Cantera
2.5.1
|
Base class for transport property managers. More...
#include <TransportBase.h>
Public Member Functions | |
Transport (thermo_t *thermo=0, size_t ndim=1) | |
Constructor. More... | |
Transport (const Transport &)=delete | |
Transport & | operator= (const Transport &)=delete |
virtual std::string | transportType () const |
Identifies the Transport object type. More... | |
thermo_t & | thermo () |
bool | ready () |
void | setNDim (const int ndim) |
Set the number of dimensions to be expected in flux expressions. More... | |
size_t | nDim () const |
Return the number of dimensions in flux expressions. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies(). More... | |
Transport Properties | |
virtual doublereal | viscosity () |
virtual void | getSpeciesViscosities (doublereal *const visc) |
Returns the pure species viscosities. More... | |
virtual doublereal | bulkViscosity () |
The bulk viscosity in Pa-s. More... | |
virtual doublereal | ionConductivity () |
The ionic conductivity in 1/ohm/m. More... | |
virtual void | getSpeciesIonConductivity (doublereal *const ionCond) |
Returns the pure species ionic conductivity. More... | |
virtual void | mobilityRatio (double *mobRat) |
Returns the pointer to the mobility ratios of the species in the phase. More... | |
virtual void | getSpeciesMobilityRatio (double **mobRat) |
Returns the pure species limit of the mobility ratios. More... | |
virtual doublereal | thermalConductivity () |
Returns the mixture thermal conductivity in W/m/K. More... | |
virtual doublereal | electricalConductivity () |
The electrical conductivity (Siemens/m). More... | |
virtual void | getMobilities (doublereal *const mobil_e) |
Get the Electrical mobilities (m^2/V/s). More... | |
virtual void | getFluidMobilities (doublereal *const mobil_f) |
Get the fluid mobilities (s kmol/kg). More... | |
virtual doublereal | getElectricConduct () |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1) More... | |
virtual void | getElectricCurrent (int ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_V, doublereal *current) |
Compute the electric current density in A/m^2. More... | |
virtual void | getSpeciesFluxes (size_t ndim, const doublereal *const grad_T, size_t ldx, const doublereal *const grad_X, size_t ldf, doublereal *const fluxes) |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature. More... | |
virtual void | getSpeciesFluxesES (size_t ndim, const doublereal *grad_T, size_t ldx, const doublereal *grad_X, size_t ldf, const doublereal *grad_Phi, doublereal *fluxes) |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential. More... | |
virtual void | getSpeciesVdiff (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature. More... | |
virtual void | getSpeciesVdiffES (size_t ndim, const doublereal *grad_T, int ldx, const doublereal *grad_X, int ldf, const doublereal *grad_Phi, doublereal *Vdiff) |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential. More... | |
virtual void | getMolarFluxes (const doublereal *const state1, const doublereal *const state2, const doublereal delta, doublereal *const cfluxes) |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points. More... | |
virtual void | getMassFluxes (const doublereal *state1, const doublereal *state2, doublereal delta, doublereal *mfluxes) |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points. More... | |
virtual void | getThermalDiffCoeffs (doublereal *const dt) |
Return a vector of Thermal diffusion coefficients [kg/m/sec]. More... | |
virtual void | getBinaryDiffCoeffs (const size_t ld, doublereal *const d) |
Returns the matrix of binary diffusion coefficients [m^2/s]. More... | |
virtual void | getMultiDiffCoeffs (const size_t ld, doublereal *const d) |
Return the Multicomponent diffusion coefficients. Units: [m^2/s]. More... | |
virtual void | getMixDiffCoeffs (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. More... | |
virtual void | getMixDiffCoeffsMole (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. More... | |
virtual void | getMixDiffCoeffsMass (doublereal *const d) |
Returns a vector of mixture averaged diffusion coefficients. More... | |
virtual void | setParameters (const int type, const int k, const doublereal *const p) |
Set model parameters for derived classes. More... | |
void | setVelocityBasis (VelocityBasis ivb) |
Sets the velocity basis. More... | |
VelocityBasis | getVelocityBasis () const |
Gets the velocity basis. More... | |
Transport manager construction | |
thermo_t * | m_thermo |
pointer to the object representing the phase More... | |
bool | m_ready |
true if finalize has been called More... | |
size_t | m_nsp |
Number of species. More... | |
size_t | m_nDim |
Number of dimensions used in flux expressions. More... | |
int | m_velocityBasis |
Velocity basis from which diffusion velocities are computed. More... | |
std::weak_ptr< Solution > | m_root |
reference to Solution More... | |
virtual void | init (thermo_t *thermo, int mode=0, int log_level=0) |
Initialize a transport manager. More... | |
virtual void | setThermo (thermo_t &thermo) |
Specifies the ThermoPhase object. More... | |
virtual void | setRoot (std::shared_ptr< Solution > root) |
Set root Solution holding all phase information. More... | |
void | finalize () |
Enable the transport object for use. More... | |
Base class for transport property managers.
