Cantera  2.5.1
GasTransport.h
Go to the documentation of this file.
1 /**
2  * @file GasTransport.h
3  */
4 
5 // This file is part of Cantera. See License.txt in the top-level directory or
6 // at https://cantera.org/license.txt for license and copyright information.
7 
8 #ifndef CT_GAS_TRANSPORT_H
9 #define CT_GAS_TRANSPORT_H
10 
11 #include "TransportBase.h"
13 
14 namespace Cantera
15 {
16 
17 class MMCollisionInt;
18 
19 //! Class GasTransport implements some functions and properties that are
20 //! shared by the MixTransport and MultiTransport classes.
21 //!
22 //! ### References
23 //!
24 //! * [Kee2003] R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting
25 //! Flow: Theory and Practice. 1st Ed. John Wiley and Sons, 2003.
26 //! * [Kee2017] R. J. Kee, M. E. Coltrin, P. Glarborg, and H. Zhu. Chemically
27 //! Reacting Flow: Theory and Practice. 2nd Ed. John Wiley and Sons, 2017.
28 //!
29 //! @ingroup tranprops
30 class GasTransport : public Transport
31 {
32 public:
33  //! Viscosity of the mixture (kg /m /s)
34  /*!
35  * The viscosity is computed using the Wilke mixture rule (kg /m /s)
36  *
37  * \f[
38  * \mu = \sum_k \frac{\mu_k X_k}{\sum_j \Phi_{k,j} X_j}.
39  * \f]
40  *
41  * Here \f$ \mu_k \f$ is the viscosity of pure species \e k, and
42  *
43  * \f[
44  * \Phi_{k,j} = \frac{\left[1
45  * + \sqrt{\left(\frac{\mu_k}{\mu_j}\sqrt{\frac{M_j}{M_k}}\right)}\right]^2}
46  * {\sqrt{8}\sqrt{1 + M_k/M_j}}
47  * \f]
48  *
49  * @returns the viscosity of the mixture (units = Pa s = kg /m /s)
50  *
51  * @see updateViscosity_T();
52  */
53  virtual doublereal viscosity();
54 
55  //! Get the pure-species viscosities
56  virtual void getSpeciesViscosities(doublereal* const visc) {
57  update_T();
59  std::copy(m_visc.begin(), m_visc.end(), visc);
60  }
61 
62  //! Returns the matrix of binary diffusion coefficients.
63  /*!
64  * d[ld*j + i] = rp * m_bdiff(i,j);
65  *
66  * @param ld offset of rows in the storage
67  * @param d output vector of diffusion coefficients. Units of m**2 / s
68  */
69  virtual void getBinaryDiffCoeffs(const size_t ld, doublereal* const d);
70 
71  //! Returns the Mixture-averaged diffusion coefficients [m^2/s].
72  /*!
73  * Returns the mixture averaged diffusion coefficients for a gas,
74  * appropriate for calculating the mass averaged diffusive flux with respect
75  * to the mass averaged velocity using gradients of the mole fraction.
76  * Note, for the single species case or the pure fluid case the routine
77  * returns the self-diffusion coefficient. This is needed to avoid a Nan
78  * result in the formula below.
79  *
80  * This is Eqn. 12.180 from "Chemically Reacting Flow"
81  *
82  * \f[
83  * D_{km}' = \frac{\left( \bar{M} - X_k M_k \right)}{ \bar{\qquad M \qquad } } {\left( \sum_{j \ne k} \frac{X_j}{D_{kj}} \right) }^{-1}
84  * \f]
85  *
86  * @param[out] d Vector of mixture diffusion coefficients, \f$ D_{km}' \f$ ,
87  * for each species (m^2/s). length m_nsp
88  */
89  virtual void getMixDiffCoeffs(doublereal* const d);
90 
91  //! Returns the mixture-averaged diffusion coefficients [m^2/s].
