Cantera
2.1.2
|
#include <IonsFromNeutralVPSSTP.h>
Public Member Functions | |
void | constructPhaseFile (std::string inputFile, std::string id) |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file. More... | |
void | constructPhaseXML (XML_Node &phaseNode, std::string id) |
Import and initialize an IonsFromNeutralVPSSTP phase specification in an XML tree into the current object. More... | |
void | getDissociationCoeffs (vector_fp &fm_neutralMolec_ions, vector_fp &charges, std::vector< size_t > &neutMolIndex) const |
Get the Salt Dissociation Coefficients Returns the vector of dissociation coefficients and vector of charges. More... | |
void | getNeutralMolecMoleFractions (vector_fp &neutralMoleculeMoleFractions) const |
Return the current value of the neutral mole fraction vector. More... | |
void | getNeutralMoleculeMoleGrads (const doublereal *const dx, doublereal *const dy) const |
Calculate neutral molecule mole fractions. More... | |
void | getCationList (std::vector< size_t > &cation) const |
Get the list of cations in this object. More... | |
void | getAnionList (std::vector< size_t > &anion) const |
Get the list of anions in this object. More... | |
virtual void | initThermo () |
void | initThermoXML (XML_Node &phaseNode, const std::string &id) |
Import and initialize a ThermoPhase object. More... | |
Constructors | |
IonsFromNeutralVPSSTP () | |
IonsFromNeutralVPSSTP (const std::string &inputFile, const std::string &id="", ThermoPhase *neutralPhase=0) | |
Construct and initialize an IonsFromNeutralVPSSTP object directly from an ASCII input file. More... | |
IonsFromNeutralVPSSTP (XML_Node &phaseRoot, const std::string &id="", ThermoPhase *neutralPhase=0) | |
Construct and initialize an IonsFromNeutralVPSSTP object directly from an XML database. More... | |
IonsFromNeutralVPSSTP (const IonsFromNeutralVPSSTP &b) | |
Copy constructor. More... | |
IonsFromNeutralVPSSTP & | operator= (const IonsFromNeutralVPSSTP &b) |
Assignment operator. More... | |
virtual | ~IonsFromNeutralVPSSTP () |
Destructor. More... | |
virtual ThermoPhase * | duplMyselfAsThermoPhase () const |
Duplication routine for objects which inherit from ThermoPhase. More... | |
Utilities | |
virtual int | eosType () const |
Equation of state type flag. More... | |
Molar Thermodynamic Properties | |
virtual doublereal | enthalpy_mole () const |
Return the Molar enthalpy. Units: J/kmol. More... | |
virtual doublereal | intEnergy_mole () const |
Molar internal energy. More... | |
virtual doublereal | entropy_mole () const |
Molar entropy. Units: J/kmol/K. More... | |
virtual doublereal | gibbs_mole () const |
Molar Gibbs free Energy for an ideal gas. Units = J/kmol. More... | |
virtual doublereal | cp_mole () const |
Molar heat capacity at constant pressure. Units: J/kmol/K. More... | |
virtual doublereal | cv_mole () const |
Molar heat capacity at constant volume. Units: J/kmol/K. More... | |
Activities, Standard States, and Activity Concentrations | |
The activity \(a_k\) of a species in solution is related to the chemical potential by \[ \mu_k = \mu_k^0(T) + \hat R T \log a_k. \] The quantity \(\mu_k^0(T,P)\) is the chemical potential at unit activity, which depends only on temperature and pressure. | |
virtual void | getActivityCoefficients (doublereal *ac) const |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
Partial Molar Properties of the Solution | |
virtual void | getChemPotentials (doublereal *mu) const |
Get the species chemical potentials. Units: J/kmol. More... | |
virtual void | getPartialMolarEnthalpies (doublereal *hbar) const |
Returns an array of partial molar enthalpies for the species in the mixture. More... | |
virtual void | getPartialMolarEntropies (doublereal *sbar) const |
Returns an array of partial molar entropies for the species in the mixture. More... | |
virtual void | getdlnActCoeffds (const doublereal dTds, const doublereal *const dXds, doublereal *dlnActCoeffds) const |
Get the change in activity coefficients w.r.t. More... | |
virtual void | getdlnActCoeffdlnX_diag (doublereal *dlnActCoeffdlnX_diag) const |
Get the array of log concentration-like derivatives of the log activity coefficients - diagonal component. More... | |
virtual void | getdlnActCoeffdlnN_diag (doublereal *dlnActCoeffdlnN_diag) const |
Get the array of log concentration-like derivatives of the log activity coefficients - diagonal components. More... | |
virtual void | getdlnActCoeffdlnN (const size_t ld, doublereal *const dlnActCoeffdlnN) |
Get the array of derivatives of the ln activity coefficients with respect to the ln species mole numbers. More... | |
Setting the State | |
These methods set all or part of the thermodynamic state. | |
virtual void | setTemperature (const doublereal t) |
Set the temperature of the phase. More... | |
virtual void | setPressure (doublereal p) |
Set the internally stored pressure (Pa) at constant temperature and composition. More... | |
virtual void | setState_TP (doublereal t, doublereal p) |
Set the temperature (K) and pressure (Pa) More... | |
virtual void | calcIonMoleFractions (doublereal *const mf) const |
Calculate ion mole fractions from neutral molecule mole fractions. More... | |
virtual void | calcNeutralMoleculeMoleFractions () const |
Calculate neutral molecule mole fractions. More... | |
virtual void | setMassFractions (const doublereal *const y) |
Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0. More... | |
virtual void | setMassFractions_NoNorm (const doublereal *const y) |
Set the mass fractions to the specified values without normalizing. More... | |
virtual void | setMoleFractions (const doublereal *const x) |
Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0. More... | |
virtual void | setMoleFractions_NoNorm (const doublereal *const x) |
Set the mole fractions to the specified values without normalizing. More... | |
virtual void | setConcentrations (const doublereal *const c) |
Set the concentrations to the specified values within the phase. More... | |
Public Member Functions inherited from GibbsExcessVPSSTP | |
GibbsExcessVPSSTP () | |
GibbsExcessVPSSTP (const GibbsExcessVPSSTP &b) | |
Copy constructor. More... | |
GibbsExcessVPSSTP & | operator= (const GibbsExcessVPSSTP &b) |
Assignment operator. More... | |
virtual void | getActivityConcentrations (doublereal *c) const |
This method returns an array of generalized concentrations. More... | |
virtual doublereal | standardConcentration (size_t k=0) const |
The standard concentration \( C^0_k \) used to normalize the generalized concentration. More... | |
virtual doublereal | logStandardConc (size_t k=0) const |
Returns the natural logarithm of the standard concentration of the kth species. More... | |
virtual void | getUnitsStandardConc (double *uA, int k=0, int sizeUA=6) const |
Returns the units of the standard and generalized concentrations Note they have the same units, as their ratio is defined to be equal to the activity of the kth species in the solution, which is unitless. More... | |
virtual void | getActivities (doublereal *ac) const |
Get the array of non-dimensional activities (molality based for this class and classes that derive from it) at the current solution temperature, pressure, and solution concentration. More... | |
virtual void | getdlnActCoeffdT (doublereal *dlnActCoeffdT) const |
Get the array of temperature derivatives of the log activity coefficients. More... | |
virtual void | getdlnActCoeffdlnX (doublereal *dlnActCoeffdlnX) const |
Get the array of log concentration-like derivatives of the log activity coefficients. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarVolumes (doublereal *vbar) const |
Return an array of partial molar volumes for the species in the mixture. More... | |
virtual const vector_fp & | getPartialMolarVolumes () const |
Public Member Functions inherited from VPStandardStateTP | |
VPStandardStateTP () | |
Constructor. More... | |
VPStandardStateTP (const VPStandardStateTP &b) | |
Copy Constructor. More... | |
VPStandardStateTP & | operator= (const VPStandardStateTP &b) |
Assignment operator. More... | |
virtual | ~VPStandardStateTP () |
Destructor. More... | |
virtual int | standardStateConvention () const |
This method returns the convention used in specification of the standard state, of which there are currently two, temperature based, and variable pressure based. More... | |
void | getChemPotentials_RT (doublereal *mu) const |
Get the array of non-dimensional species chemical potentials. More... | |
virtual void | getStandardChemPotentials (doublereal *mu) const |
Get the array of chemical potentials at unit activity. More... | |
virtual void | getEnthalpy_RT (doublereal *hrt) const |
Get the nondimensional Enthalpy functions for the species at their standard states at the current T and P of the solution. More... | |
virtual void | getEntropy_R (doublereal *sr) const |
Get the array of nondimensional Enthalpy functions for the standard state species at the current T and P of the solution. More... | |
virtual void | getGibbs_RT (doublereal *grt) const |
Get the nondimensional Gibbs functions for the species at their standard states of solution at the current T and P of the solution. More... | |
void | getPureGibbs (doublereal *gpure) const |
Get the standard state Gibbs functions for each species at the current T and P. More... | |
virtual void | getIntEnergy_RT (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the standard state at the current temperature and pressure of the solution for each species. More... | |
virtual void | getCp_R (doublereal *cpr) const |
Get the nondimensional Heat Capacities at constant pressure for the standard state of the species at the current T and P. More... | |
