function plotdata = ignite(g)
% IGNITE Zero-dimensional kinetics: adiabatic, constant pressure.
%
% This example solves the same problem as 'reactor1,' but does
% it using one of MATLAB's ODE integrators, rather than using the
% Cantera Reactor class.
%
% Keywords: combustion, reactor network, ignition delay, plotting
help ignite
if nargin == 1
gas = g;
else
gas = Solution('gri30.yaml');
end
% set the initial conditions
set(gas,'T',1001.0,'P',oneatm,'X','H2:2,O2:1,N2:4');
y0 = [intEnergy_mass(gas)
1.0/density(gas)
massFractions(gas)];
time_interval = [0 0.001];
options = odeset('RelTol',1.e-5,'AbsTol',1.e-12,'Stats','on');
t0 = cputime;
out = ode15s(@reactor_ode,time_interval,y0,options,gas,@vdot,@area,@heatflux);
disp(['CPU time = ' num2str(cputime - t0)]);
plotdata = output(out,gas);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% the functions below may be defined arbitrarily to set the reactor
% boundary conditions - the rate of change of volume, the heat
% flux, and the area.
% Rate of change of volume. Any arbirtrary function may be implemented.
% Input arguments:
% t time
% vol volume
% gas ideal gas object
function v = vdot(t, vol, gas)
%v = 0.0; %uncomment for constant volume
v = 1.e11 * (pressure(gas) - 101325.0); % holds pressure very
% close to 1 atm
% heat flux (W/m^2).
function q = heatflux(t, gas)
q = 0.0; % adiabatic
% surface area (m^2). Used only to compute heat transfer.
function a = area(t,vol)
a = 1.0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Since the solution variables used by the 'reactor' function are
% not necessarily those desired for output, this function is called
% after the integration is complete to generate the desired
% outputs.
function pv = output(s, gas)
times = s.x;
soln = s.y;
[~,n] = size(times);
pv = zeros(nSpecies(gas) + 4, n);
set(gas,'T',1001.0,'P',oneatm);
for j = 1:n
ss = soln(:,j);
y = ss(3:end);
mass = sum(y);
u_mass = ss(1)/mass;
v_mass = ss(2)/mass;
setMassFractions(gas, y);
setState_UV(gas, [u_mass v_mass]);
pv(1,j) = times(j);
pv(2,j) = temperature(gas);
pv(3,j) = density(gas);
pv(4,j) = pressure(gas);
pv(5:end,j) = y;
end
% plot the temperature and OH mass fractions.
figure(1);
plot(pv(1,:),pv(2,:));
xlabel('time');
ylabel('Temperature');
title(['Final T = ' num2str(pv(2,end)) ' K']);
figure(2);
ioh = speciesIndex(gas,'OH');
plot(pv(1,:),pv(4+ioh,:));
xlabel('time');
ylabel('Mass Fraction');
title('OH Mass Fraction');