92  //! These are the coefficients for calculating the molar diffusive fluxes
93  //! from the species mole fraction gradients, computed according to
94  //! Eq. 12.176 in "Chemically Reacting Flow":
95  //!
96  //! \f[ D_{km}^* = \frac{1-X_k}{\sum_{j \ne k}^K X_j/\mathcal{D}_{kj}} \f]
97  //!
98  //! @param[out] d vector of mixture-averaged diffusion coefficients for
99  //! each species, length m_nsp.
100  virtual void getMixDiffCoeffsMole(doublereal* const d);
101 
102  //! Returns the mixture-averaged diffusion coefficients [m^2/s].
103  /*!
104  * These are the coefficients for calculating the diffusive mass fluxes
105  * from the species mass fraction gradients, computed according to
106  * Eq. 12.178 in "Chemically Reacting Flow":
107  *
108  * \f[
109  * \frac{1}{D_{km}} = \sum_{j \ne k}^K \frac{X_j}{\mathcal{D}_{kj}} +
110  * \frac{X_k}{1-Y_k} \sum_{j \ne k}^K \frac{Y_j}{\mathcal{D}_{kj}}
111  * \f]
112  *
113  * @param[out] d vector of mixture-averaged diffusion coefficients for
114  * each species, length m_nsp.
115  */
116  virtual void getMixDiffCoeffsMass(doublereal* const d);
117 
118  virtual void init(thermo_t* thermo, int mode=0, int log_level=0);
119 
120 protected:
122 
123  virtual void update_T();
124  virtual void update_C() = 0;
125 
126  //! Update the temperature-dependent viscosity terms.
127  /**
128  * Updates the array of pure species viscosities, and the weighting
129  * functions in the viscosity mixture rule. The flag m_visc_ok is set to true.
130  *
131  * The formula for the weighting function is from Poling and Prausnitz,
132  * Eq. (9-5.14):
133  * \f[
134  * \phi_{ij} = \frac{ \left[ 1 + \left( \mu_i / \mu_j \right)^{1/2} \left( M_j / M_i \right)^{1/4} \right]^2 }
135  * {\left[ 8 \left( 1 + M_i / M_j \right) \right]^{1/2}}
136  * \f]
137  */
138  virtual void updateViscosity_T();
139 
140  //! Update the pure-species viscosities. These are evaluated from the
141  //! polynomial fits of the temperature and are assumed to be independent
142  //! of pressure.
143  virtual void updateSpeciesViscosities();
144 
145  //! Update the binary diffusion coefficients
146  /*!
147  * These are evaluated from the polynomial fits of the temperature at the
148  * unit pressure of 1 Pa.
149  */
150  virtual void updateDiff_T();
151 
152  //! @name Initialization
153  //! @{
154 
155  //! Setup parameters for a new kinetic-theory-based transport manager for
156  //! low-density gases
157  virtual void setupCollisionParameters();
158 
159  //! Setup range for polynomial fits to collision integrals of
160  //! Monchick & Mason
161  void setupCollisionIntegral();
162 
163  //! Read the transport database
164  /*!
165  * Read transport property data from a file for a list of species. Given the
166  * name of a file containing transport property parameters and a list of
167  * species names.
168  */
169  void getTransportData();
170 
171  //! Corrections for polar-nonpolar binary diffusion coefficients
172  /*!
173  * Calculate corrections to the well depth parameter and the diameter for
174  * use in computing the binary diffusion coefficient of polar-nonpolar
175  * pairs. For more information about this correction, see Dixon-Lewis, Proc.
176  * Royal Society (1968).
177  *
178  * @param i Species one - this is a bimolecular correction routine
179  * @param j species two - this is a bimolecular correction routine
180  * @param f_eps Multiplicative correction factor to be applied to epsilon(i,j)
181  * @param f_sigma Multiplicative correction factor to be applied to diam(i,j)
182  */
183  void makePolarCorrections(size_t i, size_t j, doublereal& f_eps,
184  doublereal& f_sigma);
185 
186  //! Generate polynomial fits to collision integrals
187  /*!