virtual void | getStandardVolumes (doublereal *vol) const |
Get the molar volumes of each species in their standard states at the current T and P of the solution. More... | |
virtual const vector_fp & | getStandardVolumes () const |
doublereal | pressure () const |
Returns the current pressure of the phase. More... | |
virtual void | updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
virtual void | getEnthalpy_RT_ref (doublereal *hrt) const |
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_RT_ref (doublereal *grt) const |
Returns the vector of nondimensional Gibbs free energies of the reference state at the current temperature of the solution and the reference pressure for the species. More... | |
virtual void | getGibbs_ref (doublereal *g) const |
virtual void | getEntropy_R_ref (doublereal *er) const |
virtual void | getCp_R_ref (doublereal *cprt) const |
virtual void | getStandardVolumes_ref (doublereal *vol) const |
Get the molar volumes of the species reference states at the current T and P_ref of the solution. More... | |
virtual void | setParametersFromXML (const XML_Node &eosdata) |
Set equation of state parameter values from XML entries. More... | |
void | setVPSSMgr (VPSSMgr *vp_ptr) |
set the VPSS Mgr More... | |
VPSSMgr * | provideVPSSMgr () |
Return a pointer to the VPSSMgr for this phase. More... | |
void | createInstallPDSS (size_t k, const XML_Node &s, const XML_Node *phaseNode_ptr) |
PDSS * | providePDSS (size_t k) |
const PDSS * | providePDSS (size_t k) const |
Public Member Functions inherited from ThermoPhase | |
ThermoPhase () | |
Constructor. More... | |
virtual | ~ThermoPhase () |
Destructor. Deletes the species thermo manager. More... | |
ThermoPhase (const ThermoPhase &right) | |
Copy Constructor for the ThermoPhase object. More... | |
ThermoPhase & | operator= (const ThermoPhase &right) |
Assignment operator. More... | |
doublereal | _RT () const |
Return the Gas Constant multiplied by the current temperature. More... | |
virtual doublereal | refPressure () const |
Returns the reference pressure in Pa. More... | |
virtual doublereal | minTemp (size_t k=npos) const |
Minimum temperature for which the thermodynamic data for the species or phase are valid. More... | |
doublereal | Hf298SS (const int k) const |
Report the 298 K Heat of Formation of the standard state of one species (J kmol-1) More... | |
virtual void | modifyOneHf298SS (const int k, const doublereal Hf298New) |
Modify the value of the 298 K Heat of Formation of one species in the phase (J kmol-1) More... | |
virtual doublereal | maxTemp (size_t k=npos) const |
Maximum temperature for which the thermodynamic data for the species are valid. More... | |
bool | chargeNeutralityNecessary () const |
Returns the chargeNeutralityNecessity boolean. More... | |
virtual doublereal | cv_vib (int, double) const |
virtual doublereal | isothermalCompressibility () const |
Returns the isothermal compressibility. Units: 1/Pa. More... | |
virtual doublereal | thermalExpansionCoeff () const |
Return the volumetric thermal expansion coefficient. Units: 1/K. More... | |
void | setElectricPotential (doublereal v) |
Set the electric potential of this phase (V). More... | |
doublereal | electricPotential () const |
Returns the electric potential of this phase (V). More... | |
virtual int | activityConvention () const |
This method returns the convention used in specification of the activities, of which there are currently two, molar- and molality-based conventions. More... | |
virtual void | getLnActivityCoefficients (doublereal *lnac) const |
Get the array of non-dimensional molar-based ln activity coefficients at the current solution temperature, pressure, and solution concentration. More... | |
void | getElectrochemPotentials (doublereal *mu) const |
Get the species electrochemical potentials. More... | |
virtual void | getPartialMolarIntEnergies (doublereal *ubar) const |
Return an array of partial molar internal energies for the species in the mixture. More... | |
virtual void | getPartialMolarCp (doublereal *cpbar) const |
Return an array of partial molar heat capacities for the species in the mixture. More... | |
virtual void | getdPartialMolarVolumes_dT (doublereal *d_vbar_dT) const |
Return an array of derivatives of partial molar volumes wrt temperature for the species in the mixture. More... | |
virtual void | getdPartialMolarVolumes_dP (doublereal *d_vbar_dP) const |
Return an array of derivatives of partial molar volumes wrt pressure for the species in the mixture. More... | |
virtual void | getdStandardVolumes_dT (doublereal *d_vol_dT) const |
Get the derivative of the molar volumes of the species standard states wrt temperature at the current T and P of the solution. More... | |
virtual void | getdStandardVolumes_dP (doublereal *d_vol_dP) const |
Get the derivative molar volumes of the species standard states wrt pressure at the current T and P of the solution. More... | |
virtual void | getIntEnergy_RT_ref (doublereal *urt) const |
Returns the vector of nondimensional internal Energies of the reference state at the current temperature of the solution and the reference pressure for each species. More... | |
virtual void | setReferenceComposition (const doublereal *const x) |
Sets the reference composition. More... | |
virtual void | getReferenceComposition (doublereal *const x) const |
Gets the reference composition. More... | |
doublereal | enthalpy_mass () const |
Specific enthalpy. More... | |
doublereal | intEnergy_mass () const |
Specific internal energy. More... | |
doublereal | entropy_mass () const |
Specific entropy. More... | |
doublereal | gibbs_mass () const |
Specific Gibbs function. More... | |
doublereal | cp_mass () const |
Specific heat at constant pressure. More... | |
doublereal | cv_mass () const |
Specific heat at constant volume. More... | |
virtual void | setToEquilState (const doublereal *lambda_RT) |
This method is used by the ChemEquil equilibrium solver. More... | |
void | setElementPotentials (const vector_fp &lambda) |
Stores the element potentials in the ThermoPhase object. More... | |
bool | getElementPotentials (doublereal *lambda) const |
Returns the element potentials stored in the ThermoPhase object. More... | |
virtual doublereal | critTemperature () const |
Critical temperature (K). More... | |
virtual doublereal | critPressure () const |
Critical pressure (Pa). More... | |
virtual doublereal | critDensity () const |
Critical density (kg/m3). More... | |
virtual doublereal | satTemperature (doublereal p) const |
Return the saturation temperature given the pressure. More... | |
virtual doublereal | satPressure (doublereal t) |
Return the saturation pressure given the temperature. More... | |
virtual doublereal | vaporFraction () const |
Return the fraction of vapor at the current conditions. More... | |
virtual void | setState_Tsat (doublereal t, doublereal x) |
Set the state to a saturated system at a particular temperature. More... | |
virtual void | setState_Psat (doublereal p, doublereal x) |
Set the state to a saturated system at a particular pressure. More... | |
void | saveSpeciesData (const size_t k, const XML_Node *const data) |
Store a reference pointer to the XML tree containing the species data for this phase. More... | |
const std::vector< const XML_Node * > & | speciesData () const |
Return a pointer to the vector of XML nodes containing the species data for this phase. More... | |
void | setSpeciesThermo (SpeciesThermo *spthermo) |
Install a species thermodynamic property manager. More... | |
virtual SpeciesThermo & | speciesThermo (int k=-1) |
Return a changeable reference to the calculation manager for species reference-state thermodynamic properties. More... | |
virtual void | initThermoFile (const std::string &inputFile, const std::string &id) |
virtual void | installSlavePhases (Cantera::XML_Node *phaseNode) |
Add in species from Slave phases. More... | |
virtual void | setParameters (int n, doublereal *const c) |
Set the equation of state parameters. More... | |
virtual void | getParameters (int &n, doublereal *const c) const |
Get the equation of state parameters in a vector. More... | |
virtual void | setStateFromXML (const XML_Node &state) |
Set the initial state of the phase to the conditions specified in the state XML element. More... | |
virtual void | getdlnActCoeffdlnN_numderiv (const size_t ld, doublereal *const dlnActCoeffdlnN) |
virtual std::string | report (bool show_thermo=true) const |
returns a summary of the state of the phase as a string More... | |
virtual void | reportCSV (std::ofstream &csvFile) const |
returns a summary of the state of the phase to a comma separated file. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const doublereal *x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, compositionMap &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPX (doublereal t, doublereal p, const std::string &x) |
Set the temperature (K), pressure (Pa), and mole fractions. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const doublereal *y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, compositionMap &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_TPY (doublereal t, doublereal p, const std::string &y) |
Set the internally stored temperature (K), pressure (Pa), and mass fractions of the phase. More... | |
virtual void | setState_PX (doublereal p, doublereal *x) |
Set the pressure (Pa) and mole fractions. More... | |
virtual void | setState_PY (doublereal p, doublereal *y) |
Set the internally stored pressure (Pa) and mass fractions. More... | |
virtual void | setState_HP (doublereal h, doublereal p, doublereal tol=1.e-4) |
