Cantera  3.1.0
Loading...
Searching...
No Matches
IdealGasPhase.h
Go to the documentation of this file.
1/**
2 * @file IdealGasPhase.h
3 * ThermoPhase object for the ideal gas equation of
4 * state - workhorse for %Cantera (see @ref thermoprops
5 * and class @link Cantera::IdealGasPhase IdealGasPhase@endlink).
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
11#ifndef CT_IDEALGASPHASE_H
12#define CT_IDEALGASPHASE_H
13
14#include "ThermoPhase.h"
15
16namespace Cantera
17{
18
19//! Class IdealGasPhase represents low-density gases that obey the ideal gas
20//! equation of state.
21/*!
22 *
23 * IdealGasPhase derives from class ThermoPhase, and overloads the virtual
24 * methods defined there with ones that use expressions appropriate for ideal
25 * gas mixtures.
26 *
27 * The independent unknowns are density, mass fraction, and temperature. the
28 * #setPressure() function will calculate the density consistent with the
29 * current mass fraction vector and temperature and the desired pressure, and
30 * then set the density.
31 *
32 * ## Specification of Species Standard State Properties
33 *
34 * It is assumed that the reference state thermodynamics may be obtained by a
35 * pointer to a populated species thermodynamic property manager class in the
36 * base class, ThermoPhase::m_spthermo (see the base class @link
37 * Cantera::MultiSpeciesThermo MultiSpeciesThermo @endlink for a description of
38 * the specification of reference state species thermodynamics functions). The
39 * reference state, where the pressure is fixed at a single pressure, is a key
40 * species property calculation for the Ideal Gas Equation of state.
41 *
42 * This class is optimized for speed of execution. All calls to thermodynamic
43 * functions first call internal routines (aka #enthalpy_RT_ref()) which return
44 * references the reference state thermodynamics functions. Within these
45 * internal reference state functions, the function #updateThermo() is called,
46 * that first checks to see whether the temperature has changed. If it has, it
47 * updates the internal reference state thermo functions by calling the
48 * MultiSpeciesThermo object.
49 *
50 * Functions for the calculation of standard state properties for species at
51 * arbitrary pressure are provided in IdealGasPhase. However, they are all
52 * derived from their reference state counterparts.
53 *
54 * The standard state enthalpy is independent of pressure:
55 *
56 * @f[
57 * h^o_k(T,P) = h^{ref}_k(T)
58 * @f]
59 *
60 * The standard state constant-pressure heat capacity is independent of pressure:
61 *
62 * @f[
63 * Cp^o_k(T,P) = Cp^{ref}_k(T)
64 * @f]
65 *
66 * The standard state entropy depends in the following fashion on pressure:
67 *
68 * @f[
69 * S^o_k(T,P) = S^{ref}_k(T) - R \ln(\frac{P}{P_{ref}})
70 * @f]
71 * The standard state Gibbs free energy is obtained from the enthalpy and entropy
72 * functions:
73 *
74 * @f[
75 * \mu^o_k(T,P) = h^o_k(T,P) - S^o_k(T,P) T
76 * @f]
77 *
78 * @f[
79 * \mu^o_k(T,P) = \mu^{ref}_k(T) + R T \ln( \frac{P}{P_{ref}})
80 * @f]
81 *
82 * where
83 * @f[
84 * \mu^{ref}_k(T) = h^{ref}_k(T) - T S^{ref}_k(T)
85 * @f]
86 *
87 * The standard state internal energy is obtained from the enthalpy function also
88 *
89 * @f[
90 * u^o_k(T,P) = h^o_k(T) - R T
91 * @f]
92 *
93 * The molar volume of a species is given by the ideal gas law
94 *
95 * @f[
96 * V^o_k(T,P) = \frac{R T}{P}
97 * @f]
98 *
99 * where R is the molar gas constant. For a complete list of physical constants
100 * used within %Cantera, see @ref physConstants .
101 *
102 * ## Specification of Solution Thermodynamic Properties
103 *
104 * The activity of a species defined in the phase is given by the ideal gas law:
105 * @f[
106 * a_k = X_k
107 * @f]
108 * where @f$ X_k @f$ is the mole fraction of species *k*. The chemical potential
109 * for species *k* is equal to
110 *
111 * @f[
112 * \mu_k(T,P) = \mu^o_k(T, P) + R T \ln X_k
113 * @f]
114 *
115 * In terms of the reference state, the above can be rewritten
116 *
117 * @f[
118 * \mu_k(T,P) = \mu^{ref}_k(T, P) + R T \ln \frac{P X_k}{P_{ref}}
119 * @f]
120 *
121 * The partial molar entropy for species *k* is given by the following relation,
122 *
123 * @f[
124 * \tilde{s}_k(T,P) = s^o_k(T,P) - R \ln X_k = s^{ref}_k(T) - R \ln \frac{P X_k}{P_{ref}}
125 * @f]
126 *
127 * The partial molar enthalpy for species *k* is
128 *
129 * @f[
130 * \tilde{h}_k(T,P) = h^o_k(T,P) = h^{ref}_k(T)
131 * @f]
132 *
133 * The partial molar Internal Energy for species *k* is
134 *
135 * @f[
136 * \tilde{u}_k(T,P) = u^o_k(T,P) = u^{ref}_k(T)
137 * @f]
138 *
139 * The partial molar Heat Capacity for species *k* is
140 *
141 * @f[
142 * \tilde{Cp}_k(T,P) = Cp^o_k(T,P) = Cp^{ref}_k(T)
143 * @f]
144 *
145 * ## Application within Kinetics Managers
146 *
147 * @f$ C^a_k @f$ are defined such that @f$ a_k = C^a_k / C^s_k, @f$ where @f$
148 * C^s_k @f$ is a standard concentration defined below and @f$ a_k @f$ are
149 * activities used in the thermodynamic functions. These activity (or
150 * generalized) concentrations are used by kinetics manager classes to compute
151 * the forward and reverse rates of elementary reactions. The activity
152 * concentration,@f$ C^a_k @f$,is given by the following expression.
153 *
154 * @f[
155 * C^a_k = C^s_k X_k = \frac{P}{R T} X_k
156 * @f]
157 *
158 * The standard concentration for species *k* is independent of *k* and equal to
159 *
160 * @f[
161 * C^s_k = C^s = \frac{P}{R T}
162 * @f]
163 *
164 * For example, a bulk-phase binary gas reaction between species j and k,
165 * producing a new gas species l would have the following equation for its rate
166 * of progress variable, @f$ R^1 @f$, which has units of kmol m-3 s-1.
167 *
168 * @f[
169 * R^1 = k^1 C_j^a C_k^a = k^1 (C^s a_j) (C^s a_k)
170 * @f]
171 * where
172 * @f[
173 * C_j^a = C^s a_j \quad \mbox{and} \quad C_k^a = C^s a_k
174 * @f]
175 *
176 * @f$ C_j^a @f$ is the activity concentration of species j, and
177 * @f$ C_k^a @f$ is the activity concentration of species k. @f$ C^s @f$ is the
178 * standard concentration. @f$ a_j @f$ is the activity of species j which is
179 * equal to the mole fraction of j.
180 *
181 * The reverse rate constant can then be obtained from the law of microscopic
182 * reversibility and the equilibrium expression for the system.
183 *
184 * @f[
185 * \frac{a_j a_k}{ a_l} = K_a^{o,1} = \exp(\frac{\mu^o_l - \mu^o_j - \mu^o_k}{R T} )
186 * @f]
187 *
188 * @f$ K_a^{o,1} @f$ is the dimensionless form of the equilibrium constant,
189 * associated with the pressure dependent standard states @f$ \mu^o_l(T,P) @f$
190 * and their associated activities, @f$ a_l @f$, repeated here:
191 *
192 * @f[
193 * \mu_l(T,P) = \mu^o_l(T, P) + R T \ln a_l
194 * @f]
195 *
196 * We can switch over to expressing the equilibrium constant in terms of the
197 * reference state chemical potentials
198 *
199 * @f[
200 * K_a^{o,1} = \exp(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} ) * \frac{P_{ref}}{P}
201 * @f]
202 *
203 * The concentration equilibrium constant, @f$ K_c @f$, may be obtained by
204 * changing over to activity concentrations. When this is done:
205 *
206 * @f[
207 * \frac{C^a_j C^a_k}{ C^a_l} = C^o K_a^{o,1} = K_c^1 =
208 * \exp(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} ) * \frac{P_{ref}}{RT}
209 * @f]
210 *
211 * %Kinetics managers will calculate the concentration equilibrium constant,
212 * @f$ K_c @f$, using the second and third part of the above expression as a
213 * definition for the concentration equilibrium constant.
214 *
215 * For completeness, the pressure equilibrium constant may be obtained as well
216 *
217 * @f[
218 * \frac{P_j P_k}{ P_l P_{ref}} = K_p^1 =
219 * \exp\left(\frac{\mu^{ref}_l - \mu^{ref}_j - \mu^{ref}_k}{R T} \right)
220 * @f]
221 *
222 * @f$ K_p @f$ is the simplest form of the equilibrium constant for ideal gases.
223 * However, it isn't necessarily the simplest form of the equilibrium constant
224 * for other types of phases; @f$ K_c @f$ is used instead because it is
225 * completely general.
226 *
227 * The reverse rate of progress may be written down as
228 * @f[
229 * R^{-1} = k^{-1} C_l^a = k^{-1} (C^o a_l)
230 * @f]
231 *
232 * where we can use the concept of microscopic reversibility to write the
233 * reverse rate constant in terms of the forward rate constant and the
234 * concentration equilibrium constant, @f$ K_c @f$.
235 *
236 * @f[
237 * k^{-1} = k^1 K^1_c
238 * @f]
239 *
240 * @f$ k^{-1} @f$ has units of s-1.
241 *
242 * ## YAML Example
243 *
244 * An example ideal gas phase definition is given in the
245 * <a href="../../sphinx/html/yaml/phases.html#ideal-gas">YAML API Reference</a>.
246 *
247 * @ingroup thermoprops
248 */
250{
251public:
252 //! Construct and initialize an IdealGasPhase ThermoPhase object
253 //! directly from an input file
254 /*!
255 * @param inputFile Name of the input file containing the phase definition
256 * to set up the object. If blank, an empty phase will be
257 * created.
258 * @param id ID of the phase in the input file. Defaults to the
259 * empty string.
260 */
261 explicit IdealGasPhase(const string& inputFile="", const string& id="");
262
263 string type() const override {
264 return "ideal-gas";
265 }
266
267 bool isIdeal() const override {
268 return true;
269 }
270
271 //! String indicating the mechanical phase of the matter in this Phase.
272 /*!
273 * For the `IdealGasPhase`, this string is always `gas`.
274 */
275 string phaseOfMatter() const override {
276 return "gas";
277 }
278
279 //! @name Molar Thermodynamic Properties of the Solution
280 //! @{
281
282 //! Return the Molar enthalpy. Units: J/kmol.
283 /*!
284 * For an ideal gas mixture,
285 * @f[
286 * \hat h(T) = \sum_k X_k \hat h^0_k(T),
287 * @f]
288 * and is a function only of temperature. The standard-state pure-species
289 * enthalpies @f$ \hat h^0_k(T) @f$ are computed by the species
290 * thermodynamic property manager.
291 *
292 * \see MultiSpeciesThermo
293 */
294 double enthalpy_mole() const override {
295 return RT() * mean_X(enthalpy_RT_ref());
296 }
297
298 /**
299 * Molar entropy. Units: J/kmol/K.
300 * For an ideal gas mixture,
301 * @f[
302 * \hat s(T, P) = \sum_k X_k \hat s^0_k(T) - \hat R \ln \frac{P}{P^0}.
303 * @f]
304 * The reference-state pure-species entropies @f$ \hat s^0_k(T) @f$ are
305 * computed by the species thermodynamic property manager.
306 * @see MultiSpeciesThermo
307 */
308 double entropy_mole() const override;
309
310 /**
311 * Molar heat capacity at constant pressure. Units: J/kmol/K.
312 * For an ideal gas mixture,
313 * @f[
314 * \hat c_p(t) = \sum_k \hat c^0_{p,k}(T).
315 * @f]
316 * The reference-state pure-species heat capacities @f$ \hat c^0_{p,k}(T) @f$
317 * are computed by the species thermodynamic property manager.
318 * @see MultiSpeciesThermo
319 */
320 double cp_mole() const override;
321
322 /**
323 * Molar heat capacity at constant volume. Units: J/kmol/K.
324 * For an ideal gas mixture,
325 * @f[ \hat c_v = \hat c_p - \hat R. @f]
326 */
327 double cv_mole() const override;
328
329 //! @}
330 //! @name Mechanical Equation of State
331 //! @{
332
333 /**
334 * Pressure. Units: Pa.
335 * For an ideal gas mixture,
336 * @f[ P = n \hat R T. @f]
337 */
338 double pressure() const override {
339 return GasConstant * molarDensity() * temperature();
340 }
341
342 //! Set the pressure at constant temperature and composition.
343 /*!
344 * Units: Pa.
345 * This method is implemented by setting the mass density to
346 * @f[
347 * \rho = \frac{P \overline W}{\hat R T }.
348 * @f]
349 *
350 * @param p Pressure (Pa)
351 */
352 void setPressure(double p) override {
354 }
355
356 //! Set the density and pressure at constant composition.
357 /*!
358 * Units: kg/m^3, Pa.
359 * This method is implemented by setting the density to the input value and
360 * setting the temperature to
361 * @f[
362 * T = \frac{P \overline W}{\hat R \rho}.
363 * @f]
364 *
365 * @param rho Density (kg/m^3)
366 * @param p Pressure (Pa)
367 * @since New in %Cantera 3.0.
368 */
369 void setState_DP(double rho, double p) override {
370 if (p <= 0) {
371 throw CanteraError("IdealGasPhase::setState_DP",
372 "pressure must be positive");
373 }
374 setDensity(rho);
376 }
377
378 //! Returns the isothermal compressibility. Units: 1/Pa.
379 /**
380 * The isothermal compressibility is defined as
381 * @f[
382 * \kappa_T = -\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_T
383 * @f]
384 * For ideal gases it's equal to the inverse of the pressure
385 */
386 double isothermalCompressibility() const override {
387 return 1.0 / pressure();
388 }
389
390 //! Return the volumetric thermal expansion coefficient. Units: 1/K.
391 /*!
392 * The thermal expansion coefficient is defined as
393 * @f[
394 * \beta = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_P
395 * @f]
396 * For ideal gases, it's equal to the inverse of the temperature.
397 */
398 double thermalExpansionCoeff() const override {
399 return 1.0 / temperature();
400 }
401
402 double soundSpeed() const override;
403
404 //! @}
405 //! @name Chemical Potentials and Activities
406 //!
407 //! The activity @f$ a_k @f$ of a species in solution is
408 //! related to the chemical potential by
409 //! @f[
410 //! \mu_k(T,P,X_k) = \mu_k^0(T,P) + \hat R T \ln a_k.
411 //! @f]
412 //! The quantity @f$ \mu_k^0(T,P) @f$ is the standard state chemical potential
413 //! at unit activity. It may depend on the pressure and the temperature.
414 //! However, it may not depend on the mole fractions of the species in the
415 //! solution.
416 //!
417 //! The activities are related to the generalized concentrations, @f$ \tilde
418 //! C_k @f$, and standard concentrations, @f$ C^0_k @f$, by the following
419 //! formula:
420 //!
421 //! @f[
422 //! a_k = \frac{\tilde C_k}{C^0_k}
423 //! @f]
424 //! The generalized concentrations are used in the kinetics classes to
425 //! describe the rates of progress of reactions involving the species. Their
426 //! formulation depends upon the specification of the rate constants for
427 //! reaction, especially the units used in specifying the rate constants. The
428 //! bridge between the thermodynamic equilibrium expressions that use a_k and
429 //! the kinetics expressions which use the generalized concentrations is
430 //! provided by the multiplicative factor of the standard concentrations.
431 //! @{
432
433 //! This method returns the array of generalized concentrations.
434 /*!
435 * For an ideal gas mixture, these are simply the actual concentrations.
436 *
437 * @param c Output array of generalized concentrations. The units depend
438 * upon the implementation of the reaction rate expressions within
439 * the phase.
440 */
441 void getActivityConcentrations(double* c) const override {
443 }
444
445 //! Returns the standard concentration @f$ C^0_k @f$, which is used to
446 //! normalize the generalized concentration.
447 /*!
448 * This is defined as the concentration by which the generalized
449 * concentration is normalized to produce the activity. In many cases, this
450 * quantity will be the same for all species in a phase. Since the activity
451 * for an ideal gas mixture is simply the mole fraction, for an ideal gas
452 * @f$ C^0_k = P/\hat R T @f$.
453 *
454 * @param k Optional parameter indicating the species. The default
455 * is to assume this refers to species 0.
456 * @return
457 * Returns the standard Concentration in units of m3 kmol-1.
458 */
459 double standardConcentration(size_t k=0) const override;
460
461 //! Get the array of non-dimensional activity coefficients at the current
462 //! solution temperature, pressure, and solution concentration.
463 /*!
464 * For ideal gases, the activity coefficients are all equal to one.
465 *
466 * @param ac Output vector of activity coefficients. Length: m_kk.
467 */
468 void getActivityCoefficients(double* ac) const override;
469
470 //! @}
471 //! @name Partial Molar Properties of the Solution
472 //! @{
473
474 void getChemPotentials(double* mu) const override;
475 void getPartialMolarEnthalpies(double* hbar) const override;
476 void getPartialMolarEntropies(double* sbar) const override;
477 void getPartialMolarIntEnergies(double* ubar) const override;
478 void getPartialMolarCp(double* cpbar) const override;
479 void getPartialMolarVolumes(double* vbar) const override;
480
481 //! @}
482 //! @name Properties of the Standard State of the Species in the Solution
483 //! @{
484
485 void getStandardChemPotentials(double* mu) const override;
486 void getEnthalpy_RT(double* hrt) const override;
487 void getEntropy_R(double* sr) const override;
488 void getGibbs_RT(double* grt) const override;
489 void getPureGibbs(double* gpure) const override;
490 void getIntEnergy_RT(double* urt) const override;
491 void getCp_R(double* cpr) const override;
492 void getStandardVolumes(double* vol) const override;
493
494 //! @}
495 //! @name Thermodynamic Values for the Species Reference States
496 //! @{
497
498 void getEnthalpy_RT_ref(double* hrt) const override;
499 void getGibbs_RT_ref(double* grt) const override;
500 void getGibbs_ref(double* g) const override;
501 void getEntropy_R_ref(double* er) const override;
502 void getIntEnergy_RT_ref(double* urt) const override;
503 void getCp_R_ref(double* cprt) const override;
504 void getStandardVolumes_ref(double* vol) const override;
505
506 //! @}
507 //! @name NonVirtual Internal methods to Return References to Reference State Thermo
508 //! @{
509
510 //! Returns a reference to the dimensionless reference state enthalpy vector.