188  * @param integrals interpolator for the collision integrals
189  */
190  void fitCollisionIntegrals(MMCollisionInt& integrals);
191 
192  //! Generate polynomial fits to the viscosity and conductivity
193  /*!
194  * If CK_mode, then the fits are of the form
195  * \f[
196  * \log(\eta(i)) = \sum_{n = 0}^3 a_n(i) (\log T)^n
197  * \f]
198  * Otherwise the fits are of the form
199  * \f[
200  * \eta(i)/sqrt(k_BT) = \sum_{n = 0}^4 a_n(i) (\log T)^n
201  * \f]
202  *
203  * @param integrals interpolator for the collision integrals
204  */
205  virtual void fitProperties(MMCollisionInt& integrals);
206 
207  //! Generate polynomial fits to the binary diffusion coefficients
208  /*!
209  * If CK_mode, then the fits are of the form
210  * \f[
211  * \log(D(i,j)) = \sum_{n = 0}^3 a_n(i,j) (\log T)^n
212  * \f]
213  * Otherwise the fits are of the form
214  * \f[
215  * D(i,j)/sqrt(k_BT)) = \sum_{n = 0}^4 a_n(i,j) (\log T)^n
216  * \f]
217  *
218  * @param integrals interpolator for the collision integrals
219  */
220  virtual void fitDiffCoeffs(MMCollisionInt& integrals);
221 
222  //! Second-order correction to the binary diffusion coefficients
223  /*!
224  * Calculate second-order corrections to binary diffusion coefficient pair
225  * (dkj, djk). At first order, the binary diffusion coefficients are
226  * independent of composition, and d(k,j) = d(j,k). But at second order,
227  * there is a weak dependence on composition, with the result that d(k,j) !=
228  * d(j,k). This method computes the multiplier by which the first-order
229  * binary diffusion coefficient should be multiplied to produce the value
230  * correct to second order. The expressions here are taken from Marerro and
231  * Mason, J. Phys. Chem. Ref. Data, vol. 1, p. 3 (1972).
232  *
233  * @param t Temperature (K)
234  * @param integrals interpolator for the collision integrals
235  * @param k index of first species
236  * @param j index of second species
237  * @param xk Mole fraction of species k
238  * @param xj Mole fraction of species j
239  * @param fkj multiplier for d(k,j)
240  * @param fjk multiplier for d(j,k)
241  *
242  * @note This method is not used currently.
243  */
244  void getBinDiffCorrection(doublereal t, MMCollisionInt& integrals, size_t k,
245  size_t j, doublereal xk, doublereal xj,
246  doublereal& fkj, doublereal& fjk);
247 
248  //! @}
249 
250  //! Vector of species mole fractions. These are processed so that all mole
251  //! fractions are >= *Tiny*. Length = m_kk.
253 
254  //! Internal storage for the viscosity of the mixture (kg /m /s)
255  doublereal m_viscmix;
256 
257  //! Update boolean for mixture rule for the mixture viscosity
258  bool m_visc_ok;
259 
260  //! Update boolean for the weighting factors for the mixture viscosity
262 
263  //! Update boolean for the species viscosities
265 
266  //! Update boolean for the binary diffusivities at unit pressure
268 
269  //! Type of the polynomial fits to temperature. CK_Mode means Chemkin mode.
270  //! Currently CA_Mode is used which are different types of fits to temperature.
271  int m_mode;
272 
273  //! m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp
275 
276  //! work space length = m_kk
278 
279  //! vector of species viscosities (kg /m /s). These are used in Wilke's
280  //! rule to calculate the viscosity of the solution. length = m_kk.
