Cantera  3.1.0
Loading...
Searching...
No Matches
IonFlow.cpp
Go to the documentation of this file.
1//! @file IonFlow.cpp
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
8#include "cantera/oneD/refine.h"
13#include "cantera/base/global.h"
14
15namespace Cantera
16{
17
18IonFlow::IonFlow(ThermoPhase* ph, size_t nsp, size_t points) :
19 Flow1D(ph, nsp, points)
20{
21 // make a local copy of species charge
22 for (size_t k = 0; k < m_nsp; k++) {
23 m_speciesCharge.push_back(m_thermo->charge(k));
24 }
25
26 // Find indices for charge of species
27 for (size_t k = 0; k < m_nsp; k++){
28 if (m_speciesCharge[k] != 0){
29 m_kCharge.push_back(k);
30 } else {
31 m_kNeutral.push_back(k);
32 }
33 }
34
35 // Find the index of electron
36 if (m_thermo->speciesIndex("E") != npos ) {
38 }
39
40 // no bound for electric potential
41 setBounds(c_offset_E, -1.0e20, 1.0e20);
42
43 // Set tighter negative species limit on charged species to avoid
44 // instabilities. Tolerance on electrons is even tighter to account for the
45 // low "molecular" weight.
46 for (size_t k : m_kCharge) {
47 setBounds(c_offset_Y + k, -1e-14, 1.0);
48 }
49 setBounds(c_offset_Y + m_kElectron, -1e-18, 1.0);
50
51 m_refiner->setActive(c_offset_E, false);
53 m_do_electric_field.resize(m_points,false);
54}
55
56IonFlow::IonFlow(shared_ptr<Solution> sol, const string& id, size_t points)
57 : IonFlow(sol->thermo().get(), sol->thermo()->nSpecies(), points)
58{
59 setSolution(sol);
60 m_id = id;
61 m_kin = m_solution->kinetics().get();
62 m_trans = m_solution->transport().get();
63 if (m_trans->transportModel() == "none") {
64 throw CanteraError("IonFlow::IonFlow",
65 "An appropriate transport model\nshould be set when instantiating the "
66 "Solution ('gas') object.");
67 }
68 m_solution->registerChangedCallback(this, [this]() {
69 setKinetics(m_solution->kinetics());
70 setTransport(m_solution->transport());
71 });
72}
73
74string IonFlow::domainType() const {
75 if (m_isFree) {
76 return "free-ion-flow";
77 }
78 if (m_usesLambda) {
79 return "axisymmetric-ion-flow";
80 }
81 return "unstrained-ion-flow";
82}
83
84void IonFlow::resize(size_t components, size_t points){
85 Flow1D::resize(components, points);
87 m_do_electric_field.resize(m_points,false);
88}
89
90bool IonFlow::componentActive(size_t n) const
91{
92 if (n == c_offset_E) {
93 return true;
94 } else {
96 }
97}
98
99void IonFlow::updateTransport(double* x, size_t j0, size_t j1)
100{
102 for (size_t j = j0; j < j1; j++) {
103 setGasAtMidpoint(x,j);
106 size_t k = m_kElectron;
107 double tlog = log(m_thermo->temperature());
108 m_mobility[k+m_nsp*j] = poly5(tlog, m_mobi_e_fix.data());
109 double rho = m_thermo->density();
110 double wtm = m_thermo->meanMolecularWeight();
111 m_diff[k+m_nsp*j] = m_wt[k]*rho*poly5(tlog, m_diff_e_fix.data())/wtm;
112 }
113 }
114}
115
116void IonFlow::updateDiffFluxes(const double* x, size_t j0, size_t j1)
117{
118 if (m_stage == 1) {
119 frozenIonMethod(x,j0,j1);
120 }
121 if (m_stage == 2) {
122 electricFieldMethod(x,j0,j1);
123 }
124}
125
126void IonFlow::frozenIonMethod(const double* x, size_t j0, size_t j1)
127{
128 for (size_t j = j0; j < j1; j++) {
129 double dz = z(j+1) - z(j);
130 double sum = 0.0;
131 for (size_t k : m_kNeutral) {
132 m_flux(k,j) = m_diff[k+m_nsp*j];
133 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;
134 sum -= m_flux(k,j);
135 }
136
137 // correction flux to insure that \sum_k Y_k V_k = 0.
