Cantera  3.0.0
Loading...
Searching...
No Matches
PlasmaPhase.cpp
Go to the documentation of this file.
1//! @file PlasmaPhase.cpp
2
3// This file is part of Cantera. See License.txt in the top-level directory or
4// at https://cantera.org/license.txt for license and copyright information.
5
7#include <boost/math/special_functions/gamma.hpp>
11
12namespace Cantera {
13
14PlasmaPhase::PlasmaPhase(const string& inputFile, const string& id_)
15{
16 initThermoFile(inputFile, id_);
17
18 // initial grid
19 m_electronEnergyLevels = Eigen::ArrayXd::LinSpaced(m_nPoints, 0.0, 1.0);
20
21 // initial electron temperature
23}
24
26{
27 if (m_distributionType == "discretized") {
28 throw CanteraError("PlasmaPhase::updateElectronEnergyDistribution",
29 "Invalid for discretized electron energy distribution.");
30 } else if (m_distributionType == "isotropic") {
32 }
33}
34
36 Eigen::ArrayXd eps32 = m_electronEnergyLevels.pow(3./2.);
37 double norm = 2./3. * numericalQuadrature(m_quadratureMethod,
39 if (norm < 0.0) {
40 throw CanteraError("PlasmaPhase::normalizeElectronEnergyDistribution",
41 "The norm is negative. This might be caused by bad "
42 "electron energy distribution");
43 }
45}
46
48{
49 if (type == "discretized" ||
50 type == "isotropic") {
52 } else {
53 throw CanteraError("PlasmaPhase::setElectronEnergyDistributionType",
54 "Unknown type for electron energy distribution.");
55 }
56}
57
59{
61 double x = m_isotropicShapeFactor;
62 double gamma1 = boost::math::tgamma(3.0 / 2.0 * x);
63 double gamma2 = boost::math::tgamma(5.0 / 2.0 * x);
64 double c1 = x * std::pow(gamma2, 1.5) / std::pow(gamma1, 2.5);
65 double c2 = x * std::pow(gamma2 / gamma1, x);
67 c1 * m_electronEnergyLevels.sqrt() /
68 std::pow(meanElectronEnergy(), 1.5) *
70 meanElectronEnergy()).pow(x)).exp();
72}
73
75 m_electronTemp = Te;
77}
78
80 m_electronTemp = 2.0 / 3.0 * energy * ElectronCharge / Boltzmann;
82}
83
84void PlasmaPhase::setElectronEnergyLevels(const double* levels, size_t length)
85{
86 m_nPoints = length;
87 m_electronEnergyLevels = Eigen::Map<const Eigen::ArrayXd>(levels, length);
90}
91
93{
94 Eigen::ArrayXd h = m_electronEnergyLevels.tail(m_nPoints - 1) -
96 if (m_electronEnergyLevels[0] < 0.0 || (h <= 0.0).any()) {
97 throw CanteraError("PlasmaPhase::checkElectronEnergyLevels",
98 "Values of electron energy levels need to be positive and "
99 "monotonically increasing.");
100 }
101}
102
104{
105 Eigen::ArrayXd h = m_electronEnergyLevels.tail(m_nPoints - 1) -
107 if ((m_electronEnergyDist < 0.0).any()) {
108 throw CanteraError("PlasmaPhase::checkElectronEnergyDistribution",
109 "Values of electron energy distribution cannot be negative.");
110 }
111 if (m_electronEnergyDist[m_nPoints - 1] > 0.01) {
112 warn_user("PlasmaPhase::checkElectronEnergyDistribution",
113 "The value of the last element of electron energy distribution exceed 0.01. "
114 "This indicates that the value of electron energy level is not high enough "
115 "to contain the isotropic distribution at mean electron energy of "
116 "{} eV", meanElectronEnergy());
117 }
118}
119
121 const double* dist,
122 size_t length)
123{
124 m_distributionType = "discretized";
125 m_nPoints = length;
127 Eigen::Map<const Eigen::ArrayXd>(levels, length);
129 Eigen::Map<const Eigen::ArrayXd>(dist, length);
133 }
136}
137
139{
140 // calculate mean electron energy and electron temperature
141 Eigen::ArrayXd eps52 = m_electronEnergyLevels.pow(5./2.);
142 double epsilon_m = 2.0 / 5.0 * numericalQuadrature(m_quadratureMethod,
143 m_electronEnergyDist, eps52);
