Cantera  3.1.0
Loading...
Searching...
No Matches
IonFlow.h
Go to the documentation of this file.
1//! @file IonFlow.h
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
6#ifndef CT_IONFLOW_H
7#define CT_IONFLOW_H
8
10
11namespace Cantera
12{
13/**
14 * This class models the ion transportation in a flame. There are three
15 * stages of the simulation.
16 *
17 * The first stage turns off the diffusion of ions due to the fast
18 * diffusion rate of electron without internal electric forces (ambi-
19 * polar diffusion effect).
20 *
21 * The second stage evaluates drift flux from electric field calculated from
22 * Poisson's equation, which is solved together with other equations. Poisson's
23 * equation is coupled because the total charge densities depends on the species'
24 * concentration. See Pedersen and Brown @cite pedersen1993 for details.
25 *
26 * @ingroup flowGroup
27 */
28class IonFlow : public Flow1D
29{
30public:
31 //! Create a new IonFlow domain.
32 //! @param ph Object representing the gas phase. This object will be used
33 //! to evaluate all thermodynamic, kinetic, and transport properties.
34 //! @param nsp Number of species.
35 //! @param points Initial number of grid points
36 IonFlow(ThermoPhase* ph = 0, size_t nsp = 1, size_t points = 1);
37
38 //! Create a new IonFlow domain.
39 //! @param sol Solution object used to evaluate all thermodynamic, kinetic, and
40 //! transport properties
41 //! @param id name of flow domain
42 //! @param points initial number of grid points
43 IonFlow(shared_ptr<Solution> sol, const string& id="", size_t points = 1);
44
45 string domainType() const override;
46
47 size_t getSolvingStage() const override {
48 return m_stage;
49 }
50 void setSolvingStage(const size_t stage) override;
51
52 void resize(size_t components, size_t points) override;
53 bool componentActive(size_t n) const override;
54
55 void _finalize(const double* x) override;
56
57 void solveElectricField(size_t j=npos) override;
58 void fixElectricField(size_t j=npos) override;
59 bool doElectricField(size_t j) const override {
60 return m_do_electric_field[j];
61 }
62
63 /**
64 * Sometimes it is desired to carry out the simulation using a specified
65 * electron transport profile, rather than assuming it as a constant (0.4).
66 * See Bisetti and El Morsli @cite bisetti2012.
67 * If in the future the class GasTransport is improved, this method may
68 * be discarded. This method specifies this profile.
69 */
70 void setElectronTransport(vector<double>& tfix,
71 vector<double>& diff_e,
72 vector<double>& mobi_e);
73
74protected:
75
76 /**
77 * Evaluate the electric field equation residual by Gauss's law.
78 *
79 * The function calculates the electric field equation as:
80 * @f[
81 * \frac{dE}{dz} = \frac{e}{\varepsilon_0} \sum (q_k \cdot n_k)
82 * @f]
83 *
84 * and
85 *
86 * @f[
87 * E = -\frac{dV}{dz}
88 * @f]
89 *
90 * The electric field equation is based on Gauss's law,
91 * accounting for charge density and permittivity of free space
92 * (@f$ \varepsilon_0 @f$).
93 * The zero electric field is first evaluated and if the solution state is 2,
94 * then the alternative form the electric field equation is evaluated.
95 *
96 * For argument explanation, see evalContinuity() base class.
97 */
98 void evalElectricField(double* x, double* rsd, int* diag,
99 double rdt, size_t jmin, size_t jmax) override;
100
101 /**
102 * Evaluate the species equations' residual. This function overloads the
103 * original species function.
104 *
105 * A Neumann boundary for the charged species at the
106 * left boundary is added, and the default boundary condition from the overloaded
107 * method is left the same for the right boundary.
108 *
109 * For argument explanation, see evalContinuity() base class.
110 */
111 void evalSpecies(double* x, double* rsd, int* diag,
112 double rdt, size_t jmin, size_t jmax) override;
113 void updateTransport(double* x, size_t j0, size_t j1) override;
114 void updateDiffFluxes(const double* x, size_t j0, size_t j1) override;
115 //! Solving phase one: the fluxes of charged species are turned off
116 void frozenIonMethod(const double* x, size_t j0, size_t j1);
117 //! Solving phase two: the electric field equation is added coupled
118 //! by the electrical drift
119 void electricFieldMethod(const double* x, size_t j0, size_t j1);
120 //! flag for solving electric field or not
122
123 //! flag for importing transport of electron
125
126 //! electrical properties
127 vector<double> m_speciesCharge;
128
129 //! index of species with charges
130 vector<size_t> m_kCharge;
131
132 //! index of neutral species
133 vector<size_t> m_kNeutral;
134
135 //! Coefficients of polynomial fit for electron mobility as a function of
136 //! temperature.
137 //! @see setElectronTransport
138 vector<double> m_mobi_e_fix;
139
140 //! Coefficients of polynomial fit for electron diffusivity as a function of
141 //! temperature.