138 for (size_t k : m_kNeutral) {
139 m_flux(k,j) += sum*Y(x,k,j);
140 }
141
142 // flux for ions
143 // Set flux to zero to prevent some fast charged species (such electrons)
144 // to run away
145 for (size_t k : m_kCharge) {
146 m_flux(k,j) = 0;
147 }
148 }
149}
150
151void IonFlow::electricFieldMethod(const double* x, size_t j0, size_t j1)
152{
153 for (size_t j = j0; j < j1; j++) {
154 double rho = density(j);
155 double dz = z(j+1) - z(j);
156
157 // mixture-average diffusion
158 for (size_t k = 0; k < m_nsp; k++) {
159 m_flux(k,j) = m_diff[k+m_nsp*j];
160 m_flux(k,j) *= (X(x,k,j) - X(x,k,j+1))/dz;
161 }
162
163 // ambipolar diffusion
164 double E_ambi = E(x,j);
165 for (size_t k : m_kCharge) {
166 double Yav = 0.5 * (Y(x,k,j) + Y(x,k,j+1));
167 double drift = rho * Yav * E_ambi
168 * m_speciesCharge[k] * m_mobility[k+m_nsp*j];
169 m_flux(k,j) += drift;
170 }
171
172 // correction flux
173 double sum_flux = 0.0;
174 for (size_t k = 0; k < m_nsp; k++) {
175 sum_flux -= m_flux(k,j); // total net flux
176 }
177 double sum_ion = 0.0;
178 for (size_t k : m_kCharge) {
179 sum_ion += Y(x,k,j);
180 }
181 // The portion of correction for ions is taken off
182 for (size_t k : m_kNeutral) {
183 m_flux(k,j) += Y(x,k,j) / (1-sum_ion) * sum_flux;
184 }
185 }
186}
187
188void IonFlow::setSolvingStage(const size_t stage)
189{
190 if (stage == 1 || stage == 2) {
191 m_stage = stage;
192 } else {
193 throw CanteraError("IonFlow::setSolvingStage",
194 "solution stage must be set to: "
195 "1) frozenIonMethod, "
196 "2) electricFieldEqnMethod");
197 }
198}
199
200//! Evaluate the electric field equation residual
201void IonFlow::evalElectricField(double* x, double* rsd, int* diag,
202 double rdt, size_t jmin, size_t jmax)
203{
204 Flow1D::evalElectricField(x, rsd, diag, rdt, jmin, jmax);
205 if (m_stage != 2) {
206 return;
207 }
208
209 if (jmin == 0) { // left boundary
210 rsd[index(c_offset_E, jmin)] = E(x,jmin);
211 }
212
213 if (jmax == m_points - 1) { // right boundary
214 rsd[index(c_offset_E, jmax)] = dEdz(x,jmax) - rho_e(x,jmax) / epsilon_0;
215 }
216
217 // j0 and j1 are constrained to only interior points
218 size_t j0 = std::max<size_t>(jmin, 1);
219 size_t j1 = std::min(jmax, m_points - 2);
220 for (size_t j = j0; j <= j1; j++) {
221 rsd[index(c_offset_E, j)] = dEdz(x,j) - rho_e(x,j) / epsilon_0;
222 diag[index(c_offset_E, j)] = 0;
223 }
224}
225
226void IonFlow::evalSpecies(double* x, double* rsd, int* diag,
227 double rdt, size_t jmin, size_t jmax)
228{
229 Flow1D::evalSpecies(x, rsd, diag, rdt, jmin, jmax);
230 if (m_stage != 2) {
231 return;
232 }
233
234 if (jmin == 0) { // left boundary
235 // enforcing the flux for charged species is difficult
236 // since charged species are also affected by electric
237 // force, so Neumann boundary condition is used.