144 m_electronTemp = 2.0 / 3.0 * epsilon_m * ElectronCharge / Boltzmann;
145}
146
148 m_isotropicShapeFactor = x;
150}
151
152void PlasmaPhase::getParameters(AnyMap& phaseNode) const
153{
155 AnyMap eedf;
156 eedf["type"] = m_distributionType;
157 vector<double> levels(m_nPoints);
158 Eigen::Map<Eigen::ArrayXd>(levels.data(), m_nPoints) = m_electronEnergyLevels;
159 eedf["energy-levels"] = levels;
160 if (m_distributionType == "isotropic") {
161 eedf["shape-factor"] = m_isotropicShapeFactor;
162 eedf["mean-electron-energy"].setQuantity(meanElectronEnergy(), "eV");
163 } else if (m_distributionType == "discretized") {
164 vector<double> dist(m_nPoints);
165 Eigen::Map<Eigen::ArrayXd>(dist.data(), m_nPoints) = m_electronEnergyDist;
166 eedf["distribution"] = dist;
167 eedf["normalize"] = m_do_normalizeElectronEnergyDist;
168 }
169 phaseNode["electron-energy-distribution"] = std::move(eedf);
170}
171
172void PlasmaPhase::setParameters(const AnyMap& phaseNode, const AnyMap& rootNode)
173{
174 IdealGasPhase::setParameters(phaseNode, rootNode);
175 if (phaseNode.hasKey("electron-energy-distribution")) {
176 const AnyMap eedf = phaseNode["electron-energy-distribution"].as<AnyMap>();
177 m_distributionType = eedf["type"].asString();
178 if (m_distributionType == "isotropic") {
179 if (eedf.hasKey("shape-factor")) {
180 setIsotropicShapeFactor(eedf["shape-factor"].asDouble());
181 } else {
182 throw CanteraError("PlasmaPhase::setParameters",
183 "isotropic type requires shape-factor key.");
184 }
185 if (eedf.hasKey("mean-electron-energy")) {
186 double energy = eedf.convert("mean-electron-energy", "eV");
187 setMeanElectronEnergy(energy);
188 } else {
189 throw CanteraError("PlasmaPhase::setParameters",
190 "isotropic type requires electron-temperature key.");
191 }
192 if (eedf.hasKey("energy-levels")) {
193 setElectronEnergyLevels(eedf["energy-levels"].asVector<double>().data(),
194 eedf["energy-levels"].asVector<double>().size());
195 }
197 } else if (m_distributionType == "discretized") {
198 if (!eedf.hasKey("energy-levels")) {
199 throw CanteraError("PlasmaPhase::setParameters",
200 "Cannot find key energy-levels.");
201 }
202 if (!eedf.hasKey("distribution")) {
203 throw CanteraError("PlasmaPhase::setParameters",
204 "Cannot find key distribution.");
205 }
206 if (eedf.hasKey("normalize")) {
207 enableNormalizeElectronEnergyDist(eedf["normalize"].asBool());
208 }
209 setDiscretizedElectronEnergyDist(eedf["energy-levels"].asVector<double>().data(),
210 eedf["distribution"].asVector<double>().data(),
211 eedf["energy-levels"].asVector<double>().size());
212 }
213 }
214}
215
216bool PlasmaPhase::addSpecies(shared_ptr<Species> spec)
217{
218 bool added = IdealGasPhase::addSpecies(spec);
219 size_t k = m_kk - 1;
220
221 if (spec->composition.find("E") != spec->composition.end() &&
222 spec->composition.size() == 1 &&
223 spec->composition["E"] == 1) {
226 } else {
227 throw CanteraError("PlasmaPhase::addSpecies",
228 "Cannot add species, {}. "
229 "Only one electron species is allowed.", spec->name);
230 }
231 }
232 return added;
233}
234
236{
238 // check electron species
240 throw CanteraError("PlasmaPhase::initThermo",
241 "No electron species found.");
242 }
243}
244
246{
248 static const int cacheId = m_cache.getId();
249 CachedScalar cached = m_cache.getScalar(cacheId);
250 double tempNow = temperature();
251 double electronTempNow = electronTemperature();
252 size_t k = m_electronSpeciesIndex;
253 // If the electron temperature has changed since the last time these
254 // properties were computed, recompute them.