All classes that compute transport properties for a single phase derive from this class. Class Transport is meant to be used as a base class only. It is possible to instantiate it, but its methods throw exceptions if called.
This section describes how calculations are carried out within the Transport class. The Transport class and derived classes of the the Transport class necessarily use the ThermoPhase class to obtain the list of species and the thermodynamic state of the phase.
No state information is stored within Transport classes. Queries to the underlying ThermoPhase object must be made to obtain the state of the system.
An exception to this however is the state information concerning the the gradients of variables. This information is not stored within the ThermoPhase objects. It may be collected within the Transport objects. In fact, the meaning of const operations within the Transport class refers to calculations which do not change the state of the system nor the state of the first order gradients of the system.
When a const operation is evoked within the Transport class, it is also implicitly assumed that the underlying state within the ThermoPhase object has not changed its values.
The diffusion fluxes must be referenced to a particular reference fluid velocity. Most typical is to reference the diffusion fluxes to the mass averaged velocity, but referencing to the mole averaged velocity is suitable for some liquid flows, and referencing to a single species is suitable for solid phase transport within a lattice. Currently, the identity of the reference velocity is coded into each transport object as a typedef named VelocityBasis, which is equated to an integer. Negative values of this variable refer to mass or mole-averaged velocities. Zero or positive quantities refers to the reference velocity being referenced to a particular species. Below are the predefined constants for its value.
All transport managers specify a default reference velocity in their default constructors. All gas phase transport managers by default specify the mass- averaged velocity as their reference velocities.
Definition at line 132 of file TransportBase.h.
Constructor.
New transport managers should be created using TransportFactory, not by calling the constructor directly.
thermo | Pointer to the ThermoPhase class representing this phase. |
ndim | Dimension of the flux vector used in the calculation. |
Definition at line 15 of file TransportBase.cpp.
|
inlinevirtual |
Identifies the Transport object type.
Each derived class should override this method to return a meaningful identifier.
Reimplemented in WaterTransport, UnityLewisTransport, MultiTransport, MixTransport, IonGasTransport, HighPressureGasTransport, and DustyGasTransport.
Definition at line 155 of file TransportBase.h.
Referenced by StFlow::setTransport().
|
inline |
Phase object. Every transport manager is designed to compute properties for a specific phase of a mixture, which might be a liquid solution, a gas mixture, a surface, etc. This method returns a reference to the object representing the phase itself.
Definition at line 165 of file TransportBase.h.
References Transport::m_thermo.
Referenced by MixTransport::init(), WaterTransport::init(), MultiTransport::init(), DustyGasTransport::setThermo(), Transport::setThermo(), and WaterTransport::WaterTransport().
bool ready | ( | ) |
Returns true if the transport manager is ready for use.
Definition at line 24 of file TransportBase.cpp.
References Transport::m_ready.
Referenced by Transport::finalize(), and Transport::setThermo().
void setNDim | ( | const int | ndim | ) |
Set the number of dimensions to be expected in flux expressions.
ndim | Number of dimensions in flux expressions |
Definition at line 29 of file TransportBase.cpp.
References Transport::m_nDim.
|
inline |
Return the number of dimensions in flux expressions.
Definition at line 181 of file TransportBase.h.
References Transport::m_nDim.
void checkSpeciesIndex | ( | size_t | k | ) | const |
Check that the specified species index is in range.
Throws an exception if k is greater than nSpecies()
Definition at line 34 of file TransportBase.cpp.
References Transport::m_nsp.
void checkSpeciesArraySize | ( | size_t | kk | ) | const |
Check that an array size is at least nSpecies().
Throws an exception if kk is less than nSpecies(). Used before calls which take an array pointer.
