503 of file GasTransport.h.


The documentation for this class was generated from the following files: