Loading [MathJax]/extensions/tex2jax.js
Cantera  3.1.0
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
IdealGasPhase.cpp
Go to the documentation of this file.
1/**
2 * @file IdealGasPhase.cpp
3 * ThermoPhase object for the ideal gas equation of
4 * state - workhorse for %Cantera (see @ref thermoprops
5 * and class @link Cantera::IdealGasPhase IdealGasPhase@endlink).
6 */
7
8// This file is part of Cantera. See License.txt in the top-level directory or
9// at https://cantera.org/license.txt for license and copyright information.
10
14
15namespace Cantera
16{
17
18IdealGasPhase::IdealGasPhase(const string& inputFile, const string& id_)
19{
20 initThermoFile(inputFile, id_);
21}
22
23// Molar Thermodynamic Properties of the Solution ------------------
24
26{
27 return GasConstant * (mean_X(entropy_R_ref()) - sum_xlogx() - std::log(pressure() / refPressure()));
28}
29
31{
32 return GasConstant * mean_X(cp_R_ref());
33}
34
36{
37 return cp_mole() - GasConstant;
38}
39
41 return sqrt(
43 );
44}
45
47{
48 return pressure() / RT();
49}
50
52{
53 for (size_t k = 0; k < m_kk; k++) {
54 ac[k] = 1.0;
55 }
56}
57
59{
60 getGibbs_ref(muStar);
61 double tmp = log(pressure() / refPressure()) * RT();
62 for (size_t k = 0; k < m_kk; k++) {
63 muStar[k] += tmp; // add RT*ln(P/P_0)
64 }
65}
66
67// Partial Molar Properties of the Solution --------------
68
70{
72 for (size_t k = 0; k < m_kk; k++) {
73 double xx = std::max(SmallNumber, moleFraction(k));
74 mu[k] += RT() * log(xx);
75 }
76}
77
79{
80 const vector<double>& _h = enthalpy_RT_ref();
81 scale(_h.begin(), _h.end(), hbar, RT());
82}
83
85{
86 const vector<double>& _s = entropy_R_ref();
87 scale(_s.begin(), _s.end(), sbar, GasConstant);
88 double logp = log(pressure() / refPressure());
89 for (size_t k = 0; k < m_kk; k++) {
90 double xx = std::max(SmallNumber, moleFraction(k));
91 sbar[k] += GasConstant * (-logp - log(xx));
92 }
93}
94
96{
97 const vector<double>& _h = enthalpy_RT_ref();
98 for (size_t k = 0; k < m_kk; k++) {
99 ubar[k] = RT() * (_h[k] - 1.0);
100 }
101}
102
103void IdealGasPhase::getPartialMolarCp(double* cpbar) const
104{
105 const vector<double>& _cp = cp_R_ref();
106 scale(_cp.begin(), _cp.end(), cpbar, GasConstant);
107}
108
110{
111 double vol = 1.0 / molarDensity();
112 for (size_t k = 0; k < m_kk; k++) {
113 vbar[k] = vol;
114 }
115}
116
117// Properties of the Standard State of the Species in the Solution --
118
119void IdealGasPhase::getEnthalpy_RT(double* hrt) const
120{
121 const vector<double>& _h = enthalpy_RT_ref();
122 copy(_h.begin(), _h.end(), hrt);
123}
124
125void IdealGasPhase::getEntropy_R(double* sr) const
126{
127 const vector<double>& _s = entropy_R_ref();
128 copy(_s.begin(), _s.end(), sr);
129 double tmp = log(pressure() / refPressure());
130 for (size_t k = 0; k < m_kk; k++) {
131 sr[k] -= tmp;
132 }
133}
134
135void IdealGasPhase::getGibbs_RT(double* grt) const
136{
137 const vector<double>& gibbsrt = gibbs_RT_ref();
138 copy(gibbsrt.begin(), gibbsrt.end(), grt);
139 double tmp = log(pressure() / refPressure());
140 for (size_t k = 0; k < m_kk; k++) {
141 grt[k] += tmp;
142 }
143}
144
145void IdealGasPhase::getPureGibbs(double* gpure) const
146{
147 const vector<double>& gibbsrt = gibbs_RT_ref();
148 scale(gibbsrt.begin(), gibbsrt.end(), gpure, RT());
149 double tmp = log(pressure() / refPressure()) * RT();
150 for (size_t k = 0; k < m_kk; k++) {
151 gpure[k] += tmp;
152 }
153}
154
155void IdealGasPhase::getIntEnergy_RT(double* urt) const
156{
158}
159
160void IdealGasPhase::getCp_R(double* cpr) const
161{
162 const vector<double>& _cpr = cp_R_ref();
163 copy(_cpr.begin(), _cpr.end(), cpr);
164}
165