255 if (cached.state1 != tempNow || cached.state2 != electronTempNow) {
257 &m_cp0_R[k], &m_h0_RT[k], &m_s0_R[k]);
258 cached.state1 = tempNow;
259 cached.state2 = electronTempNow;
260 }
261 // update the species Gibbs functions
262 m_g0_RT[k] = m_h0_RT[k] - m_s0_R[k];
263}
264
266 double value = IdealGasPhase::enthalpy_mole();
267 value += GasConstant * (electronTemperature() - temperature()) *
270 return value;
271}
272
273void PlasmaPhase::getGibbs_ref(double* g) const
274{
277}
278
280{
283}
284
286{
289}
290
292{
294 double logp = log(pressure());
295 double logpe = log(electronPressure());
296 sbar[m_electronSpeciesIndex] += GasConstant * (logp - logpe);
297}
298
300{
301 const vector<double>& _h = enthalpy_RT_ref();
302 for (size_t k = 0; k < m_kk; k++) {
303 ubar[k] = RT() * (_h[k] - 1.0);
304 }
305 size_t k = m_electronSpeciesIndex;
306 ubar[k] = RTe() * (_h[k] - 1.0);
307}
308
309void PlasmaPhase::getChemPotentials(double* mu) const
310{
312 size_t k = m_electronSpeciesIndex;
313 double xx = std::max(SmallNumber, moleFraction(k));
314 mu[k] += (RTe() - RT()) * log(xx);
315}
316
318{
320 size_t k = m_electronSpeciesIndex;
321 muStar[k] -= log(pressure() / refPressure()) * RT();
322 muStar[k] += log(electronPressure() / refPressure()) * RTe();
323}
324
325void PlasmaPhase::getEntropy_R(double* sr) const
326{
327 const vector<double>& _s = entropy_R_ref();
328 copy(_s.begin(), _s.end(), sr);
329 double tmp = log(pressure() / refPressure());
330 for (size_t k = 0; k < m_kk; k++) {
331 if (k != m_electronSpeciesIndex) {
332 sr[k] -= tmp;
333 } else {
334 sr[k] -= log(electronPressure() / refPressure());
335 }
336 }
337}
338
339void PlasmaPhase::getGibbs_RT(double* grt) const
340{
341 const vector<double>& gibbsrt = gibbs_RT_ref();
342 copy(gibbsrt.begin(), gibbsrt.end(), grt);
343 double tmp = log(pressure() / refPressure());
344 for (size_t k = 0; k < m_kk; k++) {
345 if (k != m_electronSpeciesIndex) {
346 grt[k] += tmp;
347 } else {
348 grt[k] += log(electronPressure() / refPressure());
349 }
350 }
351}
352
353}
Header file for class PlasmaPhase.
Declaration for class Cantera::Species.
A map of string keys to values whose type can vary at runtime.
Definition AnyMap.h:427
bool hasKey(const string &key) const
Returns true if the map contains an item named key.