282 
283  //! Polynomial fits to the viscosity of each species. m_visccoeffs[k] is
284  //! the vector of polynomial coefficients for species k that fits the
285  //! viscosity as a function of temperature.
286  std::vector<vector_fp> m_visccoeffs;
287 
288  //! Local copy of the species molecular weights.
290 
291  //! Holds square roots of molecular weight ratios
292  /*!
293  * @code
294  * m_wratjk(j,k) = sqrt(mw[j]/mw[k]) j < k
295  * m_wratjk(k,j) = sqrt(sqrt(mw[j]/mw[k])) j < k
296  * @endcode
297  */
299 
300  //! Holds square roots of molecular weight ratios
301  /*!
302  * `m_wratjk1(j,k) = sqrt(1.0 + mw[k]/mw[j]) j < k`
303  */
305 
306  //! vector of square root of species viscosities sqrt(kg /m /s). These are
307  //! used in Wilke's rule to calculate the viscosity of the solution.
308  //! length = m_kk.
310 
311  //! Powers of the ln temperature, up to fourth order
313 
314  //! Current value of the temperature at which the properties in this object
315  //! are calculated (Kelvin).
316  doublereal m_temp;
317 
318  //! Current value of Boltzmann constant times the temperature (Joules)
319  doublereal m_kbt;
320 
321  //! current value of Boltzmann constant times the temperature.
322  //! (Joules) to 1/2 power
323  doublereal m_sqrt_kbt;
324 
325  //! current value of temperature to 1/2 power
326  doublereal m_sqrt_t;
327 
328  //! Current value of the log of the temperature
329  doublereal m_logt;
330 
331  //! Current value of temperature to 1/4 power
332  doublereal m_t14;
333 
334  //! Current value of temperature to the 3/2 power
335  doublereal m_t32;
336 
337  //! Polynomial fits to the binary diffusivity of each species
338  /*!
339  * m_diffcoeff[ic] is vector of polynomial coefficients for species i
340  * species j that fits the binary diffusion coefficient. The relationship
341  * between i j and ic is determined from the following algorithm:
342  *
343  * int ic = 0;
344  * for (i = 0; i < m_nsp; i++) {
345  * for (j = i; j < m_nsp; j++) {
346  * ic++;
347  * }
348  * }
349  */
350  std::vector<vector_fp> m_diffcoeffs;
351 
352  //! Matrix of binary diffusion coefficients at the reference pressure and
353  //! the current temperature Size is nsp x nsp.
355 
356  //! temperature fits of the heat conduction
357  /*!
358  * Dimensions are number of species (nsp) polynomial order of the collision
359  * integral fit (degree+1).
360  */
361  std::vector<vector_fp> m_condcoeffs;
362 
363  //! Indices for the (i,j) interaction in collision integral fits
364  /*!
365  * m_poly[i][j] contains the index for (i,j) interactions in
366  * #m_omega22_poly, #m_astar_poly, #m_bstar_poly, and #m_cstar_poly.
367  */
368  std::vector<vector_int> m_poly;
369 
370  //! Fit for omega22 collision integral
371  /*!
372  * m_omega22_poly[m_poly[i][j]] is the vector of polynomial coefficients
373  * (length degree+1) for the collision integral fit for the species pair
374  * (i,j).
375  */
376  std::vector<vector_fp> m_omega22_poly;
377 
378  //! Fit for astar collision integral
379  /*!
380  * m_astar_poly[m_poly[i][j]] is the vector of polynomial coefficients
381  * (length degree+1) for the collision integral fit for the species pair
382  * (i,j).
383  */
384  std::vector<vector_fp> m_astar_poly;
385 
386  //! Fit for bstar collision integral
387  /*!
388  * m_bstar_poly[m_poly[i][j]] is the vector of polynomial coefficients
389  * (length degree+1) for the collision integral fit for the species pair
390  * (i,j).
391  */
392  std::vector<vector_fp> m_bstar_poly;
393 
394  //! Fit for cstar collision integral
395  /*!