167{
168 double tmp = 1.0 / molarDensity();
169 for (size_t k = 0; k < m_kk; k++) {
170 vol[k] = tmp;
171 }
172}
173
174// Thermodynamic Values for the Species Reference States ---------
175
177{
178 const vector<double>& _h = enthalpy_RT_ref();
179 copy(_h.begin(), _h.end(), hrt);
180}
181
182void IdealGasPhase::getGibbs_RT_ref(double* grt) const
183{
184 const vector<double>& gibbsrt = gibbs_RT_ref();
185 copy(gibbsrt.begin(), gibbsrt.end(), grt);
186}
187
188void IdealGasPhase::getGibbs_ref(double* g) const
189{
190 const vector<double>& gibbsrt = gibbs_RT_ref();
191 scale(gibbsrt.begin(), gibbsrt.end(), g, RT());
192}
193
195{
196 const vector<double>& _s = entropy_R_ref();
197 copy(_s.begin(), _s.end(), er);
198}
199
201{
202 const vector<double>& _h = enthalpy_RT_ref();
203 for (size_t k = 0; k < m_kk; k++) {
204 urt[k] = _h[k] - 1.0;
205 }
206}
207
208void IdealGasPhase::getCp_R_ref(double* cprt) const
209{
210 const vector<double>& _cpr = cp_R_ref();
211 copy(_cpr.begin(), _cpr.end(), cprt);
212}
213
215{
216 double tmp = RT() / m_p0;
217 for (size_t k = 0; k < m_kk; k++) {
218 vol[k] = tmp;
219 }
220}
221
222bool IdealGasPhase::addSpecies(shared_ptr<Species> spec)
223{
224 bool added = ThermoPhase::addSpecies(spec);
225 if (added) {
226 if (m_kk == 1) {
227 m_p0 = refPressure();
228 }
229 m_h0_RT.push_back(0.0);
230 m_g0_RT.push_back(0.0);
231 m_expg0_RT.push_back(0.0);
232 m_cp0_R.push_back(0.0);
233 m_s0_R.push_back(0.0);
234 m_pp.push_back(0.0);
235 }
236 return added;
237}
238
239void IdealGasPhase::setToEquilState(const double* mu_RT)
240{
241 const vector<double>& grt = gibbs_RT_ref();
242
243 // Within the method, we protect against inf results if the exponent is too
244 // high.
245 //
246 // If it is too low, we set the partial pressure to zero. This capability is
247 // needed by the elemental potential method.
248 double pres = 0.0;
249 for (size_t k = 0; k < m_kk; k++) {
250 double tmp = -grt[k] + mu_RT[k];
251 if (tmp < -600.) {
252 m_pp[k] = 0.0;
253 } else if (tmp > 300.0) {
254 double tmp2 = tmp / 300.;
255 tmp2 *= tmp2;
256 m_pp[k] = m_p0 * exp(300.) * tmp2;
257 } else {
258 m_pp[k] = m_p0 * exp(tmp);
259 }
260 pres += m_pp[k];
261 }
262 // set state
263 setMoleFractions(m_pp.data());
264 setPressure(pres);
265}
266
268{
269 static const int cacheId = m_cache.getId();
270 CachedScalar cached = m_cache.getScalar(cacheId);
271 double tnow = temperature();
272
273 // If the temperature has changed since the last time these
274 // properties were computed, recompute them.
275 if (cached.state1 != tnow) {
276 m_spthermo.update(tnow, &m_cp0_R[0], &m_h0_RT[0], &m_s0_R[0]);
277 cached.state1 = tnow;
278
279 // update the species Gibbs functions
280 for (size_t k = 0; k < m_kk; k++) {
281 m_g0_RT[k] = m_h0_RT[k] - m_s0_R[k];
282 }
283 }
284}
285}
ThermoPhase object for the ideal gas equation of state - workhorse for Cantera (see Thermodynamic Pro...
Headers for the factory class that can create known ThermoPhase objects (see Thermodynamic Properties...
const vector< double > & entropy_R_ref() const
Returns a reference to the dimensionless reference state Entropy vector.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials. Units: J/kmol.
double m_p0
Reference state pressure.
double soundSpeed() const override
Return the speed of sound. Units: m/s.
double pressure() const override
Pressure.
vector< double > m_g0_RT
Temporary storage for dimensionless reference state Gibbs energies.
void getEntropy_R(double *sr) const override
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
vector< double > m_h0_RT
Temporary storage for dimensionless reference state enthalpies.
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
vector< double > m_pp
Temporary array containing internally calculated partial pressures.
void getStandardChemPotentials(double *mu) const override
Get the array of chemical potentials at unit activity for the species at their standard states at the...
void getCp_R(double *cpr) const override
Get the nondimensional Heat Capacities at constant pressure for the species standard states at the cu...
void setPressure(double p) override
Set the pressure at constant temperature and composition.
const vector< double > & gibbs_RT_ref() const
Returns a reference to the dimensionless reference state Gibbs free energy vector.
void getStandardVolumes_ref(double *vol) const override
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
void getPartialMolarVolumes(double *vbar) const override
Return an array of partial molar volumes for the species in the mixture.
double cv_mole() const override
Molar heat capacity at constant volume.
virtual void updateThermo() const
Update the species reference state thermodynamic functions.
void getPureGibbs(double *gpure) const override
Get the Gibbs functions for the standard state of the species at the current T and P of the solution.
void getIntEnergy_RT_ref(double *urt) const override
Returns the vector of nondimensional internal Energies of the reference state at the current temperat...
void getEnthalpy_RT(double *hrt) const override
Get the nondimensional Enthalpy functions for the species at their standard states at the current T a...
void getEntropy_R_ref(double *er) const override
Returns the vector of nondimensional entropies of the reference state at the current temperature of t...
vector< double > m_s0_R
Temporary storage for dimensionless reference state entropies.
void getGibbs_RT(double *grt) const override
Get the nondimensional Gibbs functions for the species in their standard states at the current T and ...
double entropy_mole() const override
Molar entropy.
void getCp_R_ref(double *cprt) const override
Returns the vector of nondimensional constant pressure heat capacities of the reference state at the ...
void getStandardVolumes(double *vol) const override
Get the molar volumes of the species standard states at the current T and P of the solution.
void getPartialMolarIntEnergies(double *ubar) const override
Return an array of partial molar internal energies for the species in the mixture.
double cp_mole() const override
Molar heat capacity at constant pressure.
void getIntEnergy_RT(double *urt) const override
Returns the vector of nondimensional Internal Energies of the standard state species at the current T...
void getPartialMolarCp(double *cpbar) const override
Return an array of partial molar heat capacities for the species in the mixture.
double standardConcentration(size_t k=0) const override
Returns the standard concentration , which is used to normalize the generalized concentration.
vector< double > m_cp0_R
Temporary storage for dimensionless reference state heat capacities.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
void setToEquilState(const double *mu_RT) override
This method is used by the ChemEquil equilibrium solver.
void getGibbs_RT_ref(double *grt) const override
Returns the vector of nondimensional Gibbs Free Energies of the reference state at the current temper...
void getActivityCoefficients(double *ac) const override
Get the array of non-dimensional activity coefficients at the current solution temperature,...
IdealGasPhase(const string &inputFile="", const string &id="")
Construct and initialize an IdealGasPhase ThermoPhase object directly from an input file.
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies of the species in the solution.
const vector< double > & cp_R_ref() const
Returns a reference to the dimensionless reference state Heat Capacity vector.
void getEnthalpy_RT_ref(double *hrt) const override
Returns the vector of nondimensional enthalpies of the reference state at the current temperature of ...
const vector< double > & enthalpy_RT_ref() const
Returns a reference to the dimensionless reference state enthalpy vector.
virtual void update(double T, double *cp_R, double *h_RT, double *s_R) const
Compute the reference-state properties for all species.
virtual double molarDensity() const
Molar density (kmol/m^3).
Definition Phase.cpp:576
virtual void setMoleFractions(const double *const x)
Set the mole fractions to the specified values.
Definition Phase.cpp:289
ValueCache m_cache
Cached for saved calculations within each ThermoPhase.
Definition Phase.h:834
size_t m_kk
Number of species in the phase.
Definition Phase.h:854
double temperature() const
Temperature (K).
Definition Phase.h:562
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:655
double sum_xlogx() const
Evaluate .
Definition Phase.cpp:626
double moleFraction(size_t k) const
Return the mole fraction of a single species.
Definition Phase.cpp:439
double mean_X(const double *const Q) const
Evaluate the mole-fraction-weighted mean of an array Q.
Definition Phase.cpp:616
double RT() const
Return the Gas Constant multiplied by the current temperature.
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double refPressure() const
Returns the reference pressure in Pa.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
CachedScalar getScalar(int id)
Get a reference to a CachedValue object representing a scalar (double) with the given id.
Definition ValueCache.h:161
int getId()
Get a unique id for a cached value.
void scale(InputIter begin, InputIter end, OutputIter out, S scale_factor)
Multiply elements of an array by a scale factor.
Definition utilities.h:104
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const double SmallNumber
smallest number to compare to zero.
Definition ct_defs.h:158
A cached property value and the state at which it was evaluated.
Definition ValueCache.h:33
double state1
Value of the first state variable for the state at which value was evaluated, for example temperature...
Definition ValueCache.h:102
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...