142 //! @see setElectronTransport
143 vector<double> m_diff_e_fix;
144
145 //! mobility
146 vector<double> m_mobility;
147
148 //! solving stage
149 size_t m_stage = 1;
150
151 //! index of electron
153
154 //! electric field [V/m]
155 double E(const double* x, size_t j) const {
156 return x[index(c_offset_E, j)];
157 }
158
159 //! Axial gradient of the electric field [V/m²]
160 double dEdz(const double* x, size_t j) const {
161 return (E(x,j)-E(x,j-1))/(z(j)-z(j-1));
162 }
163
164 //! number density [molecules/m³]
165 double ND(const double* x, size_t k, size_t j) const {
166 return Avogadro * m_rho[j] * Y(x,k,j) / m_wt[k];
167 }
168
169 //! total charge density
170 double rho_e(double* x, size_t j) const {
171 double chargeDensity = 0.0;
172 for (size_t k : m_kCharge) {
173 chargeDensity += m_speciesCharge[k] * ElectronCharge * ND(x,k,j);
174 }
175 return chargeDensity;
176 }
177};
178
179}
180
181#endif
double z(size_t jlocal) const
Get the coordinate [m] of the point with local index jlocal
Definition Domain1D.h:499
size_t index(size_t n, size_t j) const
Returns the index of the solution vector, which corresponds to component n at grid point j.
Definition Domain1D.h:338
This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemic...
Definition Flow1D.h:46
vector< double > m_rho
Density at each grid point.
Definition Flow1D.h:856
vector< double > m_wt
Molecular weight of each species.
Definition Flow1D.h:858
double Y(const double *x, size_t k, size_t j) const
Get the mass fraction of species k at point j from the local state vector x.
Definition Flow1D.h:689
This class models the ion transportation in a flame.
Definition IonFlow.h:29
vector< size_t > m_kCharge
index of species with charges
Definition IonFlow.h:130
vector< double > m_diff_e_fix
Coefficients of polynomial fit for electron diffusivity as a function of temperature.
Definition IonFlow.h:143
void electricFieldMethod(const double *x, size_t j0, size_t j1)
Solving phase two: the electric field equation is added coupled by the electrical drift.
Definition IonFlow.cpp:151
bool doElectricField(size_t j) const override
Retrieve flag indicating whether electric field is solved or not (used by IonFlow specialization)
Definition IonFlow.h:59
double E(const double *x, size_t j) const
electric field [V/m]
Definition IonFlow.h:155
vector< bool > m_do_electric_field
flag for solving electric field or not
Definition IonFlow.h:121
size_t m_kElectron
index of electron
Definition IonFlow.h:152
void frozenIonMethod(const double *x, size_t j0, size_t j1)
Solving phase one: the fluxes of charged species are turned off.
Definition IonFlow.cpp:126
void resize(size_t components, size_t points) override
Change the grid size. Called after grid refinement.
Definition IonFlow.cpp:84
void setElectronTransport(vector< double > &tfix, vector< double > &diff_e, vector< double > &mobi_e)
Sometimes it is desired to carry out the simulation using a specified electron transport profile,...
Definition IonFlow.cpp:294
void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the electric field equation residual by Gauss's law.
Definition IonFlow.cpp:201
double rho_e(double *x, size_t j) const
total charge density
Definition IonFlow.h:170
size_t getSolvingStage() const override
Get the solving stage (used by IonFlow specialization)
Definition IonFlow.h:47
double ND(const double *x, size_t k, size_t j) const
number density [molecules/m³]
Definition IonFlow.h:165
void updateTransport(double *x, size_t j0, size_t j1) override
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition IonFlow.cpp:99
vector< double > m_mobility
mobility
Definition IonFlow.h:146
double dEdz(const double *x, size_t j) const
Axial gradient of the electric field [V/m²].
Definition IonFlow.h:160
void updateDiffFluxes(const double *x, size_t j0, size_t j1) override
Update the diffusive mass fluxes.
Definition IonFlow.cpp:116
void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the species equations' residual.
Definition IonFlow.cpp:226
size_t m_stage
solving stage
Definition IonFlow.h:149
void _finalize(const double *x) override
In some cases, a domain may need to set parameters that depend on the initial solution estimate.
Definition IonFlow.cpp:311
void setSolvingStage(const size_t stage) override
Solving stage mode for handling ionized species (used by IonFlow specialization)
Definition IonFlow.cpp:188
bool m_import_electron_transport
flag for importing transport of electron
Definition IonFlow.h:124
void solveElectricField(size_t j=npos) override
Set to solve electric field in a point (used by IonFlow specialization)
Definition IonFlow.cpp:244
void fixElectricField(size_t j=npos) override
Set to fix voltage in a point (used by IonFlow specialization)
Definition IonFlow.cpp:269
string domainType() const override
Domain type flag.
Definition IonFlow.cpp:74
vector< size_t > m_kNeutral
index of neutral species
Definition IonFlow.h:133
vector< double > m_mobi_e_fix
Coefficients of polynomial fit for electron mobility as a function of temperature.
Definition IonFlow.h:138
bool componentActive(size_t n) const override
Returns true if the specified component is an active part of the solver state.
Definition IonFlow.cpp:90
vector< double > m_speciesCharge
electrical properties
Definition IonFlow.h:127
Base class for a phase with thermodynamic properties.
const double Avogadro
Avogadro's Number [number/kmol].
Definition ct_defs.h:81
const double ElectronCharge
Elementary charge [C].
Definition ct_defs.h:90
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
@ c_offset_E
electric field
Definition Flow1D.h:29