238 for (size_t k : m_kCharge) {
239 rsd[index(c_offset_Y + k, jmin)] = Y(x,k,jmin) - Y(x,k,jmin + 1);
240 }
241 }
242}
243
245{
246 bool changed = false;
247 if (j == npos) {
248 for (size_t i = 0; i < m_points; i++) {
249 if (!m_do_electric_field[i]) {
250 changed = true;
251 }
252 m_do_electric_field[i] = true;
253 }
254 } else {
255 if (!m_do_electric_field[j]) {
256 changed = true;
257 }
258 m_do_electric_field[j] = true;
259 }
260 m_refiner->setActive(c_offset_U, true);
261 m_refiner->setActive(c_offset_V, true);
262 m_refiner->setActive(c_offset_T, true);
263 m_refiner->setActive(c_offset_E, true);
264 if (changed) {
266 }
267}
268
270{
271 bool changed = false;
272 if (j == npos) {
273 for (size_t i = 0; i < m_points; i++) {
274 if (m_do_electric_field[i]) {
275 changed = true;
276 }
277 m_do_electric_field[i] = false;
278 }
279 } else {
280 if (m_do_electric_field[j]) {
281 changed = true;
282 }
283 m_do_electric_field[j] = false;
284 }
285 m_refiner->setActive(c_offset_U, false);
286 m_refiner->setActive(c_offset_V, false);
287 m_refiner->setActive(c_offset_T, false);
288 m_refiner->setActive(c_offset_E, false);
289 if (changed) {
291 }
292}
293
294void IonFlow::setElectronTransport(vector<double>& tfix, vector<double>& diff_e,
295 vector<double>& mobi_e)
296{
298 size_t degree = 5;
299 size_t n = tfix.size();
300 vector<double> tlog;
301 for (size_t i = 0; i < n; i++) {
302 tlog.push_back(log(tfix[i]));
303 }
304 vector<double> w(n, -1.0);
305 m_diff_e_fix.resize(degree + 1);
306 m_mobi_e_fix.resize(degree + 1);
307 polyfit(n, degree, tlog.data(), diff_e.data(), w.data(), m_diff_e_fix.data());
308 polyfit(n, degree, tlog.data(), mobi_e.data(), w.data(), m_mobi_e_fix.data());
309}
310
311void IonFlow::_finalize(const double* x)
312{
314
315 bool p = m_do_electric_field[0];
316 if (p) {
318 }
319}
320
321}
Headers for the Transport object, which is the virtual base class for all transport property evaluato...
Base class for exceptions thrown by Cantera classes.
shared_ptr< Solution > m_solution
Composite thermo/kinetics/transport handler.
Definition Domain1D.h:624
string id() const
Returns the identifying tag for this domain.
Definition Domain1D.h:479
double z(size_t jlocal) const
Get the coordinate [m] of the point with local index jlocal
Definition Domain1D.h:499
void setSolution(shared_ptr< Solution > sol)
Set the solution manager.
Definition Domain1D.cpp:31
size_t m_points
Number of grid points.
Definition Domain1D.h:587
string m_id
Identity tag for the domain.
Definition Domain1D.h:617
unique_ptr< Refiner > m_refiner
Refiner object used for placing grid points.
Definition Domain1D.h:618
void setBounds(size_t n, double lower, double upper)
Set the upper and lower bounds for a solution component, n.
Definition Domain1D.h:212
void needJacUpdate()
Set this if something has changed in the governing equations (for example, the value of a constant ha...
Definition Domain1D.cpp:113
size_t index(size_t n, size_t j) const
Returns the index of the solution vector, which corresponds to component n at grid point j.
Definition Domain1D.h:338
This class represents 1D flow domains that satisfy the one-dimensional similarity solution for chemic...