Definition at line 41 of file TransportBase.cpp.
References Transport::m_nsp.
|
inlinevirtual |
The viscosity in Pa-s.
Reimplemented in WaterTransport, IonGasTransport, HighPressureGasTransport, and GasTransport.
Definition at line 202 of file TransportBase.h.
Referenced by StFlow::updateTransport().
|
inlinevirtual |
Returns the pure species viscosities.
The units are Pa-s and the length is the number of species
visc | Vector of viscosities |
Reimplemented in GasTransport.
Definition at line 212 of file TransportBase.h.
|
inlinevirtual |
The bulk viscosity in Pa-s.
The bulk viscosity is only non-zero in rare cases. Most transport managers either overload this method to return zero, or do not implement it, in which case an exception is thrown if called.
Reimplemented in WaterTransport.
Definition at line 222 of file TransportBase.h.
|
inlinevirtual |
The ionic conductivity in 1/ohm/m.
Definition at line 227 of file TransportBase.h.
|
inlinevirtual |
Returns the pure species ionic conductivity.
The units are 1/ohm/m and the length is the number of species
ionCond | Vector of ionic conductivities |
Definition at line 237 of file TransportBase.h.
|
inlinevirtual |
Returns the pointer to the mobility ratios of the species in the phase.
mobRat | Returns a matrix of mobility ratios for the current problem. The mobility ratio mobRat(i,j) is defined as the ratio of the mobility of species i to species j. |
mobRat(i,j) = mu_i / mu_j
It is returned in fortran-ordering format. i.e. it is returned as mobRat[k], where
k = j * nsp + i
The size of mobRat must be at least equal to nsp*nsp
Definition at line 256 of file TransportBase.h.
|
inlinevirtual |
Returns the pure species limit of the mobility ratios.
The value is dimensionless and the length is the number of species
mobRat | Vector of mobility ratios |
Definition at line 266 of file TransportBase.h.
|
inlinevirtual |
Returns the mixture thermal conductivity in W/m/K.
Units are in W / m K or equivalently kg m / s3 K
Reimplemented in WaterTransport, MultiTransport, MixTransport, IonGasTransport, and HighPressureGasTransport.
Definition at line 276 of file TransportBase.h.
Referenced by StFlow::updateTransport().
|
inlinevirtual |
The electrical conductivity (Siemens/m).
Reimplemented in IonGasTransport.
Definition at line 281 of file TransportBase.h.
|
inlinevirtual |
Get the Electrical mobilities (m^2/V/s).
This function returns the mobilities. In some formulations this is equal to the normal mobility multiplied by Faraday's constant.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^e_k = \frac{F D_k}{R T} \]
mobil_e | Returns the mobilities of the species in array mobil_e . The array must be dimensioned at least as large as the number of species. |
Reimplemented in MixTransport, and IonGasTransport.
Definition at line 301 of file TransportBase.h.
|
inlinevirtual |
Get the fluid mobilities (s kmol/kg).
This function returns the fluid mobilities. Usually, you have to multiply Faraday's constant into the resulting expression to general a species flux expression.
Frequently, but not always, the mobility is calculated from the diffusion coefficient using the Einstein relation
\[ \mu^f_k = \frac{D_k}{R T} \]
mobil_f | Returns the mobilities of the species in array mobil . The array must be dimensioned at least as large as the number of species. |
Definition at line 322 of file TransportBase.h.
|
inlinevirtual |
Compute the mixture electrical conductivity (S m-1) at the current conditions of the phase (Siemens m-1)
The electrical conductivity, \( \sigma \), relates the electric current density, J, to the electric field, E.
\[ \vec{J} = \sigma \vec{E} \]
We assume here that the mixture electrical conductivity is an isotropic quantity, at this stage. Tensors may be included at a later time.
The conductivity is the reciprocal of the resistivity.
The units are Siemens m-1, where 1 S = 1 A / volt = 1 s^3 A^2 /kg /m^2
Definition at line 345 of file TransportBase.h.
|
inlinevirtual |
Compute the electric current density in A/m^2.