Set the internally stored specific enthalpy (J/kg) and pressure (Pa) of the phase. More... | |
virtual void | setState_UV (doublereal u, doublereal v, doublereal tol=1.e-4) |
Set the specific internal energy (J/kg) and specific volume (m^3/kg). More... | |
virtual void | setState_SP (doublereal s, doublereal p, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and pressure (Pa). More... | |
virtual void | setState_SV (doublereal s, doublereal v, doublereal tol=1.e-4) |
Set the specific entropy (J/kg/K) and specific volume (m^3/kg). More... | |
Public Member Functions inherited from Phase | |
Phase () | |
Default constructor. More... | |
virtual | ~Phase () |
Destructor. More... | |
Phase (const Phase &right) | |
Copy Constructor. More... | |
Phase & | operator= (const Phase &right) |
Assignment operator. More... | |
XML_Node & | xml () |
Returns a reference to the XML_Node stored for the phase. More... | |
void | saveState (vector_fp &state) const |
Save the current internal state of the phase Write to vector 'state' the current internal state. More... | |
void | saveState (size_t lenstate, doublereal *state) const |
Write to array 'state' the current internal state. More... | |
void | restoreState (const vector_fp &state) |
Restore a state saved on a previous call to saveState. More... | |
void | restoreState (size_t lenstate, const doublereal *state) |
Restore the state of the phase from a previously saved state vector. More... | |
doublereal | molecularWeight (size_t k) const |
Molecular weight of species k . More... | |
void | getMolecularWeights (vector_fp &weights) const |
Copy the vector of molecular weights into vector weights. More... | |
void | getMolecularWeights (doublereal *weights) const |
Copy the vector of molecular weights into array weights. More... | |
const vector_fp & | molecularWeights () const |
Return a const reference to the internal vector of molecular weights. More... | |
doublereal | size (size_t k) const |
This routine returns the size of species k. More... | |
doublereal | charge (size_t k) const |
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the magnitude of the electron charge. More... | |
doublereal | chargeDensity () const |
Charge density [C/m^3]. More... | |
size_t | nDim () const |
Returns the number of spatial dimensions (1, 2, or 3) More... | |
void | setNDim (size_t ndim) |
Set the number of spatial dimensions (1, 2, or 3). More... | |
virtual void | freezeSpecies () |
Call when finished adding species. More... | |
bool | speciesFrozen () |
True if freezeSpecies has been called. More... | |
virtual bool | ready () const |
int | stateMFNumber () const |
Return the State Mole Fraction Number. More... | |
std::string | id () const |
Return the string id for the phase. More... | |
void | setID (const std::string &id) |
Set the string id for the phase. More... | |
std::string | name () const |
Return the name of the phase. More... | |
void | setName (const std::string &nm) |
Sets the string name for the phase. More... | |
std::string | elementName (size_t m) const |
Name of the element with index m. More... | |
size_t | elementIndex (const std::string &name) const |
Return the index of element named 'name'. More... | |
const std::vector< std::string > & | elementNames () const |
Return a read-only reference to the vector of element names. More... | |
doublereal | atomicWeight (size_t m) const |
Atomic weight of element m. More... | |
doublereal | entropyElement298 (size_t m) const |
Entropy of the element in its standard state at 298 K and 1 bar. More... | |
int | atomicNumber (size_t m) const |
Atomic number of element m. More... | |
int | elementType (size_t m) const |
Return the element constraint type Possible types include: More... | |
int | changeElementType (int m, int elem_type) |
Change the element type of the mth constraint Reassigns an element type. More... | |
const vector_fp & | atomicWeights () const |
Return a read-only reference to the vector of atomic weights. More... | |
size_t | nElements () const |
Number of elements. More... | |
void | checkElementIndex (size_t m) const |
Check that the specified element index is in range Throws an exception if m is greater than nElements()-1. More... | |
void | checkElementArraySize (size_t mm) const |
Check that an array size is at least nElements() Throws an exception if mm is less than nElements(). More... | |
doublereal | nAtoms (size_t k, size_t m) const |
Number of atoms of element m in species k . More... | |
void | getAtoms (size_t k, double *atomArray) const |
Get a vector containing the atomic composition of species k. More... | |
size_t | speciesIndex (const std::string &name) const |
Returns the index of a species named 'name' within the Phase object. More... | |
std::string | speciesName (size_t k) const |
Name of the species with index k. More... | |
std::string | speciesSPName (int k) const |
Returns the expanded species name of a species, including the phase name This is guaranteed to be unique within a Cantera problem. More... | |
const std::vector< std::string > & | speciesNames () const |
Return a const reference to the vector of species names. More... | |
size_t | nSpecies () const |
Returns the number of species in the phase. More... | |
void | checkSpeciesIndex (size_t k) const |
Check that the specified species index is in range Throws an exception if k is greater than nSpecies()-1. More... | |
void | checkSpeciesArraySize (size_t kk) const |
Check that an array size is at least nSpecies() Throws an exception if kk is less than nSpecies(). More... | |
void | setMoleFractionsByName (compositionMap &xMap) |
Set the species mole fractions by name. More... | |
void | setMoleFractionsByName (const std::string &x) |
Set the mole fractions of a group of species by name. More... | |
void | setMassFractionsByName (compositionMap &yMap) |
Set the species mass fractions by name. More... | |
void | setMassFractionsByName (const std::string &x) |
Set the species mass fractions by name. More... | |
void | setState_TRX (doublereal t, doublereal dens, const doublereal *x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRX (doublereal t, doublereal dens, compositionMap &x) |
Set the internally stored temperature (K), density, and mole fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, const doublereal *y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TRY (doublereal t, doublereal dens, compositionMap &y) |
Set the internally stored temperature (K), density, and mass fractions. More... | |
void | setState_TNX (doublereal t, doublereal n, const doublereal *x) |
Set the internally stored temperature (K), molar density (kmol/m^3), and mole fractions. More... | |
void | setState_TR (doublereal t, doublereal rho) |
Set the internally stored temperature (K) and density (kg/m^3) More... | |
void | setState_TX (doublereal t, doublereal *x) |
Set the internally stored temperature (K) and mole fractions. More... | |
void | setState_TY (doublereal t, doublereal *y) |
Set the internally stored temperature (K) and mass fractions. More... | |
void | setState_RX (doublereal rho, doublereal *x) |
Set the density (kg/m^3) and mole fractions. More... | |
void | setState_RY (doublereal rho, doublereal *y) |
Set the density (kg/m^3) and mass fractions. More... | |
void | getMoleFractionsByName (compositionMap &x) const |
Get the mole fractions by name. More... | |
doublereal | moleFraction (size_t k) const |
Return the mole fraction of a single species. More... | |
doublereal | moleFraction (const std::string &name) const |
Return the mole fraction of a single species. More... | |
doublereal | massFraction (size_t k) const |
Return the mass fraction of a single species. More... | |
doublereal | massFraction (const std::string &name) const |
Return the mass fraction of a single species. More... | |
void | getMoleFractions (doublereal *const x) const |
Get the species mole fraction vector. More... | |
void | getMassFractions (doublereal *const y) const |
Get the species mass fractions. More... | |
const doublereal * | massFractions () const |
Return a const pointer to the mass fraction array. More... | |
void | getConcentrations (doublereal *const c) const |
Get the species concentrations (kmol/m^3). More... | |
doublereal | concentration (const size_t k) const |
Concentration of species k. More... | |
const doublereal * | moleFractdivMMW () const |
Returns a const pointer to the start of the moleFraction/MW array. More... | |
doublereal | temperature () const |
Temperature (K). More... | |
virtual doublereal | density () const |
Density (kg/m^3). More... | |
doublereal | molarDensity () const |
Molar density (kmol/m^3). More... | |
doublereal | molarVolume () const |
Molar volume (m^3/kmol). More... | |
virtual void | setDensity (const doublereal density_) |
Set the internally stored density (kg/m^3) of the phase Note the density of a phase is an independent variable. More... | |
virtual void | setMolarDensity (const doublereal molarDensity) |
Set the internally stored molar density (kmol/m^3) of the phase. More... | |
doublereal | mean_X (const doublereal *const Q) const |
Evaluate the mole-fraction-weighted mean of an array Q. More... | |
doublereal | mean_Y (const doublereal *const Q) const |
Evaluate the mass-fraction-weighted mean of an array Q. More... | |
doublereal | meanMolecularWeight () const |
The mean molecular weight. Units: (kg/kmol) More... | |
doublereal | sum_xlogx () const |
Evaluate \( \sum_k X_k \log X_k \). More... | |
doublereal | sum_xlogQ (doublereal *const Q) const |
Evaluate \( \sum_k X_k \log Q_k \). More... | |
void | addElement (const std::string &symbol, doublereal weight=-12345.0) |
Add an element. More... | |