Definition AnyMap.cpp:1423
double convert(const string &key, const string &units) const
Convert the item stored by the given key to the units specified in units.
Definition AnyMap.cpp:1535
Base class for exceptions thrown by Cantera classes.
const vector< double > & entropy_R_ref() const
Returns a reference to the dimensionless reference state Entropy vector.
double enthalpy_mole() const override
Return the Molar enthalpy. Units: J/kmol.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials. Units: J/kmol.
double pressure() const override
Pressure.
vector< double > m_g0_RT
Temporary storage for dimensionless reference state Gibbs energies.
vector< double > m_h0_RT
Temporary storage for dimensionless reference state enthalpies.
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
void getStandardChemPotentials(double *mu) const override
Get the array of chemical potentials at unit activity for the species at their standard states at the...
const vector< double > & gibbs_RT_ref() const
Returns a reference to the dimensionless reference state Gibbs free energy vector.
void getStandardVolumes_ref(double *vol) const override
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
virtual void updateThermo() const
Update the species reference state thermodynamic functions.
vector< double > m_s0_R
Temporary storage for dimensionless reference state entropies.
vector< double > m_cp0_R
Temporary storage for dimensionless reference state heat capacities.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies of the species in the solution.
const vector< double > & enthalpy_RT_ref() const
Returns a reference to the dimensionless reference state enthalpy vector.
virtual void update_single(size_t k, double T, double *cp_R, double *h_RT, double *s_R) const
Get reference-state properties for a single species.
ValueCache m_cache
Cached for saved calculations within each ThermoPhase.
Definition Phase.h:927
size_t m_kk
Number of species in the phase.
Definition Phase.h:947
double temperature() const
Temperature (K).
Definition Phase.h:662
double moleFraction(size_t k) const
Return the mole fraction of a single species.
Definition Phase.cpp:545
void checkElectronEnergyDistribution() const
Check the electron energy distribution.
double meanElectronEnergy() const
Mean electron energy [eV].
double enthalpy_mole() const override
Return the Molar enthalpy. Units: J/kmol.
size_t m_nPoints
Number of points of electron energy levels.
void getPartialMolarEnthalpies(double *hbar) const override
Returns an array of partial molar enthalpies for the species in the mixture.
void getChemPotentials(double *mu) const override
Get the species chemical potentials. Units: J/kmol.
void normalizeElectronEnergyDistribution()
Electron energy distribution norm.
void getStandardChemPotentials(double *muStar) const override
Get the array of chemical potentials at unit activity for the species at their standard states at the...
void updateThermo() const override
Update the species reference state thermodynamic functions.
void setElectronTemperature(double Te) override
Set the internally stored electron temperature of the phase (K).
void getEntropy_R(double *sr) const override
Get the array of nondimensional Entropy functions for the standard state species at the current T and...
void getGibbs_ref(double *g) const override
Returns the vector of the Gibbs function of the reference state at the current temperature of the sol...
Eigen::ArrayXd m_electronEnergyDist
Normalized electron energy distribution vector [-] Length: m_nPoints.
Eigen::ArrayXd m_electronEnergyLevels
electron energy levels [ev]. Length: m_nPoints
void setDiscretizedElectronEnergyDist(const double *levels, const double *distrb, size_t length)
Set discretized electron energy distribution.
void getParameters(AnyMap &phaseNode) const override
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
string type() const override
String indicating the thermodynamic model implemented.
Definition PlasmaPhase.h:74
void checkElectronEnergyLevels() const
Check the electron energy levels.
void initThermo() override
Initialize the ThermoPhase object after all species have been set up.
void updateElectronTemperatureFromEnergyDist()
Update electron temperature (K) From energy distribution.
string m_distributionType
Electron energy distribution type.
void getStandardVolumes_ref(double *vol) const override
Get the molar volumes of the species reference states at the current T and P_ref of the solution.
void updateElectronEnergyDistribution()
Update electron energy distribution.
string m_quadratureMethod
Numerical quadrature method for electron energy distribution.