Calculates the electric current density as a vector, given the gradients of the field variables.
ndim | The number of spatial dimensions (1, 2, or 3). |
grad_T | The temperature gradient (ignored in this model). |
ldx | Leading dimension of the grad_X array. |
grad_X | The gradient of the mole fraction |
ldf | Leading dimension of the grad_V and current vectors. |
grad_V | The electrostatic potential gradient. |
current | The electric current in A/m^2. This is a vector of length ndim |
Definition at line 362 of file TransportBase.h.
|
virtual |
Get the species diffusive mass fluxes wrt to the specified solution averaged velocity, given the gradients in mole fraction and temperature.
Units for the returned fluxes are kg m-2 s-1.
Usually the specified solution average velocity is the mass averaged velocity. This is changed in some subclasses, however.
ndim | Number of dimensions in the flux expressions |
grad_T | Gradient of the temperature (length = ndim) |
ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
grad_X | Gradients of the mole fraction Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
fluxes | Output of the diffusive mass fluxes. Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
Reimplemented in MultiTransport, and MixTransport.
Definition at line 90 of file TransportBase.cpp.
Referenced by Transport::getSpeciesFluxesES().
|
inlinevirtual |
Get the species diffusive mass fluxes wrt to the mass averaged velocity, given the gradients in mole fraction, temperature and electrostatic potential.
Units for the returned fluxes are kg m-2 s-1.
[in] | ndim | Number of dimensions in the flux expressions |
[in] | grad_T | Gradient of the temperature. (length = ndim) |
[in] | ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
[in] | grad_X | Gradients of the mole fraction. Flat vector with the m_nsp in the inner loop. length = ldx * ndim. |
[in] | ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always). |
[in] | grad_Phi | Gradients of the electrostatic potential (length = ndim) |
[out] | fluxes | The diffusive mass fluxes. Flat vector with the m_nsp in the inner loop. length = ldx * ndim. |
Definition at line 413 of file TransportBase.h.
References Transport::getSpeciesFluxes().
|
inlinevirtual |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction and temperature.
[in] | ndim | Number of dimensions in the flux expressions |
[in] | grad_T | Gradient of the temperature (length = ndim) |
[in] | ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
[in] | grad_X | Gradients of the mole fraction. Flat vector with the m_nsp in the inner loop. length = ldx * ndim |
[in] | ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
[out] | Vdiff | Diffusive velocities wrt the mass- averaged velocity. Flat vector with the m_nsp in the inner loop. length = ldx * ndim. units are m / s. |
Definition at line 438 of file TransportBase.h.
Referenced by Transport::getSpeciesVdiffES().
|
inlinevirtual |
Get the species diffusive velocities wrt to the mass averaged velocity, given the gradients in mole fraction, temperature, and electrostatic potential.
[in] | ndim | Number of dimensions in the flux expressions |
[in] | grad_T | Gradient of the temperature (length = ndim) |
[in] | ldx | Leading dimension of the grad_X array (usually equal to m_nsp but not always) |
[in] | grad_X | Gradients of the mole fraction. Flat vector with the m_nsp in the inner loop. length = ldx * ndim. |
[in] | ldf | Leading dimension of the fluxes array (usually equal to m_nsp but not always) |
[in] | grad_Phi | Gradients of the electrostatic potential (length = ndim) |
[out] | Vdiff | Diffusive velocities wrt the mass-averaged velocity. Flat vector with the m_nsp in the inner loop. length = ldx
|
Definition at line 465 of file TransportBase.h.
References Transport::getSpeciesVdiff().
|
inlinevirtual |
Get the molar fluxes [kmol/m^2/s], given the thermodynamic state at two nearby points.
[in] | state1 | Array of temperature, density, and mass fractions for state 1. |
[in] | state2 | Array of temperature, density, and mass fractions for state 2. |
[in] | delta | Distance from state 1 to state 2 (m). |
[out] | cfluxes | Output array containing the diffusive molar fluxes of species from state1 to state2. This is a flat vector with m_nsp in the inner loop. length = ldx * ndim. Units are [kmol/m^2/s]. |
Reimplemented in MultiTransport, and DustyGasTransport.
Definition at line 488 of file TransportBase.h.
|
inlinevirtual |
Get the mass fluxes [kg/m^2/s], given the thermodynamic state at two nearby points.
[in] | state1 | Array of temperature, density, and mass fractions for state 1. |
[in] | state2 | Array of temperature, density, and mass fractions for state 2. |
[in] | delta | Distance from state 1 to state 2 (m). |
[out] | mfluxes | Output array containing the diffusive mass fluxes of species from state1 to state2. This is a flat vector with m_nsp in the inner loop. length = ldx * ndim. Units are [kg/m^2/s]. |
Reimplemented in MultiTransport.