Definition Flow1D.h:46
ThermoPhase * m_thermo
Phase object used for calculating thermodynamic properties.
Definition Flow1D.h:895
double density(size_t j) const
Get the density [kg/m³] at point j
Definition Flow1D.h:350
double X(const double *x, size_t k, size_t j) const
Get the mole fraction of species k at point j from the local state vector x.
Definition Flow1D.h:706
void setTransport(shared_ptr< Transport > trans) override
Set the transport manager used for transport property calculations.
Definition Flow1D.cpp:139
void setKinetics(shared_ptr< Kinetics > kin) override
Set the Kinetics object used for reaction rate calculations.
Definition Flow1D.cpp:133
Kinetics * m_kin
Kinetics object used for calculating species production rates.
Definition Flow1D.h:898
void resize(size_t components, size_t points) override
Change the grid size. Called after grid refinement.
Definition Flow1D.cpp:159
bool m_usesLambda
Flag that is true for counterflow configurations that use the pressure eigenvalue in the radial mome...
Definition Flow1D.h:952
vector< double > m_diff
Coefficient used in diffusion calculations for each species at each grid point.
Definition Flow1D.h:871
Array2D m_flux
Array of size m_nsp by m_points for saving diffusive mass fluxes.
Definition Flow1D.h:881
Transport * m_trans
Transport object used for calculating transport properties.
Definition Flow1D.h:901
virtual bool componentActive(size_t n) const
Returns true if the specified component is an active part of the solver state.
Definition Flow1D.cpp:848
virtual void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
Evaluate the species equations' residuals.
Definition Flow1D.cpp:727
vector< double > m_wt
Molecular weight of each species.
Definition Flow1D.h:858
double Y(const double *x, size_t k, size_t j) const
Get the mass fraction of species k at point j from the local state vector x.
Definition Flow1D.h:689
bool m_isFree
Flag that is true for freely propagating flames anchored by a temperature fixed point.
Definition Flow1D.h:947
virtual void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax)
Evaluate the electric field equation residual to be zero everywhere.
Definition Flow1D.cpp:767
void _finalize(const double *x) override
In some cases, a domain may need to set parameters that depend on the initial solution estimate.
Definition Flow1D.cpp:258
size_t m_nsp
Number of species in the mechanism.
Definition Flow1D.h:892
void setGasAtMidpoint(const double *x, size_t j)
Set the gas state to be consistent with the solution at the midpoint between j and j + 1.
Definition Flow1D.cpp:246
virtual void updateTransport(double *x, size_t j0, size_t j1)
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition Flow1D.cpp:368
This class models the ion transportation in a flame.
Definition IonFlow.h:29
vector< size_t > m_kCharge
index of species with charges
Definition IonFlow.h:130
vector< double > m_diff_e_fix
Coefficients of polynomial fit for electron diffusivity as a function of temperature.
Definition IonFlow.h:143
void electricFieldMethod(const double *x, size_t j0, size_t j1)
Solving phase two: the electric field equation is added coupled by the electrical drift.
Definition IonFlow.cpp:151
double E(const double *x, size_t j) const
electric field [V/m]
Definition IonFlow.h:155
vector< bool > m_do_electric_field
flag for solving electric field or not
Definition IonFlow.h:121
size_t m_kElectron
index of electron
Definition IonFlow.h:152
void frozenIonMethod(const double *x, size_t j0, size_t j1)
Solving phase one: the fluxes of charged species are turned off.
Definition IonFlow.cpp:126
void resize(size_t components, size_t points) override
Change the grid size. Called after grid refinement.
Definition IonFlow.cpp:84
void setElectronTransport(vector< double > &tfix, vector< double > &diff_e, vector< double > &mobi_e)
Sometimes it is desired to carry out the simulation using a specified electron transport profile,...
Definition IonFlow.cpp:294
void evalElectricField(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the electric field equation residual by Gauss's law.