396  * m_bstar_poly[m_poly[i][j]] is the vector of polynomial coefficients
397  * (length degree+1) for the collision integral fit for the species pair
398  * (i,j).
399  */
400  std::vector<vector_fp> m_cstar_poly;
401 
402  //! Rotational relaxation number for each species
403  /*!
404  * length is the number of species in the phase. units are dimensionless
405  */
407 
408  //! Dimensionless rotational heat capacity of each species
409  /*!
410  * These values are 0, 1 and 1.5 for single-molecule, linear, and nonlinear
411  * species respectively length is the number of species in the phase.
412  * Dimensionless (Cr / R)
413  */
415 
416  //! Vector of booleans indicating whether a species is a polar molecule
417  /*!
418  * Length is nsp
419  */
420  std::vector<bool> m_polar;
421 
422  //! Polarizability of each species in the phase
423  /*!
424  * Length = nsp. Units = m^3
425  */
427 
428  //! Lennard-Jones well-depth of the species in the current phase
429  /*!
430  * length is the number of species in the phase. Units are Joules (Note this
431  * is not Joules/kmol) (note, no kmol -> this is a per molecule amount)
432  */
434 
435  //! Lennard-Jones diameter of the species in the current phase
436  /*!
437  * length is the number of species in the phase. units are in meters.
438  */
440 
441  //! This is the reduced mass of the interaction between species i and j
442  /*!
443  * reducedMass(i,j) = mw[i] * mw[j] / (Avogadro * (mw[i] + mw[j]));
444  *
445  * Units are kg (note, no kmol -> this is a per molecule amount)
446  *
447  * Length nsp * nsp. This is a symmetric matrix
448  */
450 
451  //! hard-sphere diameter for (i,j) collision
452  /*!
453  * diam(i,j) = 0.5*(sigma[i] + sigma[j]);
454  * Units are m (note, no kmol -> this is a per molecule amount)
455  *
456  * Length nsp * nsp. This is a symmetric matrix.
457  */
459 
460  //! The effective well depth for (i,j) collisions
461  /*!
462  * epsilon(i,j) = sqrt(eps[i]*eps[j]);
463  * Units are Joules (note, no kmol -> this is a per molecule amount)
464  *
465  * Length nsp * nsp. This is a symmetric matrix.
466  */
468 
469  //! The effective dipole moment for (i,j) collisions
470  /*!
471  * Given `dipoleMoment` in Debye (a Debye is 3.335e-30 C-m):
472  *
473  * dipole(i,i) = 1.e-21 / lightSpeed * dipoleMoment;
474  * dipole(i,j) = sqrt(dipole(i,i) * dipole(j,j));
475  * (note, no kmol -> this is a per molecule amount)
476  *
477  * Length nsp * nsp. This is a symmetric matrix.
478  */
480 
481  //! Reduced dipole moment of the interaction between two species
482  /*!
483  * This is the reduced dipole moment of the interaction between two species
484  * 0.5 * dipole(i,j)^2 / (4 * Pi * epsilon_0 * epsilon(i,j) * d^3);
485  *
486  * Length nsp * nsp .This is a symmetric matrix
487  */
489 
490  //! Pitzer acentric factor
491  /*!
492  * Length is the number of species in the phase. Dimensionless.
493  */
495 
496  //! Dispersion coefficient
498 
499  //! Quadrupole polarizability
501 
502  //! Level of verbose printing during initialization
504 };
505 
506 } // namespace Cantera
507 
508 #endif
Headers for the DenseMatrix object, which deals with dense rectangular matrices and description of th...
Headers for the Transport object, which is the virtual base class for all transport property evaluato...
A class for full (non-sparse) matrices with Fortran-compatible data storage, which adds matrix operat...
Definition: DenseMatrix.h:51
Class GasTransport implements some functions and properties that are shared by the MixTransport and M...
