flame_fixed_T.py (Source)

"""
A burner-stabilized, premixed methane/air flat flame with multicomponent
transport properties and a specified temperature profile.

Requires: cantera >= 3.0
Keywords: combustion, 1D flow, burner-stabilized flame, premixed flame, plotting,
          saving output
"""

from pathlib import Path
import numpy as np
import cantera as ct


################################################################
# parameter values
p = ct.one_atm  # pressure
tburner = 373.7  # burner temperature
mdot = 0.04  # kg/m^2/s
comp = 'CH4:0.65, O2:1, N2:3.76'  # premixed gas composition

# The solution domain is chosen to be 1 cm
width = 0.01  # m

loglevel = 1  # amount of diagnostic output (0 to 5)
refine_grid = True  # 'True' to enable refinement

################ create the gas object ########################
#
# This object will be used to evaluate all thermodynamic, kinetic, and
# transport properties
gas = ct.Solution('gri30.yaml')

# set its state to that of the unburned gas at the burner
gas.TPX = tburner, p, comp

# create the BurnerFlame object.
f = ct.BurnerFlame(gas=gas, width=width)

# set the mass flow rate at the burner
f.burner.mdot = mdot

# read temperature vs. position data from a file.
# The file is assumed to have one z, T pair per line, separated by a comma.
# The data file must be stored in the same folder as this script.
data_file = Path(__file__).parent.joinpath('tdata.dat')
zloc, tvalues = np.genfromtxt(str(data_file), delimiter=',', comments='#').T
zloc /= max(zloc)

# set the temperature profile to the values read in
f.flame.set_fixed_temp_profile(zloc, tvalues)

# show the initial estimate for the solution
f.show()

# don't solve the energy equation
f.energy_enabled = False

# first solve the flame with mixture-averaged transport properties
f.transport_model = 'mixture-averaged'
f.set_refine_criteria(ratio=3.0, slope=0.3, curve=1)

f.solve(loglevel, refine_grid)

if "native" in ct.hdf_support():
    output = Path() / "flame_fixed_T.h5"
else:
    output = Path() / "flame_fixed_T.yaml"
output.unlink(missing_ok=True)

f.save(output, name="mix", description="solution with mixture-averaged transport")

print('\n\n switching to multicomponent transport...\n\n')
f.transport_model = 'multicomponent'

f.set_refine_criteria(ratio=3.0, slope=0.1, curve=0.2)
f.solve(loglevel, refine_grid)
f.save(output, name="multi", description="solution with multicomponent transport")

# write the velocity, temperature, density, and mole fractions to a CSV file
f.save('flame_fixed_T.csv', basis="mole", overwrite=True)
f.show_stats()