Definition at line 507 of file TransportBase.h.
|
inlinevirtual |
Return a vector of Thermal diffusion coefficients [kg/m/sec].
The thermal diffusion coefficient \( D^T_k \) is defined so that the diffusive mass flux of species k induced by the local temperature gradient is given by the following formula:
\[ M_k J_k = -D^T_k \nabla \ln T. \]
The thermal diffusion coefficient can be either positive or negative.
dt | On return, dt will contain the species thermal diffusion coefficients. Dimension dt at least as large as the number of species. Units are kg/m/s. |
Reimplemented in MultiTransport, MixTransport, and HighPressureGasTransport.
Definition at line 529 of file TransportBase.h.
Referenced by StFlow::updateTransport().
|
inlinevirtual |
Returns the matrix of binary diffusion coefficients [m^2/s].
[in] | ld | Inner stride for writing the two dimension diffusion coefficients into a one dimensional vector |
[out] | d | Diffusion coefficient matrix (must be at least m_k * m_k in length. |
Reimplemented in HighPressureGasTransport, and GasTransport.
Definition at line 540 of file TransportBase.h.
|
inlinevirtual |
Return the Multicomponent diffusion coefficients. Units: [m^2/s].
If the transport manager implements a multicomponent diffusion model, then this method returns the array of multicomponent diffusion coefficients. Otherwise it throws an exception.
[in] | ld | The dimension of the inner loop of d (usually equal to m_nsp) |
[out] | d | flat vector of diffusion coefficients, fortran ordering. d[ld*j+i] is the D_ij diffusion coefficient (the diffusion coefficient for species i due to species j). |
Reimplemented in MultiTransport, HighPressureGasTransport, and DustyGasTransport.
Definition at line 555 of file TransportBase.h.
Referenced by StFlow::updateTransport().
|
inlinevirtual |
Returns a vector of mixture averaged diffusion coefficients.
Mixture-averaged diffusion coefficients [m^2/s]. If the transport manager implements a mixture-averaged diffusion model, then this method returns the array of mixture-averaged diffusion coefficients. Otherwise it throws an exception.
d | Return vector of mixture averaged diffusion coefficients Units = m2/s. Length = n_sp |
Reimplemented in GasTransport, UnityLewisTransport, and IonGasTransport.
Definition at line 569 of file TransportBase.h.
Referenced by StFlow::updateTransport().
|
inlinevirtual |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport, and UnityLewisTransport.
Definition at line 574 of file TransportBase.h.
|
inlinevirtual |
Returns a vector of mixture averaged diffusion coefficients.
Reimplemented in GasTransport, and UnityLewisTransport.
Definition at line 579 of file TransportBase.h.
|
virtual |
Set model parameters for derived classes.
This method may be derived in subclasses to set model-specific parameters. The primary use of this class is to set parameters while in the middle of a calculation without actually having to dynamically cast the base Transport pointer.
type | Specifies the type of parameters to set 0 : Diffusion coefficient 1 : Thermal Conductivity The rest are currently unused. |
k | Species index to set the parameters on |
p | Vector of parameters. The length of the vector varies with the parameterization |
Definition at line 48 of file TransportBase.cpp.
|
inline |
Sets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
ivb | Species the velocity basis |
Definition at line 608 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inline |
Gets the velocity basis.
What the transport object does with this parameter is up to the individual operator. Currently, this is not functional for most transport operators including all of the gas-phase operators.
Definition at line 620 of file TransportBase.h.
References Transport::m_velocityBasis.
|
inlinevirtual |
Initialize a transport manager.
This routine sets up a transport manager. It calculates the collision integrals and populates species-dependent data structures.
thermo | Pointer to the ThermoPhase object |
mode | Chemkin compatible mode or not. This alters the specification of the collision integrals. defaults to no. |
log_level | Defaults to zero, no logging |
Reimplemented in MultiTransport, WaterTransport, MixTransport, GasTransport, and IonGasTransport.
Definition at line 640 of file TransportBase.h.
Referenced by TransportFactory::newTransport().
|
virtual |
Specifies the ThermoPhase object.