511 /*!
512 * This function is part of the layer that checks/recalculates the reference
513 * state thermo functions.
514 */
515 const vector<double>& enthalpy_RT_ref() const {
516 updateThermo();
517 return m_h0_RT;
518 }
519
520 //! Returns a reference to the dimensionless reference state Gibbs free energy vector.
521 /*!
522 * This function is part of the layer that checks/recalculates the reference
523 * state thermo functions.
524 */
525 const vector<double>& gibbs_RT_ref() const {
526 updateThermo();
527 return m_g0_RT;
528 }
529
530 //! Returns a reference to the dimensionless reference state Entropy vector.
531 /*!
532 * This function is part of the layer that checks/recalculates the reference
533 * state thermo functions.
534 */
535 const vector<double>& entropy_R_ref() const {
536 updateThermo();
537 return m_s0_R;
538 }
539
540 //! Returns a reference to the dimensionless reference state Heat Capacity vector.
541 /*!
542 * This function is part of the layer that checks/recalculates the reference
543 * state thermo functions.
544 */
545 const vector<double>& cp_R_ref() const {
546 updateThermo();
547 return m_cp0_R;
548 }
549
550 //! @}
551
552 bool addSpecies(shared_ptr<Species> spec) override;
553 void setToEquilState(const double* mu_RT) override;
554
555protected:
556 //! Reference state pressure
557 /*!
558 * Value of the reference state pressure in Pascals.
559 * All species must have the same reference state pressure.
560 */
561 double m_p0 = -1.0;
562
563 //! Temporary storage for dimensionless reference state enthalpies
564 mutable vector<double> m_h0_RT;
565
566 //! Temporary storage for dimensionless reference state heat capacities
567 mutable vector<double> m_cp0_R;
568
569 //! Temporary storage for dimensionless reference state Gibbs energies
570 mutable vector<double> m_g0_RT;
571
572 //! Temporary storage for dimensionless reference state entropies
573 mutable vector<double> m_s0_R;
574
575 mutable vector<double> m_expg0_RT;
576
577 //! Temporary array containing internally calculated partial pressures
578 mutable vector<double> m_pp;
579
580 //! Update the species reference state thermodynamic functions
581 /*!
582 * This method is called each time a thermodynamic property is requested,
583 * to check whether the internal species properties within the object
584 * need to be updated. Currently, this updates the species thermo
585 * polynomial values for the current value of the temperature. A check is
586 * made to see if the temperature has changed since the last evaluation.
587 * This object does not contain any persistent data that depends on the
588 * concentration, that needs to be updated. The state object modifies its
589 * concentration dependent information at the time the setMoleFractions()
590 * (or equivalent) call is made.
591 */
592 virtual void updateThermo() const;
593};
594
595}
596
597#endif
Header file for class ThermoPhase, the base class for phases with thermodynamic properties,...
Base class for exceptions thrown by Cantera classes.
Class IdealGasPhase represents low-density gases that obey the ideal gas equation of state.
const vector< double > & entropy_R_ref() const
Returns a reference to the dimensionless reference state Entropy vector.
double enthalpy_mole() const override
Return the Molar enthalpy. Units: J/kmol.
double thermalExpansionCoeff() const override
Return the volumetric thermal expansion coefficient. Units: 1/K.
bool isIdeal() const override
Boolean indicating whether phase is ideal.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials. Units: J/kmol.
void setState_DP(double rho, double p) override
Set the density and pressure at constant composition.
double m_p0
Reference state pressure.
double soundSpeed() const override
Return the speed of sound. Units: m/s.
double pressure() const override
Pressure.
vector< double > m_g0_RT
Temporary storage for dimensionless reference state Gibbs energies.
void getEntropy_R(double *sr) const override
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
vector< double > m_h0_RT
Temporary storage for dimensionless reference state enthalpies.