void | addElement (const XML_Node &e) |
Add an element from an XML specification. More... | |
void | addUniqueElement (const std::string &symbol, doublereal weight=-12345.0, int atomicNumber=0, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More... | |
void | addUniqueElement (const XML_Node &e) |
Add an element, checking for uniqueness The uniqueness is checked by comparing the string symbol. More... | |
void | addElementsFromXML (const XML_Node &phase) |
Add all elements referenced in an XML_Node tree. More... | |
void | freezeElements () |
Prohibit addition of more elements, and prepare to add species. More... | |
bool | elementsFrozen () |
True if freezeElements has been called. More... | |
size_t | addUniqueElementAfterFreeze (const std::string &symbol, doublereal weight, int atomicNumber, doublereal entropy298=ENTROPY298_UNKNOWN, int elem_type=CT_ELEM_TYPE_ABSPOS) |
Add an element after elements have been frozen, checking for uniqueness The uniqueness is checked by comparing the string symbol. More... | |
void | addSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
void | addUniqueSpecies (const std::string &name, const doublereal *comp, doublereal charge=0.0, doublereal size=1.0) |
Add a species to the phase, checking for uniqueness of the name This routine checks for uniqueness of the string name. More... | |
Public Attributes | |
ThermoPhase * | neutralMoleculePhase_ |
This is a pointer to the neutral Molecule Phase. More... | |
Protected Attributes | |
IonSolnType_enumType | ionSolnType_ |
Ion solution type. More... | |
size_t | numNeutralMoleculeSpecies_ |
Number of neutral molecule species. More... | |
size_t | indexSpecialSpecies_ |
Index of special species. More... | |
size_t | indexSecondSpecialSpecies_ |
Index of special species. More... | |
std::vector< double > | fm_neutralMolec_ions_ |
Formula Matrix for composition of neutral molecules in terms of the molecules in this ThermoPhase. More... | |
std::vector< size_t > | fm_invert_ionForNeutral |
Mapping between ion species and neutral molecule for quick invert. More... | |
std::vector< doublereal > | NeutralMolecMoleFractions_ |
Mole fractions using the Neutral Molecule Mole fraction basis. More... | |
std::vector< size_t > | cationList_ |
List of the species in this ThermoPhase which are cation species. More... | |
int | numCationSpecies_ |
Number of cation species. More... | |
std::vector< size_t > | anionList_ |
List of the species in this ThermoPhase which are anion species. More... | |
int | numAnionSpecies_ |
Number of anion species. More... | |
std::vector< size_t > | passThroughList_ |
List of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase. More... | |
size_t | numPassThroughSpecies_ |
Number of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase. More... | |
Protected Attributes inherited from GibbsExcessVPSSTP | |
std::vector< doublereal > | moleFractions_ |
Storage for the current values of the mole fractions of the species. More... | |
std::vector< doublereal > | lnActCoeff_Scaled_ |
Storage for the current values of the activity coefficients of the species. More... | |
std::vector< doublereal > | dlnActCoeffdT_Scaled_ |
Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More... | |
std::vector< doublereal > | d2lnActCoeffdT2_Scaled_ |
Storage for the current derivative values of the gradients with respect to temperature of the log of the activity coefficients of the species. More... | |
std::vector< doublereal > | dlnActCoeffdlnN_diag_ |
Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More... | |
std::vector< doublereal > | dlnActCoeffdlnX_diag_ |
Storage for the current derivative values of the gradients with respect to logarithm of the mole fraction of the log of the activity coefficients of the species. More... | |
Array2D | dlnActCoeffdlnN_ |
Storage for the current derivative values of the gradients with respect to logarithm of the species mole number of the log of the activity coefficients of the species. More... | |
std::vector< doublereal > | m_pp |
Temporary storage space that is fair game. More... | |
Protected Attributes inherited from VPStandardStateTP | |
doublereal | m_Pcurrent |
Current value of the pressure - state variable. More... | |
doublereal | m_Tlast_ss |
The last temperature at which the standard statethermodynamic properties were calculated at. More... | |
doublereal | m_Plast_ss |
The last pressure at which the Standard State thermodynamic properties were calculated at. More... | |
doublereal | m_P0 |
VPSSMgr * | m_VPSS_ptr |
Pointer to the VPSS manager that calculates all of the standard state info efficiently. More... | |
std::vector< PDSS * > | m_PDSS_storage |
Storage for the PDSS objects for the species. More... | |
Protected Attributes inherited from ThermoPhase | |
SpeciesThermo * | m_spthermo |
Pointer to the calculation manager for species reference-state thermodynamic properties. More... | |
std::vector< const XML_Node * > | m_speciesData |
Vector of pointers to the species databases. More... | |
doublereal | m_phi |
Stored value of the electric potential for this phase. More... | |
vector_fp | m_lambdaRRT |
Vector of element potentials. More... | |
bool | m_hasElementPotentials |
Boolean indicating whether there is a valid set of saved element potentials for this phase. More... | |
bool | m_chargeNeutralityNecessary |
Boolean indicating whether a charge neutrality condition is a necessity. More... | |
int | m_ssConvention |
Contains the standard state convention. More... | |
std::vector< doublereal > | xMol_Ref |
Reference Mole Fraction Composition. More... | |
Protected Attributes inherited from Phase | |
size_t | m_kk |
Number of species in the phase. More... | |
size_t | m_ndim |
Dimensionality of the phase. More... | |
vector_fp | m_speciesComp |
Atomic composition of the species. More... | |
vector_fp | m_speciesSize |
Vector of species sizes. More... | |
vector_fp | m_speciesCharge |
Vector of species charges. length m_kk. More... | |
Private Member Functions | |
void | initLengths () |
Initialize lengths of local variables after all species have been identified. More... | |
void | s_update_lnActCoeff () const |
Update the activity coefficients. More... | |
void | s_update_dlnActCoeffdT () const |
Update the temperature derivative of the ln activity coefficients. More... | |
void | s_update_dlnActCoeff () const |
Update the change in the ln activity coefficients. More... | |
void | s_update_dlnActCoeff_dlnX_diag () const |
Update the derivative of the log of the activity coefficients wrt log(mole fraction) More... | |
void | s_update_dlnActCoeff_dlnN_diag () const |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components. More... | |
void | s_update_dlnActCoeff_dlnN () const |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components. More... | |
doublereal | err (const std::string &msg) const |
Error function. More... | |
Private Attributes | |
GibbsExcessVPSSTP * | geThermo |
vector_fp | y_ |
vector_fp | dlnActCoeff_NeutralMolecule_ |
vector_fp | dX_NeutralMolecule_ |
bool | IOwnNThermoPhase_ |
If true then we own the underlying neutral Molecule Phase. More... | |
std::vector< doublereal > | moleFractionsTmp_ |
Temporary mole fraction vector. More... | |
std::vector< doublereal > | muNeutralMolecule_ |
Storage vector for the neutral molecule chemical potentials. More... | |
std::vector< doublereal > | lnActCoeff_NeutralMolecule_ |
Storage vector for the neutral molecule ln activity coefficients. More... | |
std::vector< doublereal > | dlnActCoeffdT_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dT. More... | |
std::vector< doublereal > | dlnActCoeffdlnX_diag_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dX - diagonal component. More... | |
std::vector< doublereal > | dlnActCoeffdlnN_diag_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dlnN - diagonal component. More... | |
Array2D | dlnActCoeffdlnN_NeutralMolecule_ |
Storage vector for the neutral molecule d ln activity coefficients dlnN. More... | |
Additional Inherited Members | |
Protected Member Functions inherited from GibbsExcessVPSSTP | |
double | checkMFSum (const doublereal *const x) const |
utility routine to check mole fraction sum More... | |
void | calcDensity () |
Calculate the density of the mixture using the partial molar volumes and mole fractions as input. More... | |
Protected Member Functions inherited from VPStandardStateTP | |
virtual void | _updateStandardStateThermo () const |
Updates the standard state thermodynamic functions at the current T and P of the solution. More... | |
const vector_fp & | Gibbs_RT_ref () const |
Protected Member Functions inherited from ThermoPhase | |
virtual void | getCsvReportData (std::vector< std::string > &names, std::vector< vector_fp > &data) const |
Fills names and data with the column names and species thermo properties to be included in the output of the reportCSV method. More... | |
Protected Member Functions inherited from Phase | |
void | init (const vector_fp &mw) |
void | setMolecularWeight (const int k, const double mw) |
Set the molecular weight of a single species to a given value. More... | |
The IonsFromNeutralVPSSTP is a derived class of ThermoPhase that handles the specification of the chemical potentials for ionic species, given a specification of the chemical potentials for the same phase expressed in terms of combinations of the ionic species that represent neutral molecules. It's expected that the neutral molecules will be represented in terms of an excess gibbs free energy approximation that is a derivative of the GbbsExcessVPSSTP object. All of the e Excess Gibbs free energy formulations in this area employ symmetrical formulations.