Definition: GasTransport.h:31
doublereal m_logt
Current value of the log of the temperature.
Definition: GasTransport.h:329
void getTransportData()
Read the transport database.
virtual void setupCollisionParameters()
Setup parameters for a new kinetic-theory-based transport manager for low-density gases.
std::vector< bool > m_polar
Vector of booleans indicating whether a species is a polar molecule.
Definition: GasTransport.h:420
vector_fp m_mw
Local copy of the species molecular weights.
Definition: GasTransport.h:289
vector_fp m_molefracs
Vector of species mole fractions.
Definition: GasTransport.h:252
vector_fp m_sqvisc
vector of square root of species viscosities sqrt(kg /m /s).
Definition: GasTransport.h:309
std::vector< vector_fp > m_condcoeffs
temperature fits of the heat conduction
Definition: GasTransport.h:361
vector_fp m_polytempvec
Powers of the ln temperature, up to fourth order.
Definition: GasTransport.h:312
std::vector< vector_fp > m_omega22_poly
Fit for omega22 collision integral.
Definition: GasTransport.h:376
virtual void fitProperties(MMCollisionInt &integrals)
Generate polynomial fits to the viscosity and conductivity.
bool m_visc_ok
Update boolean for mixture rule for the mixture viscosity.
Definition: GasTransport.h:258
DenseMatrix m_wratkj1
Holds square roots of molecular weight ratios.
Definition: GasTransport.h:304
virtual void getMixDiffCoeffsMass(doublereal *const d)
Returns the mixture-averaged diffusion coefficients [m^2/s].
virtual void fitDiffCoeffs(MMCollisionInt &integrals)
Generate polynomial fits to the binary diffusion coefficients.
std::vector< vector_fp > m_cstar_poly
Fit for cstar collision integral.
Definition: GasTransport.h:400
virtual void updateDiff_T()
Update the binary diffusion coefficients.
doublereal m_kbt
Current value of Boltzmann constant times the temperature (Joules)
Definition: GasTransport.h:319
DenseMatrix m_wratjk
Holds square roots of molecular weight ratios.
Definition: GasTransport.h:298
bool m_bindiff_ok
Update boolean for the binary diffusivities at unit pressure.
Definition: GasTransport.h:267
virtual void getBinaryDiffCoeffs(const size_t ld, doublereal *const d)
Returns the matrix of binary diffusion coefficients.
DenseMatrix m_epsilon
The effective well depth for (i,j) collisions.
Definition: GasTransport.h:467
doublereal m_temp
Current value of the temperature at which the properties in this object are calculated (Kelvin).
Definition: GasTransport.h:316
vector_fp m_disp
Dispersion coefficient.
Definition: GasTransport.h:497
DenseMatrix m_diam
hard-sphere diameter for (i,j) collision
Definition: GasTransport.h:458
doublereal m_t14
Current value of temperature to 1/4 power.
Definition: GasTransport.h:332
void makePolarCorrections(size_t i, size_t j, doublereal &f_eps, doublereal &f_sigma)
Corrections for polar-nonpolar binary diffusion coefficients.
std::vector< vector_fp > m_bstar_poly
Fit for bstar collision integral.
Definition: GasTransport.h:392
int m_mode
Type of the polynomial fits to temperature.
Definition: GasTransport.h:271
vector_fp m_sigma
Lennard-Jones diameter of the species in the current phase.
Definition: GasTransport.h:439
void getBinDiffCorrection(doublereal t, MMCollisionInt &integrals, size_t k, size_t j, doublereal xk, doublereal xj, doublereal &fkj, doublereal &fjk)
Second-order correction to the binary diffusion coefficients.
doublereal m_t32
Current value of temperature to the 3/2 power.