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
vector< double > m_pp
Temporary array containing internally calculated partial pressures.
void getStandardChemPotentials(double *mu) const override
Get the array of chemical potentials at unit activity for the species at their standard states at the...
void getCp_R(double *cpr) const override
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
string type() const override
String indicating the thermodynamic model implemented.
void getActivityConcentrations(double *c) const override
This method returns the array of generalized concentrations.
void setPressure(double p) override
Set the pressure at constant temperature and composition.
const vector< double > & gibbs_RT_ref() const
Returns a reference to the dimensionless reference state Gibbs free energy vector.
void getStandardVolumes_ref(double *vol) const override
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
void getPartialMolarVolumes(double *vbar) const override
Return an array of partial molar volumes for the species in the mixture.
double cv_mole() const override
Molar heat capacity at constant volume.
virtual void updateThermo() const
Update the species reference state thermodynamic functions.
void getPureGibbs(double *gpure) const override
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
void getIntEnergy_RT_ref(double *urt) const override
Returns the vector of nondimensional internal Energies of the reference state at the current temperat...
void getEnthalpy_RT(double *hrt) const override
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
void getEntropy_R_ref(double *er) const override
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
vector< double > m_s0_R
Temporary storage for dimensionless reference state entropies.
double isothermalCompressibility() const override
Returns the isothermal compressibility. Units: 1/Pa.
void getGibbs_RT(double *grt) const override
Get the nondimensional Gibbs functions for the species in their standard states at the current T and ...
double entropy_mole() const override
Molar entropy.
void getCp_R_ref(double *cprt) const override
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
void getStandardVolumes(double *vol) const override
Get the molar volumes of the species standard states at the current T and P of the solution.
void getPartialMolarIntEnergies(double *ubar) const override
Return an array of partial molar internal energies for the species in the mixture.
double cp_mole() const override
Molar heat capacity at constant pressure.
void getIntEnergy_RT(double *urt) const override
Returns the vector of nondimensional Internal Energies of the standard state species at the current T...
void getPartialMolarCp(double *cpbar) const override
Return an array of partial molar heat capacities for the species in the mixture.
double standardConcentration(size_t k=0) const override
Returns the standard concentration , which is used to normalize the generalized concentration.
vector< double > m_cp0_R
Temporary storage for dimensionless reference state heat capacities.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
void setToEquilState(const double *mu_RT) override
This method is used by the ChemEquil equilibrium solver.
void getGibbs_RT_ref(double *grt) const override
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
void getActivityCoefficients(double *ac) const override
Get the array of non-dimensional activity coefficients at the current solution temperature,...
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies of the species in the solution.
const vector< double > & cp_R_ref() const
Returns a reference to the dimensionless reference state Heat Capacity vector.
string phaseOfMatter() const override
String indicating the mechanical phase of the matter in this Phase.
void getEnthalpy_RT_ref(double *hrt) const override
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
const vector< double > & enthalpy_RT_ref() const
Returns a reference to the dimensionless reference state enthalpy vector.
virtual void getConcentrations(double *const c) const
Get the species concentrations (kmol/m^3).
Definition Phase.cpp:482
virtual double molarDensity() const
Molar density (kmol/m^3).
Definition Phase.cpp:576
double temperature() const
Temperature (K).
Definition Phase.h:562
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:655
virtual void setDensity(const double density_)
Set the internally stored density (kg/m^3) of the phase.
Definition Phase.cpp:586
virtual void setTemperature(double temp)
Set the internally stored temperature of the phase (K).
Definition Phase.h:623
double mean_X(const double *const Q) const
Evaluate the mole-fraction-weighted mean of an array Q.
Definition Phase.cpp:616
Base class for a phase with thermodynamic properties.
double RT() const
Return the Gas Constant multiplied by the current temperature.
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595