This class is used for molten salts.
This object actually employs 4 different mole fraction types.
This object can translate between any of the four mole fraction representations.
Definition at line 72 of file IonsFromNeutralVPSSTP.h.
Default constructor
Definition at line 31 of file IonsFromNeutralVPSSTP.cpp.
Referenced by IonsFromNeutralVPSSTP::duplMyselfAsThermoPhase().
IonsFromNeutralVPSSTP | ( | const std::string & | inputFile, |
const std::string & | id = "" , |
||
ThermoPhase * | neutralPhase = 0 |
||
) |
Construct and initialize an IonsFromNeutralVPSSTP object directly from an ASCII input file.
This constructor is a shell around the routine initThermo(), with a reference to the XML database to get the info for the phase.
inputFile | Name of the input file containing the phase XML data to set up the object |
id | ID of the phase in the input file. Defaults to the empty string. |
neutralPhase | The object takes a neutralPhase ThermoPhase object as input. It can either take a pointer to an existing object in the parameter list, in which case it does not own the object, or it can construct a neutral Phase as a slave object, in which case, it does own the slave object, for purposes of who gets to destroy the object. If this parameter is zero, then a slave neutral phase object is created and used. |
Definition at line 49 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::constructPhaseFile(), IonsFromNeutralVPSSTP::IOwnNThermoPhase_, and IonsFromNeutralVPSSTP::neutralMoleculePhase_.
IonsFromNeutralVPSSTP | ( | XML_Node & | phaseRoot, |
const std::string & | id = "" , |
||
ThermoPhase * | neutralPhase = 0 |
||
) |
Construct and initialize an IonsFromNeutralVPSSTP object directly from an XML database.
phaseRoot | XML phase node containing the description of the phase |
id | id attribute containing the name of the phase. (default is the empty string) |
neutralPhase | The object takes a neutralPhase ThermoPhase object as input. It can either take a pointer to an existing object in the parameter list, in which case it does not own the object, or it can construct a neutral Phase as a slave object, in which case, it does own the slave object, for purposes of who gets to destroy the object. If this parameter is zero, then a slave neutral phase object is created and used. |
Definition at line 77 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::constructPhaseXML(), IonsFromNeutralVPSSTP::IOwnNThermoPhase_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, Phase::nSpecies(), and IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_.
IonsFromNeutralVPSSTP | ( | const IonsFromNeutralVPSSTP & | b | ) |
Copy constructor.
b | class to be copied |
Definition at line 105 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::operator=().
|
virtual |
Destructor.
Definition at line 185 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::IOwnNThermoPhase_, and IonsFromNeutralVPSSTP::neutralMoleculePhase_.
IonsFromNeutralVPSSTP & operator= | ( | const IonsFromNeutralVPSSTP & | b | ) |
Assignment operator.
b | class to be copied. |
Definition at line 126 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdlnX_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdT_NeutralMolecule_, IonsFromNeutralVPSSTP::duplMyselfAsThermoPhase(), IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::indexSecondSpecialSpecies_, IonsFromNeutralVPSSTP::indexSpecialSpecies_, IonsFromNeutralVPSSTP::ionSolnType_, IonsFromNeutralVPSSTP::IOwnNThermoPhase_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, IonsFromNeutralVPSSTP::moleFractionsTmp_, IonsFromNeutralVPSSTP::muNeutralMolecule_, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, IonsFromNeutralVPSSTP::numAnionSpecies_, IonsFromNeutralVPSSTP::numCationSpecies_, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, GibbsExcessVPSSTP::operator=(), and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().
|
virtual |
Duplication routine for objects which inherit from ThermoPhase.
This virtual routine can be used to duplicate ThermoPhase objects inherited from ThermoPhase even if the application only has a pointer to ThermoPhase to work with.
Reimplemented from GibbsExcessVPSSTP.
Definition at line 194 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().
Referenced by IonsFromNeutralVPSSTP::operator=().
void constructPhaseFile | ( | std::string | inputFile, |
std::string | id | ||
) |
The following methods are used in the process of constructing the phase and setting its parameters from a specification in an input file.
Initialization of an IonsFromNeutralVPSSTP phase using an xml file
This routine is a precursor to initThermo(XML_Node*) routine, which does most of the work.
inputFile | XML file containing the description of the phase |
id | Optional parameter identifying the name of the phase. If none is given, the first XML phase element will be used. |
Definition at line 199 of file IonsFromNeutralVPSSTP.cpp.
References XML_Node::build(), IonsFromNeutralVPSSTP::constructPhaseXML(), XML_Node::copy(), Cantera::findInputFile(), Cantera::findXMLPhase(), and Phase::xml().
Referenced by IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP().
void constructPhaseXML | ( | XML_Node & | phaseNode, |
std::string | id | ||
) |
Import and initialize an IonsFromNeutralVPSSTP phase specification in an XML tree into the current object.
Here we read an XML description of the phase. We import descriptions of the elements that make up the species in a phase. We import information about the species, including their reference state thermodynamic polynomials. We then freeze the state of the species.
Then, we read the species molar volumes from the xml tree to finish the initialization.
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Definition at line 230 of file IonsFromNeutralVPSSTP.cpp.
References XML_Node::attrib(), XML_Node::child(), Cantera::get_XML_Node(), XML_Node::hasChild(), XML_Node::id(), Cantera::importPhase(), Cantera::lowercase(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, and Cantera::newPhase().
Referenced by IonsFromNeutralVPSSTP::constructPhaseFile(), IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP(), and Cantera::newPhase().
|
virtual |
Equation of state type flag.
The ThermoPhase base class returns zero. Subclasses should define this to return a unique non-zero value. Known constants defined for this purpose are listed in mix_defs.h. The MolalityVPSSTP class also returns zero, as it is a non-complete class.
Reimplemented from GibbsExcessVPSSTP.
Definition at line 302 of file IonsFromNeutralVPSSTP.cpp.