Definition: GasTransport.h:335
void fitCollisionIntegrals(MMCollisionInt &integrals)
Generate polynomial fits to collision integrals.
virtual void updateViscosity_T()
Update the temperature-dependent viscosity terms.
virtual void getMixDiffCoeffsMole(doublereal *const d)
Returns the mixture-averaged diffusion coefficients [m^2/s].
virtual void getMixDiffCoeffs(doublereal *const d)
Returns the Mixture-averaged diffusion coefficients [m^2/s].
virtual void init(thermo_t *thermo, int mode=0, int log_level=0)
Initialize a transport manager.
bool m_spvisc_ok
Update boolean for the species viscosities.
Definition: GasTransport.h:264
virtual void updateSpeciesViscosities()
Update the pure-species viscosities.
std::vector< vector_int > m_poly
Indices for the (i,j) interaction in collision integral fits.
Definition: GasTransport.h:368
DenseMatrix m_bdiff
Matrix of binary diffusion coefficients at the reference pressure and the current temperature Size is...
Definition: GasTransport.h:354
vector_fp m_visc
vector of species viscosities (kg /m /s).
Definition: GasTransport.h:281
DenseMatrix m_dipole
The effective dipole moment for (i,j) collisions.
Definition: GasTransport.h:479
vector_fp m_zrot
Rotational relaxation number for each species.
Definition: GasTransport.h:406
std::vector< vector_fp > m_astar_poly
Fit for astar collision integral.
Definition: GasTransport.h:384
DenseMatrix m_reducedMass
This is the reduced mass of the interaction between species i and j.
Definition: GasTransport.h:449
int m_log_level
Level of verbose printing during initialization.
Definition: GasTransport.h:503
std::vector< vector_fp > m_diffcoeffs
Polynomial fits to the binary diffusivity of each species.
Definition: GasTransport.h:350
vector_fp m_eps
Lennard-Jones well-depth of the species in the current phase.
Definition: GasTransport.h:433
virtual void getSpeciesViscosities(doublereal *const visc)
Get the pure-species viscosities.
Definition: GasTransport.h:56
vector_fp m_alpha
Polarizability of each species in the phase.
Definition: GasTransport.h:426
vector_fp m_crot
Dimensionless rotational heat capacity of each species.
Definition: GasTransport.h:414
std::vector< vector_fp > m_visccoeffs
Polynomial fits to the viscosity of each species.
Definition: GasTransport.h:286
bool m_viscwt_ok
Update boolean for the weighting factors for the mixture viscosity.
Definition: GasTransport.h:261
DenseMatrix m_delta
Reduced dipole moment of the interaction between two species.
Definition: GasTransport.h:488
vector_fp m_w_ac
Pitzer acentric factor.
Definition: GasTransport.h:494
DenseMatrix m_phi
m_phi is a Viscosity Weighting Function. size = m_nsp * n_nsp
Definition: GasTransport.h:274
void setupCollisionIntegral()
Setup range for polynomial fits to collision integrals of Monchick & Mason.
virtual doublereal viscosity()
Viscosity of the mixture (kg /m /s)
doublereal m_viscmix
Internal storage for the viscosity of the mixture (kg /m /s)
Definition: GasTransport.h:255
vector_fp m_quad_polar
Quadrupole polarizability.
Definition: GasTransport.h:500
vector_fp m_spwork
work space length = m_kk
Definition: GasTransport.h:277
doublereal m_sqrt_kbt
current value of Boltzmann constant times the temperature.
Definition: GasTransport.h:323
doublereal m_sqrt_t
current value of temperature to 1/2 power
Definition: GasTransport.h:326
Calculation of Collision integrals.
Base class for a phase with thermodynamic properties.
Definition: ThermoPhase.h:102
Base class for transport property managers.
thermo_t & thermo()
std::vector< double > vector_fp
Turn on the use of stl vectors for the basic array type within cantera Vector of doubles.
Definition: ct_defs.h:180
Namespace for the Cantera kernel.
Definition: AnyMap.cpp:264