Definition IonFlow.cpp:201
double rho_e(double *x, size_t j) const
total charge density
Definition IonFlow.h:170
void updateTransport(double *x, size_t j0, size_t j1) override
Update the transport properties at grid points in the range from j0 to j1, based on solution x.
Definition IonFlow.cpp:99
vector< double > m_mobility
mobility
Definition IonFlow.h:146
double dEdz(const double *x, size_t j) const
Axial gradient of the electric field [V/m²].
Definition IonFlow.h:160
void updateDiffFluxes(const double *x, size_t j0, size_t j1) override
Update the diffusive mass fluxes.
Definition IonFlow.cpp:116
void evalSpecies(double *x, double *rsd, int *diag, double rdt, size_t jmin, size_t jmax) override
Evaluate the species equations' residual.
Definition IonFlow.cpp:226
size_t m_stage
solving stage
Definition IonFlow.h:149
void _finalize(const double *x) override
In some cases, a domain may need to set parameters that depend on the initial solution estimate.
Definition IonFlow.cpp:311
void setSolvingStage(const size_t stage) override
Solving stage mode for handling ionized species (used by IonFlow specialization)
Definition IonFlow.cpp:188
bool m_import_electron_transport
flag for importing transport of electron
Definition IonFlow.h:124
void solveElectricField(size_t j=npos) override
Set to solve electric field in a point (used by IonFlow specialization)
Definition IonFlow.cpp:244
void fixElectricField(size_t j=npos) override
Set to fix voltage in a point (used by IonFlow specialization)
Definition IonFlow.cpp:269
string domainType() const override
Domain type flag.
Definition IonFlow.cpp:74
vector< size_t > m_kNeutral
index of neutral species
Definition IonFlow.h:133
vector< double > m_mobi_e_fix
Coefficients of polynomial fit for electron mobility as a function of temperature.
Definition IonFlow.h:138
IonFlow(ThermoPhase *ph=0, size_t nsp=1, size_t points=1)
Create a new IonFlow domain.
Definition IonFlow.cpp:18
bool componentActive(size_t n) const override
Returns true if the specified component is an active part of the solver state.
Definition IonFlow.cpp:90
vector< double > m_speciesCharge
electrical properties
Definition IonFlow.h:127
double temperature() const
Temperature (K).
Definition Phase.h:562
double meanMolecularWeight() const
The mean molecular weight. Units: (kg/kmol)
Definition Phase.h:655
size_t speciesIndex(const string &name) const
Returns the index of a species named 'name' within the Phase object.
Definition Phase.cpp:129
virtual double density() const
Density (kg/m^3).
Definition Phase.h:587
double charge(size_t k) const
Dimensionless electrical charge of a single molecule of species k The charge is normalized by the the...
Definition Phase.h:538
Base class for a phase with thermodynamic properties.
virtual string transportModel() const
Identifies the model represented by this Transport object.
Definition Transport.h:93
virtual void getMobilities(double *const mobil_e)
Get the Electrical mobilities (m^2/V/s).
Definition Transport.h:182
Header for a file containing miscellaneous numerical functions.
This file contains definitions for utility functions and text for modules, inputfiles and logging,...
R poly5(D x, R *c)
Templated evaluation of a polynomial of order 5.
Definition utilities.h:141
double polyfit(size_t n, size_t deg, const double *xp, const double *yp, const double *wp, double *pp)
Fits a polynomial function to a set of data points.
Definition polyfit.cpp:14
const double epsilon_0
Permittivity of free space [F/m].
Definition ct_defs.h:137
Namespace for the Cantera kernel.
Definition AnyMap.cpp:595
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:180
@ c_offset_U
axial velocity [m/s]
Definition Flow1D.h:25
@ c_offset_V
strain rate
Definition Flow1D.h:26
@ c_offset_E
electric field
Definition Flow1D.h:29
@ c_offset_Y
mass fractions
Definition Flow1D.h:31
@ c_offset_T
temperature [kelvin]
Definition Flow1D.h:27
Various templated functions that carry out common vector and polynomial operations (see Templated Arr...