Referenced by IonsFromNeutralVPSSTP::err().
|
virtual |
Return the Molar enthalpy. Units: J/kmol.
This is calculated from the partial molar enthalpies of the species.
Reimplemented from ThermoPhase.
Definition at line 311 of file IonsFromNeutralVPSSTP.cpp.
References DATA_PTR, IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), GibbsExcessVPSSTP::m_pp, and Phase::mean_X().
Referenced by IonsFromNeutralVPSSTP::intEnergy_mole().
|
virtual |
Molar internal energy.
J/kmol.
This is calculated from the soln enthalpy and then subtracting pV.
Reimplemented from ThermoPhase.
Definition at line 317 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::enthalpy_mole(), Phase::molarDensity(), and VPStandardStateTP::pressure().
|
virtual |
Molar entropy. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 325 of file IonsFromNeutralVPSSTP.cpp.
References DATA_PTR, IonsFromNeutralVPSSTP::getPartialMolarEntropies(), GibbsExcessVPSSTP::m_pp, and Phase::mean_X().
|
virtual |
Molar Gibbs free Energy for an ideal gas. Units = J/kmol.
Reimplemented from ThermoPhase.
Definition at line 331 of file IonsFromNeutralVPSSTP.cpp.
References DATA_PTR, IonsFromNeutralVPSSTP::getChemPotentials(), GibbsExcessVPSSTP::m_pp, and Phase::mean_X().
|
virtual |
Molar heat capacity at constant pressure. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 337 of file IonsFromNeutralVPSSTP.cpp.
References DATA_PTR, ThermoPhase::getPartialMolarCp(), GibbsExcessVPSSTP::m_pp, and Phase::mean_X().
|
virtual |
Molar heat capacity at constant volume. Units: J/kmol/K.
Reimplemented from ThermoPhase.
Definition at line 343 of file IonsFromNeutralVPSSTP.cpp.
References DATA_PTR, ThermoPhase::getPartialMolarCp(), GibbsExcessVPSSTP::m_pp, and Phase::mean_X().
|
virtual |
Get the array of non-dimensional molar-based activity coefficients at the current solution temperature, pressure, and solution concentration.
ac | Output vector of activity coefficients. Length: m_kk. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 364 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
virtual |
Get the species chemical potentials. Units: J/kmol.
This function returns a vector of chemical potentials of the species in solution at the current temperature, pressure and mole fraction of the solution.
mu | Output vector of species chemical potentials. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 389 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, DATA_PTR, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, Cantera::GasConstant, ThermoPhase::getChemPotentials(), ThermoPhase::getLnActivityCoefficients(), ThermoPhase::getStandardChemPotentials(), IonsFromNeutralVPSSTP::ionSolnType_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::muNeutralMolecule_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, IonsFromNeutralVPSSTP::passThroughList_, Cantera::SmallNumber, and Phase::temperature().
Referenced by IonsFromNeutralVPSSTP::gibbs_mole().
|
virtual |
Returns an array of partial molar enthalpies for the species in the mixture.
Units (J/kmol)
For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the molality-based activity coefficient wrt temperature
\[ \bar h_k(T,P) = h^o_k(T,P) - R T^2 \frac{d \ln(\gamma_k)}{dT} \]
hbar | Output vector of species partial molar enthalpies. Length: m_kk. Units: J/kmol |
Reimplemented from ThermoPhase.
Definition at line 454 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, Cantera::GasConstant, VPStandardStateTP::getEnthalpy_RT(), Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), and Phase::temperature().
Referenced by IonsFromNeutralVPSSTP::enthalpy_mole().
|
virtual |
Returns an array of partial molar entropies for the species in the mixture.
Units (J/kmol)
For this phase, the partial molar enthalpies are equal to the standard state enthalpies modified by the derivative of the activity coefficient wrt temperature
\[ \bar s_k(T,P) = s^o_k(T,P) - R T^2 \frac{d \ln(\gamma_k)}{dT} - R \ln( \gamma_k X_k) - R T \frac{d \ln(\gamma_k) }{dT} \]
sbar | Output vector of species partial molar entropies. Length: m_kk. Units: J/kmol/K |
Reimplemented from ThermoPhase.
Definition at line 480 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, Cantera::GasConstant, VPStandardStateTP::getEntropy_R(), GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), Cantera::SmallNumber, and Phase::temperature().
Referenced by IonsFromNeutralVPSSTP::entropy_mole().
|
virtual |
Get the change in activity coefficients w.r.t.
change in state (temp, mole fraction, etc.) along a line in parameter space or along a line in physical space
dTds | Input of temperature change along the path |
dXds | Input vector of changes in mole fraction along the path. length = m_kk Along the path length it must be the case that the mole fractions sum to one. |
dlnActCoeffds | Output vector of the directional derivatives of the log Activity Coefficients along the path. length = m_kk |
Reimplemented from ThermoPhase.
Definition at line 1181 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, DATA_PTR, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
|
virtual |
Get the array of log concentration-like derivatives of the log activity coefficients - diagonal component.
For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the mole fraction. This quantity is to be used in conjunction with derivatives of that concentration-like variable when the derivative of the chemical potential is taken.
units = dimensionless
dlnActCoeffdlnX_diag | Output vector of log(mole fraction) derivatives of the log Activity Coefficients. length = m_kk |
Reimplemented from ThermoPhase.
Definition at line 507 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdlnX_diag_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
virtual |
Get the array of log concentration-like derivatives of the log activity coefficients - diagonal components.
For ideal mixtures (unity activity coefficients), this can return zero. Implementations should take the derivative of the logarithm of the activity coefficient with respect to the logarithm of the species mole numbe. This routine just does the diagonal entries.
units = dimensionless
dlnActCoeffdlnN_diag | Output vector of diagonal components of the log(mole fraction) derivatives of the log Activity Coefficients. length = m_kk |
Reimplemented from VPStandardStateTP.
Definition at line 517 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
virtual |
Get the array of derivatives of the ln activity coefficients with respect to the ln species mole numbers.
Implementations should take the derivative of the logarithm of the activity coefficient with respect to a log of a species mole number (with all other species mole numbers held constant)
units = 1 / kmol
dlnActCoeffdlnN[ ld * k + m] will contain the derivative of log act_coeff for the mth species with respect to the number of moles of the kth species.
\[ \frac{d \ln(\gamma_m) }{d \ln( n_k ) }\Bigg|_{n_i} \]
ld | Number of rows in the matrix |
dlnActCoeffdlnN | Output vector of derivatives of the log Activity Coefficients. length = m_kk * m_kk |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 527 of file IonsFromNeutralVPSSTP.cpp.
References GibbsExcessVPSSTP::dlnActCoeffdlnN_, Phase::m_kk, IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
void getDissociationCoeffs | ( | vector_fp & | fm_neutralMolec_ions, |
vector_fp & | charges, | ||
std::vector< size_t > & | neutMolIndex | ||
) | const |
Get the Salt Dissociation Coefficients Returns the vector of dissociation coefficients and vector of charges.
fm_neutralMolec_ions | Returns the formula matrix for the composition of neutral molecules in terms of the ions. |
charges | Returns a vector containing the charges of all species in this phase |
neutMolIndex | Returns the vector fm_invert_ionForNeutral This is the mapping between ion species and neutral molecule for quick invert. |
Definition at line 356 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, and Phase::m_speciesCharge.
Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().
|
inline |
Return the current value of the neutral mole fraction vector.
neutralMoleculeMoleFractions | Vector of neutral molecule mole fractions. |
Definition at line 398 of file IonsFromNeutralVPSSTP.h.
References IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_.
Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().
void getNeutralMoleculeMoleGrads | ( | const doublereal *const | dx, |
doublereal *const | dy | ||
) | const |
Calculate neutral molecule mole fractions.
This routine calculates the neutral molecule mole fraction given the vector of ion mole fractions, i.e., the mole fractions from this ThermoPhase. Note, this routine basically assumes that there is charge neutrality. If there isn't, then it wouldn't make much sense.
for the case of cIonSolnType_SINGLEANION, some slough in the charge neutrality is allowed. The cation number is followed, while the difference in charge neutrality is dumped into the anion mole number to fix the imbalance.
dx | input vector of ion mole fraction gradients |
dy | output Vector of neutral molecule mole fraction gradients |
Definition at line 715 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, AssertTrace, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::moleFractionsTmp_, Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffds().
|
inline |
Get the list of cations in this object.
cation | List of cations |
Definition at line 425 of file IonsFromNeutralVPSSTP.h.