PlasmaPhase(const string &inputFile="", const string &id="")
Construct and initialize a PlasmaPhase object directly from an input file.
double m_electronTemp
Electron temperature [K].
double RTe() const
Return the Gas Constant multiplied by the current electron temperature.
void setElectronEnergyLevels(const double *levels, size_t length)
Set electron energy levels.
void getGibbs_RT(double *grt) const override
Get the nondimensional Gibbs functions for the species in their standard states at the current T and ...
bool m_do_normalizeElectronEnergyDist
Flag of normalizing electron energy distribution.
void getPartialMolarIntEnergies(double *ubar) const override
Return an array of partial molar internal energies for the species in the mixture.
void setIsotropicElectronEnergyDistribution()
Set isotropic electron energy distribution.
bool addSpecies(shared_ptr< Species > spec) override
Add a Species to this Phase.
void setParameters(const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap()) override
Set equation of state parameters from an AnyMap phase description.
void setMeanElectronEnergy(double energy)
Set mean electron energy [eV].
size_t m_electronSpeciesIndex
Index of electron species.
void setElectronEnergyDistributionType(const string &type)
Set electron energy distribution type.
void getPartialMolarEntropies(double *sbar) const override
Returns an array of partial molar entropies of the species in the solution.
virtual double electronPressure() const
Electron pressure.
double electronTemperature() const override
Electron Temperature (K)
void setIsotropicShapeFactor(double x)
Set the shape factor of isotropic electron energy distribution.
void enableNormalizeElectronEnergyDist(bool enable)
Set flag of automatically normalize electron energy distribution Flag: m_do_normalizeElectronEnergyDi...
virtual void setParameters(const AnyMap &phaseNode, const AnyMap &rootNode=AnyMap())
Set equation of state parameters from an AnyMap phase description.
virtual void getParameters(AnyMap &phaseNode) const
Store the parameters of a ThermoPhase object such that an identical one could be reconstructed using ...
double RT() const
Return the Gas Constant multiplied by the current temperature.
virtual void initThermo()
Initialize the ThermoPhase object after all species have been set up.
void initThermoFile(const string &inputFile, const string &id)
Initialize a ThermoPhase object using an input file.
MultiSpeciesThermo m_spthermo
Pointer to the calculation manager for species reference-state thermodynamic properties.
virtual double refPressure() const
Returns the reference pressure in Pa.
CachedScalar getScalar(int id)
Get a reference to a CachedValue object representing a scalar (double) with the given id.
Definition ValueCache.h:161
int getId()
Get a unique id for a cached value.
Header for a file containing miscellaneous numerical functions.
This file contains definitions for utility functions and text for modules, inputfiles and logging,...
double numericalQuadrature(const string &method, const Eigen::ArrayXd &f, const Eigen::ArrayXd &x)
Numerical integration of a function.
Definition funcs.cpp:112
const double Boltzmann
Boltzmann constant [J/K].
Definition ct_defs.h:84
const double GasConstant
Universal Gas Constant [J/kmol/K].
Definition ct_defs.h:120
const double ElectronCharge
Elementary charge [C].
Definition ct_defs.h:90
void warn_user(const string &method, const string &msg, const Args &... args)
Print a user warning raised from method as CanteraWarning.
Definition global.h:267
Namespace for the Cantera kernel.
Definition AnyMap.cpp:564
const size_t npos
index returned by functions to indicate "no position"
Definition ct_defs.h:195
const double SmallNumber
smallest number to compare to zero.
Definition ct_defs.h:158
A cached property value and the state at which it was evaluated.
Definition ValueCache.h:33
double state2
Value of the second state variable for the state at which value was evaluated, for example density or...
Definition ValueCache.h:106
double state1
Value of the first state variable for the state at which value was evaluated, for example temperature...
Definition ValueCache.h:102