We have relaxed this operation so that it will succeed when the underlying old and new ThermoPhase objects have the same number of species and the same names of the species in the same order. The idea here is to allow copy constructors and duplicators to work. In order for them to work, we need a method to switch the internal pointer within the Transport object after the duplication takes place. Also, different thermodynamic instantiations of the same species should also work.
thermo | Reference to the ThermoPhase object that the transport object will use |
Reimplemented in DustyGasTransport.
Definition at line 54 of file TransportBase.cpp.
References Transport::m_nsp, Transport::m_thermo, Phase::nSpecies(), Transport::ready(), Phase::speciesName(), and Transport::thermo().
Referenced by DustyGasTransport::setThermo().
|
inlinevirtual |
Set root Solution holding all phase information.
Definition at line 658 of file TransportBase.h.
References Transport::m_root.
|
protected |
Enable the transport object for use.
Once finalize() has been called, the transport manager should be ready to compute any supported transport property, and no further modifications to the model parameters should be made.
Definition at line 80 of file TransportBase.cpp.
References Transport::m_ready, and Transport::ready().
|
protected |
pointer to the object representing the phase
Definition at line 674 of file TransportBase.h.
Referenced by HighPressureGasTransport::getBinaryDiffCoeffs(), MultiTransport::getMassFluxes(), UnityLewisTransport::getMixDiffCoeffs(), UnityLewisTransport::getMixDiffCoeffsMass(), DustyGasTransport::getMolarFluxes(), MultiTransport::getMolarFluxes(), HighPressureGasTransport::getMultiDiffCoeffs(), MultiTransport::getMultiDiffCoeffs(), MixTransport::getSpeciesFluxes(), MultiTransport::getSpeciesFluxes(), WaterTransport::init(), DustyGasTransport::initialize(), MixTransport::pressure_ig(), Transport::setThermo(), HighPressureGasTransport::thermalConductivity(), WaterTransport::thermalConductivity(), Transport::thermo(), MixTransport::update_C(), MultiTransport::update_C(), MixTransport::update_T(), MultiTransport::update_T(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), DustyGasTransport::updateTransport_T(), HighPressureGasTransport::viscosity(), and WaterTransport::viscosity().
|
protected |
true if finalize has been called
Definition at line 677 of file TransportBase.h.
Referenced by Transport::finalize(), and Transport::ready().
|
protected |
Number of species.
Definition at line 680 of file TransportBase.h.
Referenced by Transport::checkSpeciesArraySize(), Transport::checkSpeciesIndex(), DustyGasTransport::eval_H_matrix(), MultiTransport::eval_L0000(), MultiTransport::eval_L0010(), MultiTransport::eval_L1000(), MultiTransport::getMassFluxes(), UnityLewisTransport::getMixDiffCoeffs(), UnityLewisTransport::getMixDiffCoeffsMass(), MixTransport::getMobilities(), DustyGasTransport::getMolarFluxes(), DustyGasTransport::getMultiDiffCoeffs(), HighPressureGasTransport::getMultiDiffCoeffs(), MultiTransport::getMultiDiffCoeffs(), MixTransport::getSpeciesFluxes(), MultiTransport::getSpeciesFluxes(), MixTransport::getThermalDiffCoeffs(), MultiTransport::getThermalDiffCoeffs(), MixTransport::init(), MultiTransport::init(), DustyGasTransport::initialize(), Transport::setThermo(), HighPressureGasTransport::thermalConductivity(), MixTransport::thermalConductivity(), MultiTransport::thermalConductivity(), MixTransport::update_C(), MultiTransport::update_C(), MixTransport::update_T(), MultiTransport::update_T(), DustyGasTransport::updateBinaryDiffCoeffs(), MixTransport::updateCond_T(), DustyGasTransport::updateKnudsenDiffCoeffs(), MultiTransport::updateThermal_T(), DustyGasTransport::updateTransport_C(), and HighPressureGasTransport::viscosity().
|
protected |
Number of dimensions used in flux expressions.
Definition at line 683 of file TransportBase.h.
Referenced by Transport::nDim(), and Transport::setNDim().
|
protected |
Velocity basis from which diffusion velocities are computed.
Defaults to the mass averaged basis = -2
Definition at line 687 of file TransportBase.h.
Referenced by Transport::getVelocityBasis(), and Transport::setVelocityBasis().
|
protected |
reference to Solution
Definition at line 690 of file TransportBase.h.
Referenced by Transport::setRoot().