References IonsFromNeutralVPSSTP::cationList_.
Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().
|
inline |
Get the list of anions in this object.
anion | List of anions |
Definition at line 433 of file IonsFromNeutralVPSSTP.h.
References IonsFromNeutralVPSSTP::anionList_.
Referenced by LTI_StefanMaxwell_PPN::getMatrixTransProp().
|
virtual |
Set the temperature of the phase.
Currently this passes down to setState_TP(). It does not make sense to calculate the standard state without first setting T and P.
temp | Temperature (kelvin) |
Reimplemented from VPStandardStateTP.
Definition at line 539 of file IonsFromNeutralVPSSTP.cpp.
References VPStandardStateTP::pressure(), and IonsFromNeutralVPSSTP::setState_TP().
|
virtual |
Set the internally stored pressure (Pa) at constant temperature and composition.
This method sets the pressure within the object. The water model is a completely compressible model. Also, the dielectric constant is pressure dependent.
p | input Pressure (Pa) |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 545 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::setState_TP(), and Phase::temperature().
|
virtual |
Set the temperature (K) and pressure (Pa)
Setting the pressure may involve the solution of a nonlinear equation.
t | Temperature (K) |
p | Pressure (Pa) |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 551 of file IonsFromNeutralVPSSTP.cpp.
References Phase::density(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, Phase::setDensity(), VPStandardStateTP::setState_TP(), and ThermoPhase::setState_TP().
Referenced by IonsFromNeutralVPSSTP::setPressure(), and IonsFromNeutralVPSSTP::setTemperature().
|
virtual |
Calculate ion mole fractions from neutral molecule mole fractions.
mf | Dump the mole fractions into this vector. |
Definition at line 569 of file IonsFromNeutralVPSSTP.cpp.
References DATA_PTR, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, Phase::getMoleFractions(), Phase::m_kk, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, and IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_.
|
virtual |
Calculate neutral molecule mole fractions.
This routine calculates the neutral molecule mole fraction given the vector of ion mole fractions, i.e., the mole fractions from this ThermoPhase. Note, this routine basically assumes that there is charge neutrality. If there isn't, then it wouldn't make much sense.
for the case of cIonSolnType_SINGLEANION, some slough in the charge neutrality is allowed. The cation number is followed, while the difference in charge neutrality is dumped into the anion mole number to fix the imbalance.
Definition at line 606 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, AssertTrace, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, Cantera::fp2str(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::moleFractionsTmp_, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, Cantera::npos, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::setConcentrations(), IonsFromNeutralVPSSTP::setMassFractions(), IonsFromNeutralVPSSTP::setMassFractions_NoNorm(), IonsFromNeutralVPSSTP::setMoleFractions(), and IonsFromNeutralVPSSTP::setMoleFractions_NoNorm().
|
virtual |
Set the mass fractions to the specified values, and then normalize them so that they sum to 1.0.
y | Array of unnormalized mass fraction values (input). Must have a length greater than or equal to the number of species. |
y | Input vector of mass fractions. Length is m_kk. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 819 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), DATA_PTR, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, GibbsExcessVPSSTP::setMassFractions(), and Phase::setMoleFractions().
|
virtual |
Set the mass fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
y | Input vector of mass fractions. Length is m_kk. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 826 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), DATA_PTR, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, GibbsExcessVPSSTP::setMassFractions_NoNorm(), and Phase::setMoleFractions().
|
virtual |
Set the mole fractions to the specified values, and then normalize them so that they sum to 1.0.
x | Array of unnormalized mole fraction values (input). Must have a length greater than or equal to the number of species. |
x | Input vector of mole fractions. Length is m_kk. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 833 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), DATA_PTR, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, GibbsExcessVPSSTP::setMoleFractions(), and Phase::setMoleFractions().
|
virtual |
Set the mole fractions to the specified values without normalizing.
This is useful when the normalization condition is being handled by some other means, for example by a constraint equation as part of a larger set of equations.
x | Input vector of mole fractions. Length is m_kk. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 840 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), DATA_PTR, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, GibbsExcessVPSSTP::setMoleFractions_NoNorm(), and Phase::setMoleFractions_NoNorm().
|
virtual |
Set the concentrations to the specified values within the phase.
c | The input vector to this routine is in dimensional units. For volumetric phases c[k] is the concentration of the kth species in kmol/m3. For surface phases, c[k] is the concentration in kmol/m2. The length of the vector is the number of species in the phase. |
Reimplemented from GibbsExcessVPSSTP.
Definition at line 847 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), DATA_PTR, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, GibbsExcessVPSSTP::setConcentrations(), and Phase::setMoleFractions().
|
virtual |
Initialize. This method is provided to allow subclasses to perform any initialization required after all species have been added. For example, it might be used to resize internal work arrays that must have an entry for each species. The base class implementation does nothing, and subclasses that do not require initialization do not need to overload this method. When importing a CTML phase description, this method is called just prior to returning from function importPhase.
Reimplemented from GibbsExcessVPSSTP.
Definition at line 865 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::initLengths(), and GibbsExcessVPSSTP::initThermo().
|
virtual |
Import and initialize a ThermoPhase object.
phaseNode | This object must be the phase node of a complete XML tree description of the phase, including all of the species data. In other words while "phase" must point to an XML phase object, it must have sibling nodes "speciesData" that describe the species in the phase. |
id | ID of the phase. If nonnull, a check is done to see if phaseNode is pointing to the phase with the correct id. |
Reimplemented from VPStandardStateTP.
Definition at line 930 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, XML_Node::attrib(), IonsFromNeutralVPSSTP::cationList_, Phase::charge(), XML_Node::child(), Phase::elementNames(), Cantera::factorOverlap(), IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, Cantera::get_XML_Node(), XML_Node::hasChild(), XML_Node::id(), IonsFromNeutralVPSSTP::indexSecondSpecialSpecies_, IonsFromNeutralVPSSTP::indexSpecialSpecies_, VPStandardStateTP::initThermoXML(), Cantera::lowercase(), Phase::m_kk, Phase::nAtoms(), Phase::nElements(), IonsFromNeutralVPSSTP::neutralMoleculePhase_, Cantera::newPhase(), Cantera::npos, IonsFromNeutralVPSSTP::numAnionSpecies_, IonsFromNeutralVPSSTP::numCationSpecies_, IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, IonsFromNeutralVPSSTP::passThroughList_, and PDSS_IonsFromNeutral::specialSpecies_.
|
private |
Initialize lengths of local variables after all species have been identified.
Definition at line 871 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdlnX_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdT_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, Phase::m_kk, GibbsExcessVPSSTP::moleFractions_, IonsFromNeutralVPSSTP::moleFractionsTmp_, IonsFromNeutralVPSSTP::muNeutralMolecule_, IonsFromNeutralVPSSTP::NeutralMolecMoleFractions_, IonsFromNeutralVPSSTP::neutralMoleculePhase_, Phase::nSpecies(), IonsFromNeutralVPSSTP::numNeutralMoleculeSpecies_, IonsFromNeutralVPSSTP::passThroughList_, and Array2D::resize().
Referenced by IonsFromNeutralVPSSTP::initThermo().
|
private |
Update the activity coefficients.
This function will be called to update the internally stored natural logarithm of the activity coefficients
Definition at line 1132 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, DATA_PTR, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getLnActivityCoefficients(), IonsFromNeutralVPSSTP::ionSolnType_, IonsFromNeutralVPSSTP::lnActCoeff_NeutralMolecule_, GibbsExcessVPSSTP::lnActCoeff_Scaled_, Phase::m_kk, IonsFromNeutralVPSSTP::neutralMoleculePhase_, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getActivityCoefficients(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), and IonsFromNeutralVPSSTP::getPartialMolarEntropies().
|
private |
Update the temperature derivative of the ln activity coefficients.
This function will be called to update the internally stored temperature derivative of the natural logarithm of the activity coefficients
Definition at line 1246 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, DATA_PTR, IonsFromNeutralVPSSTP::dlnActCoeffdT_NeutralMolecule_, GibbsExcessVPSSTP::dlnActCoeffdT_Scaled_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, GibbsExcessVPSSTP::getdlnActCoeffdT(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getPartialMolarEnthalpies(), and IonsFromNeutralVPSSTP::getPartialMolarEntropies().
|
private |
Update the change in the ln activity coefficients.
This function will be called to update the internally stored change of the natural logarithm of the activity coefficients w.r.t a change in state (temp, mole fraction, etc)
|
private |
Update the derivative of the log of the activity coefficients wrt log(mole fraction)
This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the mole fractions.
Definition at line 1300 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, DATA_PTR, GibbsExcessVPSSTP::dlnActCoeffdlnX_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnX_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, ThermoPhase::getdlnActCoeffdlnX_diag(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnX_diag().
|
private |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components.
This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the number of moles of given species.
Definition at line 1354 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, DATA_PTR, GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, VPStandardStateTP::getdlnActCoeffdlnN_diag(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, IonsFromNeutralVPSSTP::numPassThroughSpecies_, and IonsFromNeutralVPSSTP::passThroughList_.
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnN_diag().
|
private |
Update the derivative of the log of the activity coefficients wrt log(number of moles) - diagonal components.
This function will be called to update the internally stored derivative of the natural logarithm of the activity coefficients wrt logarithm of the number of moles of given species.
Definition at line 1408 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::anionList_, IonsFromNeutralVPSSTP::cationList_, GibbsExcessVPSSTP::dlnActCoeffdlnN_, GibbsExcessVPSSTP::dlnActCoeffdlnN_diag_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_diag_NeutralMolecule_, IonsFromNeutralVPSSTP::dlnActCoeffdlnN_NeutralMolecule_, IonsFromNeutralVPSSTP::fm_invert_ionForNeutral, IonsFromNeutralVPSSTP::fm_neutralMolec_ions_, GibbsExcessVPSSTP::getdlnActCoeffdlnN(), IonsFromNeutralVPSSTP::ionSolnType_, Phase::m_kk, Phase::nSpecies(), IonsFromNeutralVPSSTP::numPassThroughSpecies_, IonsFromNeutralVPSSTP::passThroughList_, and Array2D::zero().
Referenced by IonsFromNeutralVPSSTP::getdlnActCoeffdlnN().
|
private |
Error function.
Print an error string and exit
msg | Message to be printed |
Definition at line 858 of file IonsFromNeutralVPSSTP.cpp.
References IonsFromNeutralVPSSTP::eosType(), and Cantera::int2str().
|
protected |
Ion solution type.
There is either mixing on the anion, cation, or both lattices. There is also a passthrough option
Defaults to cIonSolnType_SINGLEANION, so that LiKCl can be hardwired
Definition at line 645 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Number of neutral molecule species.
This is equal to the number of species in the neutralMoleculePhase_ ThermoPhase.
Definition at line 652 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP(), and IonsFromNeutralVPSSTP::operator=().
|
protected |
Index of special species.
Definition at line 655 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initThermoXML(), and IonsFromNeutralVPSSTP::operator=().
|
protected |
Index of special species.
Definition at line 658 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initThermoXML(), and IonsFromNeutralVPSSTP::operator=().
|
protected |
Formula Matrix for composition of neutral molecules in terms of the molecules in this ThermoPhase.
fm_neutralMolec_ions[ i + jNeut * m_kk ]
This is the number of ions of type i in the neutral molecule jNeut.
Definition at line 668 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Mapping between ion species and neutral molecule for quick invert.
fm_invert_ionForNeutral returns vector of int. Each element represents an ionic species and stores the value of the corresponding neutral molecule
For the case of fm_invert_simple_ = true, we assume that there is a quick way to invert the formula matrix so that we can quickly calculate the neutral molecule mole fraction given the ion mole fraction vector.
We assume that for a selected set of ion species, that that ion is only in the neutral molecule, jNeut.
therefore,
NeutralMolecMoleFractions_[jNeut] += moleFractions_[i_ion] / fmij;
where fmij is the number of ions in neutral molecule jNeut.
Thus, we formulate the neutral molecule mole fraction NeutralMolecMoleFractions_[] vector from this association. We further assume that there are no other associations. If fm_invert_simple_ is not true, then we need to do a formal inversion which takes a great deal of time and is not currently implemented.
Definition at line 696 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getDissociationCoeffs(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
mutableprotected |
Mole fractions using the Neutral Molecule Mole fraction basis.
Definition at line 699 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcIonMoleFractions(), IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getNeutralMolecMoleFractions(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::setConcentrations(), IonsFromNeutralVPSSTP::setMassFractions(), IonsFromNeutralVPSSTP::setMassFractions_NoNorm(), IonsFromNeutralVPSSTP::setMoleFractions(), and IonsFromNeutralVPSSTP::setMoleFractions_NoNorm().
|
protected |
List of the species in this ThermoPhase which are cation species.
Definition at line 702 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getCationList(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Number of cation species.
Definition at line 705 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initThermoXML(), and IonsFromNeutralVPSSTP::operator=().
|
protected |
List of the species in this ThermoPhase which are anion species.
Definition at line 708 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getAnionList(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Number of anion species.
Definition at line 711 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initThermoXML(), and IonsFromNeutralVPSSTP::operator=().
|
protected |
List of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase.
These have neutral charges.
Definition at line 718 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
protected |
Number of the species in this ThermoPhase which are passed through to the neutralMoleculePhase ThermoPhase.
Definition at line 722 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::getdlnActCoeffds(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag(), IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
ThermoPhase* neutralMoleculePhase_ |
This is a pointer to the neutral Molecule Phase.
If the variable, IOwnNThermoPhase_ is true, then we own the pointer. If not, then this is considered a shallow pointer.
Definition at line 730 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcIonMoleFractions(), PDSS_IonsFromNeutral::constructPDSSXML(), IonsFromNeutralVPSSTP::constructPhaseXML(), IonsFromNeutralVPSSTP::getChemPotentials(), LTI_StefanMaxwell_PPN::getMatrixTransProp(), PDSS_IonsFromNeutral::initAllPtrs(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::initThermoXML(), IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_lnActCoeff(), IonsFromNeutralVPSSTP::setConcentrations(), IonsFromNeutralVPSSTP::setMassFractions(), IonsFromNeutralVPSSTP::setMassFractions_NoNorm(), IonsFromNeutralVPSSTP::setMoleFractions(), IonsFromNeutralVPSSTP::setMoleFractions_NoNorm(), IonsFromNeutralVPSSTP::setState_TP(), and IonsFromNeutralVPSSTP::~IonsFromNeutralVPSSTP().
|
private |
If true then we own the underlying neutral Molecule Phase.
If this is false, then the neutral molecule phase is considered as a shallow pointer.
Definition at line 744 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::IonsFromNeutralVPSSTP(), IonsFromNeutralVPSSTP::operator=(), and IonsFromNeutralVPSSTP::~IonsFromNeutralVPSSTP().
|
mutableprivate |
Temporary mole fraction vector.
Definition at line 747 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::calcNeutralMoleculeMoleFractions(), IonsFromNeutralVPSSTP::getNeutralMoleculeMoleGrads(), IonsFromNeutralVPSSTP::initLengths(), and IonsFromNeutralVPSSTP::operator=().
|
mutableprivate |
Storage vector for the neutral molecule chemical potentials.
This vector is used as a temporary storage area when calculating the ion chemical potentials.
Definition at line 757 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::initLengths(), and IonsFromNeutralVPSSTP::operator=().
|
mutableprivate |
Storage vector for the neutral molecule ln activity coefficients.
This vector is used as a temporary storage area when calculating the ion chemical potentials and activity coefficients
Definition at line 767 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::getChemPotentials(), IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::operator=(), and IonsFromNeutralVPSSTP::s_update_lnActCoeff().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dT.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 776 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::operator=(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeffdT().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dX - diagonal component.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 785 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::operator=(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnX_diag().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dlnN - diagonal component.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 794 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::operator=(), IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN_diag().
|
mutableprivate |
Storage vector for the neutral molecule d ln activity coefficients dlnN.
This vector is used as a temporary storage area when calculating the ion derivatives
Definition at line 803 of file IonsFromNeutralVPSSTP.h.
Referenced by IonsFromNeutralVPSSTP::initLengths(), IonsFromNeutralVPSSTP::operator=(), and IonsFromNeutralVPSSTP::s_update_dlnActCoeff_dlnN().